1
|
He X, Xia Q, Bryant MS, Fu PP. An efficient enzymatic system for studying structure-carcinogenicity relationships: metabolism of pyrrolizidine alkaloids by human liver microsomes in the presence of calf thymus DNA, resulting in the formation of DNA adducts. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024:1-16. [PMID: 39545694 DOI: 10.1080/26896583.2024.2424091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Pyrrolizidine alkaloids (PAs) form a family of toxic and carcinogenic phytochemicals found in plants worldwide. The metabolism of toxic PAs, both in vivo and in vitro, generates four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts, namely, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, as documented in previous research. We have proposed that these DHP-DNA adducts play a pivotal role in the induction of liver tumor by PAs in rats and mice, serving as potential common biological biomarkers for PA exposure and carcinogenesis. In this study, we found that the metabolism of PAs and PA N-oxides by human liver microsomes, in the presence of calf thymus DNA, results in the formation of DNA adducts. This process serves as a convenient and biologically significant platform for investigating the structure-carcinogenicity relationships of PAs.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Matthew S Bryant
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
2
|
Zagorski JW, Kaminski NE. Utilization of a novel human hepatocyte-endothelial cell coculture model to determine differential toxicities of pyrrolizidine alkaloid food contaminants. Food Chem Toxicol 2024; 187:114584. [PMID: 38490353 DOI: 10.1016/j.fct.2024.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Pyrrolizidine alkaloids (PA) are comprised of a family of hundreds of metabolites, produced by plants as a mechanism to protect against herbivory. Upon ingestion and metabolism, dehydropyrrolizidine alkaloids are formed, which are known to generate DNA adducts and subsequently double-strand DNA breaks. Within the liver, the most sensitive cell type to PA exposure is the sinusoidal endothelial cell, as evidenced by the generation of veno-occlusive disease in the human population. PAs are a common crop contaminant and have been regulated by some agencies, using the precautionary principle; each equally potent and genotoxic. Therefore, as a proof of principle we have established a human in vitro coculture model system, utilizing the metabolically active HepaRG hepatocyte and the SK-Hep-1 endothelial cell, to determine differential potencies of different PAs commonly found in crops and food products, notably cell death, targeting of endothelial cells, and genotoxicity comparing the micronucleus assay versus γH2AX assay. Our results demonstrate differential potencies of the PAs used, which encompass three esterification states (monoester, cyclic diester, and open-chain diester). The results suggest that a more nuanced approach to the regulation of PAs may be more appropriate in the regulatory decision-making process.
Collapse
Affiliation(s)
- Joseph W Zagorski
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Norbert E Kaminski
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
He X, Xia Q, Zhu L, He Y, Bryant MS, Lin G, Fu PP. Formation of DHP-DNA Adducts from Rat Liver Microsomal Metabolism of 1,2-Unsaturated Pyrrolizidine Alkaloid-Containing Plant Extracts and Dietary Supplements. Chem Res Toxicol 2023; 36:243-250. [PMID: 36705520 DOI: 10.1021/acs.chemrestox.2c00321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1,2-Unsaturated pyrrolizidine alkaloids (PAs) are carcinogenic phytochemicals. We previously determined that carcinogenic PAs and PA N-oxides commonly form a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts, namely, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4. This set of DHP-DNA adducts has been implicated as a potential biomarker of PA-induced liver tumor initiation from metabolism of individual carcinogenic PAs. To date, it is not known whether this generality occurs from metabolism of PA-containing plant extracts. In this study, we investigate the rat liver microsomal metabolism of nine PA-containing plant extracts and two PA-containing dietary supplements in the presence of calf thymus DNA. The presence of carcinogenic PAs and PA N-oxides in plant extracts was first confirmed by LC-MS/MS analysis with selected reaction monitoring mode. Upon rat liver microsomal metabolism of these PA-containing plant extracts and dietary supplements, the formation of this set of DHP-DNA adducts was confirmed. Thus, these results indicate that metabolism of PA-containing plant extracts and dietary supplements can generate DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts, thereby potentially initiating liver tumor formation.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Lin Zhu
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Yisheng He
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Matthew S Bryant
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Ge Lin
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
4
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
5
|
Structure-Dependent Toxicokinetics of Selected Pyrrolizidine Alkaloids In Vitro. Int J Mol Sci 2022; 23:ijms23169214. [PMID: 36012484 PMCID: PMC9408898 DOI: 10.3390/ijms23169214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Phytochemicals like pyrrolizidine alkaloids (PAs) can affect the health of humans and animals. PAs can occur for example in tea, honey or herbs. Some PAs are known to be cytotoxic, genotoxic, and carcinogenic. Upon intake of high amounts, hepatotoxic and pneumotoxic effects were observed in humans. This study aims to elucidate different toxicokinetic parameters like the uptake of PAs and their metabolism with in vitro models. We examined the transport rates of differently structured PAs (monoester, open-chained diester, cyclic diester) over a model of the intestinal barrier. After passing the intestinal barrier, PAs reach the liver, where they are metabolized into partially instable electrophilic metabolites interacting with nucleophilic centers. We investigated this process by the usage of human liver, intestinal, and lung microsomal preparations for incubation with different PAs. These results are completed with the detection of apoptosis as indicator for bioactivation of the PAs. Our results show a structure-dependent passage of PAs over the intestinal barrier. PAs are structure-dependently metabolized by liver microsomes and, to a smaller extent, by lung microsomes. The detection of apoptosis of A549 cells treated with lasiocarpine and monocrotaline following bioactivation by human liver or lung microsomes underlines this result. Conclusively, our results help to shape the picture of PA toxicokinetics which could further improve the knowledge of molecular processes leading to observed effects of PAs in vivo.
Collapse
|
6
|
Widjaja F, Alhejji Y, Rietjens IMCM. The Role of Kinetics as Key Determinant in Toxicity of Pyrrolizidine Alkaloids and Their N-Oxides. PLANTA MEDICA 2022; 88:130-143. [PMID: 34741297 PMCID: PMC8807025 DOI: 10.1055/a-1582-9794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a large group of plant constituents of which especially the 1,2- unsaturated PAs raise a concern because of their liver toxicity and potential genotoxic carcinogenicity. This toxicity of PAs depends on their kinetics. Differences in absorption, distribution, metabolism, and excretion (ADME) characteristics of PAs may substantially alter the relative toxicity of PAs. As a result, kinetics will also affect relative potency (REP) values. The present review summarizes the current state-of-the art on PA kinetics and resulting consequences for toxicity and illustrates how physiologically-based kinetic (PBK) modelling can be applied to take kinetics into account when defining the relative differences in toxicity between PAs in the in vivo situation. We conclude that toxicokinetics play an important role in the overall toxicity of pyrrolizidine alkaloids. and that kinetics should therefore be considered when defining REP values for combined risk assessment. New approach methodologies (NAMs) can be of use to quantify these kinetic differences between PAs and their N-oxides, thus contributing to the 3Rs (Replacement, Reduction and Refinement) in animal studies.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University and Research, The Netherlands
| | - Yasser Alhejji
- Division of Toxicology, Wageningen University and Research, The Netherlands
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | | |
Collapse
|
7
|
Physiologically based kinetic modelling predicts the in vivo relative potency of riddelliine N-oxide compared to riddelliine in rat to be dose dependent. Arch Toxicol 2021; 96:135-151. [PMID: 34669010 PMCID: PMC8748370 DOI: 10.1007/s00204-021-03179-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are toxic plant constituents occurring often in their N-oxide form. This raises the question on the relative potency (REP) values of PA-N-oxides compared to the corresponding parent PAs. The present study aims to quantify the in vivo REP value of riddelliine N-oxide compared to riddelliine using physiologically based kinetic (PBK) modelling, taking into account that the toxicity of riddelliine N-oxide depends on its conversion to riddelliine by intestinal microbiota and in the liver. The models predicted a lower Cmax and higher Tmax for the blood concentration of riddelliine upon oral administration of riddelliine N-oxide compared to the Cmax and Tmax predicted for an equimolar oral dose of riddelliine. Comparison of the area under the riddelliine concentration–time curve (AUCRID) obtained upon dosing either the N-oxide or riddelliine itself revealed a ratio of 0.67, which reflects the in vivo REP for riddelliine N-oxide compared to riddelliine, and appeared to closely match the REP value derived from available in vivo data. The models also predicted that the REP value will decrease with increasing dose level, because of saturation of riddelliine N-oxide reduction by the intestinal microbiota and of riddelliine clearance by the liver. It is concluded that PBK modeling provides a way to define in vivo REP values of PA-N-oxides as compared to their parent PAs, without a need for animal experiments.
