1
|
Luo J, Wang Y. Precision Dietary Intervention: Gut Microbiome and Meta-metabolome as Functional Readouts. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:23-50. [PMID: 40313608 PMCID: PMC12040796 DOI: 10.1007/s43657-024-00193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 05/03/2025]
Abstract
Gut microbiome, the group of commensals residing within the intestinal tract, is closely associated with dietary patterns by interacting with food components. The gut microbiome is modifiable by the diet, and in turn, it utilizes the undigested food components as substrates and generates a group of small molecule-metabolites that addressed as "meta-metabolome" in this review. Profiling and mapping of meta-metabolome could yield insightful information at higher resolution and serve as functional readouts for precision nutrition and formation of personalized dietary strategies. For assessing the meta-metabolome, sample preparation is important, and it should aim for retrieval of gut microbial metabolites as intact as possible. The meta-metabolome can be investigated via untargeted and targeted meta-metabolomics with analytical platforms such as nuclear magnetic resonance spectroscopy and mass spectrometry. Employing flux analysis with meta-metabolomics using available database could further elucidate metabolic pathways that lead to biomarker discovery. In conclusion, integration of gut microbiome and meta-metabolomics is a promising supplementary approach to tailor precision dietary intervention. In this review, relationships among diet, gut microbiome, and meta-metabolome are elucidated, with an emphasis on recent advances in alternative analysis techniques proposed for nutritional research. We hope that this review will provide information for establishing pipelines complementary to traditional approaches for achieving precision dietary intervention.
Collapse
Affiliation(s)
- Jing Luo
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- TUMCREATE, 1 Create Way, #10-02 CREATE Tower, Singapore, 138602 Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921 Singapore
| |
Collapse
|
2
|
Deda O, Gika HG, Theodoridis G. Rat Fecal Metabolomics-Based Analysis. Methods Mol Biol 2025; 2891:153-163. [PMID: 39812981 DOI: 10.1007/978-1-0716-4334-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The gut's symbiome, a hidden metabolic organ, has gained scientific interest for its crucial role in human health. Acting as a biochemical factory, the gut microbiome produces numerous small molecules that significantly impact host metabolism. Metabolic profiling facilitates the exploration of its influence on human health and disease through the symbiotic relationship. Fecal metabolomics-based analysis is an indisputably valuable tool for elucidating the biochemistry of digestion and absorption in the gastrointestinal system, serving as the most suitable specimen to study the symbiotic relationship between the host and the intestinal microbiota. It is well-established that the balance of the intestinal microbiota changes in response to various stimuli, both physiological, such as gender, age, diet, and exercise, and pathological, such as gastrointestinal and hepatic diseases. Fecal samples have been analyzed using widely adopted analytical techniques, including NMR spectroscopy, GC-MS, and LC-MS/MS. Rat fecal samples are frequently used and particularly useful substrates for metabolomics-based studies in related fields.The complexity and diversity of fecal samples necessitate careful and skillful handling to extract metabolites, while avoiding their deterioration, effectively and quantitatively. Several determinative factors, such as the fecal sample weight to extraction solvent solution volume, the nature and pH value of the extraction solvent, and the homogenization process, play crucial roles in achieving optimal extraction for obtaining high-quality metabolic fingerprints, whether for untargeted or targeted metabolomics.
Collapse
Affiliation(s)
- Olga Deda
- School of Medicine, Aristotle University Thessaloniki, Thessaloniki, Greece
- Biomic Auth, Bioanalysis and Omics Laboratory, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, Thermi, Greece
| | - Helen G Gika
- School of Medicine, Aristotle University Thessaloniki, Thessaloniki, Greece
- Biomic Auth, Bioanalysis and Omics Laboratory, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, Thermi, Greece
| | - Georgios Theodoridis
- Biomic Auth, Bioanalysis and Omics Laboratory, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, Thermi, Greece
- Department of Chemistry, Aristotle University Thessaloniki, Thessaloniki, Greece
- ThetaBiomarkers, Balkan Center B1.4, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH) Aristotle University, Thessaloniki, GR, Greece
| |
Collapse
|
3
|
Archana, Gupta AK, Noumani A, Panday DK, Zaidi F, Sahu GK, Joshi G, Yadav M, Borah SJ, Susmitha V, Mohan A, Kumar A, Solanki PR. Gut microbiota derived short-chain fatty acids in physiology and pathology: An update. Cell Biochem Funct 2024; 42:e4108. [PMID: 39228159 DOI: 10.1002/cbf.4108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Short-chain fatty acids (SCFAs) are essential molecules produced by gut bacteria that fuel intestinal cells and may also influence overall health. An imbalance of SCFAs can result in various acute and chronic diseases, including diabetes, obesity and colorectal cancer (CRC). This review delves into the multifaceted roles of SCFAs, including a brief discussion on their source and various gut-residing bacteria. Primary techniques used for detection of SCFAs, including gas chromatography, high-performance gas chromatography, nuclear magnetic resonance and capillary electrophoresis are also discussed through this article. This review study also compiles various synthesis pathways of SCFAs from diverse substrates such as sugar, acetone, ethanol and amino acids. The different pathways through which SCFAs enter cells for immune response regulation are also highlighted. A major emphasis is the discussion on diseases associated with SCFA dysregulation, such as anaemia, brain development, CRC, depression, obesity and diabetes. This includes exploring the relationship between SCFA levels across ethnicities and their connection with blood pressure and CRC. In conclusion, this review highlights the critical role of SCFAs in maintaining gut health and their implications in various diseases, emphasizing the need for further research on SCFA detection, synthesis and their potential as diagnostic biomarkers. Future studies of SCFAs will pave the way for the development of novel diagnostic tools and therapeutic strategies for optimizing gut health and preventing diseases associated with SCFA dysregulation.
Collapse
Affiliation(s)
- Archana
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Abhijeet Kumar Gupta
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Ashab Noumani
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Dharmendra Kumar Panday
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Fareen Zaidi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Kumar Sahu
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gunjan Joshi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Manisha Yadav
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Shikha Jyoti Borah
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Vanne Susmitha
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi, India
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 PMCID: PMC11932151 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
5
|
Ahmed S, de Vries JC, Lu J, Stuart MHV, Mihăilă SM, Vernooij RWM, Masereeuw R, Gerritsen KGF. Animal Models for Studying Protein-Bound Uremic Toxin Removal-A Systematic Review. Int J Mol Sci 2023; 24:13197. [PMID: 37686004 PMCID: PMC10487432 DOI: 10.3390/ijms241713197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Protein-bound uremic toxins (PBUTs) are associated with the progression of chronic kidney disease (CKD) and its associated morbidity and mortality. The conventional dialysis techniques are unable to efficiently remove PBUTs due to their plasma protein binding. Therefore, novel approaches are being developed, but these require validation in animals before clinical trials can begin. We conducted a systematic review to document PBUT concentrations in various models and species. The search strategy returned 1163 results for which abstracts were screened, resulting in 65 full-text papers for data extraction (rats (n = 41), mice (n = 17), dogs (n = 3), cats (n = 4), goats (n = 1), and pigs (n = 1)). We performed descriptive and comparative analyses on indoxyl sulfate (IS) concentrations in rats and mice. The data on large animals and on other PBUTs were too heterogeneous for pooled analysis. Most rodent studies reported mean uremic concentrations of plasma IS close to or within the range of those during kidney failure in humans, with the highest in tubular injury models in rats. Compared to nephron loss models in rats, a greater rise in plasma IS compared to creatinine was found in tubular injury models, suggesting tubular secretion was more affected than glomerular filtration. In summary, tubular injury rat models may be most relevant for the in vivo validation of novel PBUT-lowering strategies for kidney failure in humans.
Collapse
Affiliation(s)
- Sabbir Ahmed
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Joost C. de Vries
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| | - Jingyi Lu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Milan H. Verrijn Stuart
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Robin W. M. Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| |
Collapse
|
6
|
Chalova P, Tazky A, Skultety L, Minichova L, Chovanec M, Ciernikova S, Mikus P, Piestansky J. Determination of short-chain fatty acids as putative biomarkers of cancer diseases by modern analytical strategies and tools: a review. Front Oncol 2023; 13:1110235. [PMID: 37441422 PMCID: PMC10334191 DOI: 10.3389/fonc.2023.1110235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of non-digestible carbohydrates in the gastrointestinal tract. They can be seen as the major flow of carbon from the diet, through the microbiome to the host. SCFAs have been reported as important molecules responsible for the regulation of intestinal homeostasis. Moreover, these molecules have a significant impact on the immune system and are able to affect inflammation, cardiovascular diseases, diabetes type II, or oncological diseases. For this purpose, SCFAs could be used as putative biomarkers of various diseases, including cancer. A potential diagnostic value may be offered by analyzing SCFAs with the use of advanced analytical approaches such as gas chromatography (GC), liquid chromatography (LC), or capillary electrophoresis (CE) coupled with mass spectrometry (MS). The presented review summarizes the importance of analyzing SCFAs from clinical and analytical perspective. Current advances in the analysis of SCFAs focused on sample pretreatment, separation strategy, and detection methods are highlighted. Additionally, it also shows potential areas for the development of future diagnostic tools in oncology and other varieties of diseases based on targeted metabolite profiling.
Collapse
Affiliation(s)
- Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
| | - Anton Tazky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Ludovit Skultety
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Lenka Minichova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Sona Ciernikova
- Biomedical Research Center of the Slovak Academy of Sciences, Cancer Research Institute, Bratislava, Slovakia
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| |
Collapse
|
7
|
Chiu O, Tal M, Sanmugam A, Hesta M, Gomez DE, Weese JS, Verbrugghe A. The effects of ambient temperature exposure on feline fecal metabolome. Front Vet Sci 2023; 10:1141881. [PMID: 37303717 PMCID: PMC10250732 DOI: 10.3389/fvets.2023.1141881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The fecal metabolome provides insight into overall gastrointestinal and microbial health. Methods for fecal sample storage in metabolomics research vary, however, making comparisons within current literature difficult. This study investigated the effect of ambient temperature exposure on microbial-derived metabolites of feline fecal samples. Methods Fecal samples were collected from 11 healthy cats from a local boarding facility. Samples were manually homogenized and aliquoted. The first aliquot was frozen at -80°C within 1 hour of defecation, and remaining samples were exposed to ambient temperature for 2, 4, 6, 8, 12, and 24 h prior to freezing at -80°C. Fecal metabolites were quantified using 1H NMR spectroscopy. Fifty metabolites were grouped into six categories (27 amino acids, 8 fatty acids, 5 sugars, 3 alcohols, 2 nitrogenous bases, 5 miscellaneous). Results Concentrations of 20 out of 50 metabolites significantly differed due to ambient temperature exposure (7 amino acids, 6 fatty acids, 2 alcohols, 1 nitrogenous base, 4 miscellaneous). The earliest detected changes occurred 6 h post-defecation for cadaverine and fumaric acid. Discussion This study shows ambient temperature exposure alters the composition of the feline fecal metabolome, but short-term (up to 4 h) exposure prior to storage in the freezer seems to be acceptable.
