1
|
Tian M, Wu D, Gou X, Li R, Zhang X. Genetic modulation of rare earth nanoparticle biotransformation shapes biological outcomes. Nat Commun 2025; 16:3429. [PMID: 40210885 PMCID: PMC11985947 DOI: 10.1038/s41467-025-58520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/21/2025] [Indexed: 04/12/2025] Open
Abstract
The biotransformation of nanoparticles plays a crucial role in determining their biological fate and responses. Although a few engineering strategies (e.g., surface functionalization and shape control) have been employed to regulate the fate of nanoparticles, the genetic control of nanoparticle biotransformation remains an unexplored avenue. Herein, we utilized a CRISPR-based genome-scale knockout approach to identify genes involved in the biotransformation of rare earth oxide (REO) nanoparticles. We found that the biotransformation of REOs in lysosomes could be genetically controlled via SMPD1. Specifically, suppression of SMPD1 inhibited the transformation of La2O3 into sea urchin-shaped structures, thereby protecting against lysosomal damage, proinflammatory cytokine release, pyroptosis and RE-induced pneumoconiosis. Overall, our study provides insight into how to control the biological fate of nanomaterials.
Collapse
Affiliation(s)
- Mingming Tian
- School of Ecology and Environmental Science, Yunnan University & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Kunming, Yunnan, China
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, P. R. China
| | - Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow Medical College, Soochow University, Suzhou, P. R. China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow Medical College, Soochow University, Suzhou, P. R. China.
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| | - Xiaowei Zhang
- School of Ecology and Environmental Science, Yunnan University & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Kunming, Yunnan, China.
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China.
| |
Collapse
|
2
|
Huang Y, Cao J, Li X, Yang Q, Xie Q, Liu X, Cai X, Chen J, Hong H, Li R. Multimodal feature fusion machine learning for predicting chronic injury induced by engineered nanomaterials. Nat Commun 2025; 16:2765. [PMID: 40113790 PMCID: PMC11926223 DOI: 10.1038/s41467-025-58016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Concerns regarding chronic injuries (e.g., fibrosis and carcinogenesis) induced by nanoparticles raised public health concerns and need to be rapidly assessed in hazard identification. Although in silico analysis is commonly used for risk assessment of chemicals, predicting chronic in vivo nanotoxicity remains challenging due to the intricate interactions at multiple interfaces like nano-biofluids and nano-subcellular organelles. Herein, we develop a multimodal feature fusion analysis framework to predict the fibrogenic potential of metal oxide nanoparticles (MeONPs) in female mice. Treating each nano-bio interface as an independent entity, eighty-seven features derived from MeONP-lung interactions are used to develop a machine learning-based predictive framework for lung fibrosis. We identify cell damage and cytokine (IL-1β and TGF-β1) production in macrophages and epithelial cells as key events closely associated with particle size, surface charge, and lysosome interactions. Experimental validations show that the developed in silico model has 85% accuracy. Our findings demonstrate the potential usefulness of this predictive model for risk assessment of nanomaterials and in assisting regulatory decision-making. While the model is developed based on 52 MeONPs, further validation using a larger nanoparticle library is necessary to confirm its broader applicability.
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Jiayu Cao
- School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Qing Yang
- School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
- Nanotechnology Centre, VSB-Technical University of Ostrava, Ostrava-Poruba, 70800, Czech Republic.
| |
Collapse
|
3
|
Wang T, Huang Y, Zhang H, Li X, Li F. Machine learning models for quantitatively prediction of toxicity in macrophages induced by metal oxide nanoparticles. CHEMOSPHERE 2025; 370:143923. [PMID: 39653189 DOI: 10.1016/j.chemosphere.2024.143923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
As nanotechnology advances, metal oxide nanoparticles (MeONPs) increasingly come into contact with humans. The inhaled MeONPs cannot be effectively cleared by cilia or lung mucus. In the last decade, potential immune toxicity arising from exposure to MeONPs has been extensively debated, as lung macrophage is the main pathway for cleaning inhaled exogenous particles. However, their toxicity on lung macrophages has rarely been quantitatively predicted in silico due to the complexity of responses in macrophages and the intricate properties of MeONPs. Here, machine learning (ML) methods were used to establish models for quantitatively predicting the toxicity of MeONPs in macrophages. A multidimensional dataset including 240 data points covering the lethality, biochemical behaviors, and physicochemical properties of 30 MeONPs was obtained. ML models based on different algorithms with high prediction accuracy were constructed by addressing the issue of class imbalance during the training process. The models were verified by 10-fold cross-validation and external validation. The best-performed model has an R2 of 0.85 and 0.90 in the 10-fold cross-validation and external test set, respectively; and Q2 of 0.88 and 0.90 in the 10-fold cross-validation and test set, respectively. Five parameters that impact toxicity were identified and the toxicity mechanisms were elucidated by ML analysis. The prediction results can be used to fill the data gap in the risk assessment of nanomaterials. The framework offers valuable insights for designing and utilizing safe nanoparticles, as well as aiding in decision-making processes aimed at protecting the environment and public health.
Collapse
Affiliation(s)
- Tianqin Wang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yang Huang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Hongwu Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fei Li
- Key Laboratory of Coastal Environmental Processes and Ecological Restoration, Chinese Academy of Sciences (Yantai Institute of Coastal Research), Key Laboratory of Coastal Environmental Processes of Shandong Province, Yantai Institute of Coastal Research, Chinese Academy of Sciences, Yantai, 264003, China
| |
Collapse
|
4
|
Huang Y, Wang T, Li Y, Wang Z, Cai X, Chen J, Li R, Li X. In Vitro-to- In Vivo Extrapolation on Lung Toxicity Induced by Metal Oxide Nanoparticles via Data-Mining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1673-1682. [PMID: 39648557 DOI: 10.1021/acs.est.4c06186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
While in silico analyses are commonly employed for chemical risk assessments, predicting chronic lung toxicity induced by engineered nanoparticles (ENMs) in vivo still faces many challenges due to complex interactions at multiple nanobio interfaces. In this study, we developed a rigorous method to compile published evidence on the in vivo lung toxicity of metal oxide nanoparticles (MeONPs) and revealed previously overlooked in vitro-to-in vivo extrapolation (IVIVE) relationships. A comprehensive multidimensional data set containing 1102 in vivo data points, 75 pulmonary toxicological biomarkers, and 20 features (covering in vitro effects, physicochemical properties, and exposure conditions) was constructed. An IVIVE approach that related effects at the cellular level to in vivo lung toxicity in rodent model was established with prediction accuracy reaching 89 and 80% in training and test sets. Experimental validation was conducted by testing chronic lung fibrosis of 8 new MeONPs in 32 independent mice, with prediction accuracy reaching 88%. The IVIVE model indicated that the proinflammatory cytokine IL-1β in THP-1 cells could serve as an in vitro marker to predict lung toxicity. The IVIVE model showed great promise for minimizing unnecessary animal tests and understanding toxicological mechanisms.
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tianqin Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhe Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Cao J, Yang Y, Liu X, Huang Y, Xie Q, Kadushkin A, Nedelko M, Wu D, Aquilina NJ, Li X, Cai X, Li R. Deciphering key nano-bio interface descriptors to predict nanoparticle-induced lung fibrosis. Part Fibre Toxicol 2025; 22:1. [PMID: 39810232 PMCID: PMC11731361 DOI: 10.1186/s12989-024-00616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis. METHODS We conducted a comprehensive analysis of the trajectory of metal oxide nanoparticles (MeONPs) within pulmonary systems. Two biological media (simulated lung fluid and phagolysosomal simulated fluid) and two cell lines (macrophages and epithelial cells) were meticulously chosen to scrutinize MeONP behaviors. Their interactions with MeONPs, also referred to as nano-bio interactions, can lead to alterations in the properties of the MeONPs as well as specific cellular responses. Physicochemical properties of MeONPs were assessed in biological media. The impact of MeONPs on cell membranes, lysosomes, mitochondria, and cytoplasmic components was evaluated using fluorescent probes, colorimetric enzyme substrates, and ELISA. The fibrogenic potential of MeONPs in mouse lungs was assessed by examining collagen deposition and growth factor release. Random forest classification was employed for analyzing in chemico, in vitro and in vivo data to identify predictive descriptors. RESULTS The nano-bio interactions induced diverse changes in the 4 characteristics of MeONPs and had variable effects on the 14 cellular functions, which were quantitatively evaluated in chemico and in vitro. Among these 18 quantitative features, seven features were found to play key roles in predicting the pro-fibrogenic potential of MeONPs. Notably, IL-1β was identified as the most important feature, contributing 27.8% to the model's prediction. Mitochondrial activity (specifically NADH levels) in macrophages followed closely with a contribution of 17.6%. The remaining five key features include TGF-β1 release and NADH levels in epithelial cells, dissolution in lysosomal simulated fluids, zeta potential, and the hydrodynamic size of MeONPs. CONCLUSIONS The pro-fibrogenic potential of MeONPs can be predicted by combination of key features at nano-bio interfaces, simulating their behavior and interactions within the lung environment. Among the 18 quantitative features, a combination of seven in chemico and in vitro descriptors could be leveraged to predict lung fibrosis in animals. Our findings offer crucial insights for developing in silico predictive models for nano-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiayu Cao
- School of Public Health, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yuhui Yang
- School of Public Health, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Aliaksei Kadushkin
- Department of Biological Chemistry, Belarusian State Medical University, Minsk, 220089, Belarus
| | - Mikhail Nedelko
- B.I. Stepanov Institute of Physics of National Academy of Sciences of Belarus, 68Nezalezhnasti Ave, Minsk, 220072, Belarus
| | - Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Noel J Aquilina
- Department of Chemistry, University of Malta, Msida, 2080, MSD, Malta
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.