Collapse
|
8
|
He Y, Zhu L, Ma J, Lin G. Metabolism-mediated cytotoxicity and genotoxicity of pyrrolizidine alkaloids. Arch Toxicol 2021; 95:1917-1942. [PMID: 34003343 DOI: 10.1007/s00204-021-03060-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are common phytotoxins produced by over 6000 plant species. Humans are frequently exposed to PAs via ingestion of PA-containing herbal products or PA-contaminated foods. PAs require metabolic activation to form pyrrole-protein adducts and pyrrole-DNA adducts which lead to cytotoxicity and genotoxicity. Individual PAs differ in their metabolic activation patterns, which may cause significant difference in toxic potency of different PAs. This review discusses the current knowledge and recent advances of metabolic pathways of different PAs, especially the metabolic activation and metabolism-mediated cytotoxicity and genotoxicity, and the risk evaluation methods of PA exposure. In addition, this review provides perspectives of precision toxicity assessment strategies and biomarker development for the risk control and translational investigations of human intoxication by PAs.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
9
|
Pang X, Tang C, Kong F, Chen M, Chen X. CYP2C and CYP2B Mediated Metabolic Activation of Retrorsine in Cyp3a Knockout Mice. Curr Drug Metab 2020; 21:1040-1051. [DOI: 10.2174/1389200221666201202101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Background:
Retrorsine is one of the hepatotoxic pyrrolizidine alkaloids, which could be converted
into a highly reactive metabolite, dehydroretrorsine, by CYP3A, and to a lesser extent by CYP2C and CYP2B.
Objective:
We employed Cyp3a knockout (3AKO) mice to investigate whether the absence of CYP3A could attenuate
dehydroretrorsine formation and the role of CYP2C and CYP2B in the formation.
Methods:
Blood and liver samples were collected after intragastrical administration of 35 mg/kg retrorsine or
saline for seven days in wild-type (WT) and 3AKO mice. Blood pyrrole-protein adducts were semi quantified
by high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. The formations of
glutathionyl-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (GSH-DHP) and the activities of CYP3A, CYP2B
and CYP2C were evaluated in the liver microsomes of WT and 3AKO mice before and after treatment. The
metabolic phenotype of retrorsine was determined in human liver microsomes. The gene and protein expression
of retrorsine metabolism-related CYP450s in the liver was measured by quantitative real-time PCR method and
western blotting method. The serum cytokine level was detected by the ELISA method to reveal the potential
mechanism of Cyp3a, Cyp2b and Cyp2c downregulation.
Results:
After an oral administration of 35 mg/kg retrorsine for seven days, the blood exposures of DHP
adducts between WT and 3AKO mice were similar, consistent with the comparable formation of GSH-DHP in
their liver microsomes. The chemical inhibitor experiment in liver microsomes indicated the predominant role
of CYP3A and CYP2C in GSH-DHP formation in WT and 3AKO mice, respectively. Real-time qPCR analysis
showed that the expressions of Cyp2b10 and Cyp2cs increased 2.3-161-fold in 3AKO mice, which was consistent
with protein changes. The increased CYP2B activity in 3AKO mice supported the potential role of CYP2B
in GSH-DHP formation. After a seven-day treatment of retrorsine, the yields of GSH-DHP were lower than the
untreated ones in both alleles, accompanied by the decreased mRNA of Cyp3a, Cyp2b and Cyp2c. The increased
serum IL6 might mediate the retrorsine-induced downregulation of Cyp450s.
Conclusion:
These data demonstrated the increased transcription of Cyp2c and Cyp2b caused by Cyp3a ablation,
which played a vital role in the metabolic activation of retrorsine, and long-term exposure of retrorsine can
reduce the CYP450 activities.
Collapse
Affiliation(s)
- Xiaoyan Pang
- Centre for Drug Metabolism and Pharmacokinetics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Chongzhuang Tang
- Centre for Drug Metabolism and Pharmacokinetics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Fandi Kong
- Centre for Drug Metabolism and Pharmacokinetics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Meixia Chen
- Centre for Drug Metabolism and Pharmacokinetics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Xiaoyan Chen
- Centre for Drug Metabolism and Pharmacokinetics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| |
Collapse
|
10
|
Manthorpe EM, Jerrett IV, Rawlin GT, Woolford L. Plant and Fungal Hepatotoxicities of Cattle in Australia, with a Focus on Minimally Understood Toxins. Toxins (Basel) 2020; 12:E707. [PMID: 33171661 PMCID: PMC7695254 DOI: 10.3390/toxins12110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023] Open
Abstract
Plant- and fungus-derived hepatotoxins are a major cause of disease and production losses in ruminants in Australia and around the world. Many are well studied and described in the literature; however, this is not the case for a number of hepatotoxicities with economic and animal welfare impacts, such as acute bovine liver disease (ABLD), brassica-associated liver disease (BALD) and Trema tomentosa, Argentipallium blandowskianum and Lythrum hyssopifolia toxicity. Additionally, significant overlap in the clinical presentation and pathology of these conditions can present a diagnostic challenge for veterinarians. This review summarizes the current and most recently published knowledge of common plant- and fungus-associated hepatotoxins affecting cattle in Australia, with a focus on the mechanisms of toxicity and distinguishing diagnostic features. Consolidation of the current understanding of hepatotoxic mechanisms in cattle provides insight into the potential mechanisms of lesser-known toxins, including cellular and subcellular targets and potential metabolic pathways. In the absence of specific etiological investigations, the study of epidemiological, clinical and pathological features of hepatotoxicity provides valuable insights into potential toxic mechanisms and is integral for the successful diagnosis and management of these conditions.
Collapse
Affiliation(s)
- Eve M. Manthorpe
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia;
| | - Ian V. Jerrett
- Department of Jobs, Precincts and Regions, Agribio, the Centre for AgriBioscience, Melbourne, Victoria 3083, Australia; (I.V.J.); (G.T.R.)
| | - Grant T. Rawlin
- Department of Jobs, Precincts and Regions, Agribio, the Centre for AgriBioscience, Melbourne, Victoria 3083, Australia; (I.V.J.); (G.T.R.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia;
| |
Collapse
|
11
|
Geburek I, Schrenk D, These A. In vitro biotransformation of pyrrolizidine alkaloids in different species: part II-identification and quantitative assessment of the metabolite profile of six structurally different pyrrolizidine alkaloids. Arch Toxicol 2020; 94:3759-3774. [PMID: 32880719 PMCID: PMC7603446 DOI: 10.1007/s00204-020-02853-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Pyrrolizidine alkaloids (PA) exert their toxic effects only after bioactivation. Although their toxicity has already been studied and metabolic pathways including important metabolites were described, the quantification of the latter revealed a large unknown portion of the metabolized PA. In this study, the qualitative and quantitative metabolite profiles of structurally different PAs in rat and human liver microsomes were investigated. Between five metabolites for europine and up to 48 metabolites for lasiocarpine were detected. Proposals for the chemical structure of each metabolite were derived based on fragmentation patterns using high-resolution mass spectrometry. The metabolite profiles of the diester PAs showed a relatively good agreement between both species. The metabolic reactions were summarized into three groups: dehydrogenation, oxygenation, and shortening of necic acid(s). While dehydrogenation of the necine base is considered as bioactivation, both other routes are considered as detoxification steps. The most abundant changes found for open chained diesters were dealkylations, while the major metabolic pathway for cyclic diesters was oxygenation especially at the nitrogen atom. In addition, all diester PAs formed several dehydrogenation products, via the insertion of a second double bond in the necine base, including the formation of glutathione conjugates. In rat liver microsomes, all investigated PAs formed dehydropyrrolizidine metabolites with the highest amount formed by lasiocarpine, whereas in human liver microsomes, these metabolites could only be detected for diesters. Our findings demonstrate that an extensive analysis of PA metabolism can provide the basis for a better understanding of PA toxicity and support future risk assessment.