Collapse
Affiliation(s)
- Olivia Chiu
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Moran Tal
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Abbinash Sanmugam
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Myriam Hesta
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jeffrey Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Tuomi MW, Murguzur FJA, Hoset KS, Soininen EM, Vesterinen EJ, Utsi TA, Kaino S, Bråthen KA. Novel frontier in wildlife monitoring: Identification of small rodent species from fecal pellets using near-infrared reflectance spectroscopy (NIRS). Ecol Evol 2023; 13:e9857. [PMID: 36950367 PMCID: PMC10024998 DOI: 10.1002/ece3.9857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 03/21/2023] Open
Abstract
Small rodents are prevalent and functionally important across the world's biomes, making their monitoring salient for ecosystem management, conservation, forestry, and agriculture. There is a growing need for cost-effective and noninvasive methods for large-scale, intensive sampling. Fecal pellet counts readily provide relative abundance indices, and given suitable analytical methods, feces could also allow for the determination of multiple ecological and physiological variables, including community composition. In this context, we developed calibration models for rodent taxonomic determination using fecal near-infrared reflectance spectroscopy (fNIRS). Our results demonstrate fNIRS as an accurate and robust method for predicting genus and species identity of five coexisting subarctic microtine rodent species. We show that sample exposure to weathering increases the method's accuracy, indicating its suitability for samples collected from the field. Diet was not a major determinant of species prediction accuracy in our samples, as diet exhibited large variation and overlap between species. fNIRS could also be applied across regions, as calibration models including samples from two regions provided a good prediction accuracy for both regions. We show fNIRS as a fast and cost-efficient high-throughput method for rodent taxonomic determination, with the potential for cross-regional calibrations and the use on field-collected samples. Importantly, appeal lies in the versatility of fNIRS. In addition to rodent population censuses, fNIRS can provide information on demography, fecal nutrients, stress hormones, and even disease. Given the development of such calibration models, fNIRS analytics could complement novel genetic methods and greatly support ecosystem- and interaction-based approaches to monitoring.
Collapse
Affiliation(s)
- Maria W. Tuomi
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
- Section of EcologyDepartment of BiologyUniversity of TurkuTurkuFinland
| | | | - Katrine S. Hoset
- Section of EcologyDepartment of BiologyUniversity of TurkuTurkuFinland
| | - Eeva M. Soininen
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Eero J. Vesterinen
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
- Biodiversity UnitUniversity of TurkuTurkuFinland
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Tove Aa. Utsi
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayAltaNorway
| | - Sissel Kaino
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Kari Anne Bråthen
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
9
|
McKenney EA, Hale AR, Anderson J, Larsen R, Grant C, Dunn RR. Hidden diversity: comparative functional morphology of humans and other species. PeerJ 2023; 11:e15148. [PMID: 37123005 PMCID: PMC10135406 DOI: 10.7717/peerj.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
Gastrointestinal (GI) morphology plays an important role in nutrition, health, and epidemiology; yet limited data on GI variation have been collected since 1885. Here we demonstrate that students can collect reliable data sets on gut morphology; when they do, they reveal greater morphological variation for some structures in the GI tract than has been documented in the published literature. We discuss trait variability both within and among species, and the implications of that variability for evolution and epidemiology. Our results show that morphological variation in the GI tract is associated with each organ's role in food processing. For example, the length of many structures was found to vary significantly with feeding strategy. Within species, the variability illustrated by the coefficients of variation suggests that selective constraints may vary with function. Within humans, we detected significant Pearson correlations between the volume of the liver and the length of the appendix (t-value = 2.5278, df = 28, p = 0.0174, corr = 0.4311) and colon (t-value = 2.0991, df = 19, p = 0.0494, corr = 0.4339), as well as between the lengths of the small intestine and colon (t-value = 2.1699, df = 17, p = 0.0445, corr = 0.4657), which are arguably the most vital organs in the gut for nutrient absorption. Notably, intraspecific variation in the small intestine can be associated with life history traits. In humans, females demonstrated consistently and significantly longer small intestines than males (t-value15 = 2.245, p = 0.0403). This finding supports the female canalization hypothesis, specifically, increased female investment in the digestion and absorption of lipids.
Collapse
Affiliation(s)
- Erin A. McKenney
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
- North Carolina Museum of Natural Sciences, Raleigh, NC, United States of America
| | - Amanda R. Hale
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
- SNA International for the Defense POW/MIA Accounting Agency, Joint Base Pearl Harbor-Hickam, HI, United States of America
| | - Janiaya Anderson
- Department of Psychology, North Carolina State University, Raleigh, NC, United States of America
| | - Roxanne Larsen
- Office of Curricular Affairs, Duke University School of Medicine, Durham, NC, United States of America
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States of America
| | - Colleen Grant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
10
|
Aboelsoued D, Abdel Megeed KN. Diagnosis and control of cryptosporidiosis in farm animals. J Parasit Dis 2022; 46:1133-1146. [PMID: 36457776 PMCID: PMC9606155 DOI: 10.1007/s12639-022-01513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Cryptosporidium is a pathogenic protozoan parasite infecting the gastrointestinal epithelium of human and animal hosts. In farm animals, cryptosporidiosis causes significant economic losses including deaths in newborn animals, retarded growth, increased labor involved and high cost of drugs. The detection of Cryptosporidium oocysts in fecal samples is traditionally dependent on examination of stained slides by light microscope or by advanced microscopical tools such as: electron microscopy and phase contrast microscopy. Immunological diagnosis using either antibody or antigen detection could offer high sensitivity and specificity. Examples for these tests are Enzyme Linked Immunosorbent Assay (ELISA), Immunochromatographic tests, Immunochromatographic lateral flow (ICLF), Immunofluorescence assays (IFA) and Flow cytometry coupled with cell sorting. Molecular methods could differentiate species and genotypes of Cryptosporidium and help in studying the epidemiological features of this parasite with rapid, simple and sensitive procedures. Nanotechnology-based platforms could improve the sensitivity and specificity of other detection methods like: ELISA, ICLF, IFA and polymerase chain reaction. As the available prophylactic and therapeutic drugs or natural products treatments are insufficient and no approved vaccines are available, the best approach to control this parasite is by following firm hygienic measures. Many vaccine attempts were performed using hyperimmune colostrum, live or attenuated vaccines, recombinant and Deoxyribonucleic acid vaccines. Also, Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 technology could help in Cryptosporidium genome editing to improve drug and vaccine discovery. Another approach that could be useful for assigning drug targets is metabolomics. Probiotics were also used successfully in the treatment of acute diarrhea and they proved a limiting effect on cryptosporidiosis in animal models. In addition, nanotherapy-based approaches could provide a good strategy for improving the potency of any type of drugs against Cryptosporidium and give good anti-cryptosporidial effects. In conclusion, accurate diagnosis using advanced techniques is the key to the control and prevention of cryptosporidiosis.
Collapse
Affiliation(s)
- Dina Aboelsoued
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| | - Kadria Nasr Abdel Megeed
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| |
Collapse
|
11
|
Guo J, Song C, Liu Y, Wu X, Dong W, Zhu H, Xiang Z, Qin C. Characteristics of gut microbiota in representative mice strains: Implications for biological research. Animal Model Exp Med 2022; 5:337-349. [PMID: 35892142 PMCID: PMC9434578 DOI: 10.1002/ame2.12257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background Experimental animals are used to study physiological phenomena, pathological mechanisms, and disease prevention. The gut microbiome is known as a potential confounding factor for inconsistent data from preclinical studies. Although many gut microbiome studies have been conducted in recent decades, few have focused on gut microbiota fluctuation among representative mouse strains. Methods A range of frequently used mouse strains were selected from 34 isolation packages representing disease‐related animal (DRA), immunity defect animal (IDA), or gene‐editing animal (GEA) from the BALB/c and C57BL/6J backgrounds together with normal mice, and their microbial genomic DNA were isolated from mouse feces to sequence for the exploration of gut microbiota. Results Mouse background strain, classification, introduced source, introduced year, and reproduction type significantly affected the gut microbiota structure (p < 0.001 for all parameters), with background strain contributing the greatest influence (R2 = 0.237). In normal groups, distinct gut microbiota types existed in different mouse strains. Sixty‐four core operational taxonomic units were obtained from normal mice, and 12 belonged to Lactobacillus. Interestingly, the gut microbiota in C57BL/6J was more stable than that in BALB/c mice. Furthermore, the gut microbiota in the IDA, GEA, and DRA groups significantly differed from that in normal groups (p < 0.001 for all). Compared with the normal group, there was a significantly higher Chao1 and Shannon index (p < 0.001 for all) in the IDA, GEA, and DRA groups. Markedly changed classes occurred with Firmicutes and Bacteroidetes. The abundances of Helicobacter, Blautia, Enterobacter, Bacillus, Clostridioides, Paenibacillus, and Clostridiales all significantly decreased in the IDA, GEA, and DRA groups, whereas those of Saccharimonas, Rikenella, and Odoribacter all significantly increased.
Collapse
Affiliation(s)
- Jianguo Guo
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chenchen Song
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunbo Liu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xuying Wu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Hua Zhu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhiguang Xiang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Martinez B, Schwerdtfeger LA, Richardson A, Tobet SA, Henry CS. 1H-NMR Profiling of Short-Chain Fatty Acid Content from a Physiologically Accurate Gut-on-a-Chip Device. Anal Chem 2022; 94:9987-9992. [PMID: 35797422 DOI: 10.1021/acs.analchem.1c05146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been shown that short-chain fatty acids (SCFAs) produced by the gut microbiome are of importance to host tissue health; however, measuring such compounds in biological samples is often limited to using hours to days old fecal and blood plasma samples. Organ-on-a-chip models have been created to simplify the complexity but struggle to reproduce the full biology of the gut specifically. We recently reported a tissue-in-a-chip gut model that incorporates gut explanted tissue into a microfluidic device. The system maintains a biologically relevant oxygen gradient and tissue ex vivo for days at a time, but minimal characterization of biological activity was reported. Herein, we use 1H-NMR to analyze the SCFA content of tissue media effluents from gut explants cultured in the recently developed microfluidic organotypic device (MOD). 1H-NMR can identify key SCFAs in the complex samples with minimal sample preparation. Our findings show that maintaining physiologically relevant oxygen conditions, something often missing from many other culture systems, significantly impacts the SCFA profile. Additionally, we noted the changes in SCFAs with culture time and potential variability between SCFA levels in male and female mouse tissue explants cultured in the MOD system based on 1H-NMR spectral profiles.
