1
|
Demirkaya Miloglu F, Bayrak B, Yuksel B, Demir SN, Gundogdu G, Kadioglu Y, Abd El-Aty AM. Plasma metabolomic signatures after oral administration of ritonavir in COVID-19 treatment via chemometrics-assisted UPLC/Q-TOF/MS/MS. J Pharm Biomed Anal 2025; 255:116638. [PMID: 39700866 DOI: 10.1016/j.jpba.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Understanding the pharmacodynamics of ritonavir through metabolomics offers insights into its side effects and helps in the development of safer therapies. This study aimed to investigate the effects of ritonavir treatment on the metabolic profiles of rabbits via a metabolomics approach, with the objective of elucidating its impact on various biochemical pathways and identifying relevant biomarkers. The rabbits were divided into control and ritonavir-treated groups, and their plasma samples were analyzed via ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF/MS/MS). Metabolites were identified on the basis of the masscharge ratio (m/z) and validated via XCMS software. Metabolites with a fold change ≥ 1.5 and P ≤ 0.01 were analyzed via principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA) to distinguish between the groups. MetaboAnalyst 6.0 was used for pathway analysis to identify metabolic pathways affected by ritonavir. The PCA and OPLS-DA models revealed clear separation between the control and ritonavir-treated groups, with high R² and Q² values indicating robust model performance. Pathway analysis revealed that ritonavir treatment significantly affected several metabolic pathways, including those related to ether lipid, phenylalanine, sphingolipid, and glycerophospholipid metabolism. Particularly significant changes were observed in metabolites related to lipid metabolism, oxidative stress responses and cellular signaling. Ritonavir significantly impacts metabolic pathways, particularly those involved in lipid metabolism, and oxidative stress responses, which may influence immune responses and drug interactions. This study also highlights the potential of integrating metabolomics with personalized medicine approaches to optimize ritonavir treatment strategies and reduce adverse effects. These findings indicate that ritonavir significantly influences cellular homeostasis and metabolic processes in addition to its antiviral properties. This highlights the necessity of comprehending the metabolic effects of ritonavir to enhance its clinical application, especially in the management of COVID-19. Further research is warranted to explore these alterations and their implications for therapeutic strategies.
Collapse
Affiliation(s)
- Fatma Demirkaya Miloglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey.
| | - Burak Bayrak
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Busra Yuksel
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Sema Nur Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Pamukkale University, Erzurum 20070, Turkey
| | - Yucel Kadioglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| |
Collapse
|
2
|
Wang X, Wang Z, Wang J, Yu Y, Wang Y, Xiong Z, Han S, Zhong XB, Wang P, Zhang L. Role of HNF4A-AS1/HNRNPC-mediated HNF4A ubiquitination protection against ritonavir-induced hepatotoxicity. Mol Pharmacol 2025; 107:100021. [PMID: 40037142 DOI: 10.1016/j.molpha.2025.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Ritonavir (RTV) is an important drug for anti-human immunodeficiency virus treatment and is mainly metabolized by cytochrome P450 (CYP) 3A4. Clinically, the most common side effect of RTV treatment is hepatoxicity. We previously showed that the long noncoding RNA hepatocyte nuclear factor 4 alpha (HNF4A) antisense 1 (HNF4A-AS1) negatively regulated CYP3A4 expression and participated in RTV-induced hepatotoxicity in vitro, but the mechanism has not been well understood. In this study, similar results were observed in the mouse, where liver-specific knockdown of Hnf4aos (homolog of human HNF4A-AS1) led to increased serum aspartate (∼1.8-fold) and alanine transaminase (∼2.4-fold) levels and enlarged and degenerated hepatocytes 24 hours after RTV administration. Meanwhile, endoplasmic reticulum stress markers GRP78, PDI, and XBP-1 increased about 2.4-fold, 2.1-fold, and 2.7-fold, respectively. The aggravated liver injury correlated with Hnf4aos knockdown, attributable to heightened Cyp3a11 (homolog of human CYP3A4) expression (mRNA and protein levels were 1.8-fold and 2.5-fold, respectively). Importantly, in vitro studies revealed the underlying mechanism that HNF4A-AS1 mediated the interaction between heterogeneous nuclear ribonucleoprotein C and HNF4A, whereas heterogeneous nuclear ribonucleoprotein C promoted HNF4A degradation through the ubiquitination pathway, thereby decreasing CYP3A4 expression and alleviating RTV-induced liver injury. Overall, our findings unveil a novel mechanism by which HNF4A-AS1 regulates CYP3A4 expression to influence RTV-induced liver injury. SIGNIFICANCE STATEMENT: HNF4A-AS1 negatively regulates the expression of CYP3A4, whose overexpression is highly correlated with ritonavir (RTV)-induced liver injury. In this study, the role of Hnf4aos (homolog of human HNF4A-AS1) in RTV-induced hepatotoxicity was confirmed in mice. We found that HNF4A-AS1 and HNRNPC form a complex and facilitate the ubiquitination and degradation of HNF4A protein, thereby decreasing CYP3A4 expression and alleviating RTV hepatotoxicity.