Collapse
Affiliation(s)
- Ina Geburek
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.,Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Anja These
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
12
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
13
|
He X, Xia Q, Shi Q, Fu PP. Effects of glutathione and cysteine on pyrrolizidine alkaloid-induced hepatotoxicity and DNA adduct formation in rat primary hepatocytes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:109-123. [PMID: 32500832 DOI: 10.1080/26896583.2020.1738161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic phytochemicals. Upon metabolic activation, PAs produce dehydropyrrolizidine alkaloids (dehydro-PAs) as reactive primary pyrrolic metabolites. Dehydro-PAs are unstable, facilely hydrolyzed to (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP). Both dehydro-PAs and DHP are capable of binding to cellular DNA and proteins to form DHP-DNA and DHP-protein adducts leading to tumorigenicity and cytotoxicity. We recently determined that the reaction of dehydro-PAs with glutathione and cysteine generated 7-glutathione-DHP (7-GS-DHP) and 7-cysteine-DHP, respectively which can also bind to DNA to produce DHP-DNA adducts. In this study, we determined the effects of glutathione and cysteine on the induction of hepatocytotoxicity and the formation of DHP-DNA adducts in primary hepatocytes cultured with riddelliine and monocrotaline. We found that both glutathione and cysteine can drastically reduce hepatotoxicity while the levels of DHP-DNA adduct formation are slightly affected.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Qiang Shi
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
14
|
López-González R, Gnecco D, Juárez JR, Orea ML, Gómez-Calvario V, Bernès S, Aparicio DM, Terán JL. Synthesis of (+)- and (−)-Geissman-Waiss lactone from chiral sulfonium salts. Tetrahedron Lett 2020; 61:151697. [DOI: 10.1016/j.tetlet.2020.151697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Xia Q, He X, Shi Q, Lin G, Fu PP. Quantitation of DNA reactive pyrrolic metabolites of senecionine – A carcinogenic pyrrolizidine alkaloid by LC/MS/MS analysis. J Food Drug Anal 2020; 28:167-174. [DOI: 10.1016/j.jfda.2019.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
16
|
Wen B, Gorycki P. Bioactivation of herbal constituents: mechanisms and toxicological relevance. Drug Metab Rev 2019; 51:453-497. [DOI: 10.1080/03602532.2019.1655570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bo Wen
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter Gorycki
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
17
|
He X, Xia Q, Gamboa da Costa G, Lin G, Fu PP. 1-Formyl-7-hydroxy-6,7-dihydro-5 H-pyrrolizine (1-CHO-DHP): A Potential Proximate Carcinogenic Metabolite of Pyrrolizidine Alkaloids. Chem Res Toxicol 2019; 32:1193-1203. [PMID: 31120748 DOI: 10.1021/acs.chemrestox.9b00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are phytochemicals present in more than 6000 plant species worldwide; about half of the PAs are hepatotoxic, genotoxic, and carcinogenic. Because of their wide exposure and carcinogenicity, the International Programme on Chemical Safety (IPCS) concluded that PAs are a threat to human health and safety. We recently determined that PA-induced liver tumor initiation is mediated by a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5 H-pyrrolizine (DHP)-DNA adducts and proposed that these DHP-DNA adducts are biomarkers of PA exposure and liver tumor initiation. To validate the generality of this metabolic activation pathway and DHP-DNA adducts as biomarkers, it is significant to identify reactive metabolites associated with this metabolic activation pathway. Segall et al. ( Segall et al. ( 1984 ) Drug Metab. Dispos. 12 , 68 - 71 ) previously reported that 1-formyl-7-hydroxy-6,7-dihydro-5 H-pyrrolizine (1-CHO-DHP) is generated from the metabolism of senecionine by mouse liver microsomes. In the present study, we examined the metabolism of seven hepatocarcinogenic PAs (senecionine, intermedine, retrorsine, riddelliine, DHR, heliotrine, and senkirkine) and one noncarcinogenic PA (platyphylline) by human, rat, and mouse liver microsomes. 1-CHO-DHP was identified as a common metabolite from the metabolism of these hepatotoxic PAs, but not from platyphylline. Incubation of 1-CHO-DHP with HepG2 and A549 cells produced the same set of DHP-DNA adducts, which were identified by both LC/MS MRM mode and selected ion monitoring analyses through comparison to synthetic standards. In the incubation medium of 1-CHO-DHP treated HepG2 cells, both DHP and 7-cysteine-DHP were formed, which were capable of binding to cellular DNA to produce DHP-DNA adducts. These results suggest that 1-CHO-DHP is a proximate DNA metabolite of genotoxic and carcinogenic PAs.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Qingsu Xia
- National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Gonçalo Gamboa da Costa
- National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong
| | - Peter P Fu
- National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| |
Collapse
|
18
|
Schramm S, Köhler N, Rozhon W. Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants. Molecules 2019; 24:E498. [PMID: 30704105 PMCID: PMC6385001 DOI: 10.3390/molecules24030498] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are heterocyclic secondary metabolites with a typical pyrrolizidine motif predominantly produced by plants as defense chemicals against herbivores. They display a wide structural diversity and occur in a vast number of species with novel structures and occurrences continuously being discovered. These alkaloids exhibit strong hepatotoxic, genotoxic, cytotoxic, tumorigenic, and neurotoxic activities, and thereby pose a serious threat to the health of humans since they are known contaminants of foods including grain, milk, honey, and eggs, as well as plant derived pharmaceuticals and food supplements. Livestock and fodder can be affected due to PA-containing plants on pastures and fields. Despite their importance as toxic contaminants of agricultural products, there is limited knowledge about their biosynthesis. While the intermediates were well defined by feeding experiments, only one enzyme involved in PA biosynthesis has been characterized so far, the homospermidine synthase catalyzing the first committed step in PA biosynthesis. This review gives an overview about structural diversity of PAs, biosynthetic pathways of necine base, and necic acid formation and how PA accumulation is regulated. Furthermore, we discuss their role in plant ecology and their modes of toxicity towards humans and animals. Finally, several examples of PA-producing crop plants are discussed.