- CEET, Nanotechnology Centre, VSB-Technical University of Ostrava, 17 listopadu, Ostrava, 2172-15, 70800, Czech Republic.
| |
Collapse
|
6
|
Märkl S, Przybilla F, Rachel R, Hirsch T, Keller M, Witzgall R, Mély Y, Wegener J. Impact of surface chemistry of upconversion nanoparticles on time-dependent cytotoxicity in non-cancerous epithelial cells. Sci Rep 2024; 14:30610. [PMID: 39715796 DOI: 10.1038/s41598-024-83406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
The application of upconversion nanoparticles (UCNPs) for cell and tissue analysis requires a comprehensive understanding of their interactions with biological entities to prevent toxicity or harmful effects. Whereas most studies focus on cancer cells, this work addresses non-cancerous cells with their regular in vitro physiology. Since it is generally accepted that surface chemistry largely determines biocompatibility in general and uptake of nanomaterials in particular, two bilayer surface coatings with different surface shielding properties have been studied: (i) a phospholipid bilayer membrane (PLM) and (ii) an amphiphilic polymer (AP). Both surface modifications are applied to (12-33) nm core-shell UCNPs NaYF4(Yb, Er)@NaYF4, ensuring colloidal stability in biological media. The impact of UCNPs@AP and UCNPs@PLM on non-cancerous epithelial-like kidney cells in vitro was found to differ significantly. UCNPs@PLM did not exhibit any measurable effect on cell physiology, even with prolonged exposure. In contrast, UCNPs@AP caused changes in cell morphology and induced cell-death after approximately 30 h. These variations in toxicity are attributed to the distinct chemical stability of these particles, which likely influences their intracellular disintegration.
Collapse
Affiliation(s)
- Susanne Märkl
- Institute for Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Frédéric Przybilla
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg, 67000, France
| | - Reinhard Rachel
- Centre for EM, University of Regensburg, 93053, Regensburg, Germany
| | - Thomas Hirsch
- Institute for Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Max Keller
- Institute for Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| | - Ralph Witzgall
- Institute for Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg, 67000, France
| | - Joachim Wegener
- Institute for Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
- Fraunhofer Institute for Electronic Microsystems and Solid State Technologies EMFT, 93053, Regensburg, Germany.
| |
Collapse
|
7
|
Chen Z, Liu J, Zheng M, Mo M, Hu X, Liu C, Pathak JL, Wang L, Chen L. TRIM24-DTNBP1-ATP7A mediated astrocyte cuproptosis in cognition and memory dysfunction caused by Y 2O 3 NPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176353. [PMID: 39304169 DOI: 10.1016/j.scitotenv.2024.176353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Yttrium oxide nanoparticles (Y2O3 NPs), extensively utilized rare earth nanoparticles, exhibited a diverse range of applications across various fields, which leading to increased human exposure. Moreover, potential neurotoxic risks have been associated with their use, yet the underlying mechanism remains unclear. The present study aimed to investigate the effects of Y2O3 NPs on cognitive function in rats with a particular focus on elucidating the pivotal role played by astrocytes in this process. The results demonstrated that Y2O3 NPs induced cognitive and memory impairment in rats, copper (Cu) accumulation and cuproptosis of astrocytes as contributing factors. Furthermore, we elucidated that Y2O3 NPs induced astrocytes cuproptosis by inhibiting TRIM24/DTNBP1/ATP7A signaling pathway-mediated cellular Cu efflux. We provide, for the first time, the important involvement of astrocytes in Y2O3 NPs-induced neurotoxicity, elucidating that cuproptosis as the primary mode of cell death. These results offer valuable insights for the future safe application of rare earth nanoparticles in field of neurology.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Manjia Zheng
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chang Liu
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Janak Lal Pathak
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liangjiao Chen
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Di Battista V, Danielsen PH, Gajewicz-Skretna A, Kedziorski A, Seiffert SB, Ma-Hock L, Berthing T, Mortensen A, Sundermann A, Skjolding LM, Vogel U, Baun A, Wohlleben W. Oxide-Perovskites for Automotive Catalysts Biotransform and Induce Multicomponent Clearance and Hazard. ACS NANO 2024; 18:32672-32693. [PMID: 39537340 PMCID: PMC11604102 DOI: 10.1021/acsnano.4c10135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
Oxide-perovskites designed for automotive catalysts contain multiple metal elements whose presence is crucial to achieving the targeted performance. They are highly stable in exhaust operating conditions; however, little is known about their stability under physiological conditions. As some of the metallic components are hazardous to humans and the environment, perovskite benefits in cleaner air must be balanced with risks in a Safe and Sustainable Design (SSbD) approach. New approach methodologies (NAMs), including in chemico and in silico methods, were used for testing hazards and benefits, including catalytic activity and tolerance for temporary excess of oxygen under dynamic driving conditions. The composition and surface properties of six different lanthanum-based oxide-perovskites compromised their stability under lung physiological conditions, influencing the oxidative damage of the particles and the bioacessibility of leaching metals. We found consistent biotransformation of the oxide-perovskite materials at pH 4.5. The leached lanthanum ions, but not other metals, respeciated into lanthanum phosphate nanoparticles, which increased the overall oxidative damage in additive synergy. The NAM results in the presented SSbD approach were challenged by in vivo studies in rats and mice, which confirmed multicomponent clearance from lungs into urine and supported the comparative ranking of effects against well-characterized spinel materials. Among the perovskites, the version with reduced nickel content and doped with palladium offered the best SSbD balance, despite not improving the conventional benchmark catalytic performance and related sustainability benefits. Redesign by industry may be necessary to better fulfill all SSbD dimensions.
Collapse
Affiliation(s)
- Veronica Di Battista
- Department
of Analytical and Material Science, BASF
SE, Ludwigshafen 67056, Germany
- Department
of Environmental and Resource Engineering, DTU Sustain, Technical University of Denmark, Building 115, Kongens, Lyngby 2800, Denmark
| | | | - Agnieszka Gajewicz-Skretna
- Laboratory
of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk (UG), Gdansk 80-309, Poland
| | - Andrzej Kedziorski
- Laboratory
of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk (UG), Gdansk 80-309, Poland
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Svenja B. Seiffert
- Department
of Analytical and Material Science, BASF
SE, Ludwigshafen 67056, Germany
| | - Lan Ma-Hock
- Department
of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen 67056, Germany
| | - Trine Berthing
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Alicja Mortensen
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | | | - Lars Michael Skjolding
- Department
of Environmental and Resource Engineering, DTU Sustain, Technical University of Denmark, Building 115, Kongens, Lyngby 2800, Denmark
| | - Ulla Vogel
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Anders Baun
- Department
of Environmental and Resource Engineering, DTU Sustain, Technical University of Denmark, Building 115, Kongens, Lyngby 2800, Denmark
| | - Wendel Wohlleben
- Department
of Analytical and Material Science, BASF
SE, Ludwigshafen 67056, Germany
- Department
of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen 67056, Germany
| |
Collapse
|
9
|
Tran UT, Kitami T. Chemical screens for particle-induced macrophage death identifies kinase inhibitors of phagocytosis as targets for toxicity. J Nanobiotechnology 2024; 22:621. [PMID: 39396993 PMCID: PMC11472441 DOI: 10.1186/s12951-024-02885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Nanoparticles are increasingly being used in medicine, cosmetics, food, and manufacturing. However, potential toxicity may limit the use of newly engineered nanoparticles. Prior studies have identified particle characteristics that are predictive of toxicity, although the mechanisms responsible for toxicity remain largely unknown. Nanoparticle treatment in cell culture, combined with high-throughput chemical screen allows for systematic perturbations of thousands of molecular targets against potential pathways of toxicity. The resulting data matrix, called chemical compendium, can provide insights into the mechanism of toxicity as well as help classify nanoparticles based on toxicity pathway. RESULTS We performed unbiased screens of 1280 bioactive chemicals against a panel of four particles, searching for inhibitors of macrophage toxicity. Our hit compounds clustered upon inhibitors of kinases involved in phagocytosis, including focal adhesion kinase (FAK), with varying specificity depending on particles. Interestingly, known inhibitors of cell death including NLRP3 inflammasome inhibitor were unable to suppress particle-induced macrophage death for many of the particles. By searching for upstream receptors of kinases, we identified Cd11b as one of the receptors involved in recognizing a subset of particles. We subsequently used these hit compounds and antibodies to further characterize a larger panel of particles and identified hydrodynamic size as an important particle characteristic in Cd11b-mediated particle uptake and toxicity. CONCLUSIONS Our chemical compendium and workflow can be expanded across cell types and assays to characterize the toxicity mechanism of newly engineered nanoparticles. The data in their current form can also be analyzed to help design future high-throughput screening for nanoparticle toxicity.
Collapse
Affiliation(s)
- Uyen Thi Tran
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Cell and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Toshimori Kitami
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| |
Collapse
|
10
|
Arellano L, Martínez R, Pardo A, Diez I, Velasco B, Moreda-Piñeiro A, Bermejo-Barrera P, Barbosa S, Taboada P. Assessing the Effect of Surface Coating on the Stability, Degradation, Toxicity and Cell Endocytosis/Exocytosis of Upconverting Nanoparticles. J Colloid Interface Sci 2024; 668:575-586. [PMID: 38691966 DOI: 10.1016/j.jcis.2024.04.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Lanthanide-doped up-converting nanoparticles (UCNPs) have emerged as promising biomedical tools in recent years. Most research efforts were devoted to the synthesis of inorganic cores with the optimal physicochemical properties. However, the careful design of UCNPs with the adequate surface coating to optimize their biological performance still remains a significant challenge. Here, we propose the functionalization of UCNPs with four distinct types of surface coatings, which were compared in terms of the provided colloidal stability and resistance to degradation in different biological-relevant media, including commonly avoided analysis in acidic lysosomal-mimicking fluids. Moreover, the influence of the type of particle surface coating on cell cytotoxicity and endocytosis/exocytosis was also evaluated. The obtained results demonstrated that the functionalization of UCNPs with poly(isobutylene-alt-maleic anhydride) grafted with dodecylamine (PMA-g-dodecyl) constitutes an outstanding strategy for their subsequent biomedical application, whereas poly(ethylene glycol) (PEG) coating, although suitable for colloidal stability purposes, hinders extensive cell internalization. Conversely, surface coating with small ligand were found not to be suitable, leading to large degradation degrees of UCNPs. The analysis of particle' behavior in different biological media and in vitro conditions here performed pretends to help researchers to improve the design and implementation of UCNPs as theranostic nanotools.