Collapse
Affiliation(s)
- Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Luke A Schwerdtfeger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617, United States
| | - Alec Richardson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523-1376, United States
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617, United States.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523-1376, United States
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523-1376, United States
| |
Collapse
|
13
|
Observable Metabolites and Metabolomic Sampling Protocols for Managed African Savanna Elephant (Loxodonta africana) Whole Blood Using H-NMR Spectroscopy. Metabolites 2022; 12:metabo12050400. [PMID: 35629905 PMCID: PMC9143938 DOI: 10.3390/metabo12050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/17/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
We used nuclear magnetic spectroscopy (NMR) to evaluate the metabolomics of heparinized whole blood drawn from six African savanna elephants (Loxodonta africana) maintained on a well characterized diet. Whole blood samples obtained under behavioral restraint, then quickly frozen in liquid nitrogen, were stored at −80 °C until analysis. Frozen samples were thawed under controlled conditions and extracted with methanol and chloroform to separate the polar and non-polar metabolites. We identified 18 polar metabolites and 14 non-polar lipids using one-dimensional (1D) and two-dimensional (2D) NMR spectra. Despite unexpected rouleaux formation in the thawed frozen samples, spectra were consistent among animals and did not vary dramatically with age or the sex of the animal.
Collapse
|
14
|
DE Almeida LR, Amaral Alves M, Mastella AMO, Garrett R, Pereira MJR. Neotropical mustelids: fecal metabolome diversity and its potential for taxonomic discrimination. Integr Zool 2022; 18:518-529. [PMID: 35275446 DOI: 10.1111/1749-4877.12645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical profiles of non-invasive biological material, such as feces, have great potential to study elusive animals or those with low population densities. Here, we use a metabolomic approach to evaluate Neotropical mustelids as a biological model to describe the diversity of the metabolites present in fecal samples, as well as to evaluate the potential of chemical profiles for taxonomic discrimination. We collected fecal samples from captive individuals of five species of mustelids occurring in Brazil and analyzed them by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Over 200 compounds have been annotated; "bile acids, alcohols and derivatives" was the most expressive class in the metabolome of all the species. We successfully discriminated three taxonomic groups: 1 - Tayra (Eira barbara); 2 - otters (Lontra longicaudis and Pteronura brasiliensis; 1); and 3 - grisons (Galictis vittata and Galictis cuja). Several compounds seemed to be associated with food intake and the digestive process, while others were found for the first time in Neotropical mustelids. We concluded that mustelids show high metabolome diversity and that species-specific identification through metabolomic profiles is possible, thus contributing to the development and implementation of additional non-invasive approaches in the study of mustelids. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lana Resende DE Almeida
- Bird and Mammal Evolution, Systematics and Ecology Lab, Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Amaral Alves
- Federal University of Rio de Janeiro, Chemistry Institute, Metabolomics Laboratory (LabMeta - LADETEC/IQ - UFRJ), Avenida Horácio Macedo, 1281 - Pólo de Química - Cidade Universitária, Ilha do Fundão, ZIP CODE, Rio de Janeiro, RJ, 21941-598, Brazil.,Universidade Federal do Rio de Janeiro, Walter Mors Institute of Research on Natural Products, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Ana Maria Obino Mastella
- Bird and Mammal Evolution, Systematics and Ecology Lab, Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Garrett
- Federal University of Rio de Janeiro, Chemistry Institute, Metabolomics Laboratory (LabMeta - LADETEC/IQ - UFRJ), Avenida Horácio Macedo, 1281 - Pólo de Química - Cidade Universitária, Ilha do Fundão, ZIP CODE, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Maria João Ramos Pereira
- Bird and Mammal Evolution, Systematics and Ecology Lab, Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Fecal 1H-NMR Metabolomics: A Comparison of Sample Preparation Methods for NMR and Novel in Silico Baseline Correction. Metabolites 2022; 12:metabo12020148. [PMID: 35208222 PMCID: PMC8875708 DOI: 10.3390/metabo12020148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Analysis of enteric microbiota function indirectly through the fecal metabolome has the potential to be an informative diagnostic tool. However, metabolomic analysis of feces is hampered by high concentrations of macromolecules such as proteins, fats, and fiber in samples. Three methods—ultrafiltration (UF), Bligh–Dyer (BD), and no extraction (samples added directly to buffer, vortexed, and centrifuged)—were tested on multiple rat (n = 10) and chicken (n = 8) fecal samples to ascertain whether the methods worked equally well across species and individuals. An in silico baseline correction method was evaluated to determine if an algorithm could produce spectra similar to those obtained via UF. For both rat and chicken feces, UF removed all macromolecules and produced no baseline distortion among samples. By contrast, the BD and no extraction methods did not remove all the macromolecules and produced baseline distortions. The application of in silico baseline correction produced spectra comparable to UF spectra. In the case of no extraction, more intense peaks were produced. This suggests that baseline correction may be a cost-effective method for metabolomic analyses of fecal samples and an alternative to UF. UF was the most versatile and efficient extraction method; however, BD and no extraction followed by baseline correction can produce comparable results.
Collapse
|
16
|
Bervoets L, Ippel JH, Smolinska A, van Best N, Savelkoul PHM, Mommers MAH, Penders J. Practical and Robust NMR-Based Metabolic Phenotyping of Gut Health in Early Life. J Proteome Res 2021; 20:5079-5087. [PMID: 34587745 PMCID: PMC8576838 DOI: 10.1021/acs.jproteome.1c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While substantial efforts have been made to optimize and standardize fecal metabolomics for studies in adults, the development of a standard protocol to analyze infant feces is, however, still lagging behind. Here, we present the development of a hands-on and robust protocol for proton 1H NMR spectroscopy of infant feces. The influence of extraction solvent, dilution ratio, homogenization method, filtration, and duration of centrifugation on the biochemical composition of infant feces was carefully evaluated using visual inspection of 1H NMR spectra in combination with multivariate statistical modeling. The optimal metabolomics protocol was subsequently applied on feces from seven infants collected at 8 weeks, 4, and 9 months of age. Interindividual variation was exceeding the variation induced by different fecal sample preparation methods, except for filtration. We recommend extracting fecal samples using water with a dilution ratio of 1:5 feces-to-water to homogenize using bead beating and to remove particulates using centrifugation. Samples collected from infants aged 8 weeks and 4 months showed elevated concentrations of milk oligosaccharide derivatives and lactic acid, whereas short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) were higher in the 9 month samples. The established protocol enables hands-on and robust analyses of the infant gut metabolome. The wide-ranging application of this protocol will facilitate interlaboratory comparison of infants' metabolic profiles and finally aid in a better understanding of infant gut health.
Collapse
Affiliation(s)
- Liene Bervoets
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Johannes H Ippel
- Department of Biochemistry, CARIM Cardiovascular Research Institute Maastricht, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Agnieszka Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Niels van Best
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands.,Institute of Medical Microbiology, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VUMC, 1081 HV Amsterdam, The Netherlands
| | - Monique A H Mommers
- Department of Epidemiology, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
17
|
Zhou L, Yu D, Zheng S, Ouyang R, Wang Y, Xu G. Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
First Metabolic Insights into Ex Vivo Cryptosporidium parvum-Infected Bovine Small Intestinal Explants Studied under Physioxic Conditions. BIOLOGY 2021; 10:biology10100963. [PMID: 34681062 PMCID: PMC8533177 DOI: 10.3390/biology10100963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary As the most relevant zoonotic cause of cryptosporidiosis, C. parvum infects cattle worldwide. In vitro studies on C. parvum are absent on the most important animal host under physiological oxygen conditions of the intestine. The aim of this study was to rectify this lack of knowledge, and to deliver a practical model to study C. parvum–host cell–intestinal microbiome interactions in the metabolic context. The present metabolic analyses of C. parvum-infected bovine small intestinal (BSI)-explants revealed a parasite-dependent reduction in important metabolic activities (e.g., glycolysis, glutaminolysis) at 3 hpi (hours post-infection) followed by striking increases in the same metabolic functions at 6 hpi, thus paralleling previously reported metabolic impacts of C. parvum on humans. In addition, PCA analysis confirmed physiological oxygen concentrations as a driving factor of metabolic responses in infected BSI explants. The present model allows the study of C. parvum-triggered metabolic modulation of intestinal cells. Moreover, this realistic platform offers the possibility to address pending questions regarding C. parvum–host cell–intestinal microbiome interactions. Thus, the present approach may deliver important insights into how to promote the innate immune system–intestinal microbiome alliances, which maintain the epithelial integrity of the gut thereby supporting human and animal health. Abstract The apicomplexan Cryptosporidium parvum causes thousands of human deaths yearly. Since bovines represent the most important reservoir of C. parvum, the analysis of infected bovine small intestinal (BSI) explants cultured under physioxia offers a realistic model to study C. parvum–host cell–microbiome interactions. Here, C. parvum-infected BSI explants and primary bovine small intestinal epithelial cells were analysed for parasite development and metabolic reactions. Metabolic conversion rates in supernatants of BSI explants were measured after infection, documenting an immediate parasite-driven metabolic interference. Given that oxygen concentrations affect cellular metabolism, measurements were performed at both 5% O2 (physiological intestinal conditions) and 21% O2 (commonly used, hyperoxic lab conditions). Overall, analyses of C. parvum-infected BSI explants revealed a downregulation of conversion rates of key metabolites—such as glucose, lactate, pyruvate, alanine, and aspartate—at 3 hpi, followed by a rapid increase in the same conversion rates at 6 hpi. Moreover, PCA revealed physioxia as a driving factor of metabolic responses in C. parvum-infected BSI explants. Overall, the ex vivo model described here may allow scientists to address pending questions as to how host cell–microbiome alliances influence intestinal epithelial integrity and support the development of protective intestinal immune reactions against C. parvum infections in a realistic scenario under physioxic conditions.
Collapse
|
19
|
Martias C, Baroukh N, Mavel S, Blasco H, Lefèvre A, Roch L, Montigny F, Gatien J, Schibler L, Dufour-Rainfray D, Nadal-Desbarats L, Emond P. Optimization of Sample Preparation for Metabolomics Exploration of Urine, Feces, Blood and Saliva in Humans Using Combined NMR and UHPLC-HRMS Platforms. Molecules 2021; 26:molecules26144111. [PMID: 34299389 PMCID: PMC8305469 DOI: 10.3390/molecules26144111] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, most clinical studies in metabolomics only consider a single type of sample such as urine, plasma, or feces and use a single analytical platform, either NMR or MS. Although some studies have already investigated metabolomics data from multiple fluids, the information is limited to a unique analytical platform. On the other hand, clinical studies investigating the human metabolome that combine multi-analytical platforms have focused on a single biofluid. Combining data from multiple sample types for one patient using a multimodal analytical approach (NMR and MS) should extend the metabolome coverage. Pre-analytical and analytical phases are time consuming. These steps need to be improved in order to move into clinical studies that deal with a large number of patient samples. Our study describes a standard operating procedure for biological specimens (urine, blood, saliva, and feces) using multiple platforms (1H-NMR, RP-UHPLC-MS, and HILIC-UHPLC-MS). Each sample type follows a unique sample preparation procedure for analysis on a multi-platform basis. Our method was evaluated for its robustness and was able to generate a representative metabolic map.