Collapse
Affiliation(s)
- Sebastian Schramm
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| | - Nikolai Köhler
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| |
Collapse
|
19
|
He X, Xia Q, Wu Q, Tolleson WH, Lin G, Fu PP. Primary and secondary pyrrolic metabolites of pyrrolizidine alkaloids form DNA adducts in human A549 cells. Toxicol In Vitro 2018; 54:286-294. [PMID: 30366057 DOI: 10.1016/j.tiv.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/14/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Humans and animals can be exposed to carcinogenic pyrrolizidine alkaloids (PAs) through consumption of plants commonly found in many parts of the world. Although the liver is the primary target organ for carcinogenic PAs, they have also induced lung tumors in rodents. Hepatic cytochrome P450 activity converts PAs into dehydro-PAs that can be hydrolyzed to dehydropyrrolizidine (DHP); these reactive pyrrolic metabolites can produce four characteristic DNA adducts associated with PA-induced liver tumor initiation in laboratory animals. We reported recently that these four DNA adducts are also formed when 7-glutathione-DHP (7-GS-DHP) or 7-cysteine-DHP is incubated with calf thymus DNA. Here we showed that the four characteristic DNA adducts were formed when human A549 brochoalveolar carcinoma cells were treated with three dehydro-PAs (dehydroriddelliine, dehydromonocrotaline, or dehydroretronecine) or with 7-GS-DHP or 7-cysteine-DHP. For comparison, two parent PAs (riddelliine and monocrotaline) and 7,9-di-glutathionine-DHP were studied. No DHP-DNA adducts were detected with these incubations, confirming that A549 lung carcinoma cells do not express cytochrome P450 enzymes required for metabolic activation of PAs. Our results show that primary and secondary pyrrolic metabolites of carcinogenic PAs produce characteristic DHP-containing DNA adducts in A549 lung cancer cells, suggesting that they are DNA reactive metabolites.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Qiangen Wu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - William H Tolleson
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
20
|
Ma C, Liu Y, Zhu L, Ji H, Song X, Guo H, Yi T. Determination and regulation of hepatotoxic pyrrolizidine alkaloids in food: A critical review of recent research. Food Chem Toxicol 2018; 119:50-60. [PMID: 29772268 DOI: 10.1016/j.fct.2018.05.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 11/26/2022]
|
21
|
Xia Q, He X, Ma L, Chen S, Fu PP. Pyrrolizidine Alkaloid Secondary Pyrrolic Metabolites Construct Multiple Activation Pathways Leading to DNA Adduct Formation and Potential Liver Tumor Initiation. Chem Res Toxicol 2018; 31:619-628. [PMID: 29855181 DOI: 10.1021/acs.chemrestox.8b00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and their N-oxide derivatives are hepatotoxic, genotoxic, and carcinogenic phytochemicals. PAs induce liver tumors through a general genotoxic mechanism mediated by a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5 H-pyrrolizine (DHP)-derived DNA adducts. To date, the primary pyrrolic metabolites dehydro-PAs, their hydrolyzed metabolite DHP, and two secondary pyrrolic metabolites 7-glutathione-DHP (7-GS-DHP) and 7-cysteine-DHP are the known metabolites that can generate these DHP-DNA adducts in vivo and/or in PA-treated cells. Secondary pyrrolic metabolites are formed from the reaction of dehydro-PAs with glutathione, amino acids, and proteins. In this investigation, we determined whether or not more secondary pyrrolic metabolites can bind to calf thymus DNA and to cellular DNA in HepG2 cells resulting in the formation of DHP-DNA adducts using a series of secondary pyrrolic metabolites (including 7-methoxy-DHP, 9-ethoxy-DHP, 9-valine-DHP, 7-GS-DHP, 7-cysteine-DHP, and 7,9-diglutathione-DHP) and synthetic pyrroles for study. We found that (i) many secondary pyrrolic metabolites are DNA reactive and can form DHP-DNA adducts and (ii) multiple activation pathways are involved in producing DHP-DNA adducts associated with PA-induced liver tumor initiation. These results suggest that secondary pyrrolic metabolites play a vital role in the initiation of PA-induced liver tumors.
Collapse
Affiliation(s)
- Qingsu Xia
- National Center for Toxicological Research , Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Xiaobo He
- National Center for Toxicological Research , Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Liang Ma
- National Center for Toxicological Research , Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Shoujun Chen
- National Center for Toxicological Research , Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Peter P Fu
- National Center for Toxicological Research , Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| |
Collapse
|
22
|
Moreira R, Pereira DM, Valentão P, Andrade PB. Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety. Int J Mol Sci 2018; 19:E1668. [PMID: 29874826 PMCID: PMC6032134 DOI: 10.3390/ijms19061668] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
Pyrrolizidine alkaloids (PA) are widely distributed in plants throughout the world, frequently in species relevant for human consumption. Apart from the toxicity that these molecules can cause in humans and livestock, PA are also known for their wide range of pharmacological properties, which can be exploited in drug discovery programs. In this work we review the current body of knowledge regarding the chemistry, toxicology, pharmacology and food safety of PA.
Collapse
Affiliation(s)
- Rute Moreira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Dusemund B, Nowak N, Sommerfeld C, Lindtner O, Schäfer B, Lampen A. Risk assessment of pyrrolizidine alkaloids in food of plant and animal origin. Food Chem Toxicol 2018. [DOI: 10.1016/j.fct.2018.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Glück J, Buhrke T, Frenzel F, Braeuning A, Lampen A. In silico genotoxicity and carcinogenicity prediction for food-relevant secondary plant metabolites. Food Chem Toxicol 2018; 116:298-306. [PMID: 29660365 DOI: 10.1016/j.fct.2018.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 01/24/2023]
Abstract
Humans are exposed to thousands of different secondary plant metabolites which may have beneficial health effects, but numerous compounds may also have toxic potential. In the present study we have examined the genotoxic and carcinogenic potential of 609 food-relevant phytochemicals by using computer models for toxicity prediction. We developed a scoring method and combined the results of different models to increase the predictive power. A combination of the VEGA models SARpy, KNN, ISS, and CAESAR, and of the LAZAR model "Salmonella typhimurium" for genotoxicity prediction performed better than the single models regarding specificity and accuracy. Statistical evaluation of the combined model for carcinogenicity prediction was not possible due to the low number of substances suitable for model validation. The in silico results of the present exercise will be useful for priority setting purposes regarding future risk assessment of secondary plant metabolites. Based on our analysis, (-)-asimilobine, aloin, annoretine, chrysothrone, coptisine, elymoclavine, and thalicminine were predicted to be genotoxic with high probability and may therefore be selected for subsequent experimental genotoxicity testing. Moreover, the class of pyrrolizidine alkaloids is suggested to be a high priority subject for further studies as these substances have been predicted to be carcinogenic with high probability.
Collapse
Affiliation(s)
- Josephin Glück
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Thorsten Buhrke
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Falko Frenzel
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
25
|
Li X, Yang X, Xiang E, Luo J, Qiu S, Fang Y, Zhang L, Guo Y, Zheng J, Wang H. Maternal-Fetal Disposition and Metabolism of Retrorsine in Pregnant Rats. Drug Metab Dispos 2018; 46:422-428. [PMID: 29352068 DOI: 10.1124/dmd.117.079186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/17/2018] [Indexed: 11/22/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are extensively synthesized by plants, are commonly present in herbs and foodstuffs, and exhibit hepatotoxicity requiring metabolic activation by cytochrome P450 3A to form the electrophilic metabolites-pyrrolic esters. PAs also cause embryo toxicity, but the metabolic profiles of PAs in fetus and placenta have been far from clear. In this study, we determined the basal metabolic activation of retrorsine (RTS) in rat maternal liver, placenta, and fetal liver in vitro and examined the fetal toxicity and bioactivation of RTS in vivo. Detection of microsomal RTS metabolites in vitro showed that the basal metabolic activity of fetal liver and placenta to RTS was much weaker than that of maternal liver. In addition, a higher rate of pyrrolic ester formation was found in normal male fetal liver compared with that of female pups. In vivo exposure to RTS caused fetal growth retardation, as well as placental and fetal liver injury. Little difference in serum RTS was observed in dams and fetuses, but the content of pyrrole-protein adduction in the fetal liver was much lower than that in maternal liver, which was consistent with basal metabolic activity. Unexpectedly, compared with basal metabolism in fetal liver, exposure to RTS during middle and late pregnancy caused an opposite gender difference in RTS metabolism and CYP3A expression in the fetal liver. For the first time, our study showed that RTS can permeate the placenta barrier and entering fetal circulation, whereas the intrauterine pyrrolic metabolite was generated mainly by fetal liver but not transported from the maternal circulation. Induction of CYP3A by RTS was gender-dependent in the fetal liver, which was probably responsible for RTS-induced fetal hepatic injury, especially for female pups.