Collapse
Affiliation(s)
- Lilia Arellano
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Martínez
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alberto Pardo
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Iago Diez
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Brenda Velasco
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Faculty of Chemistry and Materials Institute (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Faculty of Chemistry and Materials Institute (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Baimanov D, Li S, Gao XJ, Cai R, Liu K, Li J, Liu Y, Cong Y, Wang X, Liu F, Li Q, Zhang G, Wei H, Wang J, Chen C, Gao X, Li Y, Wang L. A phosphatase-like nanomaterial promotes autophagy and reprograms macrophages for cancer immunotherapy. Chem Sci 2024; 15:10838-10850. [PMID: 39027281 PMCID: PMC11253186 DOI: 10.1039/d4sc01690d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Macrophages are plastic and play a key role in the maintenance of tissue homeostasis. In cancer progression, macrophages also take part in all processes, from initiation to progression, to final tumor metastasis. Although energy deprivation and autophagy are widely used for cancer therapy, most of these strategies do not target macrophages, resulting in undesired effects and unsatisfactory outcomes for cancer immunotherapy. Herein, we developed a lanthanum nickel oxide (LNO) nanozyme with phosphatase-like activity for ATP hydrolysis. Meanwhile, the autophagy of macrophages induced by LNO promotes the polarization of macrophages from M2-like macrophages (M2) to M1-like macrophages (M1) and reduces tumor-associated macrophages in tumor-bearing mice, exhibiting the capability of killing tumor-associated macrophages and antitumor effects in vivo. Furthermore, pre-coating the surface of LNO with a myeloid cell membrane significantly enhanced antitumor immunity. Our findings demonstrate that phosphatase-like nanozyme LNO can specifically induce macrophage autophagy, which improves therapeutic efficacy and offers valuable strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Su Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg 5020 Salzburg Austria
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Rui Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Ke Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Junjie Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Yuchen Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 P. R. China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
- New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Xiaoyu Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 P. R. China
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 P. R. China
| | - Qi Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 P. R. China
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
- New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences Shenzhen P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| |
Collapse
|
12
|
Li M, Gao J, Yao L, Zhang L, Li D, Li Z, Wu Q, Wang S, Ding J, Liu Y, Wang M, Tang G, Qin H, Li J, Yang X, Liu R, Zeng L, Shi J, Qu G, Jiang G. Determining toxicity of europium oxide nanoparticles in immune cell components and hematopoiesis in dominant organs in mice: Role of lysosomal fluid interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173482. [PMID: 38795982 DOI: 10.1016/j.scitotenv.2024.173482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Extensive application of rare earth element oxide nanoparticles (REE NPs) has raised a concern over the possible toxic health effects after human exposure. Once entering the body, REE NPs are primarily processed by phagocytes in particular macrophages and undergo biotic phosphate complexation in lysosomal compartment. Such biotransformation affects the target organs and in vivo fate of REE NPs after escaping the lysosomes. However, the immunomodulatory effects of intraphagolysosomal dissolved REE NPs remains insufficient. Here, europium oxide (Eu2O3) NPs were pre-incubated with phagolysosomal simulant fluid (PSF) to mimic the biotransformation of europium oxide (p-Eu2O3) NPs under acid phagolysosome conditions. We investigated the alteration in immune cell components and the hematopoiesis disturbance on adult mice after intravenous administration of Eu2O3 NPs and p-Eu2O3 NPs. Our results indicated that the liver and spleen were the main target organs for Eu2O3 NPs and p-Eu2O3 NPs. Eu2O3 NPs had a much higher accumulative potential in organs than p-Eu2O3 NPs. Eu2O3 NPs induced more alterations in immune cells in the spleen, while p-Eu2O3 NPs caused stronger response in the liver. Regarding hematopoietic disruption, Eu2O3 NPs reduced platelets (PLTs) in peripheral blood, which might be related to the inhibited erythrocyte differentiation in the spleen. By contrast, p-Eu2O3 NPs did not cause significant disturbance in peripheral PLTs. Our study demonstrated that the preincubation with PSF led to a distinct response in the immune system compared to the pristine REE NPs, suggesting that the potentially toxic effects induced by the release of NPs after phagocytosis should not be neglected, especially when evaluating the safety of NPs application in vivo.
Collapse
Affiliation(s)
- Min Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Liu Zhang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Danyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zikang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ding
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Qin
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinyue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzeng Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Li Zeng
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
13
|
Schroter A, Hirsch T. Control of Luminescence and Interfacial Properties as Perspective for Upconversion Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306042. [PMID: 37986189 DOI: 10.1002/smll.202306042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Near-infrared (NIR) light is highly suitable for studying biological systems due to its minimal scattering and lack of background fluorescence excitation, resulting in high signal-to-noise ratios. By combining NIR light with lanthanide-based upconversion nanoparticles (UCNPs), upconversion is used to generate UV or visible light within tissue. This remarkable property has gained significant research interest over the past two decades. Synthesis methods are developed to produce particles of various sizes, shapes, and complex core-shell architectures and new strategies are explored to optimize particle properties for specific bioapplications. The diverse photophysics of lanthanide ions offers extensive possibilities to tailor spectral characteristics by incorporating different ions and manipulating their arrangement within the nanocrystal. However, several challenges remain before UCNPs can be widely applied. Understanding the behavior of particle surfaces when exposed to complex biological environments is crucial. In applications where deep tissue penetration is required, such as photodynamic therapy and optogenetics, UCNPs show great potential as nanolamps. These nanoparticles can combine diagnostics and therapeutics in a minimally invasive, efficient manner, making them ideal upconversion probes. This article provides an overview of recent UCNP design trends, highlights past research achievements, and outlines potential future directions to bring upconversion research to the next level.
Collapse
Affiliation(s)
- Alexandra Schroter
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053, Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
14
|
Yang L, Cai X, Li R. Ferroptosis Induced by Pollutants: An Emerging Mechanism in Environmental Toxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2166-2184. [PMID: 38275135 DOI: 10.1021/acs.est.3c06127] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Environmental pollutants have been recognized for their ability to induce various adverse outcomes in both the environment and human health, including inflammation, apoptosis, necrosis, pyroptosis, and autophagy. Understanding these biological mechanisms has played a crucial role in risk assessment and management efforts. However, the recent identification of ferroptosis as a form of programmed cell death has emerged as a critical mechanism underlying pollutant-induced toxicity. Numerous studies have demonstrated that fine particulates, heavy metals, and organic substances can trigger ferroptosis, which is closely intertwined with lipid, iron, and amino acid metabolism. Given the growing evidence linking ferroptosis to severe diseases such as heart failure, chronic obstructive pulmonary disease, liver injury, Parkinson's disease, Alzheimer's disease, and cancer, it is imperative to investigate the role of pollutant-induced ferroptosis. In this review, we comprehensively analyze various pollutant-induced ferroptosis pathways and intricate signaling molecules and elucidate their integration into the driving and braking axes. Furthermore, we discuss the potential hazards associated with pollutant-induced ferroptosis in various organs and four representative animal models. Finally, we provide an outlook on future research directions and strategies aimed at preventing pollutant-induced ferroptosis. By enhancing our understanding of this novel form of cell death and developing effective preventive measures, we can mitigate the adverse effects of environmental pollutants and safeguard human and environmental health.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
15
|
Chen S, Wang X, Ye X, Qin Y, Wang H, Liang Z, Zhu L, Zhou L, Martyniuk CJ, Yan B. Dopaminergic and serotoninergic neurotoxicity of lanthanide phosphate (TbPO 4) in developing zebrafish. CHEMOSPHERE 2023; 340:139861. [PMID: 37597622 DOI: 10.1016/j.chemosphere.2023.139861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Rare earth elements (REEs) are exploited for global use in manufacturing. Such activities result in their release into the environment and the transformation into more stable phosphate deposition. The objective of this study was to evaluate molecular and behavioral changes of zebrafish exposed to the synthesized terbium phosphate (TbPO4) at concentrations of 10, 20, and 50 mg/L and to determine its potential for neurotoxicity. Metabolomics related to neurotransmitters, and assessment of transcripts and proteins were conducted to uncover the molecular mechanisms underlying TbPO4 with emphasis on neurotransmitter systems. Exposure to 20 mg/L TbPO4 induced larval hyperactivity and perturbed the cholinergic system in zebrafish. Based on metabolomics related to neurotransmitters, dopamine (DA), serotonin (5-HT), and many of their precursors and metabolites were decreased in abundance by TbPO4. In addition, the expression levels of transcripts related to the synthesis, transport, receptor binding, and metabolism of DA and 5-HT were analyzed at the mRNA and protein levels. Transcript and protein levels for tyrosine hydroxylase (TH), the rate-limiting enzyme for DA synthesis, were down-regulated in larval fish. Monoamine oxidase (MAO), an enzyme that catabolizes monoamines DA and 5-HT, was also reduced in mRNA abundance. We hypothesize that DA synthesis and monoamine metabolism are associated with behavioral alterations. This study elucidates putative mechanisms and exposure risks to wildlife and humans by characterizing phosphatic REE-induced neurotoxicity in developing zebrafish.
Collapse
Affiliation(s)
- Siying Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Xiaolin Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Haiqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Lishan Zhu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Li J, Xiao Y, Zhang Y, Li S, Zhao M, Xia T, Meng H. Pulmonary Delivery of Specialized Pro-Resolving Mediators-Based Nanotherapeutics Attenuates Pulmonary Fibrosis in Preclinical Animal Models. ACS NANO 2023; 17:15354-15370. [PMID: 37535431 DOI: 10.1021/acsnano.2c10388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic lung disease characterized by excess extracellular matrix deposition and prolonged inflammation that fails to resolve and is druggable. Using resolvins and their precursors for inflammation resolution, we demonstrate a nano-enabled approach for accomplishing robust antifibrotic effects in bleomycin- or engineered nanomaterial-induced mouse and rat PF models. Targeting the lipid peroxidation-triggered NLRP3 inflammasome and NF-κB pathway in macrophages and the ROS-mediated TGF-β/Smad and S1P signaling in epithelial cells results in these potent protective effects at the ng/mL dosimetry. We further develop an inhalable biocompatible nanoparticle that encapsulates fish oil, a chosen resolvin precursor, with phosphatidylcholine and polyethylene glycol to enhance drug permeability and facilitate crossing the mucosal barrier, forming "fish-oilsome" (FOS). Oropharyngeal aspiration and inhalation of FOS improved the anti-inflammatory status, histological characteristics, and pulmonary function in fibrotic lungs, which was mechanistically supported by transcriptomic and proteomic analyses. Further, scale-up engineered FOS samples with the desired physicochemical properties, anti-PF efficacy, and in vivo biocompatibility were validated in different batch sizes (up to 0.2 L/batch). This study provides a practical and translatable approach to promoting inflammation resolution and PF treatment.