Collapse
Affiliation(s)
- Xiaofei Wang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities, Zhengzhou University, Zhengzhou, China
| | - Zijing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities, Zhengzhou University, Zhengzhou, China
| | - Jingya Wang
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities, Zhengzhou University, Zhengzhou, China
| | - Yihang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities, Zhengzhou University, Zhengzhou, China
| | - Yiting Wang
- Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zaihuan Xiong
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities, Zhengzhou University, Zhengzhou, China
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities, Zhengzhou University, Zhengzhou, China
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities, Zhengzhou University, Zhengzhou, China.
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Smith DJ, Bi H, Hamman J, Ma X, Mitchell C, Nyirenda K, Monera-Penduka T, Oketch-Rabah H, Paine MF, Pettit S, Pheiffer W, Van Breemen RB, Embry M. Potential pharmacokinetic interactions with concurrent use of herbal medicines and a ritonavir-boosted COVID-19 protease inhibitor in low and middle-income countries. Front Pharmacol 2023; 14:1210579. [PMID: 37502215 PMCID: PMC10368978 DOI: 10.3389/fphar.2023.1210579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
The COVID-19 pandemic sparked the development of novel anti-viral drugs that have shown to be effective in reducing both fatality and hospitalization rates in patients with elevated risk for COVID-19 related morbidity or mortality. Currently, nirmatrelvir/ritonavir (Paxlovid™) fixed-dose combination is recommended by the World Health Organization for treatment of COVID-19. The ritonavir component is an inhibitor of cytochrome P450 (CYP) 3A, which is used in this combination to achieve needed therapeutic concentrations of nirmatrelvir. Because of the critical pharmacokinetic effect of this mechanism of action for Paxlovid™, co-administration with needed medications that inhibit or induce CYP3A is contraindicated, reflecting concern for interactions with the potential to alter the efficacy or safety of co-administered drugs that are also metabolized by CYP3A. Some herbal medicines are known to interact with drug metabolizing enzymes and transporters, including but not limited to inhibition or induction of CYP3A and P-glycoprotein. As access to these COVID-19 medications has increased in low- and middle-income countries (LMICs), understanding the potential for herb-drug interactions within these regions is important. Many studies have evaluated the utility of herbal medicines for COVID-19 treatments, yet information on potential herb-drug interactions involving Paxlovid™, specifically with herbal medicines commonly used in LMICs, is lacking. This review presents data on regionally-relevant herbal medicine use (particularly those promoted as treatments for COVID-19) and mechanism of action data on herbal medicines to highlight the potential for herbal medicine interaction Herb-drug interaction mediated by ritonavir-boosted antiviral protease inhibitors This work highlights potential areas for future experimental studies and data collection, identifies herbal medicines for inclusion in future listings of regionally diverse potential HDIs and underscores areas for LMIC-focused provider-patient communication. This overview is presented to support governments and health protection entities as they prepare for an increase of availability and use of Paxlovid™.