Collapse
Affiliation(s)
- Xia Li
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Xiaojing Yang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - E Xiang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Jinyuan Luo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Shuaikai Qiu
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Yan Fang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Li Zhang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Jiang Zheng
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| |
Collapse
|
26
|
Rozhon W, Kammermeier L, Schramm S, Towfique N, Adebimpe Adedeji N, Adesola Ajayi S, Poppenberger B. Quantification of the Pyrrolizidine Alkaloid Jacobine in Crassocephalum crepidioides by Cation Exchange High-Performance Liquid Chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:48-58. [PMID: 28836707 DOI: 10.1002/pca.2713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Pyrrolizidine alkaloids (PAs) are secondary plant metabolites with considerable hepatoxic, tumorigenic and genotoxic potential. For separation, reversed phase chromatography is commonly used because of its excellent compatibility with detection by mass spectrometry. However, reversed phase chromatography has a low selectivity for PAs. OBJECTIVE The objective of this work was to investigate the suitability of cation exchange chromatography for separation of PAs and to develop a rapid method for quantification of jacobine in Crassocephalum crepidioides that is suitable for analysis of huge sample numbers as required for mutant screening procedures. RESULTS We demonstrate that cation exchange chromatography offers excellent selectivity for PAs allowing their separation from most other plant metabolites. Due to the high selectivity, plant extracts can be directly analysed after simple sample preparation. Detection with UV at 200 nm instead of mass spectrometry can be applied, which makes the method very simple and cost-effective. The recovery rate of the method exceeded 95%, the intra-day and inter-day standard deviations were below 7% and the limit of detection and quantification were 1 mg/kg and 3 mg/kg, respectively. CONCLUSION The developed method is sufficiently sensitive for reproducible detection of jacobine in C. crepidioides. Simple sample preparation and rapid separation allows for quantification of jacobine in plant material in a high-throughput manner. Thus, the method is suitable for genetic screenings and may be applicable for other plant species, for instance Jacobaea maritima. In addition, our results show that C. crepidioides cannot be considered safe for human consumption. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wilfried Rozhon
- Biotechnology of Horticultural Crops, Technische Universität München, Liesel-Beckmann-Straße 1, 85354, Freising-Weihenstephan, Germany
| | - Lukas Kammermeier
- Biotechnology of Horticultural Crops, Technische Universität München, Liesel-Beckmann-Straße 1, 85354, Freising-Weihenstephan, Germany
| | - Sebastian Schramm
- Biotechnology of Horticultural Crops, Technische Universität München, Liesel-Beckmann-Straße 1, 85354, Freising-Weihenstephan, Germany
| | - Nayeem Towfique
- Biotechnology of Horticultural Crops, Technische Universität München, Liesel-Beckmann-Straße 1, 85354, Freising-Weihenstephan, Germany
| | - N Adebimpe Adedeji
- Department of Crop Production and Protection, Obafemi Awolowo University, PMB 013, Ilé-Ifè, 220005, Nigeria
| | - S Adesola Ajayi
- Department of Crop Production and Protection, Obafemi Awolowo University, PMB 013, Ilé-Ifè, 220005, Nigeria
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, Technische Universität München, Liesel-Beckmann-Straße 1, 85354, Freising-Weihenstephan, Germany
| |
Collapse
|
27
|
|
28
|
Kolrep F, Numata J, Kneuer C, Preiss-Weigert A, Lahrssen-Wiederholt M, Schrenk D, These A. In vitro biotransformation of pyrrolizidine alkaloids in different species. Part I: Microsomal degradation. Arch Toxicol 2017; 92:1089-1097. [PMID: 29143854 PMCID: PMC5866832 DOI: 10.1007/s00204-017-2114-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/08/2017] [Indexed: 11/29/2022]
Abstract
Pyrrolizidine alkaloids (PA) are secondary metabolites of certain flowering plants. The ingestion of PAs may result in acute and chronic effects in man and livestock with hepatotoxicity, mutagenicity, and carcinogenicity being identified as predominant effects. Several hundred PAs sharing the diol pyrrolizidine as a core structure are formed by plants. Although many congeners may cause adverse effects, differences in the toxic potency have been detected in animal tests. It is generally accepted that PAs themselves are biologically and toxicologically inactive and require metabolic activation. Consequently, a strong relationship between activating metabolism and toxicity can be expected. Concerning PA susceptibility, marked differences between species were reported with a comparatively high susceptibility in horses, while goat and sheep seem to be almost resistant. Therefore, we investigated the in vitro degradation rate of four frequently occurring PAs by liver enzymes present in S9 fractions from human, pig, cow, horse, rat, rabbit, goat, and sheep liver. Unexpectedly, almost no metabolic degradation of any PA was observed for susceptible species such as human, pig, horse, or cow. If the formation of toxic metabolites represents a crucial bioactivation step, the found inverse conversion rates of PAs compared to the known susceptibility require further investigation.
Collapse
Affiliation(s)
- Franziska Kolrep
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Jorge Numata
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | | | | | - Dieter Schrenk
- University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Anja These
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
29
|
He X, Xia Q, Fu PP. 7-Glutathione-pyrrole and 7-cysteine-pyrrole are potential carcinogenic metabolites of pyrrolizidine alkaloids. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:69-83. [PMID: 28418776 DOI: 10.1080/10590501.2017.1298358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic phytochemicals. Metabolism of PAs in vivo generates four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts that have been proposed to be responsible for PA-induced liver tumor formation in rats. In this present study, we determined that the same set of DHP-DNA adducts was formed upon the incubation of 7-glutathione-DHP and 7-cysteine-DHP with cultured human hepatocarcinoma HepG2 cells. These results suggest that 7-glutathione-DHP and 7-cysteine-DHP are reactive metabolites of PAs that can bind to cellular DNA to form DHP-DNA adducts in HepG2 cells, and can potentially initiate liver tumor formation.
Collapse
Affiliation(s)
- Xiaobo He
- a National Center for Toxicological Research , US Food and Drug Administration , Jefferson , Arkansas , USA
| | - Qingsu Xia
- a National Center for Toxicological Research , US Food and Drug Administration , Jefferson , Arkansas , USA
| | - Peter P Fu
- a National Center for Toxicological Research , US Food and Drug Administration , Jefferson , Arkansas , USA
| |
Collapse
|
30
|
Fu PP, Xia Q, He X, Barel S, Edery N, Beland FA, Shimshoni JA. Detection of Pyrrolizidine Alkaloid DNA Adducts in Livers of Cattle Poisoned with Heliotropium europaeum. Chem Res Toxicol 2017; 30:851-858. [DOI: 10.1021/acs.chemrestox.6b00456] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter P. Fu
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Qingsu Xia
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Xiaobo He
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Shimon Barel
- Department
of Toxicology, Kimron Veterinary Institute, 50250 Bet Dagan, Israel
| | - Nir Edery
- Department
of Pathology, Kimron Veterinary Institute, 50250 Bet Dagan, Israel
| | - Frederick A. Beland
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Jakob A. Shimshoni
- Department
of Toxicology, Kimron Veterinary Institute, 50250 Bet Dagan, Israel
| |
Collapse
|
31
|
Fu PP. Pyrrolizidine Alkaloids: Metabolic Activation Pathways Leading to Liver Tumor Initiation. Chem Res Toxicol 2016; 30:81-93. [DOI: 10.1021/acs.chemrestox.6b00297] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter P. Fu
- National Center for Toxicological
Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
32
|
Xia Q, Zhao Y, Lin G, Beland FA, Cai L, Fu PP. Pyrrolizidine Alkaloid-Protein Adducts: Potential Non-invasive Biomarkers of Pyrrolizidine Alkaloid-Induced Liver Toxicity and Exposure. Chem Res Toxicol 2016; 29:1282-92. [DOI: 10.1021/acs.chemrestox.6b00120] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qingsu Xia
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Yuewei Zhao
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Ge Lin
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Frederick A. Beland
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Lining Cai
- Biotranex LLC, Monmouth Junction, New Jersey 08852, United States
| | - Peter P. Fu
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| |
Collapse
|
33
|
Chou MW, Fu PP. Formation of DHP-derived DNA adducts in vivo from dietary supplements and Chinese herbal plant extracts containing carcinogenic pyrrolizidine alkaloids. Toxicol Ind Health 2016; 22:321-7. [PMID: 17120530 DOI: 10.1177/0748233706071765] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We recently determined that the metabolism of a series of tumorigenic pyrrolizidine alkaloids resulted in the formation of a set of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)- derived DNA adducts. These DHP-derived DNA adducts have been proposed as potential biomarkers of pyrrolizidine alkaloid tumorigenicity, as well as pyrrolizidine alkaloid exposure. In this paper, we report that DHP-derived DNA adducts are formed in the liver of female F344 rats, gavaged with three dietary supplements (comfrey root extract, comfrey compound oil, and coltsfoot root extract), or an extract of a Chinese herbal plant, flos farfara (Kuan Tong Hua).