Collapse
Affiliation(s)
- Jiulong Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Yu Xiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yumo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Department of Environment and Life, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Silu Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Minzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| |
Collapse
|
17
|
Feng Y, Wu J, Lu H, Lao W, Zhan H, Lin L, Liu G, Deng Y. Cytotoxicity and hemolysis of rare earth ions and nanoscale/bulk oxides (La, Gd, and Yb): Interaction with lipid membranes and protein corona formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163259. [PMID: 37011679 DOI: 10.1016/j.scitotenv.2023.163259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
The widespread application of rare earth elements (REEs) has raised concerns about their potential release into the environment and subsequent ingestion by humans. Therefore, it is essential to evaluate the cytotoxicity of REEs. Here, we investigated the interactions between three typical REEs (La, Gd, and Yb) ions as well as their nanometer/μm-sized oxides and red blood cells (RBCs), a plausible contact target for nanoparticles when they enter the bloodstream. Hemolysis of REEs at 50-2000 μmol L-1 was examined to simulate their cytotoxicity under medical or occupational exposure. We found that the hemolysis due to the exposure of REEs was highly dependent on their concentration, and the cytotoxicity followed the order of La3+ > Gd3+ > Yb3+. The cytotoxicity of REE ions (REIs) is higher than REE oxides (REOs), while nanometer-sized REO caused more hemolysis than that μm-sized REO. The production of reactive oxygen species (ROS), ROS quenching experiment, as well as the detection of lipid peroxidation, confirmed that REEs causes cell membrane rupture by ROS-related chemical oxidation. In addition, we found that the formation of a protein corona on REEs increased the steric repulsion between REEs and cell membranes, hence mitigating the cytotoxicity of REEs. The theoretical simulation indicated the favorable interaction of REEs with phospholipids and proteins. Therefore, our findings provide a mechanistic explanation for the cytotoxicity of REEs to RBCs once they have entered the blood circulation system of organisms.
Collapse
Affiliation(s)
- Yiping Feng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyi Wu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijian Lu
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Wenhao Lao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongda Zhan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Longyong Lin
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Guoguang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yirong Deng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China.
| |
Collapse
|
18
|
Jeon S, Lee WS, Song KS, Jeong J, Lee S, Kim S, Kim G, Kim JS, Jeong J, Cho WS. Differential particle and ion kinetics of silver nanoparticles in the lungs and biotransformation to insoluble silver sulfide. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131223. [PMID: 36948120 DOI: 10.1016/j.jhazmat.2023.131223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The measurement of nanoparticles (NPs) in a biological matrix is essential in various toxicity studies. However, the current knowledge has limitations in differentiating particulate and ionic forms and further identification of their biotransformation. Herein, we evaluate the biotransformation and differential lung clearance kinetics of particulate and ionic forms using PEGylated silver NPs (AgNP-PEGs; 47.51 nm) and PEGylated gold NPs (AuNP-PEGs; 11.76 nm). At 0, 3, and 6 h and 1, 3, 7, and 14 days after a single pharyngeal aspiration in mice at 25 μg/mouse, half of the lung is digested by proteinase K (PK) to separate particulates and ions, and the other half is subjected to the acid digestion method for comparison. The quantitative and qualitative evaluation of lung clearance kinetics suggests that AgNP-PEGs are quickly dissolved and transformed into insoluble silver sulfide (Ag2S), which shows a fast-clearing early phase (0 -6 h; particle T1/2: 4.8 h) and slow-clearing late phase (1 -14 days; particle T1/2: 13.20 days). In contrast, AuNP-PEGs were scarcely cleared or biotransformed in the lungs for 14 days. The lung clearance kinetics of AgNPs and biotransformation shown in this study can be informed by the PK digestion method and cannot be obtained using the acid digestion method.
Collapse
Affiliation(s)
- Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, the Republic of Korea
| | - Kyung Seuk Song
- Korea Conformity Laboratories, 8, Gaetbeol-ro 145 beon-gil, Yeonsu-gu, Incheon 21999, the Republic of Korea
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea
| | - Sinuk Lee
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea
| | - Songyeon Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea
| | - Gyuri Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56216, the Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, the Republic of Korea; KRIBB School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, the Republic of Korea.
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, the Republic of Korea.
| |
Collapse
|
19
|
Uskoković V. Lessons from the history of inorganic nanoparticles for inhalable diagnostics and therapeutics. Adv Colloid Interface Sci 2023; 315:102903. [PMID: 37084546 DOI: 10.1016/j.cis.2023.102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The respiratory tract is one of the most accessible ones to exogenous nanoparticles, yet drug delivery by their means to it is made extraordinarily challenging because of the plexus of aerodynamic, hemodynamic and biomolecular factors at cellular and extracellular levels that synergistically define the safety and efficacy of this process. Here, the use of inorganic nanoparticles (INPs) for inhalable diagnostics and therapies of the lung is viewed through the prism of the history of studies on the interaction of INPs with the lower respiratory tract. The most conceptually and methodologically innovative and illuminative studies are referred to in the chronological order, as they were reported in the literature, and the trends in the progress of understanding this interaction of immense therapeutic and toxicological significance are being deduced from it. The most outstanding actual trends delineated include the diminishment of toxicity via surface functionalization, cell targeting, tagging and tracking via controlled binding and uptake, hybrid INP treatments, magnetic guidance, combined drug and gene delivery, use as adjuvants in inhalable vaccines, and other. Many of the understudied research directions, which have been accomplished by the nanostructured organic polymers in the pulmonary niche, are discussed. The progress in the use of INPs as inhalable diagnostics or therapeutics has been hampered by their well-recognized inflammatory potential and toxicity in the respiratory tract. However, the annual numbers of methodologically innovative studies have been on the rise throughout the past two decades, suggesting that this is a prolific direction of research, its comparatively poor commercial takings notwithstanding. Still, the lack of consensus on the effects of many INP compositions at low but therapeutically effective doses, the plethora of contradictory reports on ostensibly identical chemical compositions and NP properties, and the many cases of antagonism in combinatorial NP treatments imply that the rational design of inhalable medical devices based on INPs must rely on qualitative principles for the most part and embrace a partially stochastic approach as well. At the same time, the fact that the most studied INPs for pulmonary applications have been those with some of the thickest records of pulmonary toxicity, e.g., carbon, silver, gold, silica and iron oxide, is a silent call for the expansion of the search for new inorganic compositions for use in inhalable therapies to new territories.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
20
|
Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics 2023; 15:1025. [PMID: 36986885 PMCID: PMC10052895 DOI: 10.3390/pharmaceutics15031025] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Traditional cancer diagnosis has been aided by the application of nanoparticles (NPs), which have made the process easier and faster. NPs possess exceptional properties such as a larger surface area, higher volume proportion, and better targeting capabilities. Additionally, their low toxic effect on healthy cells enhances their bioavailability and t-half by allowing them to functionally penetrate the fenestration of epithelium and tissues. These particles have attracted attention in multidisciplinary areas, making them the most promising materials in many biomedical applications, especially in the treatment and diagnosis of various diseases. Today, many drugs are presented or coated with nanoparticles for the direct targeting of tumors or diseased organs without harming normal tissues/cells. Many types of nanoparticles, such as metallic, magnetic, polymeric, metal oxide, quantum dots, graphene, fullerene, liposomes, carbon nanotubes, and dendrimers, have potential applications in cancer treatment and diagnosis. In many studies, nanoparticles have been reported to show intrinsic anticancer activity due to their antioxidant action and cause an inhibitory effect on the growth of tumors. Moreover, nanoparticles can facilitate the controlled release of drugs and increase drug release efficiency with fewer side effects. Nanomaterials such as microbubbles are used as molecular imaging agents for ultrasound imaging. This review discusses the various types of nanoparticles that are commonly used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Noor Alrushaid
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Institute of Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| |
Collapse
|
21
|
Luo X, Wang Z, Wang C, Yue L, Tao M, Elmer WH, White JC, Cao X, Xing B. Nanomaterial Size and Surface Modification Mediate Disease Resistance Activation in Cucumber ( Cucumis sativus). ACS NANO 2023; 17:4871-4885. [PMID: 36871293 DOI: 10.1021/acsnano.2c11790] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Crop disease represents a serious and increasing threat to global food security. Lanthanum oxide nanomaterials (La2O3 NMs) with different sizes (10 and 20 nm) and surface modifications (citrate, polyvinylpyrrolidone [PVP], and poly(ethylene glycol)) were investigated for their control of the fungal pathogen Fusarium oxysporum (Schl.) f. sp cucumerinum Owen on six-week-old cucumber (Cucumis sativus) in soil. Seed treatment and foliar application of the La2O3 NMs at 20-200 mg/kg (mg/L) significantly suppressed cucumber wilt (decreased by 12.50-52.11%), although the disease control efficacy was concentration-, size-, and surface modification-dependent. The best pathogen control was achieved by foliar application of 200 mg/L PVP-coated La2O3 NMs (10 nm); disease severity was decreased by 67.6%, and fresh shoot biomass was increased by 49.9% as compared with pathogen-infected control. Importantly, disease control efficacy was 1.97- and 3.61-fold greater than that of La2O3 bulk particles and a commercial fungicide (Hymexazol), respectively. Additionally, La2O3 NMs application enhanced cucumber yield by 350-461%, increased fruit total amino acids by 295-344%, and improved fruit vitamin content by 65-169% as compared with infected controls. Transcriptomic and metabolomic analyses revealed that La2O3 NMs: (1) interacted with calmodulin, subsequently activating salicylic acid-dependent systemic acquired resistance; (2) increased the activity and expression of antioxidant and related genes, thereby alleviating pathogen-induced oxidative stress; and (3) directly inhibited in vivo pathogen growth. The findings highlight the significant potential of La2O3 NMs for suppressing plant disease in sustainable agriculture.