Collapse
Affiliation(s)
- Cécile Martias
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France; (C.M.); (N.B.); (S.M.); (H.B.); (A.L.); (F.M.); (D.D.-R.); (P.E.)
| | - Nadine Baroukh
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France; (C.M.); (N.B.); (S.M.); (H.B.); (A.L.); (F.M.); (D.D.-R.); (P.E.)
| | - Sylvie Mavel
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France; (C.M.); (N.B.); (S.M.); (H.B.); (A.L.); (F.M.); (D.D.-R.); (P.E.)
| | - Hélène Blasco
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France; (C.M.); (N.B.); (S.M.); (H.B.); (A.L.); (F.M.); (D.D.-R.); (P.E.)
- CHRU Tours, Medical Biology Center, 37000 Tours, France
| | - Antoine Lefèvre
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France; (C.M.); (N.B.); (S.M.); (H.B.); (A.L.); (F.M.); (D.D.-R.); (P.E.)
| | - Léa Roch
- ALLICE, Phenotyping Station, 37380 Nouzilly, France; (L.R.); (J.G.); (L.S.)
| | - Frédéric Montigny
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France; (C.M.); (N.B.); (S.M.); (H.B.); (A.L.); (F.M.); (D.D.-R.); (P.E.)
| | - Julie Gatien
- ALLICE, Phenotyping Station, 37380 Nouzilly, France; (L.R.); (J.G.); (L.S.)
| | - Laurent Schibler
- ALLICE, Phenotyping Station, 37380 Nouzilly, France; (L.R.); (J.G.); (L.S.)
| | - Diane Dufour-Rainfray
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France; (C.M.); (N.B.); (S.M.); (H.B.); (A.L.); (F.M.); (D.D.-R.); (P.E.)
- CHRU Tours, Medical Biology Center, 37000 Tours, France
| | - Lydie Nadal-Desbarats
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France; (C.M.); (N.B.); (S.M.); (H.B.); (A.L.); (F.M.); (D.D.-R.); (P.E.)
- Correspondence: ; Tel.: +33-(0)-2-4736-6164
| | - Patrick Emond
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France; (C.M.); (N.B.); (S.M.); (H.B.); (A.L.); (F.M.); (D.D.-R.); (P.E.)
- CHRU Tours, Medical Biology Center, 37000 Tours, France
| |
Collapse
|
20
|
Shen W, Wu D, Qiu W, Yi X. Evaluation of freeze-drying for quantification of the microbiome and metabolome in neonatal faecal samples. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
21
|
Cui M, Trimigno A, Aru V, Rasmussen MA, Khakimov B, Engelsen SB. Influence of Age, Sex, and Diet on the Human Fecal Metabolome Investigated by 1H NMR Spectroscopy. J Proteome Res 2021; 20:3642-3653. [PMID: 34048241 DOI: 10.1021/acs.jproteome.1c00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The human fecal metabolome is increasingly studied to explore the impact of diet and lifestyle on health and the gut microbiome. However, systematic differences and confounding factors related to age, sex, and diet remain largely unknown. In this study, absolute concentrations of fecal metabolites from 205 healthy Danes (105 males and 100 females, 49 ± 31 years old) were quantified using 1H NMR spectroscopy and the newly developed SigMa software. The largest systemic variation was found to be highly related to age. Fecal concentrations of short-chain fatty acids (SCFA) were higher in the 18 years old group, while amino acids (AA) were higher in the elderly. Sex-related metabolic differences were weak but significant and mainly related to changes in SCFA. The concentrations of butyric, valeric, propionic, and isovaleric acids were found to be higher in males compared to females. Sex differences were associated with a stronger, possibly masking, effect from differential intake of macronutrients. Dietary fat intake decreased levels of SCFA and AA of both sexes, while carbohydrate intake showed weak correlations with valeric and isovaleric acids in females. This study highlights some possible demographic confounders linked to diet, disease, lifestyle, and microbiota that have to be taken into account when analyzing fecal metabolome data.
Collapse
Affiliation(s)
- Mengni Cui
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Alessia Trimigno
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Violetta Aru
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Morten A Rasmussen
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.,COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen 2820, Denmark
| | - Bekzod Khakimov
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Søren Balling Engelsen
- Chemometrics and Analytical Technology Section Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| |
Collapse
|
22
|
Roca M, Alcoriza MI, Garcia-Cañaveras JC, Lahoz A. Reviewing the metabolome coverage provided by LC-MS: Focus on sample preparation and chromatography-A tutorial. Anal Chim Acta 2020; 1147:38-55. [PMID: 33485584 DOI: 10.1016/j.aca.2020.12.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Metabolomics has become an invaluable tool for both studying metabolism and biomarker discovery. The great technical advances in analytical chemistry and bioinformatics have considerably increased the number of measurable metabolites, yet an important part of the human metabolome remains uncovered. Among the various MS hyphenated techniques available, LC-MS stands out as the most used. Here, we aimed to show the capabilities of LC-MS to uncover part of the metabolome and how to best proceed with sample preparation and LC to maximise metabolite detection. The analyses of various open metabolite databases served us to estimate the size of the already detected human metabolome, the expected metabolite composition of most used human biospecimens and which part of the metabolome can be detected when LC-MS is used. Based on an extensive review and on our experience, we have outlined standard procedures for LC-MS analysis of urine, cells, serum/plasma, tissues and faeces, to guide in the selection of the sample preparation method that best matches with one or more LC techniques in order to get the widest metabolome coverage. These standard procedures may be a useful tool to explore, at a glance, the wide spectrum of possibilities available, which can be a good starting point for most of the LC-MS metabolomic studies.
Collapse
Affiliation(s)
- Marta Roca
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Maria Isabel Alcoriza
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Juan Carlos Garcia-Cañaveras
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Agustín Lahoz
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain; Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain.
| |
Collapse
|
23
|
Zubeldia-Varela E, Barber D, Barbas C, Perez-Gordo M, Rojo D. Sample pre-treatment procedures for the omics analysis of human gut microbiota: Turning points, tips and tricks for gene sequencing and metabolomics. J Pharm Biomed Anal 2020; 191:113592. [PMID: 32947167 DOI: 10.1016/j.jpba.2020.113592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023]
Abstract
The connection between gut microbiota and human health is becoming increasingly relevant and the number of groups working in this field is constantly growing. In this context, from high-throughput gene sequencing to metabolomics analysis, the omics technologies have contributed enormously to unveil the secret crosstalk between us and our microbes. All the omics technologies produce a great amount of information, and processing this information is time-consuming and expensive. For this reason, a correct experimental design and a careful pre-analytical planning are crucial. To study the human gut microbiota, faeces are the sample of choice. Faecal material is complex, and procedures for collecting and preserving faeces are not well-established. Furthermore, increasing evidence suggests that multiple confounding factors, such as antibiotics consumption, mode of delivery, diet, aging and several diseases and disorders can alter the composition and functionality of the microbiota. This review is focused on the discussion of critical general issues during the pre-analytical planning, from patient handling to faeces sampling, including collection procedures, transport, storage conditions and possible pre-treatments, which are critical for a successful research in omics with a special attention to metabolomics and gene sequencing. We also point out that the adoption of standard operating procedures in the field is needed to guarantee accuracy and reproducibility of results.
Collapse
Affiliation(s)
- Elisa Zubeldia-Varela
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Domingo Barber
- Institute of Applied and Molecular Medicine (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Marina Perez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain; Institute of Applied and Molecular Medicine (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
24
|
Mandal R, Cano R, Davis CD, Hayashi D, Jackson SA, Jones CM, Lampe JW, Latulippe ME, Lin NJ, Lippa KA, Piotrowski P, Da Silva SM, Swanson KS, Wishart DS. Workshop report: Toward the development of a human whole stool reference material for metabolomic and metagenomic gut microbiome measurements. Metabolomics 2020; 16:119. [PMID: 33164148 PMCID: PMC7649161 DOI: 10.1007/s11306-020-01744-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION To date, there has been little effort to develop standards for metabolome-based gut microbiome measurements despite the significant efforts toward standard development for DNA-based microbiome measurements. OBJECTIVES The National Institute of Standards and Technology (NIST), The BioCollective (TBC), and the North America Branch of the International Life Sciences Institute (ILSI North America) are collaborating to extend NIST's efforts to develop a Human Whole Stool Reference Material for the purpose of method harmonization and eventual quality control. METHODS The reference material will be rationally designed for adequate quality assurance and quality control (QA/QC) for underlying measurements in the study of the impact of diet and nutrition on functional aspects of the host gut microbiome and relationships of those functions to health. To identify which metabolites deserve priority in their value assignment, NIST, TBC, and ILSI North America jointly conducted a workshop on September 12, 2019 at the NIST campus in Gaithersburg, Maryland. The objective of the workshop was to identify metabolites for which evidence indicates relevance to health and disease and to decide on the appropriate course of action to develop a fit-for-purpose reference material. RESULTS This document represents the consensus opinions of workshop participants and co-authors of this manuscript, and provides additional supporting information. In addition to developing general criteria for metabolite selection and a preliminary list of proposed metabolites, this paper describes some of the strengths and limitations of this initiative given the current state of microbiome research. CONCLUSIONS Given the rapidly evolving nature of gut microbiome science and the current state of knowledge, an RM (as opposed to a CRM) measured for multiple metabolites is appropriate at this stage. As the science evolves, the RM can evolve to match the needs of the research community. Ultimately, the stool RM may exist in sequential versions. Beneficial to this evolution will be a clear line of communication between NIST and the stakeholder community to ensure alignment with current scientific understanding and community needs.