Collapse
Affiliation(s)
- Ming W Chou
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | |
Collapse
|
34
|
The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice. Arch Toxicol 2016; 91:949-965. [PMID: 27125825 DOI: 10.1007/s00204-016-1713-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α) and 301 h (~12.5 days, t 1/2β). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α) and 1736 h (~72.3 days, t 1/2β). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.
Collapse
|
35
|
He X, Xia Q, Ma L, Fu PP. 7-cysteine-pyrrole conjugate: A new potential DNA reactive metabolite of pyrrolizidine alkaloids. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:57-76. [PMID: 26761716 DOI: 10.1080/10590501.2015.1135593] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pyrrolizidine alkaloids (PAs) require metabolic activation to exert cytotoxicity, genotoxicity, and tumorigenicity. We previously reported that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts are responsible for PA-induced liver tumor formation in rats. In this study, we determined that metabolism of riddelliine and monocrotaline by human or rat liver microsomes produced 7-cysteine-DHP and DHP. The metabolism of 7-glutathionyl-DHP by human and rat liver microsomes also generated 7-cysteine-DHP. Further, reaction of 7-cysteine-DHP with calf thymus DNA in aqueous solution yielded the described DHP-derived DNA adducts. This study represents the first report that 7-cysteine-DHP is a new PA metabolite that can lead to DNA adduct formation.
Collapse
Affiliation(s)
- Xiaobo He
- a National Center for Toxicological Research, US Food and Drug Administration , Jefferson , Arkansas , USA
| | - Qingsu Xia
- a National Center for Toxicological Research, US Food and Drug Administration , Jefferson , Arkansas , USA
| | - Liang Ma
- a National Center for Toxicological Research, US Food and Drug Administration , Jefferson , Arkansas , USA
| | - Peter P Fu
- a National Center for Toxicological Research, US Food and Drug Administration , Jefferson , Arkansas , USA
| |
Collapse
|
36
|
Ma L, Zhao H, Xia Q, Cai L, Fu PP. Synthesis and phototoxicity of isomeric 7,9-diglutathione pyrrole adducts: Formation of reactive oxygen species and induction of lipid peroxidation. J Food Drug Anal 2015; 23:577-586. [PMID: 28911718 PMCID: PMC9351797 DOI: 10.1016/j.jfda.2015.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic in experimental animals. Because of their widespread distribution in the world, PA-containing plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Upon metabolism, PAs generate reactive dehydro-PAs and other pyrrolic metabolites that lead to toxicity. Dehydro-PAs are known to react with glutathione (GSH) to form 7-GSH-(+/−)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (7-GS-DHP) in vivo and in vitro and 7,9-diGS-DHP in vitro. To date, the phototoxicity of GS-DHP adducts has not been well studied. In this study, we synthesized 7-GS-DHP, a tentatively assigned 9-GS-DHP, and two enantiomeric 7,9-diGS-DHP adducts by reaction of dehydromonocrotaline with GSH. The two 7,9-diGS-DHPs were separated by high performance liquid chromatography (HPLC) and their structures were characterized by 1H nuclear magnetic resonance (NMR) and 1H–1H correlation spectroscopy (COSY) NMR spectral analysis. Photoirradiation of 7-GS-DHP, 9-GS-DHP, and the two 7,9-diGS-DHPs as well as dehydromonocrotaline, dehydroheliotrine, and the 7-R enantiomer of DHP (DHR), by UVA light at 0 J/cm2, 14 J/cm2, and 35 J/cm2 in the presence of a lipid, methyl linoleate, all resulted in lipid peroxidation in a light dose-responsive manner. The levels of lipid peroxidation induced by the two isomeric 7,9-diGS-DHPs were significantly higher than that by 7-GS-DHP and 9-GS-DHP. When 7,9-diGS-DHP was irradiated in the presence of sodium azide (NaN3), the level of lipid peroxidation decreased; lipid peroxidation was enhanced when methanol was replaced by deuterated methanol. These results suggest that singlet oxygen is a product induced by the irradiation of 7,9-diGS-DHP. When irradiated in the presence of superoxide dismutase (SOD), the level of lipid peroxidation decreased, indicating that lipid peroxidation is also mediated by superoxide. These results indicate that lipid peroxidation is mediated by reactive oxygen species (ROS). These results suggest that 7,9-diGS-DHPs are phototoxic, generating lipid peroxidation mediated by ROS.
Collapse
|
37
|
Li YH, Tai WCS, Xue JY, Wong WY, Lu C, Ruan JQ, Li N, Wan TF, Chan WY, Hsiao WLW, Lin G. Proteomic Study of Pyrrolizidine Alkaloid-Induced Hepatic Sinusoidal Obstruction Syndrome in Rats. Chem Res Toxicol 2015; 28:1715-27. [DOI: 10.1021/acs.chemrestox.5b00113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan-Hong Li
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - William Chi-Shing Tai
- Centre
of Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Integrated Bioinfomedicine & Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jun-Yi Xue
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Yan Wong
- Centre
of Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Cheng Lu
- Centre
of Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute
of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Qing Ruan
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Na Li
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tai-Fung Wan
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wood-Yee Chan
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen-Luan Wendy Hsiao
- State
Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Ge Lin
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Luckert C, Hessel S, Lenze D, Lampen A. Disturbance of gene expression in primary human hepatocytes by hepatotoxic pyrrolizidine alkaloids: A whole genome transcriptome analysis. Toxicol In Vitro 2015; 29:1669-82. [PMID: 26100227 DOI: 10.1016/j.tiv.2015.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/29/2015] [Accepted: 06/19/2015] [Indexed: 11/30/2022]
Abstract
1,2-unsaturated pyrrolizidine alkaloids (PA) are plant metabolites predominantly occurring in the plant families Asteraceae and Boraginaceae. Acute and chronic PA poisoning causes severe hepatotoxicity. So far, the molecular mechanisms of PA toxicity are not well understood. To analyze its mode of action, primary human hepatocytes were exposed to a non-cytotoxic dose of 100 μM of four structurally different PA: echimidine, heliotrine, senecionine, senkirkine. Changes in mRNA expression were analyzed by a whole genome microarray. Employing cut-off values with a |fold change| of 2 and a q-value of 0.01, data analysis revealed numerous changes in gene expression. In total, 4556, 1806, 3406 and 8623 genes were regulated by echimidine, heliotrine, senecione and senkirkine, respectively. 1304 genes were identified as commonly regulated. PA affected pathways related to cell cycle regulation, cell death and cancer development. The transcription factors TP53, MYC, NFκB and NUPR1 were predicted to be activated upon PA treatment. Furthermore, gene expression data showed a considerable interference with lipid metabolism and bile acid flow. The associated transcription factors FXR, LXR, SREBF1/2, and PPARα/γ/δ were predicted to be inhibited. In conclusion, though structurally different, all four PA significantly regulated a great number of genes in common. This proposes similar molecular mechanisms, although the extent seems to differ between the analyzed PA as reflected by the potential hepatotoxicity and individual PA structure.