Collapse
Affiliation(s)
- Xing Luo
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wade H Elmer
- The Connecticut Agricultural Experiment Station, New Haven 06511, Connecticut, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven 06511, Connecticut, United States
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst 01003, Massachusetts, United States
| |
Collapse
|
22
|
Lomphithak T, Fadeel B. Die hard: cell death mechanisms and their implications in nanotoxicology. Toxicol Sci 2023; 192:kfad008. [PMID: 36752525 PMCID: PMC10109533 DOI: 10.1093/toxsci/kfad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cell death is a fundamental biological process, and its fine-tuned regulation is required for life. However, the complexity of regulated cell death is often reduced to a matter of live-dead discrimination. Here, we provide a perspective on programmed or regulated cell death, focusing on apoptosis, pyroptosis, necroptosis, and ferroptosis (the latter three cell death modalities are examples of regulated necrosis). We also touch on other, recently described manifestations of (pathological) cell death including cuproptosis. Furthermore, we address how engineered nanomaterials impact on regulated cell death. We posit that an improved understanding of nanomaterial-induced perturbations of cell death may allow for a better prediction of the consequences of human exposure and could also yield novel approaches by which to mitigate these effects. Finally, we provide examples of the harnessing of nanomaterials to achieve cancer cell killing through the induction of regulated cell death.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
23
|
DeAguero J, Howard T, Kusewitt D, Brearley A, Ali AM, Degnan JH, Jett S, Watt J, Escobar GP, Dokladny K, Wagner B. The onset of rare earth metallosis begins with renal gadolinium-rich nanoparticles from magnetic resonance imaging contrast agent exposure. Sci Rep 2023; 13:2025. [PMID: 36739294 PMCID: PMC9899216 DOI: 10.1038/s41598-023-28666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/23/2023] [Indexed: 02/06/2023] Open
Abstract
The leitmotifs of magnetic resonance imaging (MRI) contrast agent-induced complications range from acute kidney injury, symptoms associated with gadolinium exposure (SAGE)/gadolinium deposition disease, potentially fatal gadolinium encephalopathy, and irreversible systemic fibrosis. Gadolinium is the active ingredient of these contrast agents, a non-physiologic lanthanide metal. The mechanisms of MRI contrast agent-induced diseases are unknown. Mice were treated with a MRI contrast agent. Human kidney tissues from contrast-naïve and MRI contrast agent-treated patients were obtained and analyzed. Kidneys (human and mouse) were assessed with transmission electron microscopy and scanning transmission electron microscopy with X-ray energy-dispersive spectroscopy. MRI contrast agent treatment resulted in unilamellar vesicles and mitochondriopathy in renal epithelium. Electron-dense intracellular precipitates and the outer rim of lipid droplets were rich in gadolinium and phosphorus. We conclude that MRI contrast agents are not physiologically inert. The long-term safety of these synthetic metal-ligand complexes, especially with repeated use, should be studied further.
Collapse
Affiliation(s)
- Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA.
- University of New Mexico Health Science Center, Albuquerque, NM, USA.
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA.
| | - Tamara Howard
- University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Donna Kusewitt
- University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Abdul-Mehdi Ali
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA
| | - James H Degnan
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | - Stephen Jett
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - G Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA
- University of New Mexico Health Science Center, Albuquerque, NM, USA
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA
| | - Karol Dokladny
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA
- University of New Mexico Health Science Center, Albuquerque, NM, USA
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA.
- University of New Mexico Health Science Center, Albuquerque, NM, USA.
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA.
| |
Collapse
|
24
|
Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, Akhavan O, Kraskouski A, Amalraj J, Cai X, Lu J, Zheng H, Li R. Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angew Chem Int Ed Engl 2023; 62:e202217345. [PMID: 36718001 DOI: 10.1002/anie.202217345] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.
Collapse
Affiliation(s)
- Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Yun
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.,Department of Physical Chemistry 1, University of Lund, 22100, Lund, Sweden
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.,Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Omid Akhavan
- Condensed Matter National Laboratory, P.O. Box 1956838861, Tehran, Iran
| | - Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials, Institute of Chemistry of New Materials of NAS of Belarus, 36 F. Skaryna Str., 220084, Minsk, Belarus
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca, Chile
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, National Center for International Research on Intelligent Nano-Materials and Detection Technology in Environmental Protection, Soochow University, Suzhou, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
25
|
Environmental Health and Safety of Engineered Nanomaterials. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
26
|
Avramescu ML, Chénier M, Beauchemin S, Rasmussen P. Dissolution Behaviour of Metal-Oxide Nanomaterials in Various Biological Media. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:26. [PMID: 36615936 PMCID: PMC9824292 DOI: 10.3390/nano13010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Toxicological effects of metal-oxide-engineered nanomaterials (ENMs) are closely related to their distinct physical-chemical properties, especially solubility and surface reactivity. The present study used five metal-oxide ENMs (ZnO, MnO2, CeO2, Al2O3, and Fe2O3) to investigate how various biologically relevant media influenced dissolution behaviour. In both water and cell culture medium (DMEM), the metal-oxide ENMs were more soluble than their bulk analogues, with the exception that bulk-MnO2 was slightly more soluble in water than nano-MnO2 and Fe2O3 displayed negligible solubility across all tested media (regardless of particle size). Lowering the initial concentration (10 mg/L vs. 100 mg/L) significantly increased the relative solubility (% of total concentration) of nano-ZnO and nano-MnO2 in both water and DMEM. Nano-Al2O3 and nano-CeO2 were impacted differently by the two media (significantly higher % solubility at 10 mg/L in DMEM vs. water). Further evaluation of simulated interstitial lung fluid (Gamble's solution) and phagolysosomal simulant fluid (PSF) showed that the selection of aqueous media significantly affected agglomeration and dissolution behaviour. The solubility of all investigated ENMs was significantly higher in DMEM (pH = 7.4) compared to Gamble's (pH 7.4), attributable to the presence of amino acids and proteins in DMEM. All ENMs showed low solubility in Gamble's (pH = 7.4) compared with PSF (pH = 4.5), attributable to the difference in pH. These observations are relevant to nanotoxicology as increased nanomaterial solubility also affects toxicity. The results demonstrated that, for the purpose of grouping and read-across efforts, the dissolution behaviour of metal-oxide ENMs should be evaluated using aqueous media representative of the exposure pathway being considered.
Collapse
Affiliation(s)
- Mary-Luyza Avramescu
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Marc Chénier
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Suzanne Beauchemin
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Pat Rasmussen
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
- Department of Earth and Environmental Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
27
|
Markiewicz KH, Marmuse L, Mounsamy M, Billotey C, Destarac M, Mingotaud C, Marty JD. Assembly of Poly(vinylphosphonic acid)-Based Double Hydrophilic Block Copolymers by Gadolinium Ions for the Formation of Highly Stable MRI Contrast Agents. ACS Macro Lett 2022; 11:1319-1324. [PMID: 36343111 DOI: 10.1021/acsmacrolett.2c00489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mixing double-hydrophilic block copolymers containing a poly(vinylphosphonic acid) block with gadolinium ions in water leads to the spontaneous formation of polymeric nanoparticles. With an average diameter near 20 nm, the nanoparticles are stable after dilution or change of pH and ionic strength. High magnetic relaxivities were measured in vitro, and in vivo magnetic resonance imaging on rats demonstrates the high potential of such polymeric assemblies.
Collapse
Affiliation(s)
- Karolina H Markiewicz
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, Cedex 9, France.,Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Laurence Marmuse
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet, Hospices Civils de Lyon, 42023 Saint-Etienne, Cedex 2, France
| | - Margaux Mounsamy
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, Cedex 9, France
| | - Claire Billotey
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet, Hospices Civils de Lyon, 42023 Saint-Etienne, Cedex 2, France
| | - Mathias Destarac
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, Cedex 9, France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, Cedex 9, France
| |
Collapse
|
28
|
Nanomaterial characterization: Understanding nano-bio interactions. Biochem Biophys Res Commun 2022; 633:45-51. [DOI: 10.1016/j.bbrc.2022.08.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022]
|
29
|
Liao X, Liu Y, Zheng J, Zhao X, Cui L, Hu S, Xia T, Si S. Diverse Pathways of Engineered Nanoparticle-Induced NLRP3 Inflammasome Activation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3908. [PMID: 36364684 PMCID: PMC9656364 DOI: 10.3390/nano12213908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of engineered nanomaterials (ENMs) in biomedical applications, their biocompatibility and cytotoxicity need to be evaluated properly. Recently, it has been demonstrated that inflammasome activation may be a vital contributing factor for the development of biological responses induced by ENMs. Among the inflammasome family, NLRP3 inflammasome has received the most attention because it directly interacts with ENMs to cause the inflammatory effects. However, the pathways that link ENMs to NLRP3 inflammasome have not been thoroughly summarized. Thus, we reviewed recent findings on the role of major ENMs properties in modulating NLRP3 inflammasome activation, both in vitro and in vivo, to provide a better understanding of the underlying mechanisms. In addition, the interactions between ENMs and NLRP3 inflammasome activation are summarized, which may advance our understanding of safer designs of nanomaterials and ENM-induced adverse health effects.
Collapse
Affiliation(s)
- Xin Liao
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yudong Liu
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shen Hu
- School of Dentistry and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shanshan Si
- Department of Oral Emergency, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
30
|
Wu Z, Setyawati MI, Lim HK, Ng KW, Tay CY. Nanoparticle-induced chemoresistance: the emerging modulatory effects of engineered nanomaterials on human intestinal cancer cell redox metabolic adaptation. NANOSCALE 2022; 14:14491-14507. [PMID: 36106385 DOI: 10.1039/d2nr03893e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The widespread use of engineered nanomaterials (ENMs) in food products necessitates the understanding of their impact on the gastrointestinal tract (GIT). Herein, we screened several representative food-borne comparator ENMs (i.e. ZnO, SiO2 and TiO2 nanoparticles (NPs)) and report that human colon cancer cells can insidiously exploit ZnO NP-induced adaptive response to acquire resistance against several chemotherapeutic drugs. By employing a conditioning and challenge treatment regime, we demonstrate that repeated exposure to a non-toxic dose of ZnO NPs (20 μM) could dampen the efficacy of cisplatin, paclitaxel and doxorubicin by 10-50% in monolayer culture and 3D spheroids of human colon adenocarcinoma cells. Structure-activity relationship studies revealed a complex interplay between nanoparticle surface chemistry and cell type in determining the chemoresistance-inducing effect, with silica coated ZnO NPs having a negligible influence on the anticancer treatment. Mechanistically, we showed that the pro-survival paracrine signaling was potentiated and propagated by a subset of ZnO NP "stressed" (Zn2++/ROS+) cells to the surrounding "bystander" (Zn2++/ROS-) cells. Transcriptome profiling, bioinformatics analysis and siRNA gene knockdown experiments revealed the nuclear factor erythroid 2-related factor 2 (Nrf2) as the key modulator of the ZnO NP-induced drug resistance. Our findings suggest that a ROS-inducing ENM can emerge as a nano-stressor, capable of regulating the chemosensitivity of colon cancer cells.