Collapse
Affiliation(s)
- Dallas J. Smith
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, United States
- COVID-19 Response International Task Force, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Huichang Bi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Josias Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Constance Mitchell
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Kumbukani Nyirenda
- Department of Pharmacy, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Tsitsi Monera-Penduka
- Research Unit for Safety of Herbs and Drugs, University of Zimbabwe, Harare, Zimbabwe
| | | | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Syril Pettit
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Wihan Pheiffer
- DSI/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Richard B. Van Breemen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, United States
| |
Collapse
|
4
|
Loos NHC, Beijnen JH, Schinkel AH. The Mechanism-Based Inactivation of CYP3A4 by Ritonavir: What Mechanism? Int J Mol Sci 2022; 23:ijms23179866. [PMID: 36077262 PMCID: PMC9456214 DOI: 10.3390/ijms23179866] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Ritonavir is the most potent cytochrome P450 (CYP) 3A4 inhibitor in clinical use and is often applied as a booster for drugs with low oral bioavailability due to CYP3A4-mediated biotransformation, as in the treatment of HIV (e.g., lopinavir/ritonavir) and more recently COVID-19 (Paxlovid or nirmatrelvir/ritonavir). Despite its clinical importance, the exact mechanism of ritonavir-mediated CYP3A4 inactivation is still not fully understood. Nonetheless, ritonavir is clearly a potent mechanism-based inactivator, which irreversibly blocks CYP3A4. Here, we discuss four fundamentally different mechanisms proposed for this irreversible inactivation/inhibition, namely the (I) formation of a metabolic-intermediate complex (MIC), tightly coordinating to the heme group; (II) strong ligation of unmodified ritonavir to the heme iron; (III) heme destruction; and (IV) covalent attachment of a reactive ritonavir intermediate to the CYP3A4 apoprotein. Ritonavir further appears to inactivate CYP3A4 and CYP3A5 with similar potency, which is important since ritonavir is applied in patients of all ethnicities. Although it is currently not possible to conclude what the primary mechanism of action in vivo is, it is unlikely that any of the proposed mechanisms are fundamentally wrong. We, therefore, propose that ritonavir markedly inactivates CYP3A through a mixed set of mechanisms. This functional redundancy may well contribute to its overall inhibitory efficacy.
Collapse
Affiliation(s)
- Nancy H. C. Loos
- The Netherlands Cancer Institute, Division of Pharmacology, 1066 CX Amsterdam, The Netherlands
| | - Jos H. Beijnen
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, 3584 CS Utrecht, The Netherlands
- The Netherlands Cancer Institute, Division of Pharmacy and Pharmacology, 1066 CX Amsterdam, The Netherlands
| | - Alfred H. Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, 1066 CX Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-205122046
| |
Collapse
|
5
|
Ridhwan MJM, Bakar SIA, Latip NA, Ghani NA, Ismail NH. A Comprehensive Analysis of Human CYP3A4 Crystal Structures as a Potential Tool for Molecular Docking-Based Site of Metabolism and Enzyme Inhibition Studies. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2022; 21:259-285. [DOI: 10.1142/s2737416522300012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The notable ability of human liver cytochrome P450 3A4 (CYP3A4) to metabolize diverse xenobiotics encourages researchers to explore in-depth the mechanism of enzyme action. Numerous CYP3A4 protein crystal structures have been deposited in protein data bank (PDB) and are majorly used in molecular docking analysis. The quality of the molecular docking results depends on the three-dimensional CYP3A4 protein crystal structures from the PDB. Present review endeavors to provide a brief outline of some technical parameters of CYP3A4 PDB entries as valuable information for molecular docking research. PDB entries between 22 April 2004 and 2 June 2021 were compiled and the active sites were thoroughly observed. The present review identified 76 deposited PDB entries and described basic information that includes CYP3A4 from human genetic, Escherichia coli (E. coli) use for protein expression, crystal structure obtained from X-ray diffraction method, taxonomy ID 9606, Uniprot ID P08684, ligand–protein structure description, co-crystal ligand, protein site deposit and resolution ranges between 1.7[Formula: see text]Å and 2.95[Formula: see text]Å. The observation of protein–ligand interactions showed the various residues on the active site depending on the ligand. The residues Ala305, Ser119, Ala370, Phe304, Phe108, Phe213 and Phe215 have been found to frequently interact with ligands from CYP3A4 PDB. Literature surveys of 17 co-crystal ligands reveal multiple mechanisms that include competitive inhibition, noncompetitive inhibition, mixed-mode inhibition, mechanism-based inhibition, substrate with metabolite, inducer, or combination modes of action. This overview may help researchers choose a trustworthy CYP3A4 protein structure from the PDB database to apply the protein in molecular docking analysis for drug discovery.