Collapse
Affiliation(s)
- Claudia Luckert
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Stefanie Hessel
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - Dido Lenze
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Alfonso Lampen
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
39
|
Absolute configuration, stability, and interconversion of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine valine adducts and their phenylthiohydantoin derivatives. J Food Drug Anal 2015; 23:318-326. [PMID: 28911388 PMCID: PMC9351779 DOI: 10.1016/j.jfda.2015.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/23/2015] [Indexed: 11/26/2022] Open
Abstract
Pyrrolizidine alkaloid-containing plants are widespread in the world and probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids require metabolic activation to form dehydropyrrolizidine alkaloids that bind to cellular proteins and DNA leading to hepatotoxicity, genotoxicity, and tumorigenicity. At present, it is not clear how dehydropyrrolizidine alkaloids bind to cellular amino acids and proteins to induced toxicity. We previously reported that reaction of dehydromonocrotaline with valine generated four highly unstable 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived valine (DHP-valine) adducts that upon reaction with phenyl isothiocyanate (PITC) formed four DHP-valine-PITC adduct isomers. In this study, we report the absolute configuration and stability of DHP-valine and DHP-valine-PITC adducts, and the mechanism of interconversion between DHP-valine-PITC adducts.
Collapse
|
40
|
Xia Q, Ma L, He X, Cai L, Fu PP. 7-glutathione pyrrole adduct: a potential DNA reactive metabolite of pyrrolizidine alkaloids. Chem Res Toxicol 2015; 28:615-20. [PMID: 25768656 DOI: 10.1021/tx500417q] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrrolizidine alkaloid (PA)-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form pyrrolic metabolites to exert cytotoxicity and tumorigenicity. We previously determined that metabolism of tumorigenic PAs produced four DNA adducts, designated as DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, that are responsible for liver tumor initiation. 7-Glutathione-(±)-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (7-GS-DHP), formed in vivo and in vitro, and 7,9-di-GS-DHP, formed in vitro, are both considered detoxified metabolites. However, in this study we determined that incubation of 7-GS-DHP with 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) yields DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts as well as the reactive metabolite DHP. Furthermore, reaction of 7-GS-DHP with calf thymus DNA in aqueous solution at 37 °C for 4, 8, 16, 24, 48, or 72 h, followed by enzymatic hydrolysis yielded DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts. Under our current experimental conditions, DHP-dA-3 and DHP-dA-4 adducts were formed in a trace amount from the reaction of 7,9-di-GS-DHP with dA. No DHP-dG-3 or DHP-dG-4 adducts were detected from the reaction of 7,9-di-GS-DHP with dG. This study represents the first report that the 7-GS-DHP adduct can be a potential reactive metabolite of PAs leading to DNA adduct formation.
Collapse
Affiliation(s)
- Qingsu Xia
- †National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Liang Ma
- †National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Xiaobo He
- †National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Lining Cai
- ‡Biotranex LLC, Monmouth Junction, New Jersey 08852, United States
| | - Peter P Fu
- †National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
41
|
Edgar JA, Molyneux RJ, Colegate SM. Pyrrolizidine Alkaloids: Potential Role in the Etiology of Cancers, Pulmonary Hypertension, Congenital Anomalies, and Liver Disease. Chem Res Toxicol 2014; 28:4-20. [PMID: 25483859 DOI: 10.1021/tx500403t] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Large outbreaks of acute food-related poisoning, characterized by hepatic sinusoidal obstruction syndrome, hemorrhagic necrosis, and rapid liver failure, occur on a regular basis in some countries. They are caused by 1,2-dehydropyrrolizidine alkaloids contaminating locally grown grain. Similar acute poisoning can also result from deliberate or accidental consumption of 1,2-dehydropyrrolizidine alkaloid-containing herbal medicines, teas, and spices. In recent years, it has been confirmed that there is also significant, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids in many countries due to consumption of common foods such as honey, milk, eggs, salads, and meat. The level of 1,2-dehydropyrrolizidine alkaloids in these foods is generally too low and too intermittent to cause acute toxicity. However, these alkaloids are genotoxic and can cause slowly developing chronic diseases such as pulmonary arterial hypertension, cancers, cirrhosis, and congenital anomalies, conditions unlikely to be easily linked with dietary exposure to 1,2-dehydropyrrolizidine alkaloids, especially if clinicians are unaware that such dietary exposure is occurring. This Perspective provides a comprehensive review of the acute and chronic toxicity of 1,2-dehydropyrrolizidine alkaloids and their potential to initiate certain chronic diseases, and suggests some associative considerations or indicators to assist in recognizing specific cases of diseases that may have resulted from dietary exposure to these hazardous natural substances. If it can be established that low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids is a significant cause of some of these costly and debilitating diseases, then this should lead to initiatives to reduce the level of these alkaloids in the food chain.
Collapse
Affiliation(s)
- John A Edgar
- CSIRO Food and Nutrition , 11 Julius Avenue, North Ryde, NSW 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo , 34 Rainbow Drive, Hilo, Hawaii 96720, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, ARS/USDA , 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
42
|
Zhao Y, Wang S, Xia Q, Gamboa da Costa G, Doerge DR, Cai L, Fu PP. Reaction of Dehydropyrrolizidine Alkaloids with Valine and Hemoglobin. Chem Res Toxicol 2014; 27:1720-31. [DOI: 10.1021/tx5002139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuewei Zhao
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Shuguang Wang
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Qingsu Xia
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | | | - Daniel R. Doerge
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Lining Cai
- Biotranex LLC, Monmouth Junction, New Jersey 08852, United States
| | - Peter P. Fu
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| |
Collapse
|
43
|
Amin KA, Hashem KS, Al-muzafar HM, Taha EM. Oxidative hepatotoxicity effects of monocrotaline and its amelioration by lipoic acid, S-adenosyl methionine and vitamin E. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2014; 11:35-41. [PMID: 24413220 DOI: 10.1515/jcim-2013-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/07/2013] [Indexed: 01/06/2023]
Abstract
Liver is the major site for several xenobiotics metabolism, and formation of toxic metabolites that may be hepatotoxic, therefore the burden of metabolism and exposure to dangerous chemicals make liver vulnerable to a variety of disorders. Our work aimed to investigate the effects of some antioxidants such as lipoic acid (LA), S-adenosyl methionine (SAM) and vitamin E in a trail to investigate the possibility of using these substances to relieve and protect liver from exposure to monocrotaline (MCT). Twenty-five mature adult rats were classified into five groups (five rats in each group), control group, MCT-induced hepatic damage, LA+MCT, SAM+MCT and vitamin E+MCT group. Homogenates of liver samples were used for measuring the oxidative biomarkers and hepatic antioxidant status. The results showed that administration of vitamin E, SAM and LA caused a significant increase in liver glutathione contents, glutathione reductase, glutathione peroxidase and glutathione-S-transferase activities and a significant decrease in hepatic catalase and superoxide dismutase. We could conclude that administration of natural LA, SAM and vitamin E before and after MCT injection modulate the hepatic oxidative stresses induced by MCT in various extents.