Collapse
Affiliation(s)
- Zhuoran Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Hong Kit Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| |
Collapse
|
31
|
Guo F, Pan F, Zhang W, Liu T, Zuber F, Zhang X, Yu Y, Zhang R, Niederberger M, Ren Q. Robust Antibacterial Activity of Xanthan-Gum-Stabilized and Patterned CeO 2-x-TiO 2 Antifog Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44158-44172. [PMID: 36150021 DOI: 10.1021/acsami.2c11968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increased occurrence of antimicrobial resistance leads to a huge burden on patients, the healthcare system, and society worldwide. Developing antimicrobial materials through doping rare-earth elements is a new strategy to overcome this challenge. To this end, we design antibacterial films containing CeO2-x-TiO2, xanthan gum, poly(acrylic acid), and hyaluronic acid. CeO2-x-TiO2 inks are additionally integrated into a hexagonal grid for prominent transparency. Such design yields not only an antibacterial efficacy of ∼100% toward Staphylococcus aureus and Escherichia coli but also excellent antifog performance for 72 h in a 100% humidity atmosphere. Moreover, FluidFM is employed to understand the interaction in-depth between bacteria and materials. We further reveal that reactive oxygen species (ROS) are crucial for the bactericidal activity of E. coli through fluorescent spectroscopic analysis and SEM imaging. We meanwhile confirm that Ce3+ ions are involved in the stripping phosphate groups, damaging the cell membrane of S. aureus. Therefore, the hexagonal mesh and xanthan-gum cross-linking chains act as a reservoir for ROS and Ce3+ ions, realizing a long-lasting antibacterial function. We hence develop an antibacterial and antifog dual-functional material that has the potential for a broad application in display devices, medical devices, food packaging, and wearable electronics.
Collapse
Affiliation(s)
- Fangwei Guo
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Fei Pan
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Wenchen Zhang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tian Liu
- Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
| | - Flavia Zuber
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Xing Zhang
- Shanghai Institute of Aerospace System Engineering, Shanghai 201108, China
| | - Yali Yu
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiji Zhang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
32
|
Zhang Y, Qian C, Li D, Zhao L. Rational surface modification of gadolinium borate nanoparticles enhancing colloidal stability in physiological media for potential neutron capture therapy and magnetic resonance imaging. Colloids Surf B Biointerfaces 2022; 218:112771. [PMID: 36007316 DOI: 10.1016/j.colsurfb.2022.112771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Colloidal stability of nanomaterials in physiological media is an indispensable property for their biomedical applications. However, gadolinium borate (GdBO3) nanoparticles that hold promise as a theranostic agent for neutron capture therapy (NCT) and magnetic resonance imaging (MRI) of cancer tend to precipitate in phosphate buffered saline (PBS) owing to formation of insoluble gadolinium phosphate. To address this issue, in this work 10B-enriched GdBO3 nanoparticles were prepared and coated with mesoporous silica (mSiO2) of ~ 40 nm in thickness and subsequently grafted with hydrophilic polyglycerol (PG). The resulting GdBO3 @mSiO2-PG nanoparticles showed excellent colloidal stability in PBS due to the protection of the mSiO2 coating as well as superior dispersibility because of the high hydrophilicity of the PG layer. In vitro experiments revealed that GdBO3 @mSiO2-PG possessed low cytotoxicity and could be taken up by cancer cells in a concentration-dependent manner. In vivo studies indicated that GdBO3 @mSiO2-PG can circulate in mouse body for a considerably long time without obvious acute toxicity. In addition, GdBO3 @mSiO2-PG also showed promise as a T1-weighted MRI contrast agent with a proton longitudinal relaxivity of 0.67 mM-1 s-1. Our results indicate that GdBO3 @mSiO2-PG with enhanced colloidal stability in physiological media could serve as a promising multifunctional agent for cancer theranostics.
Collapse
Affiliation(s)
- Yucai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chengbo Qian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Daochang Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
33
|
Deng R, Ma P, Li B, Wu Y, Yang X. Development of allergic asthma and changes of intestinal microbiota in mice under high humidity and/or carbon black nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113786. [PMID: 35738102 DOI: 10.1016/j.ecoenv.2022.113786] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
In respiratory diseases, the induction of allergic asthma is one of the hottest issues of international concern. The adjuvant effect of air pollutants including nanoparticles (NPs) has be pointed out to facilitate the occurrence and development of allergic asthma. This work studied the development of allergic asthma upon exposures of carbon black nanoparticles (CB NPs, 30-50 nm) and/or high environmental humidity (90% relative humidity). The mechanisms involved were investigated from perspectives of the activation of oxidative stress and transient receptor potential vanilloid 1 (TRPV1) pathways and the alteration in intestinal microbiota. Both high humidity and CB NPs aggravated the airway hyperreactivity, remodeling, and inflammation in Balb/c mice sensitized by ovalbumin. The co-exposure of these two risk factors exhibited adjuvant effect on the development of asthma likely through activating oxidative stress pathway and TRPV1 pathway and then facilitating type I hypersensitivity. Additionally, exposures of high humidity and/or CB NPs reduced the richness of intestinal microbes, altered microbial community composition, and weakened corresponding biological functions, which may interact with the development of asthma. The findings will add new toxicological knowledge to the health risk assessment and management of co-exposures of NPs and other risk factors in the environment.
Collapse
Affiliation(s)
- Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing 400045, China.
| | - Ping Ma
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Baizhan Li
- School of Civil Engineering, Chongqing University, Chongqing 400045, China
| | - Yang Wu
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xu Yang
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Institute of Eastern-Himalaya Biodiversity Research, Dali university, Dali 671003, China
| |
Collapse
|
34
|
Gao J, Wang S, Tang G, Wang Z, Wang Y, Wu Q, Yang X, Liu Y, Hu L, He B, Qu G, Jiang G. Inflammation and accompanied disrupted hematopoiesis in adult mouse induced by rare earth element nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:155416. [PMID: 35489480 DOI: 10.1016/j.scitotenv.2022.155416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Rare earth element nanoparticles (REE NPs) or agents have been used extensively in various fields. Human exposure to REE NPs is an increasing concern. To date, REE NP-mediated comprehensive immune responses after incorporation into the body remain unclear. In our study, using gadolinium oxide NPs (Gd2O3) as a typical REE NP, we systematically investigated immune responses in vivo. The liver and spleen were the main sites where Gd2O3 retained and accumulated, while Gd2O3 content per unit tissue mass in the spleen was 4.4 times higher than that in the liver. Gd2O3 increased the number of monocyte-derived macrophages and myeloid-derived dendritic cells (M-DCs) in the liver. In the spleen, Gd2O3 caused infiltration of neutrophils, M-DCs, and B cells. The accumulation of Gd2O3 in the liver or spleen also contributed to an increased concentration of cytokines in peripheral blood. In both the bone marrow and spleen, Gd2O3 led to increased populations of hematopoietic stem cells (HSCs), multipotent progenitors, and common lymphoid progenitors. Compared to the decreased monocytes in peripheral blood on day 2, a significant decrease of circulating lymphocytes on day 7 was still observed, suggesting the exposure duration led to variable effects. This might be explained by the sustained accumulation of Gd2O3 in the liver and spleen. Together, our study systemically depicted the alterations in mature immune alterations together with hematopoiesis in both myeloid and lymphoid lineages induced by Gd2O3 exposure. Our findings will facilitate a comprehensive understanding of the interactions of immune system with REE NPs in vivo.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziniu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Huang Y, Li X, Cao J, Wei X, Li Y, Wang Z, Cai X, Li R, Chen J. Use of dissociation degree in lysosomes to predict metal oxide nanoparticle toxicity in immune cells: Machine learning boosts nano-safety assessment. ENVIRONMENT INTERNATIONAL 2022; 164:107258. [PMID: 35483183 DOI: 10.1016/j.envint.2022.107258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Potential immune responses resulting from exposure to metal oxide nanoparticles (MeONPs) have been the subject of intensive discussion in the last decade. Despite the extensive use of MeONPs in several applications, their toxic effects on immune cells have rarely been predicted in silico because of the complexity of immune responses and the complicated properties of MeONPs. In the present study, machine learning (ML) methods coupled with high-throughput in vitro bioassays were used to develop models for predicting the toxicity of MeONPs in immune cells. An ML model with a high prediction accuracy (97% and 96% in the training and test sets, respectively) was constructed by resolving the class imbalance problem in training and applying an ensembled algorithm. Further, to verify the model, MeONPs outside the scope of the datasets were selected to examine their cytotoxicity experimentally. The model was validated against independent MeONPs, with an accuracy of 91%. ML methods coupled with intracellular imaging revealed that the toxic ions released in the lysosome were an important determinant of toxicity in immune cells. Furthermore, ζ-potential, electronegativity, and size are crucial factors for predicting nanotoxicity. We believe the established modeling framework will provide useful insights for designing and applying safe nanoparticles and facilitating decision-making for environmental and health protection.