Collapse
Affiliation(s)
- Mohamad Jemain Mohamad Ridhwan
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Syahrul Imran Abu Bakar
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Normala Abd Latip
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Nurunajah Ab Ghani
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| | - Nor Hadiani Ismail
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam 42300, Selangor, Malaysia
| |
Collapse
|
6
|
Wang X, Yu Y, Wang P, Yang K, Wang Y, Yan L, Zhong XB, Zhang L. Long Noncoding RNAs Hepatocyte Nuclear Factor 4A Antisense RNA 1 and Hepatocyte Nuclear Factor 1A Antisense RNA 1 Are Involved in Ritonavir-Induced Cytotoxicity in Hepatoma Cells. Drug Metab Dispos 2022; 50:704-715. [PMID: 34949673 PMCID: PMC9132102 DOI: 10.1124/dmd.121.000693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Ritonavir (RTV), a pharmacoenhancer used in anti-HIV regimens, can induce liver damage. RTV is primarily metabolized by cytochrome P450 3A4 (CYP3A4) in the liver. HNF4A antisense RNA 1 (HNF4A-AS1) and HNF1A antisense RNA 1 (HNF1A-AS1) are long noncoding RNAs that regulate the expression of pregnane X receptor (PXR) and CYP3A4. This study investigated the role and underlying mechanisms of HNF4A-AS1 and HNF1A-AS1 in RTV-induced hepatotoxicity. HNF4A-AS1 and HNF1A-AS1 were knocked down by small hairpin RNAs in Huh7 and HepG2 cells. Lactate dehydrogenase and reactive oxygen species assays were performed to assess RTV-induced hepatotoxicity. Chromatin immunoprecipitation quantitative real-time polymerase chain reaction was used to detect PXR enrichment and histone modifications in the CYP3A4 promoter. HNF4A-AS1 knockdown increased PXR and CYP3A4 expression and exacerbated RTV-induced cytotoxicity, whereas HNF1A-AS1 knockdown generated the opposite phenotype. Mechanistically, enrichment of PXR and trimethylation of histone 3 lysine 4 (H3K4me3) in the CYP3A4 promoter was increased, and trimethylation of histone 3 lysine 27 (H3K27me3) was decreased after HNF4A-AS1 knockdown. However, PXR and H3K4me3 enrichment decreased after HNF1A-AS1 knockdown. Alterations in RTV-induced hepatotoxicity caused by decreasing HNF4A-AS1 or HNF1A-AS1 were reversed by knockdown or overexpression of PXR. Increased susceptibility to RTV-induced liver injury caused by the PXR activator rifampicin was attenuated by HNF4A-AS1 overexpression or HNF1A-AS1 knockdown. Taken together, these results revealed that HNF4A-AS1 and HNF1A-AS1 modulated RTV-induced hepatotoxicity by regulating CYP3A4 expression, primarily by affecting the binding of PXR and histone modification status in the CYP3A4 promoter. SIGNIFICANCE STATEMENT: HNF4A-AS1 and HNF1A-AS1, transcribed separately from neighboring antisense genes of the human transcription factor genes HNF4A and HNF1A, were identified as long noncoding RNAs that can affect RTV-induced hepatotoxicity and susceptibility to RTV-induced hepatotoxicity caused by rifampicin exposure, mainly by affecting the expression of CY3A4 via alterations in PXR enrichment and histone modification status in the CYP3A4 promoter. This discovery provides directions for further research on the mechanisms of RTV-induced liver injury.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Pharmacology, School of Basic Medical Sciences (X.W., Y.Y., P.W., K.Y., Y.W., L.Z.) and State Key Laboratory for Esophageal Cancer Prevention and Treatment, (L.Z.) Zhengzhou University, Zhengzhou, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-B.Z.)
| | - Yihang Yu
- Department of Pharmacology, School of Basic Medical Sciences (X.W., Y.Y., P.W., K.Y., Y.W., L.Z.) and State Key Laboratory for Esophageal Cancer Prevention and Treatment, (L.Z.) Zhengzhou University, Zhengzhou, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-B.Z.)