Collapse
|
44
|
Wang CC, Xia Q, Li M, Wang S, Zhao Y, Tolleson WH, Yin JJ, Fu PP. Metabolic activation of pyrrolizidine alkaloids leading to phototoxicity and photogenotoxicity in human HaCaT keratinocytes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:362-384. [PMID: 25436474 DOI: 10.1080/10590501.2014.969980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pyrrolizidine alkaloids, produced by a large number of poisonous plants with wide global distribution, are associated with genotoxicity, tumorigenicity, and hepatotoxicity in animals and humans. Mammalian metabolism converts pyrrolizidine alkaloids to reactive pyrrolic metabolites (dehydropyrrolizidine alkaloids) that form covalent protein and DNA adducts. Although a mechanistic understanding is currently unclear, pyrrolizidine alkaloids can cause secondary (hepatogenous) photosensitization and induce skin cancer. In this study, the phototoxicity of monocrotaline, riddelliine, dehydromonocrotaline, dehydroriddelliine, and dehydroretronecine (DHR) in human HaCaT keratinocytes under ultraviolet A (UVA) irradiation was determined. UVA irradiation of HaCaT cells treated with dehydromonocrotaline, dehydroriddelline, and DHR resulted in increased release of lactate dehydrogenase and enhanced photocytotoxicity proportional to the UVA doses. UVA-induced photochemical DNA damage also increased proportionally with dehydromonocrotaline and dehydroriddelline. UVA treatment potentiated the formation of 8-hydroxy-2'-deoxyguanosine DNA adducts induced by dehydromonocrotaline in HaCaT skin keratinocytes. Using electron spin resistance trapping, we found that UVA irradiation of dehydromonocrotaline and dehydroriddelliine generates reactive oxygen species (ROS), including hydroxyl radical, singlet oxygen, and superoxide, and electron transfer reactions, indicating that cytotoxicity and genotoxicity of these compounds could be mediated by ROS. Our results suggest that dehydropyrrolizidine alkaloids formed or delivered to the skin cause pyrrolizidine alkaloid-induced secondary photosensitization and possible skin cancer.
Collapse
Affiliation(s)
- Chia-Chi Wang
- a National Center for Toxicological Research , US Food and Drug Administration , Jefferson , Arkansas , USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ruan J, Liao C, Ye Y, Lin G. Lack of Metabolic Activation and Predominant Formation of an Excreted Metabolite of Nontoxic Platynecine-Type Pyrrolizidine Alkaloids. Chem Res Toxicol 2013; 27:7-16. [DOI: 10.1021/tx4004159] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianqing Ruan
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Joint Research
Laboratory for Promoting Globalization of Traditional Chinese Medicines
between Shanghai Institute of Materia Medica, Chinese Academy of Sciences and The Chinese University of Hong Kong
| | - Cangsong Liao
- Joint Research
Laboratory for Promoting Globalization of Traditional Chinese Medicines
between Shanghai Institute of Materia Medica, Chinese Academy of Sciences and The Chinese University of Hong Kong
- State Key Laboratory of Drug Research & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, People’s Republic of China
| | - Yang Ye
- Joint Research
Laboratory for Promoting Globalization of Traditional Chinese Medicines
between Shanghai Institute of Materia Medica, Chinese Academy of Sciences and The Chinese University of Hong Kong
- State Key Laboratory of Drug Research & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, People’s Republic of China
| | - Ge Lin
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Joint Research
Laboratory for Promoting Globalization of Traditional Chinese Medicines
between Shanghai Institute of Materia Medica, Chinese Academy of Sciences and The Chinese University of Hong Kong
| |
Collapse
|
46
|
Li YH, Kan WLT, Li N, Lin G. Assessment of pyrrolizidine alkaloid-induced toxicity in an in vitro screening model. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:560-567. [PMID: 24045176 DOI: 10.1016/j.jep.2013.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/30/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pyrrolizidine alkaloids (PAs) are a group of heterocyclic phytotoxins present in a wide range of plants. The consumption of PA-containing medicinal herbs or PA-contaminated foodstuffs has long been reported to cause human hepatotoxicity. However, the degrees of hepatotoxicity of different PAs are unknown, which makes it difficult to determine a universal threshold of toxic dose of individual PAs for safe regulation of PA-containing natural products. The aim of the present study is to develop a simple and convenient in vitro model to assess the hepatotoxicity of different PAs. MATERIAL AND METHODS Six common cytotoxicity assays were used to evaluate the hepatotoxicity of different PAs in human hepatocellular carcinoma HepG2 cells. RESULTS The combination of MTT and bromodeoxyuridine incorporation (BrdU) assays demonstrated to be a suitable method to evaluate the toxic potencies of various PAs in HepG2 cells, and the results indicated that otonecine-type PA (clivorine: IC₂₀=0.013 ± 0.004 mM (MTT), 0.066 ± 0.031 mM (BrdU)) exhibited significantly higher cytotoxic and anti-proliferative effects than retronecine-type PA (retrorsine: IC₂₀=0.27 ± 0.07 mM (MTT), 0.19 ± 0.03 mM (BrdU)). While as expected, the known less toxic platyphylline-type PA (platyphylline: IC₂₀=0.85 ± 0.11 mM (MTT), 1.01 ± 0.40 mM (BrdU)) exhibited significantly less toxicity. The different cytotoxic and anti-proliferative potencies of various PAs in the same retronecine-type could also be discriminated by using the combined MTT and BrdU assays. In addition, the developed assays were further utilized to test alkaloid extract of Gynura segetum, a senecionine and seneciphylline-containing herb, the overall cytotoxicity of two PAs in the extract was comparable to that of these two PAs tested individually. CONCLUSION Using the developed in vitro model, the cytotoxicity of different PAs and the extract of a PA-containing herb were investigated in parallel in one system, and their different hepatotoxic potencies were determined and directly compared for the first time. The results suggested that the developed model has a great potential to be applied for the quick screening of the toxicity of PAs and PA-containing natural products.
Collapse
Affiliation(s)
- Yan Hong Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | | | | | | |
Collapse
|
47
|
Vacillotto G, Favretto D, Seraglia R, Pagiotti R, Traldi P, Mattoli L. A rapid and highly specific method to evaluate the presence of pyrrolizidine alkaloids in Borago officinalis seed oil. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1078-1082. [PMID: 24130010 DOI: 10.1002/jms.3251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/27/2013] [Accepted: 07/05/2013] [Indexed: 06/02/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are complex molecules, present in plants as free bases and N-oxides. They are known for their hepatotoxicity, and consequently there is a health risk associated with the use of medicinal herbs that contain PAs. Unfortunately, there is no international regulation of PAs in foods, unlike those for herbs and medicines: in particular, for herbal preparation or herbal extracts, the total PA content must not exceed 1 µg/kg or 1 µg/l, respectively. Borago officinalis seed oil is a source of γ-linolenic acid, and its use is increased in both pharmaceutical and health food industries. Even if studies based on gas chromatography and TLC methods showed that PAs are not co-extracted with oil, the development of a rapid and sensitive method able to evaluate the presence of PAs in commercially available products is surely of interest. The presence of PAs in a commercially available Borago officinalis seed oil was tested either in the oil sample diluted with tetrahydrofuran/methanol (MeOH)/H2 O (85/10/5 v:v:v) or after extraction with MeOH/H2 O (50/50 v:v) solution The samples were analysed by electrospray ionization in positive ion mode and in high mass resolution (60,000) conditions. In both cases to evaluate the effectiveness of the method, spiking experiments were performed adding known amount of two PA standards to the borage seed oil. A limit of detection in the order of 200 ppt was determined for these two compounds, strongly analogous to Borago officinalis seed oil PAs. Consequently, if present, PAs level in Borago officinalis seed oil must lower than 200 ppt.
Collapse
|
48
|
Xia Q, Zhao Y, Von Tungeln LS, Doerge DR, Lin G, Cai L, Fu PP. Pyrrolizidine Alkaloid-Derived DNA Adducts as a Common Biological Biomarker of Pyrrolizidine Alkaloid-Induced Tumorigenicity. Chem Res Toxicol 2013; 26:1384-96. [DOI: 10.1021/tx400241c] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingsu Xia
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Yuewei Zhao
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Linda S. Von Tungeln
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Daniel R. Doerge
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Ge Lin
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Lining Cai
- Biotranex LLC, Monmouth Junction, New Jersey 08852, United States
| | - Peter P. Fu
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| |
Collapse
|
49
|
|
50
|
Basu S, Kandiyal PS, Ampapathi RS, Chakraborty TK. Ti(iii)-mediated radical cyclization of epoxy-β-aminoacrylate in the synthesis of the substituted pyrrolidine core of necine bases: synthesis of 2-epi-rosmarinecine. RSC Adv 2013. [DOI: 10.1039/c3ra42315h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|