Collapse
Affiliation(s)
- Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Raul Cano
- The BioCollective, LLC, 5650 N Washington St, Denver, CO, 80216, USA
| | - Cindy D Davis
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, 20852, USA
| | | | - Scott A Jackson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Christina M Jones
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Johanna W Lampe
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, M4-B802, PO Box 19024, Seattle, WA, 98109, USA
| | - Marie E Latulippe
- North American Branch of the International Life Sciences Institute (ILSI North America), 740 15th Street NW, Suite 600, Washington, DC, 20005, USA.
| | - Nancy J Lin
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Katrice A Lippa
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Paulina Piotrowski
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Sandra M Da Silva
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Kelly S Swanson
- University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
25
|
Cui M, Trimigno A, Aru V, Khakimov B, Engelsen SB. Human Faecal 1H NMR Metabolomics: Evaluation of Solvent and Sample Processing on Coverage and Reproducibility of Signature Metabolites. Anal Chem 2020; 92:9546-9555. [DOI: 10.1021/acs.analchem.0c00606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mengni Cui
- Chemometrics and Analytical Technology, Department of Food Science, Faculty of Science, University of Copenhagen Rolighedsvej 26, Frederiksberg 1958, Denmark
| | - Alessia Trimigno
- Chemometrics and Analytical Technology, Department of Food Science, Faculty of Science, University of Copenhagen Rolighedsvej 26, Frederiksberg 1958, Denmark
| | - Violetta Aru
- Chemometrics and Analytical Technology, Department of Food Science, Faculty of Science, University of Copenhagen Rolighedsvej 26, Frederiksberg 1958, Denmark
| | - Bekzod Khakimov
- Chemometrics and Analytical Technology, Department of Food Science, Faculty of Science, University of Copenhagen Rolighedsvej 26, Frederiksberg 1958, Denmark
| | - Søren Balling Engelsen
- Chemometrics and Analytical Technology, Department of Food Science, Faculty of Science, University of Copenhagen Rolighedsvej 26, Frederiksberg 1958, Denmark
| |
Collapse
|
26
|
Komatsu Y, Shimizu Y, Yamano M, Kikuchi M, Nakamura K, Ayabe T, Aizawa T. Disease progression-associated alterations in fecal metabolites in SAMP1/YitFc mice, a Crohn's disease model. Metabolomics 2020; 16:48. [PMID: 32274593 DOI: 10.1007/s11306-020-01671-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a chronic, relapsing inflammatory bowel disease affecting the gastrointestinal tract. Although its precise etiology has not been fully elucidated, an imbalance of the intestinal microbiota has been known to play a role in CD. Fecal metabolites derived from microbiota may be related to the onset and progression of CD OBJECTIVES: This study aimed to clarify the transition of gut microbiota and fecal metabolites associated with disease progression using SAMP1/YitFc mice, a model of spontaneous CD METHODS: The ileum tissues isolated from SAMP1/YitFc mice at different ages were stained with hematoxylin-eosin for histologic characterization with CD progression. Feces from control, Institute of Cancer Research (ICR; n = 6), and SAMP1/YitFc (n = 8) mice at different ages were subjected to microbial analysis and 1H nuclear magnetic resonance (NMR) analysis to investigate fluctuations in gut microbiota and fecal metabolites with CD progression RESULTS: Relative abundance of the Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, and Bacteroidales S24-7 at family-level gut microbiota and fecal metabolites, such as short-chain fatty acids, lactate, glucose, xylose, and choline, dramatically fluctuated with histologic progression of intestinal inflammation in SAMP1/YitFc mice. Unlike the other metabolites, fecal taurine concentration in SAMP1/YitFc mice was higher than ICR mice regardless of age CONCLUSION: The fecal metabolites showing characteristic fluctuations may help to understand the inflammatory mechanism associated with CD, and might be utilized as potential biomarkers in predicting CD pathology.
Collapse
Affiliation(s)
- Yosuke Komatsu
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Yu Shimizu
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Megumi Yamano
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Mani Kikuchi
- Division of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kiminori Nakamura
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Division of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tokiyoshi Ayabe
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Division of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tomoyasu Aizawa
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
27
|
Important Considerations for Sample Collection in Metabolomics Studies with a Special Focus on Applications to Liver Functions. Metabolites 2020; 10:metabo10030104. [PMID: 32178364 PMCID: PMC7142637 DOI: 10.3390/metabo10030104] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolomics has found numerous applications in the study of liver metabolism in health and disease. Metabolomics studies can be conducted in a variety of biological matrices ranging from easily accessible biofluids such as urine, blood or feces, to organs, tissues or even cells. Sample collection and storage are critical steps for which standard operating procedures must be followed. Inappropriate sample collection or storage can indeed result in high variability, interferences with instrumentation or degradation of metabolites. In this review, we will first highlight important general factors that should be considered when planning sample collection in the study design of metabolomic studies, such as nutritional status and circadian rhythm. Then, we will discuss in more detail the specific procedures that have been described for optimal pre-analytical handling of the most commonly used matrices (urine, blood, feces, tissues and cells).
Collapse
|
28
|
De Spiegeleer M, De Graeve M, Huysman S, Vanderbeke A, Van Meulebroek L, Vanhaecke L. Impact of storage conditions on the human stool metabolome and lipidome: Preserving the most accurate fingerprint. Anal Chim Acta 2020; 1108:79-88. [PMID: 32222247 DOI: 10.1016/j.aca.2020.02.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Faecal metabolomics markedly emerged in clinical as well as analytical chemistry through the unveiling of aberrations in metabolic signatures as reflection of variance in gut (patho)physiology and beyond. Logistic hurdles, however, hinder the analysis of stool samples immediately following collection, inferring the need of biobanking. Yet, the optimum way of storing stool material remains to be determined, in order to conserve an accurate snapshot of the metabolome and circumvent artifacts regarding the disease and parameter(s) under observation. To address this problem, this study scrutinised the impact of freeze-thaw cycling, storage duration, temperature and aerobicity, thereby using ultra-high performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS)-based polar metabolomics and lipidomics methodologies for faecal metabolomics. Both targeted (n > 400) and untargeted approaches were implemented to assess storage effects on individual chemical classes of metabolites as well as the faecal fingerprint. In general, recommendations are that intact stool samples should be divided into aliquots, lyophilised and stored at -80 °C for a period no longer than 18 weeks, and avoiding any freeze-thawing. The first preservation week exerted the most decisive impact regarding storage temperature, i.e. 12.1% and 6.4% of the polar metabolome experienced a shift at -20 °C and at -80 °C, respectively, whereas 8.6% and 7.9% was observed to be changed significantly for the lipidome. In addition, aside from the negligible impact of aerobicity, the polar metabolome appeared to be more dependent on the storage conditions applied compared to the lipidome, which emerged as the more stable fraction when assessing the storage duration for 25 weeks. If the interest would greatly align with particular chemical classes, such as branched-chain amino acids or short-chain fatty acids, specific storage duration recommendations are reported. The provided insights on the stability of the faecal metabolome may contribute to a more reasoned design of experiments in biomarker detection or pathway elucidation within the field of faecal metabolomics.
Collapse
Affiliation(s)
- Margot De Spiegeleer
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Marilyn De Graeve
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Steve Huysman
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Arno Vanderbeke
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Lieven Van Meulebroek
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Lynn Vanhaecke
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820, Merelbeke, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, University Road, Belfast, United Kingdom.
| |
Collapse
|
29
|
Mackner LM, Hatzakis E, Allen JM, Davies RH, Kim SC, Maltz RM, Bailey MT. Fecal microbiota and metabolites are distinct in a pilot study of pediatric Crohn's disease patients with higher levels of perceived stress. Psychoneuroendocrinology 2020; 111:104469. [PMID: 31654986 PMCID: PMC6956257 DOI: 10.1016/j.psyneuen.2019.104469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Stress is associated with increased Crohn's Disease (CD) activity. This pilot study tested whether pediatric patients with CD reporting higher levels of perceived stress exhibited differences in the fecal microbiome and metabolome. The perceived stress scale (PSS) questionnaire was administered within 2 days of collecting a stool sample for microbiome (using 16S rRNA gene sequencing) and metabolome (using NMR metabolomics) analyses. Higher levels of perceived stress were correlated with increased disease activity on the short Pediatric Crohn's Disease Activity Index (sPCDAI). Patients with High PSS scores vs. Low PSS scores based on a median split had significantly lower relative abundances of Firmicutes and Anaerostipes, as well as higher relative abundances of Parabacteroides. Fecal alanine and nicotinate were also significantly different in patients with High vs. Low PSS Scores. This pilot study suggests that the fecal microbiome and metabolome differs in pediatric patients with CD and high perceived stress.
Collapse
Affiliation(s)
- Laura M. Mackner
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Emmanuel Hatzakis
- Department of Food Science, The Ohio State University, Columbus, OH 43205
| | - Jacob M. Allen
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Ronald H. Davies
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Sandra C. Kim
- Gastroenterology, Hepatology, and Nutrition; UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Pittsburgh, PA 1522
| | - Ross M. Maltz
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210.,Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205.,Gastroenterology, Hepatology and Nutrition, Nationwide Children’s Hospital, Columbus, OH 43205.,Oral and GI Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Michael T. Bailey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210.,Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205.,Oral and GI Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| |
Collapse
|
30
|
Marques FZ, Jama HA, Tsyganov K, Gill PA, Rhys-Jones D, Muralitharan RR, Muir J, Holmes A, Mackay CR. Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension 2019; 74:1279-1293. [DOI: 10.1161/hypertensionaha.119.13079] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hypertension is a complex and modifiable condition in which environmental factors contribute to both onset and progression. Recent evidence has accumulated for roles of diet and the gut microbiome as environmental factors in blood pressure regulation. However, this is complex because gut microbiomes are a unique feature of each individual reflecting that individual’s developmental and environmental history creating caveats for both experimental models and human studies. Here, we describe guidelines for conducting gut microbiome studies in experimental and clinical hypertension. We provide a complete guide for authors on proper design, analyses, and reporting of gut microbiota/microbiome and metabolite studies and checklists that can be used by reviewers and editors to support robust reporting and interpretation. We discuss factors that modulate the gut microbiota in animal (eg, cohort, controls, diet, developmental age, housing, sex, and models used) and human studies (eg, blood pressure measurement and medication, body mass index, demographic characteristics including age, cultural identification, living structure, sex and socioeconomic environment, and exclusion criteria). We also provide best practice advice on sampling, storage of fecal/cecal samples, DNA extraction, sequencing methods (including metagenomics and 16S rRNA), and computational analyses. Finally, we discuss the measurement of short-chain fatty acids, metabolites produced by the gut microbiota, and interpretation of data. These guidelines should support better transparency, reproducibility, and translation of findings in the field of gut microbiota/microbiome in hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Francine Z. Marques
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (F.Z.M., H.A.J.)
| | - Hamdi A. Jama
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (F.Z.M., H.A.J.)
| | - Kirill Tsyganov
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
| | - Paul A. Gill
- Translational Nutrition Science in the Department of Gastroenterology, Central Clinical School (P.A.G., J.M., D.R-J.), Monash University, Melbourne, Australia
| | - Dakota Rhys-Jones
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
| | - Rikeish R. Muralitharan
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
- Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia (R.R.M.)
| | - Jane Muir
- Translational Nutrition Science in the Department of Gastroenterology, Central Clinical School (P.A.G., J.M., D.R-J.), Monash University, Melbourne, Australia
| | - Andrew Holmes
- Charles Perkin Centre and School of Life and Environmental Sciences, University of Sydney, Australia (A.H.)