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jiayu Cao
- School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhe Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
36
|
Pan Y, Zheng H, Li G, Li Y, Jiang J, Chen J, Xie Q, Wu D, Ma R, Liu X, Xu S, Jiang J, Cai X, Gao M, Wang W, Zuilhof H, Ye M, Li R. Antibiotic-Like Activity of Atomic Layer Boron Nitride for Combating Resistant Bacteria. ACS NANO 2022; 16:7674-7688. [PMID: 35511445 DOI: 10.1021/acsnano.1c11353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The global rise of antimicrobial resistance (AMR) that increasingly invalidates conventional antibiotics has become a huge threat to human health. Although nanosized antibacterial agents have been extensively explored, they cannot sufficiently discriminate between microbes and mammals, which necessitates the exploration of other antibiotic-like candidates for clinical uses. Herein, two-dimensional boron nitride (BN) nanosheets are reported to exhibit antibiotic-like activity to AMR bacteria. Interestingly, BN nanosheets had AMR-independent antibacterial activity without triggering secondary resistance in long-term use and displayed excellent biocompatibility in mammals. They could target key surface proteins (e.g., FtsP, EnvC, TolB) in cell division, resulting in impairment of Z-ring constriction for inhibition of bacteria growth. Notably, BN nanosheets had potent antibacterial effects in a lung infection model by P. aeruginosa (AMR), displaying a 2-fold increment of survival rate. Overall, these results suggested that BN nanosheets could be a promising nano-antibiotic to combat resistant bacteria and prevent AMR evolution.
Collapse
Affiliation(s)
- Yanxia Pan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Guanna Li
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6703 WE, The Netherlands
- Biobased Chemistry and Technology, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Yanan Li
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ronglin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoming Cai
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6703 WE, The Netherlands
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mingliang Ye
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
37
|
Wu T, Dong W, Zhang Q, Huang Y, Yang J, Cai X, Chen J, Li X. 金属氧化物对磷酸盐吸附的预测及分子机制. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Fang J, Bai XT, Qi L, Vukanti R, Ge Y. Rare-earth metal oxide nanoparticles decouple the linkage between soil bacterial community structure and function by selectively influencing potential keystone taxa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118863. [PMID: 35063538 DOI: 10.1016/j.envpol.2022.118863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Excessive production and application of rare-earth metal oxide nanoparticles warrants assessment of their environmental risks. Little is known about the impact of these nanoparticles on soil bacterial communities. We quantified the effects of nano-Gd2O3 and nano-La2O3, at the different concentrations and exposure regimes, on soil bacterial community structure and function as well as the structure-function relationship. Further, we constructed and analyzed a co-occurrence network to identify and characterize potential keystone taxa that were related to the enzyme activities and responded to the increasing concentrations of nanoparticles. Both nano-Gd2O3 and nano-La2O3 significantly altered the bacterial community structure and function in a concentration-dependent manner; however, these negative effects were observed on day 1 or day 7 but not on day 60, indicating that these effects were transient and the bacterial communities can mitigate the effect of these nanoparticles over time. Interestingly, the nanoparticle exposure decoupled the relationship between the structure and function of the soil bacterial communities. The decoupling was due to changes in the composition and relative abundances of potential keystone taxa related to bacterial community functions. Altogether, we provide insights into the interactions between the rare-earth metal oxide nanoparticles and soil bacterial communities. Our results facilitate the environmental risk assessment and safe usage of rare-earth metal oxide nanoparticles.
Collapse
Affiliation(s)
- Junnan Fang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Ting Bai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Qi
- Agricultural College, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Raja Vukanti
- Department of Microbiology, Bhavan's Vivekananda College, Secunderabad, 500094, India
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
39
|
Environmental Health and Safety of Engineered Nanomaterials. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_23-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
40
|
Zhou M, Zou X, Liu Y, Wang H, Su Q. Degradation of upconverting nanoparticles in simulated fluids evaluated by ratiometric luminescence. NEW J CHEM 2022. [DOI: 10.1039/d2nj00590e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of artificially simulated fluids on the optical properties of upconversion nanoparticles and the degradation mechanism was systematically studied.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xi Zou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yachong Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
41
|
Cao W, Wang X, Li J, Yan M, Chang CH, Kim J, Jiang J, Liao YP, Tseng S, Kusumoputro S, Lau C, Huang M, Han P, Lu P, Xia T. NLRP3 inflammasome activation determines the fibrogenic potential of PM 2.5 air pollution particles in the lung. J Environ Sci (China) 2022; 111:429-441. [PMID: 34949371 DOI: 10.1016/j.jes.2021.04.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/14/2023]
Abstract
Airborne fine particulate matter (PM2.5) is known to cause respiratory inflammation such as chronic obstructive pulmonary disease and lung fibrosis. NLRP3 inflammasome activation has been implicated in these diseases; however, due to the complexity in PM2.5 compositions, it is difficult to differentiate the roles of the components in triggering this pathway. We collected eight real-life PM2.5 samples for a comparative analysis of their effects on NLRP3 inflammasome activation and lung fibrosis. In vitro assays showed that although the PM2.5 particles did not induce significant cytotoxicity at the dose range of 12.5 to 100 µg/mL, they induced potent TNF-α and IL-1β production in PMA differentiated THP-1 human macrophages and TGF-β1 production in BEAS-2B human bronchial epithelial cells. At the dose of 100 µg/mL, PM2.5 induced NLRP3 inflammasome activation by inducing lysosomal damage and cathepsin B release, leading to IL-1β production. This was confirmed by using NLRP3- and ASC-deficient cells as well as a cathepsin B inhibitor, ca-074 ME. Administration of PM2.5 via oropharyngeal aspiration at 2 mg/kg induced significant TGF-β1 production in the bronchoalveolar lavage fluid and collagen deposition in the lung at 21 days post-exposure, suggesting PM2.5 has the potential to induce pulmonary fibrosis. The ranking of in vitro IL-1β production correlates well with the in vivo total cell count, TGF-β1 production, and collagen deposition. In summary, we demonstrate that the PM2.5 is capable of inducing NLRP3 inflammasome activation, which triggers a series of cellular responses in the lung to induce fibrosis.
Collapse
Affiliation(s)
- Wei Cao
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China.
| | - Xiang Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States.
| | - Jiulong Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Ming Yan
- Basic Medical College, Zhengzhou University, Zhengzhou 450001, China
| | - Chong Hyun Chang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Joshua Kim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles 90095, CA, United States
| | - Jinhong Jiang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Shannon Tseng
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles 90095, CA, United States
| | - Sydney Kusumoputro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles 90095, CA, United States
| | - Candice Lau
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles 90095, CA, United States
| | - Marissa Huang
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, CA, United States
| | - Pengli Han
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China
| | - Pengju Lu
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China
| | - Tian Xia
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China; Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States.
| |
Collapse
|
42
|
Jogaiah S, Paidi MK, Venugopal K, Geetha N, Mujtaba M, Udikeri SS, Govarthanan M. Phytotoxicological effects of engineered nanoparticles: An emerging nanotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149809. [PMID: 34467935 DOI: 10.1016/j.scitotenv.2021.149809] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Recent innovations in the field of nanoscience and technology and its proficiency as a part of inter-disciplinary science has set an eclectic display in innumerable branches of science, a majority in aliened health science of human and agriculture. Modern agricultural practices have been shifting towards the implementation of nanotechnology-based solutions to combat various emerging problems ranging from safe delivery of nutrients to sustainable approaches for plant protection. In these processes, engineered nanoparticles (ENPs) are widely used as nanocarriers (to deliver nutrients and pesticides) due to their high permeability, efficacy, biocompatibility, and biodegradability properties. Even though the constructive nature of nanoparticles (NPs), nanomaterials (NMs), and other modified or ENPs towards sustainable development in agriculture is referenced, the darker side i.e., eco-toxicological effects is still not covered to a larger extent. The overwhelming usage of these trending NMs has led to continuous persistence in the ecosystem, and their interface with the biotic and abiotic community, degradation lanes and intervention, which might lead to certain beneficial or malefic effects. Metal oxide NPs and polymeric NPs (Alginate, chitosan, and polyethylene glycol) are the most used ENPs, which are posing the nature of beneficial as well as environmentally concerning hazardous materials depending upon their fate and persistence in the ecosystem. The cautious usage of NMs in a scientific way is most essential to harness beneficial aspects of NMs in the field of agriculture whilst minimizing the eco-toxicological effects. The current review is focused on the toxicological effects of various NMs on plant physiology and health. It details interactions of plant intracellular components between applied/persistent NMs, which have brought out drastic changes in seed germination, crop productivity, direct and indirect interaction at the enzymatic as well as nuclear levels. In conclusion, ENPs can pose as genotoxicants that may alter the plant phenotype if not administered appropriately.
Collapse
Affiliation(s)
- Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003, India.
| | - Murali Krishna Paidi
- AcSIR, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Krishnan Venugopal
- Department of Biochemistry, Vivekanandha College of Arts & Sciences for Women, Elayampalayam, Tiruchengode 637 205, Namakkal Dist., Tamilnadu, India
| | - Nagaraja Geetha
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Muhammad Mujtaba
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo FI-00076, Finland; Institute of Biotechnology, Ankara University, Ankara 06110, Turkey
| | - Shashikant Shiddappa Udikeri
- Agricultural Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad 580005, Karnataka, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, South Korea.