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences (X.W., Y.Y., P.W., K.Y., Y.W., L.Z.) and State Key Laboratory for Esophageal Cancer Prevention and Treatment, (L.Z.) Zhengzhou University, Zhengzhou, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-B.Z.)
| | - Kun Yang
- Department of Pharmacology, School of Basic Medical Sciences (X.W., Y.Y., P.W., K.Y., Y.W., L.Z.) and State Key Laboratory for Esophageal Cancer Prevention and Treatment, (L.Z.) Zhengzhou University, Zhengzhou, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-B.Z.)
| | - Yiting Wang
- Department of Pharmacology, School of Basic Medical Sciences (X.W., Y.Y., P.W., K.Y., Y.W., L.Z.) and State Key Laboratory for Esophageal Cancer Prevention and Treatment, (L.Z.) Zhengzhou University, Zhengzhou, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-B.Z.)
| | - Liang Yan
- Department of Pharmacology, School of Basic Medical Sciences (X.W., Y.Y., P.W., K.Y., Y.W., L.Z.) and State Key Laboratory for Esophageal Cancer Prevention and Treatment, (L.Z.) Zhengzhou University, Zhengzhou, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-B.Z.)
| | - Xiao-Bo Zhong
- Department of Pharmacology, School of Basic Medical Sciences (X.W., Y.Y., P.W., K.Y., Y.W., L.Z.) and State Key Laboratory for Esophageal Cancer Prevention and Treatment, (L.Z.) Zhengzhou University, Zhengzhou, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-B.Z.)
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences (X.W., Y.Y., P.W., K.Y., Y.W., L.Z.) and State Key Laboratory for Esophageal Cancer Prevention and Treatment, (L.Z.) Zhengzhou University, Zhengzhou, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.-B.Z.)
| |
Collapse
|
7
|
Qin X, Hakenjos JM, MacKenzie KR, Barzi M, Chavan H, Nyshadham P, Wang J, Jung SY, Guner JZ, Chen S, Guo L, Krishnamurthy P, Bissig KD, Palmer S, Matzuk MM, Li F. Metabolism of a Selective Serotonin and Norepinephrine Reuptake Inhibitor Duloxetine in Liver Microsomes and Mice. Drug Metab Dispos 2022; 50:128-139. [PMID: 34785568 PMCID: PMC8969139 DOI: 10.1124/dmd.121.000633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Duloxetine (DLX) is a dual serotonin and norepinephrine reuptake inhibitor, widely used for the treatment of major depressive disorder. Although DLX has shown good efficacy and safety, serious adverse effects (e.g., liver injury) have been reported. The mechanisms associated with DLX-induced toxicity remain elusive. Drug metabolism plays critical roles in drug safety and efficacy. However, the metabolic profile of DLX in mice is not available, although mice serve as commonly used animal models for mechanistic studies of drug-induced adverse effects. Our study revealed 39 DLX metabolites in human/mouse liver microsomes and mice. Of note, 13 metabolites are novel, including five N-acetyl cysteine adducts and one reduced glutathione (GSH) adduct associated with DLX. Additionally, the species differences of certain metabolites were observed between human and mouse liver microsomes. CYP1A2 and CYP2D6 are primary enzymes responsible for the formation of DLX metabolites in liver microsomes, including DLX-GSH adducts. In summary, a total of 39 DLX metabolites were identified, and species differences were noticed in vitro. The roles of CYP450s in DLX metabolite formation were also verified using human recombinant cytochrome P450 (P450) enzymes and corresponding chemical inhibitors. Further studies are warranted to address the exact role of DLX metabolism in its adverse effects in vitro (e.g., human primary hepatocytes) and in vivo (e.g., Cyp1a2-null mice). SIGNIFICANCE STATEMENT: This current study systematically investigated Duloxetine (DLX) metabolism and bioactivation in liver microsomes and mice. This study provided a global view of DLX metabolism and bioactivation in liver microsomes and mice, which are very valuable to further elucidate the mechanistic study of DLX-related adverse effects and drug-drug interaction from metabolic aspects.