| | - Charles R. Mackay
- Infection and Immunity Program, Monash Biomedicine Discovery Institute (C.R.M.), Monash University, Melbourne, Australia
- Department of Biochemistry and Molecular Biology (C.R.M.), Monash University, Melbourne, Australia
| |
Collapse
|
31
|
Baquero F, Lanza VF, Baquero MR, Del Campo R, Bravo-Vázquez DA. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere. Front Microbiol 2019; 10:2261. [PMID: 31649628 PMCID: PMC6795089 DOI: 10.3389/fmicb.2019.02261] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Microcins are low-molecular-weight, ribosomally produced, highly stable, bacterial-inhibitory molecules involved in competitive, and amensalistic interactions between Enterobacteriaceae in the intestine. These interactions take place in a highly complex chemical landscape, the intestinal eco-active chemosphere, composed of chemical substances that positively or negatively influence bacterial growth, including those originated from nutrient uptake, and those produced by the action of the human or animal host and the intestinal microbiome. The contribution of bacteria results from their effect on the host generated molecules, on food and digested food, and organic substances from microbial origin, including from bacterial degradation. Here, we comprehensively review the main chemical substances present in the human intestinal chemosphere, particularly of those having inhibitory effects on microorganisms. With this background, and focusing on Enterobacteriaceae, the most relevant human pathogens from the intestinal microbiota, the microcin’s history and classification, mechanisms of action, and mechanisms involved in microcin’s immunity (in microcin producers) and resistance (non-producers) are reviewed. Products from the chemosphere likely modulate the ecological effects of microcin activity. Several cross-resistance mechanisms are shared by microcins, colicins, bacteriophages, and some conventional antibiotics, which are expected to produce cross-effects. Double-microcin-producing strains (such as microcins MccM and MccH47) have been successfully used for decades in the control of pathogenic gut organisms. Microcins are associated with successful gut colonization, facilitating translocation and invasion, leading to bacteremia, and urinary tract infections. In fact, Escherichia coli strains from the more invasive phylogroups (e.g., B2) are frequently microcinogenic. A publicly accessible APD3 database http://aps.unmc.edu/AP/ shows particular genes encoding microcins in 34.1% of E. coli strains (mostly MccV, MccM, MccH47, and MccI47), and much less in Shigella and Salmonella (<2%). Some 4.65% of Klebsiella pneumoniae are microcinogenic (mostly with MccE492), and even less in Enterobacter or Citrobacter (mostly MccS). The high frequency and variety of microcins in some Enterobacteriaceae indicate key ecological functions, a notion supported by their dominance in the intestinal microbiota of biosynthetic gene clusters involved in the synthesis of post-translationally modified peptide microcins.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Val F Lanza
- Bioinformatics Unit, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Maria-Rosario Baquero
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Daniel A Bravo-Vázquez
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| |
Collapse
|
32
|
Tran TTT, Corsini S, Kellingray L, Hegarty C, Le Gall G, Narbad A, Müller M, Tejera N, O'Toole PW, Minihane AM, Vauzour D. APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer's disease pathophysiology. FASEB J 2019; 33:8221-8231. [PMID: 30958695 PMCID: PMC6593891 DOI: 10.1096/fj.201900071r] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apolipoprotein E (APOE) genotype is the strongest prevalent genetic risk factor for Alzheimer's disease (AD). Numerous studies have provided insights into the pathologic mechanisms. However, a comprehensive understanding of the impact of APOE genotype on microflora speciation and metabolism is completely lacking. In this study, we investigated the association between APOE genotype and the gut microbiome composition in human and APOE-targeted replacement (TR) transgenic mice. Fecal microbiota amplicon sequencing from matched individuals with different APOE genotypes revealed no significant differences in overall microbiota diversity in group-aggregated human APOE genotypes. However, several bacterial taxa showed significantly different relative abundance between APOE genotypes. Notably, we detected an association of Prevotellaceae and Ruminococcaceae and several butyrate-producing genera abundances with APOE genotypes. These findings were confirmed by comparing the gut microbiota of APOE-TR mice. Furthermore, metabolomic analysis of murine fecal water detected significant differences in microbe-associated amino acids and short-chain fatty acids between APOE genotypes. Together, these findings indicate that APOE genotype is associated with specific gut microbiome profiles in both humans and APOE-TR mice. This suggests that the gut microbiome is worth further investigation as a potential target to mitigate the deleterious impact of the APOE4 allele on cognitive decline and the prevention of AD.-Tran, T. T. T., Corsini, S., Kellingray, L., Hegarty, C., Le Gall, G., Narbad, A., Müller, M., Tejera, N., O'Toole, P. W., Minihane, A.-M., Vauzour, D. APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer's disease pathophysiology.
Collapse
Affiliation(s)
- Tam T T Tran
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Simone Corsini
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| | - Lee Kellingray
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Claire Hegarty
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Gwénaëlle Le Gall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| | - Noemi Tejera
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| | - Paul W O'Toole
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Anne-Marie Minihane
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| |
Collapse
|
33
|
Miller CN, Panagos CG, Mosedale WRT, Kváč M, Howard MJ, Tsaousis AD. NMR metabolomics reveals effects of Cryptosporidium infections on host cell metabolome. Gut Pathog 2019; 11:13. [PMID: 30984292 PMCID: PMC6446323 DOI: 10.1186/s13099-019-0293-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
Background Cryptosporidium is an important gut microbe whose contributions towards infant and immunocompromise patient mortality rates are steadily increasing. Over the last decade, we have seen the development of various tools and methods for studying Cryptosporidium infection and its interactions with their hosts. One area that is sorely overlooked is the effect infection has on host metabolic processes. Results Using a 1H nuclear magnetic resonance approach to metabolomics, we have explored the nature of the mouse gut metabolome as well as providing the first insight into the metabolome of an infected cell line. Statistical analysis and predictive modelling demonstrated new understandings of the effects of a Cryptosporidium infection, while verifying the presence of known metabolic changes. Of note is the potential contribution of host derived taurine to the diarrhoeal aspects of the disease previously attributed to a solely parasite-based alteration of the gut environment, in addition to other metabolites involved with host cell catabolism. Conclusion This approach will spearhead our understanding of the Cryptosporidium-host metabolic exchange and provide novel targets for tackling this deadly parasite.
Collapse
Affiliation(s)
- Christopher N Miller
- 1Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Charalampos G Panagos
- 2Biomolecular NMR Facility, School of Biosciences, University of Kent, Canterbury, UK.,5Present Address: Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - William R T Mosedale
- 1Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Martin Kváč
- 3Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech Republic.,4Faculty of Agriculture, University of South Bohemia in České Budějovice, Ceske Budejovice, Czech Republic
| | - Mark J Howard
- 2Biomolecular NMR Facility, School of Biosciences, University of Kent, Canterbury, UK.,6Present Address: School of Chemistry, University of Leeds, Leeds, LS2 9JT UK
| | - Anastasios D Tsaousis
- 1Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
34
|
Hsu YL, Chen CC, Lin YT, Wu WK, Chang LC, Lai CH, Wu MS, Kuo CH. Evaluation and Optimization of Sample Handling Methods for Quantification of Short-Chain Fatty Acids in Human Fecal Samples by GC–MS. J Proteome Res 2019; 18:1948-1957. [DOI: 10.1021/acs.jproteome.8b00536] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ya-Lin Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei City, Taiwan
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei City, Taiwan
| | - Chieh-Chang Chen
- Departments of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Ya-Ting Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei City, Taiwan
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei City, Taiwan
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital Bei-Hu Branch, Taipei City, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Lin-Chau Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Chang-Hao Lai
- Departments of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Ming-Shiang Wu
- Departments of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei City, Taiwan
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Pharmacy, National Taiwan University Hospital, Taipei City, Taiwan
| |
Collapse
|
35
|
Brasili E, Hassimotto NMA, Del Chierico F, Marini F, Quagliariello A, Sciubba F, Miccheli A, Putignani L, Lajolo F. Daily Consumption of Orange Juice from Citrus sinensis L. Osbeck cv. Cara Cara and cv. Bahia Differently Affects Gut Microbiota Profiling as Unveiled by an Integrated Meta-Omics Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1381-1391. [PMID: 30644740 DOI: 10.1021/acs.jafc.8b05408] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have investigated the effect of intake of two different orange juices from Citrus sinensis cv. "Cara Cara" and cv. "Bahia" on faecal microbiota and metabolome using an integrated meta-omics approach. Following a randomized crossover design, healthy subjects daily consumed 500 mL of orange juice from Cara Cara or Bahia juices or an isocaloric control drink. Stools were collected at baseline (T0) and after a week (T7) of intervention. Operational taxonomic units (OTUs) were pyrosequenced targeting 16S rRNA, and faecal metabolites were analyzed by an untargeted metabolomics approach based on 1H NMR spectroscopy. The major shift observed in microbiota composition after orange juice intake was the increased abundance of a network of Clostridia OTUs from Mogibacteriaceae, Tissierellaceae, Veillonellaceae, Odoribacteraceae, and Ruminococcaceae families, whose members were differently affected by Cara Cara or Bahia juice consumption. A core of six metabolites such as inositol, choline, lysine, arginine, urocanic acid, and formate significantly increased in Cara Cara compared to the Bahia group.
Collapse
Affiliation(s)
- Elisa Brasili
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science , University of São Paulo , São Paulo 05508-000, Brazil
- Food Research Center (FoRC) , CEPID-FAPESP (Research Innovation and Dissemination Centers Sao Paulo Research Foundation) , São Paulo 05468-901 , Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science , University of São Paulo , São Paulo 05508-000, Brazil
- Food Research Center (FoRC) , CEPID-FAPESP (Research Innovation and Dissemination Centers Sao Paulo Research Foundation) , São Paulo 05468-901 , Brazil
| | - Federica Del Chierico
- Unit of Human Microbiome , Children's Hospital and Research Institute Bambino Gesù , Rome 00165 , Italy
| | - Federico Marini
- Department of Chemistry , University of Rome "La Sapienza" , Rome 00185 , Italy
| | - Andrea Quagliariello
- Unit of Human Microbiome , Children's Hospital and Research Institute Bambino Gesù , Rome 00165 , Italy
| | - Fabio Sciubba
- Department of Chemistry , University of Rome "La Sapienza" , Rome 00185 , Italy
| | - Alfredo Miccheli
- Department of Chemistry , University of Rome "La Sapienza" , Rome 00185 , Italy
| | - Lorenza Putignani
- Unit of Human Microbiome , Children's Hospital and Research Institute Bambino Gesù , Rome 00165 , Italy
- Unit of Parasitology , Children's Hospital and Research Institute Bambino Gesù , Rome 00165 , Italy
| | - Franco Lajolo
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science , University of São Paulo , São Paulo 05508-000, Brazil
- Food Research Center (FoRC) , CEPID-FAPESP (Research Innovation and Dissemination Centers Sao Paulo Research Foundation) , São Paulo 05468-901 , Brazil
| |
Collapse
|
36
|
Li T, Gao J, Du M, Mao X. Bovine α-lactalbumin hydrolysates ameliorate obesity-associated endotoxemia and inflammation in high-fat diet-fed mice through modulation of gut microbiota. Food Funct 2019; 10:3368-3378. [DOI: 10.1039/c8fo01967c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gut microbiota has been identified as an important factor in the link between nutrient excess and obesity.