| |
Collapse
|
43
|
Liu YJ, Jing Z, Bai XT, Diao QY, Wang J, Wu YY, Zhao Q, Xia T, Xing B, Holden PA, Ge Y. Nano-La 2O 3 Induces Honeybee ( Apis mellifera) Death and Enriches for Pathogens in Honeybee Gut Bacterial Communities. Front Microbiol 2021; 12:780943. [PMID: 34925285 PMCID: PMC8674717 DOI: 10.3389/fmicb.2021.780943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Honeybees (Apis mellifera) can be exposed via numerous potential pathways to ambient nanoparticles (NPs), including rare earth oxide (REO) NPs that are increasingly used and released into the environment. Gut microorganisms are pivotal in mediating honeybee health, but how REO NPs may affect honeybee health and gut microbiota remains poorly understood. To address this knowledge gap, honeybees were fed pollen and sucrose syrup containing 0, 1, 10, 100, and 1000mgkg-1 of nano-La2O3 for 12days. Nano-La2O3 exerted detrimental effects on honeybee physiology, as reflected by dose-dependent adverse effects of nano-La2O3 on survival, pollen consumption, and body weight (p<0.05). Nano-La2O3 caused the dysbiosis of honeybee gut bacterial communities, as evidenced by the change of gut bacterial community composition, the enrichment of pathogenic Serratia and Frischella, and the alteration of digestion-related taxa Bombella (p<0.05). There were significant correlations between honeybee physiological parameters and the relative abundances of pathogenic Serratia and Frischella (p<0.05), underscoring linkages between honeybee health and gut bacterial communities. Taken together, this study demonstrates that nano-La2O3 can cause detrimental effects on honeybee health, potentially by disordering gut bacterial communities. This study thus reveals a previously overlooked effect of nano-La2O3 on the ecologically and economically important honeybee species Apis mellifera.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongwang Jing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Ting Bai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yun Diao
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Yan Wu
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| | - Patricia A. Holden
- Bren School of Environmental Science & Management, Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Yuan Ge
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Zhao X, Liu Y, Jiao C, Dai W, Song Z, Li T, He X, Yang F, Zhang Z, Ma Y. Effects of surface modification on toxicity of CeO 2 nanoparticles to lettuce. NANOIMPACT 2021; 24:100364. [PMID: 35559823 DOI: 10.1016/j.impact.2021.100364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 11/06/2021] [Indexed: 06/15/2023]
Abstract
Phytotoxicity of nanoceria (nCeO2) has been reported, but there are few studies on how to reduce its phytotoxicity. In the present study, we modified nCeO2 with two organophosphates (nCeO2@ATMP and nCeO2@EDTMP) and compared their toxicity to lettuce with that of uncoated nCeO2. The results showed that bare nCeO2 significantly inhibited the root growth of lettuce, leading to oxidative damages and root cell death. In contrast, after surface modification, the toxicity of nCeO2@ATMP to lettuce was weakened, while nCeO2@EDTMP was nontoxic to lettuce. It was found that the surface properties of the modified materials have been changed, resulting in sharp decreases in their bioavailability. Although nCeO2 with and without surface coatings were all transformed when interacting with plants, the absolute contents of Ce(III) in roots treated with modified nCeO2 decreased significantly, which may be the main reason for the reduction of toxicity. This study indicates that it is feasible to reduce the phytotoxicity of nanomaterials through surface coating.
Collapse
Affiliation(s)
- Xuepeng Zhao
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yabo Liu
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chunlei Jiao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wanqin Dai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuda Song
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Li
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Yang
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Jin X, Yu H, Zhang Z, Cui T, Wu Q, Liu X, Gao J, Zhao X, Shi J, Qu G, Jiang G. Surface charge-dependent mitochondrial response to similar intracellular nanoparticle contents at sublethal dosages. Part Fibre Toxicol 2021; 18:36. [PMID: 34565395 PMCID: PMC8474914 DOI: 10.1186/s12989-021-00429-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Considering the inevitability for humans to be frequently exposed to nanoparticles (NPs), understanding the biosafety of NPs is important for rational usage. As an important part of the innate immune system, macrophages are widely distributed in vital tissues and are also a dominant cell type that engulfs particles. Mitochondria are one of the most sensitive organelles when macrophages are exposed to NPs. However, previous studies have mainly reported the mitochondrial response upon high-dose NP treatment. Herein, with gold nanoparticles (AuNPs) as a model, we investigated the mitochondrial alterations induced by NPs at a sublethal concentration. Results At a similar internal exposure dose, different AuNPs showed distinct degrees of effects on mitochondrial alterations, including reduced tubular mitochondria, damaged mitochondria, increased reactive oxygen species, and decreased adenosine triphosphate. Cluster analysis, two-way ANOVA, and multiple linear regression suggested that the surface properties of AuNPs were the dominant determinants of the mitochondrial response. Based on the correlation analysis, the mitochondrial response was increased with the change in zeta potential from negative to positive. The alterations in mitochondrial respiratory chain proteins indicated that complex V was an indicator of the mitochondrial response to low-dose NPs. Conclusion Our current study suggests potential hazards of modified AuNPs on mitochondria even under sublethal dose, indicates the possibility of surface modification in biocompatibility improvement, and provides a new way to better evaluation of nanomaterials biosafety. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00429-8.
Collapse
Affiliation(s)
- Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Haiyi Yu
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Ze Zhang
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Tenglong Cui
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Xiaolei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China
| |
Collapse
|
46
|
Liu YQ, Qin LY, Li HJ, Wang YX, Zhang R, Shi JM, Wu JH, Dong GX, Zhou P. Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review. Nanomedicine (Lond) 2021; 16:2207-2242. [PMID: 34533048 DOI: 10.2217/nnm-2021-0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.
Collapse
Affiliation(s)
- Yu-Qi Liu
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Ying Qin
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong-Jiao Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yi-Xi Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rui Zhang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Min Shi
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Hua Wu
- Department of Materials Science, School of Physical Science & Technology, Key Laboratory of Special Function Materials & Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, PR China
| | - Gen-Xi Dong
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
47
|
Zheng R, Wang L, Wu X, Song P, Wang Y, Zhang H. Biotransformation of soluble-insoluble lanthanum species and its induced NLRP3 inflammasome activation and chronic fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117438. [PMID: 34058500 DOI: 10.1016/j.envpol.2021.117438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Soluble lanthanum (La)(Ⅲ) species that have been extensively used as fertilizers in agriculture can potentially get into the human body through foods and environment. Most soluble La(Ⅲ) species can rapidly transform into insoluble La(Ⅲ) species under physiological conditions, however, their potential biological behavior and chronic toxicity are rarely investigated. In the present study, insoluble La(Ⅲ) species formed under physiological condition were identified as nanoscale or microscale particles, and their major components were found to experience biotransformation process upon contact with cells. Insoluble La(Ⅲ) species could adhere to extracellular membrane or be internalized into cells, capable of activating a nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. The underlying mechanism could be ascribed to K+ efflux and lysosomal rupture because these insoluble La(Ⅲ) species locating at extracellular membrane could reduce the unsaturated fatty acids of cell membrane, leading to potassium (K+) efflux, and those internalized into cells could consume the phospholipids of lysosomal membrane, leading to lysosomal rupture. Mice daily drinking soluble La(Ⅲ) species to mimic drinking tea process for 90 days were found to present NLRP3 inflammasome activation in liver and kidney, as a result of chronic fibrosis, which is potentially correlated to insoluble La(Ⅲ) species formation.
Collapse
Affiliation(s)
- Runxiao Zheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, PR China
| | - Liming Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaqing Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, PR China
| | - Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, PR China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, PR China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, PR China.
| |
Collapse
|
48
|
Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, Wu J, Chen L, Shao L. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev 2021; 175:113820. [PMID: 34087327 DOI: 10.1016/j.addr.2021.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
The interactions between inorganic-based nanomaterials (NMs) and biological membranes are among the most important phenomena for developing NM-based therapeutics and resolving nanotoxicology. Herein, we introduce the structural and functional effects of inorganic-based NMs on biological membranes, mainly the plasma membrane and the endomembrane system, with an emphasis on the interface, which involves highly complex networks between NMs and biomolecules (such as membrane proteins and lipids). Significant efforts have been devoted to categorizing and analyzing the interaction mechanisms in terms of the physicochemical characteristics and biological effects of NMs, which can directly or indirectly influence the effects of NMs on membranes. Importantly, we summarize that the biological membranes act as platforms and thereby mediate NMs-immune system contacts. In this overview, the existing challenges and potential applications in the areas are addressed. A strong understanding of the discussed concepts will promote therapeutic NM designs for drug delivery systems by leveraging the NMs-membrane interactions and their functions.
Collapse
Affiliation(s)
- Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanping Jiang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Suhan Yin
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhendong Huang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
49
|
Zhang L, Jin D, Stenzel MH. Polymer-Functionalized Upconversion Nanoparticles for Light/Imaging-Guided Drug Delivery. Biomacromolecules 2021; 22:3168-3201. [PMID: 34304566 DOI: 10.1021/acs.biomac.1c00669] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The strong upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) endows the nanoparticles with attractive features for combined imaging and drug delivery. UCNPs convert near-infrared (NIR) light into light of shorter wavelengths such as light in the ultraviolet (UV) and visible regions, which can be used for light-guided drug delivery. Although light-responsive drug delivery systems as such have been known for many years, their application in medicine is limited, as strong UV-light can be damaging to tissue; moreover, UV light will not penetrate deeply into the skin, an issue that UCNPs can now address. However, UCNPs, as obtained after synthesis, are usually hydrophobic and require further surface functionalization to be stable in plasma. Polymers can serve as versatile surface coatings, as they can provide good colloidal stability, prevent the formation of a protein corona, provide a matrix for drugs, and be stimuli-responsive. In this Review, we provide a brief overview of the most recent progress in the synthesis of UCNPs with different shapes/sizes. We will then discuss the purpose of polymer coating for drug delivery before summarizing the strategies to coat UCNPs with various polymers. We will introduce the different polymers that have so far been used to coat UCNPs with the purpose to create a drug delivery system, focusing in detail on light-responsive polymers. To expand the application of UCNPs to allow photothermal therapy or magnetic resonance imaging (MRI) or to simply enhance the loading capacity of drugs, UCNPs were often combined with other materials to generate multifunctional nanoparticles such as carbon-based NPs and nanoMOFs. We then conclude with a discussion on drug loading and release and summarize the current knowledge on the toxicity of these polymer-coated UCNPs.
Collapse
Affiliation(s)
- Lin Zhang
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney NSW 2007, Australia
| | - Martina H Stenzel
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| |
Collapse
|
50
|
Malvandi AM, Shahba S, Mohammadipour A, Rastegar-Moghaddam SH, Abudayyak M. Cell and molecular toxicity of lanthanum nanoparticles: are there possible risks to humans? Nanotoxicology 2021; 15:951-972. [PMID: 34143944 DOI: 10.1080/17435390.2021.1940340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lanthanum nanoparticles are widely used in industry, agriculture, and biomedicine. Over 900 kg of lanthanum is annually released into the environment only in Europe, 50 times higher than the metals, mercury, and cadmium's environmental spread. Human health risk associated with long-term exposure to the abundant lanthanum nanoparticles is a concerning environmental issue. Due to lanthanum's ability to disrupt the main biological barriers and interrupt various cells' hemostasis, they seem to cause severe disruptions to various tissues. This review opens a new perspective regarding the cellular and molecular interaction of nanosized and ionic lanthanum with the possible toxicity on the nervous system and other tissues that would show lanthanum nanoparticles' potential danger to follow in toxicological science.
Collapse
Affiliation(s)
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|