Collapse
Affiliation(s)
- Tiange Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing
- P. R. China
| | - Jing Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing
- P. R. China
| | - Min Du
- Department of Animal Sciences
- Washington State University
- Pullman
- USA
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing
- P. R. China
| |
Collapse
|
37
|
O’Sullivan V, Madrid-Gambin F, Alegra T, Gibbons H, Brennan L. Impact of Sample Storage on the NMR Fecal Water Metabolome. ACS OMEGA 2018; 3:16585-16590. [PMID: 30613807 PMCID: PMC6312648 DOI: 10.1021/acsomega.8b01761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The study of the fecal metabolome is an important area of research to better understand the human gut microbiome and its impact on human health and diseases. However, there is a lack of work in examining the impact of storage and processing conditions on the metabolite levels of fecal water. Furthermore, there is no universal protocol used for the storage of fecal samples and preparation of fecal water. The objective of the current study was to examine the impact of different storage conditions on fecal samples prior to metabolite extraction. Fecal samples obtained from nine healthy individuals were processed under different conditions: (1) fresh samples prepared immediately after collection, (2) fecal samples stored at 4 °C for 24 h prior to processing, and (3) fecal samples stored at -80 °C for 24 h prior to processing. All samples were analyzed using NMR spectroscopy, multivariate statistical analysis, and repeated measures ANOVA. Samples which were frozen at -80 °C prior to extraction of the metabolites exhibited an increase in the number of metabolites including branched-chain amino acids, aromatic amino acids, and tricarboxylic acid cycle intermediates. Storage of fecal samples at 4 °C ensured higher fidelity to freshly processed samples leading to the recommendation that fecal samples should not be frozen prior to extraction of fecal water. Furthermore, the work highlights the need to standardize sample storage of fecal samples to allow for the accurate study of the fecal metabolome.
Collapse
|
38
|
Karu N, Deng L, Slae M, Guo AC, Sajed T, Huynh H, Wine E, Wishart DS. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal Chim Acta 2018; 1030:1-24. [DOI: 10.1016/j.aca.2018.05.031] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
|
39
|
Adamovsky O, Buerger AN, Wormington AM, Ector N, Griffitt RJ, Bisesi JH, Martyniuk CJ. The gut microbiome and aquatic toxicology: An emerging concept for environmental health. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2758-2775. [PMID: 30094867 DOI: 10.1002/etc.4249] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
The microbiome plays an essential role in the health and onset of diseases in all animals, including humans. The microbiome has emerged as a central theme in environmental toxicology because microbes interact with the host immune system in addition to its role in chemical detoxification. Pathophysiological changes in the gastrointestinal tissue caused by ingested chemicals and metabolites generated from microbial biodegradation can lead to systemic adverse effects. The present critical review dissects what we know about the impacts of environmental contaminants on the microbiome of aquatic species, with special emphasis on the gut microbiome. We highlight some of the known major gut epithelium proteins in vertebrate hosts that are targets for chemical perturbation, proteins that also directly cross-talk with the microbiome. These proteins may act as molecular initiators for altered gut function, and we propose a general framework for an adverse outcome pathway that considers gut dysbiosis as a major contributing factor to adverse apical endpoints. We present 2 case studies, nanomaterials and hydrocarbons, with special emphasis on the Deepwater Horizon oil spill, to illustrate how investigations into the microbiome can improve understanding of adverse outcomes. Lastly, we present strategies to functionally relate chemical-induced gut dysbiosis with adverse outcomes because this is required to demonstrate cause-effect relationships. Further investigations into the toxicant-microbiome relationship may prove to be a major breakthrough for improving animal and human health. Environ Toxicol Chem 2018;37:2758-2775. © 2018 SETAC.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Amanda N Buerger
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Alexis M Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Naomi Ector
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, USA
| | - Joseph H Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
40
|
Cameron SJ, Takáts Z. Mass spectrometry approaches to metabolic profiling of microbial communities within the human gastrointestinal tract. Methods 2018; 149:13-24. [DOI: 10.1016/j.ymeth.2018.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/22/2018] [Indexed: 12/14/2022] Open
|
41
|
Cubiella J, Clos-Garcia M, Alonso C, Martinez-Arranz I, Perez-Cormenzana M, Barrenetxea Z, Berganza J, Rodríguez-Llopis I, D'Amato M, Bujanda L, Diaz-Ondina M, Falcón-Pérez JM. Targeted UPLC-MS Metabolic Analysis of Human Faeces Reveals Novel Low-Invasive Candidate Markers for Colorectal Cancer. Cancers (Basel) 2018; 10:300. [PMID: 30200467 PMCID: PMC6162413 DOI: 10.3390/cancers10090300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
Low invasive tests with high sensitivity for colorectal cancer and advanced precancerous lesions will increase adherence rates, and improve clinical outcomes. We have performed an ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-(TOF) MS)-based metabolomics study to identify faecal biomarkers for the detection of patients with advanced neoplasia. A cohort of 80 patients with advanced neoplasia (40 advanced adenomas and 40 colorectal cancers) and 49 healthy subjects were analysed in the study. We evaluated the faecal levels of 105 metabolites including glycerolipids, glycerophospholipids, sterol lipids and sphingolipids. We found 18 metabolites that were significantly altered in patients with advanced neoplasia compared to controls. The combinations of seven metabolites including ChoE(18:1), ChoE(18:2), ChoE(20:4), PE(16:0/18:1), SM(d18:1/23:0), SM(42:3) and TG(54:1), discriminated advanced neoplasia patients from healthy controls. These seven metabolites were employed to construct a predictive model that provides an area under the curve (AUC) median value of 0.821. The inclusion of faecal haemoglobin concentration in the metabolomics signature improved the predictive model to an AUC of 0.885. In silico gene expression analysis of tumour tissue supports our results and puts the differentially expressed metabolites into biological context, showing that glycerolipids and sphingolipids metabolism and GPI-anchor biosynthesis pathways may play a role in tumour progression.
Collapse
Affiliation(s)
- Joaquin Cubiella
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Biomédica Ourense-Vigo-Pontevedra, 32005 Ourense, Spain.
| | - Marc Clos-Garcia
- Exosomes Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain.
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain.
| | - Cristina Alonso
- OWL Metabolomics, Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain.
| | | | | | | | - Jesus Berganza
- GAIKER-IK4 Technology Centre, Ed. 202, 48170 Zamudio, Spain.
| | | | - Mauro D'Amato
- Gastrointestinal Genetics Unit, Biodonostia HRI, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain.
| | - Marta Diaz-Ondina
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Biomédica Ourense-Vigo-Pontevedra, 32005 Ourense, Spain.
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
- Metabolomics Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain.
| |
Collapse
|
42
|
Chen R, Liao C, Guo Q, Wu L, Zhang L, Wang X. Combined systems pharmacology and fecal metabonomics to study the biomarkers and therapeutic mechanism of type 2 diabetic nephropathy treated with Astragalus and Leech. RSC Adv 2018; 8:27448-27463. [PMID: 35540008 PMCID: PMC9083881 DOI: 10.1039/c8ra04358b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 02/05/2023] Open
Abstract
In our study, systems pharmacology was used to predict the molecular targets of Astragalus and Leech, and explore the therapeutic mechanism of type 2 diabetic nephropathy (T2DN) treated with Astragalus and Leech. Simultaneously, to reveal the systemic metabolic changes and biomarkers associated with T2DN, we performed 1H NMR-based metabonomics and multivariate analysis to analyze fecal samples obtained from model T2DN rats. In addition, ELISA kits and histopathological studies were used to examine biochemical parameters and kidney tissue, respectively. Striking differences in the Pearson's correlation of 22 biomarkers and 9 biochemical parameters were also observed among control, T2DN and treated rats. Results of systems pharmacology analysis revealed that 9 active compounds (3,9-di-O-methylnissolin; (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol; hirudin; l-isoleucine; phenylalanine; valine; hirudinoidine A-C) and 9 target proteins (l-serine dehydratase; 3-hydroxyacyl-CoA dehydrogenase; tyrosyl-tRNA synthetase; tryptophanyl-tRNA synthetase; branched-chain amino acid aminotransferase; acetyl-CoA C-acetyltransferase; isovaleryl-CoA dehydrogenase; pyruvate dehydrogenase E1 component alpha subunit; hydroxyacylglutathione hydrolase) of Astragalus and Leech were closely associated with the treatment of T2DN. Using fecal metabonomics analysis, 22 biomarkers were eventually found to be closely associated with the occurrence of T2DN. Combined with systems pharmacology and fecal metabonomics, these biomarkers were found to be mainly associated with 6 pathways, involving amino acid metabolism (leucine, valine, isoleucine, alanine, lysine, glutamate, taurine, phenylalanine, tryptophan); energy metabolism (lactate, succinate, creatinine, α-glucose, glycerol); ketone body and fatty acid metabolism (3-hydroxybutyrate, acetate, n-butyrate, propionate); methylamine metabolism (dimethylamine, trimethylamine); and secondary bile acid metabolism and urea cycle (deoxycholate, citrulline). The underlying mechanisms of action included protection of the liver and kidney, enhancement of insulin sensitivity and antioxidant activity, and improvement of mitochondrial function. To the best of our knowledge, this is the first time that systems pharmacology combined with fecal metabonomics has been used to study T2DN. 6 metabolites (n-butyrate, deoxycholate, propionate, tryptophan, taurine and glycerol) associated with T2DN were newly discovered in fecal samples. These 6 metabolites were mainly derived from the intestinal flora, and related to amino acid metabolism, fatty acid metabolism, and secondary bile acid metabolism. We hope the results of this study could be inspirational and helpful for further exploration of T2DN treatment. Meanwhile, our results highlighted that exploring the biomarkers of T2DN and therapeutic mechanisms of Traditional Chinese Medicine (TCM) formulas on T2DN by combining systems pharmacology and fecal metabonomics methods was a promising strategy.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Chengbin Liao
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Qian Guo
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Lei Zhang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Xiufeng Wang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| |
Collapse
|
43
|
Kirwan JA, Brennan L, Broadhurst D, Fiehn O, Cascante M, Dunn WB, Schmidt MA, Velagapudi V. Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for "Precision Medicine and Pharmacometabolomics Task Group"-The Metabolomics Society Initiative). Clin Chem 2018; 64:1158-1182. [PMID: 29921725 DOI: 10.1373/clinchem.2018.287045] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The metabolome of any given biological system contains a diverse range of low molecular weight molecules (metabolites), whose abundances can be affected by the timing and method of sample collection, storage, and handling. Thus, it is necessary to consider the requirements for preanalytical processes and biobanking in metabolomics research. Poor practice can create bias and have deleterious effects on the robustness and reproducibility of acquired data. CONTENT This review presents both current practice and latest evidence on preanalytical processes and biobanking of samples intended for metabolomics measurement of common biofluids and tissues. It highlights areas requiring more validation and research and provides some evidence-based guidelines on best practices. SUMMARY Although many researchers and biobanking personnel are familiar with the necessity of standardizing sample collection procedures at the axiomatic level (e.g., fasting status, time of day, "time to freezer," sample volume), other less obvious factors can also negatively affect the validity of a study, such as vial size, material and batch, centrifuge speeds, storage temperature, time and conditions, and even environmental changes in the collection room. Any biobank or research study should establish and follow a well-defined and validated protocol for the collection of samples for metabolomics research. This protocol should be fully documented in any resulting study and should involve all stakeholders in its design. The use of samples that have been collected using standardized and validated protocols is a prerequisite to enable robust biological interpretation unhindered by unnecessary preanalytical factors that may complicate data analysis and interpretation.
Collapse
Affiliation(s)
- Jennifer A Kirwan
- Berlin Institute of Health, Berlin, Germany; .,Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Dublin, Ireland
| | | | - Oliver Fiehn
- NIH West Coast Metabolomics Center, UC Davis, Davis, CA
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and IBUB, Universitat de Barcelona, Barcelona and Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBER-EHD), Madrid, Spain
| | - Warwick B Dunn
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, UK
| | - Michael A Schmidt
- Advanced Pattern Analysis and Countermeasures Group, Research Innovation Center, Colorado State University, Fort Collins, CO.,Sovaris Aerospace, LLC, Boulder, CO
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
44
|
Yu LM, Zhao KJ, Wang SS, Wang X, Lu B. Gas chromatography/mass spectrometry based metabolomic study in a murine model of irritable bowel syndrome. World J Gastroenterol 2018; 24:894-904. [PMID: 29491683 PMCID: PMC5829153 DOI: 10.3748/wjg.v24.i8.894] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To study the role of microbial metabolites in the modulation of biochemical and physiological processes in irritable bowel syndrome (IBS). METHODS In the current study, using a metabolomic approach, we analyzed the key metabolites differentially excreted in the feces of control mice and mice with IBS, with or without Clostridium butyricum (C. butyricum) treatment. C57BL/6 mice were divided into control, IBS, and IBS + C. butyricum groups. In the IBS and IBS + C. butyricum groups, the mice were subjected to water avoidance stress (WAS) for 1 h/d for ten days. Gas chromatography/mass spectrometry (GC-MS) together with multivariate analysis was employed to compare the fecal samples between groups. RESULTS WAS exposure established an appropriate model of IBS in mice, with symptoms of visceral hyperalgesia and diarrhea. The differences in the metabolite profiles between the control group and IBS group significantly changed with the progression of IBS (days 0, 5, 10, and 17). A total of 14 differentially excreted metabolites were identified between the control and IBS groups, and phenylethylamine was a major metabolite induced by stress. In addition, phenylalanine metabolism was found to be the most relevant metabolic pathway. Between the IBS group and IBS + C. butyricum group, 10 differentially excreted metabolites were identified. Among these, pantothenate and coenzyme A (CoA) biosynthesis metabolites, as well as steroid hormone biosynthesis metabolites were identified as significantly relevant metabolic pathways. CONCLUSION The metabolic profile of IBS mice is significantly altered compared to control mice. Supplementation with C. butyricum to IBS mice may provide a considerable benefit by modulating host metabolism.
Collapse
Affiliation(s)
- Lei-Min Yu
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Ke-Jia Zhao
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Shuang-Shuang Wang
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Bin Lu
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
45
|
Abstract
Fecal metabolomics-based analysis indisputably constitutes a very useful tool for elucidating the biochemistry of digestion and absorption of the gastrointestinal system. Fecal samples represent the most suitable, non-invasive, specimen for the study of the symbiotic relationship between the host and the intestinal microbiota.It is well established that the balance of the intestinal microbiota changes in response to some stimuli, physiological such as gender, age, diet, exercise and pathological such as gastrointestinal and hepatic disease. Fecal samples have been analyzed using the most widespread analytical techniques, namely, NMR spectroscopy, GC-MS, and LC-MS/MS. Rat fecal sample is a frequently used and particularly useful substrate for metabolomics-based studies in related fields. The complexity and diversity of the nature of fecal samples require careful and skillful handling for the effective quantitative extraction of the metabolites while avoiding their deterioration. Parameters such as the fecal sample weight to extraction solvent volume, the nature and the pH value of the extraction solvent, and the homogenization process are some important factors for the optimal extraction of samples, in order to obtain high-quality metabolic fingerprints, using either untargeted or targeted metabolomics.
Collapse
|
46
|
Tao JH, Zhao M, Jiang S, Pu XL, Wei XY. Comparative metabolism of two major compounds in Fructus Corni extracts by gut microflora from normal and chronic nephropathy rats in vitro by UPLC-Q-TOF/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:170-176. [DOI: 10.1016/j.jchromb.2017.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023]
|
47
|
Hough R, Archer D, Probert C. A comparison of sample preparation methods for extracting volatile organic compounds (VOCs) from equine faeces using HS-SPME. Metabolomics 2018; 14:19. [PMID: 29367839 PMCID: PMC5754382 DOI: 10.1007/s11306-017-1315-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/22/2017] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Disturbance to the hindgut microbiota can be detrimental to equine health. Metabolomics provides a robust approach to studying the functional aspect of hindgut microorganisms. Sample preparation is an important step towards achieving optimal results in the later stages of analysis. The preparation of samples is unique depending on the technique employed and the sample matrix to be analysed. Gas chromatography mass spectrometry (GCMS) is one of the most widely used platforms for the study of metabolomics and until now an optimised method has not been developed for equine faeces. OBJECTIVES To compare a sample preparation method for extracting volatile organic compounds (VOCs) from equine faeces. METHODS Volatile organic compounds were determined by headspace solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GCMS). Factors investigated were the mass of equine faeces, type of SPME fibre coating, vial volume and storage conditions. RESULTS The resultant method was unique to those developed for other species. Aliquots of 1000 or 2000 mg in 10 ml or 20 ml SPME headspace were optimal. From those tested, the extraction of VOCs should ideally be performed using a divinylbenzene-carboxen-polydimethysiloxane (DVB-CAR-PDMS) SPME fibre. Storage of faeces for up to 12 months at - 80 °C shared a greater percentage of VOCs with a fresh sample than the equivalent stored at - 20 °C. CONCLUSIONS An optimised method for extracting VOCs from equine faeces using HS-SPME-GCMS has been developed and will act as a standard to enable comparisons between studies. This work has also highlighted storage conditions as an important factor to consider in experimental design for faecal metabolomics studies.
Collapse
Affiliation(s)
- Rachael Hough
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.
| | - Debra Archer
- Department of Epidemiology and Population Health, University of Liverpool, Liverpool, UK
| | - Christopher Probert
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| |
Collapse
|
48
|
Vorkas PA, Abellona U MR, Li JV. Tissue Multiplatform-Based Metabolomics/Metabonomics for Enhanced Metabolome Coverage. Methods Mol Biol 2018; 1738:239-260. [PMID: 29654595 DOI: 10.1007/978-1-4939-7643-0_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of tissue as a matrix to elucidate disease pathology or explore intervention comes with several advantages. It allows investigation of the target alteration directly at the focal location and facilitates the detection of molecules that could become elusive after secretion into biofluids. However, tissue metabolomics/metabonomics comes with challenges not encountered in biofluid analyses. Furthermore, tissue heterogeneity does not allow for tissue aliquoting. Here we describe a multiplatform, multi-method workflow which enables metabolic profiling analysis of tissue samples, while it can deliver enhanced metabolome coverage. After applying a dual consecutive extraction (organic followed by aqueous), tissue extracts are analyzed by reversed-phase (RP-) and hydrophilic interaction liquid chromatography (HILIC-) ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy. This pipeline incorporates the required quality control features, enhances versatility, allows provisional aliquoting of tissue extracts for future guided analyses, expands the range of metabolites robustly detected, and supports data integration. It has been successfully employed for the analysis of a wide range of tissue types.
Collapse
Affiliation(s)
- Panagiotis A Vorkas
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - M R Abellona U
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Jia V Li
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Centre for Digestive and Gut Health, Institute of Global Health Innovation, Imperial College London, London, UK
| |
Collapse
|
49
|
Moosmang S, Pitscheider M, Sturm S, Seger C, Tilg H, Halabalaki M, Stuppner H. Metabolomic analysis-Addressing NMR and LC-MS related problems in human feces sample preparation. Clin Chim Acta 2017; 489:169-176. [PMID: 29097223 DOI: 10.1016/j.cca.2017.10.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/12/2017] [Accepted: 10/29/2017] [Indexed: 02/06/2023]
Abstract
Metabolomics is a well-established field in fundamental clinical research with applications in different human body fluids. However, metabolomic investigations in feces are currently an emerging field. Fecal sample preparation is a demanding task due to high complexity and heterogeneity of the matrix. To gain access to the information enclosed in human feces it is necessary to extract the metabolites and make them accessible to analytical platforms like NMR or LC-MS. In this study different pre-analytical parameters and factors were investigated i.e. water content, different extraction solvents, influence of freeze-drying and homogenization, ratios of sample weight to extraction solvent, and their respective impact on metabolite profiles acquired by NMR and LC-MS. The results indicate that profiles are strongly biased by selection of extraction solvent or drying of samples, which causes different metabolites to be lost, under- or overstated. Additionally signal intensity and reproducibility of the measurement were found to be strongly dependent on sample pre-treatment steps: freeze-drying and homogenization lead to improved release of metabolites and thus increased signals, but at the same time induced variations and thus deteriorated reproducibility. We established the first protocol for extraction of human fecal samples and subsequent measurement with both complementary techniques NMR and LC-MS.
Collapse
Affiliation(s)
- Simon Moosmang
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Maria Pitscheider
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Sonja Sturm
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Christoph Seger
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Labormedizinisches Zentrum Dr Risch Ostschweiz AG, Lagerstrasse 30, 9470 Buchs, Switzerland.
| | - Herbert Tilg
- Department of Internal Medicine 1, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | - Maria Halabalaki
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Hermann Stuppner
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
50
|
Primec M, Mičetić-Turk D, Langerholc T. Analysis of short-chain fatty acids in human feces: A scoping review. Anal Biochem 2017; 526:9-21. [PMID: 28300535 DOI: 10.1016/j.ab.2017.03.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/18/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Short-chain fatty acids (SCFAs) play a crucial role in maintaining homeostasis in humans, therefore the importance of a good and reliable SCFAs analytical detection has raised a lot in the past few years. The aim of this scoping review is to show the trends in the development of different methods of SCFAs analysis in feces, based on the literature published in the last eleven years in all major indexing databases. The search criteria included analytical quantification techniques of SCFAs in different human clinical and in vivo studies. SCFAs analysis is still predominantly performed using gas chromatography (GC), followed by high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and capillary electrophoresis (CE). Performances, drawbacks and advantages of these methods are discussed, especially in the light of choosing a proper pretreatment, as feces is a complex biological material. Further optimization to develop a simple, cost effective and robust method for routine use is needed.
Collapse
Affiliation(s)
- Maša Primec
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia.
| | - Dušanka Mičetić-Turk
- Department of Pediatrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| |
Collapse
|