Collapse
Affiliation(s)
- Xuan Qin
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - John M Hakenjos
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Mercedes Barzi
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Hemantkumar Chavan
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Pranavanand Nyshadham
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Jin Wang
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Sung Yun Jung
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Joie Z Guner
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Si Chen
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Lei Guo
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Partha Krishnamurthy
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Karl-Dimiter Bissig
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Stephen Palmer
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| |
Collapse
|
8
|
In Vitro Metabolism of Donepezil in Liver Microsomes Using Non-Targeted Metabolomics. Pharmaceutics 2021; 13:pharmaceutics13070936. [PMID: 34201744 PMCID: PMC8309179 DOI: 10.3390/pharmaceutics13070936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Donepezil is a reversible acetylcholinesterase inhibitor that is currently the most commonly prescribed drug for the treatment of Alzheimer’s disease. In general, donepezil is known as a safe and well-tolerated drug, and it was not associated with liver abnormalities in several clinical trials. However, rare cases of drug-related liver toxicity have been reported since it has become commercially available. Few studies have investigated the metabolic profile of donepezil, and the mechanism of liver damage caused by donepezil has not been elucidated. In this study, the in vitro metabolism of donepezil was investigated using liquid chromatography–tandem mass spectrometry based on a non-targeted metabolomics approach. To identify metabolites, the data were subjected to multivariate data analysis and molecular networking. A total of 21 donepezil metabolites (17 in human liver microsomes, 21 in mice liver microsomes, and 17 in rat liver microsomes) were detected including 14 newly identified metabolites. One potential reactive metabolite was identified in rat liver microsomal incubation samples. Metabolites were formed through four major metabolic pathways: (1) O-demethylation, (2) hydroxylation, (3) N-oxidation, and (4) N-debenzylation. This study indicates that a non-targeted metabolomics approach combined with molecular networking is a reliable tool to identify and detect unknown drug metabolites.
Collapse
|
9
|
Jaladanki CK, Khatun S, Gohlke H, Bharatam PV. Reactive Metabolites from Thiazole-Containing Drugs: Quantum Chemical Insights into Biotransformation and Toxicity. Chem Res Toxicol 2021; 34:1503-1517. [PMID: 33900062 DOI: 10.1021/acs.chemrestox.0c00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Drugs containing thiazole and aminothiazole groups are known to generate reactive metabolites (RMs) catalyzed by cytochrome P450s (CYPs). These RMs can covalently modify essential cellular macromolecules and lead to toxicity and induce idiosyncratic adverse drug reactions. Molecular docking and quantum chemical hybrid DFT study were carried out to explore the molecular mechanisms involved in the biotransformation of thiazole (TZ) and aminothiazole (ATZ) groups leading to RM epoxide, S-oxide, N-oxide, and oxaziridine. The energy barrier required for the epoxidation is 13.63 kcal/mol, that is lower than that of S-oxidation, N-oxidation, and oxaziridine formation (14.56, 17.90, and 20.20, kcal/mol respectively). The presence of the amino group in ATZ further facilitates all the metabolic pathways, for example, the barrier for the epoxidation reaction is reduced by ∼2.5 kcal/mol. Some of the RMs/their isomers are highly electrophilic and tend to form covalent bonds with nucleophilic amino acids, finally leading to the formation of metabolic intermediate complexes (MICs). The energy profiles of these competitive pathways have also been explored.
Collapse
Affiliation(s)
- Chaitanya K Jaladanki
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Samima Khatun
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.,Forschungszentrum Jülich GmbH, John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| |
Collapse
|
10
|
Guengerich FP, McCarty KD, Chapman JG. Kinetics of cytochrome P450 3A4 inhibition by heterocyclic drugs defines a general sequential multistep binding process. J Biol Chem 2021; 296:100223. [PMID: 33449875 PMCID: PMC7948456 DOI: 10.1074/jbc.ra120.016855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Cytochrome P450 (P450) 3A4 is the enzyme most involved in the metabolism of drugs and can also oxidize numerous steroids. This enzyme is also involved in one-half of pharmacokinetic drug-drug interactions, but details of the exact mechanisms of P450 3A4 inhibition are still unclear in many cases. Ketoconazole, clotrimazole, ritonavir, indinavir, and itraconazole are strong inhibitors; analysis of the kinetics of reversal of inhibition with the model substrate 7-benzoyl quinoline showed lag phases in several cases, consistent with multiple structures of P450 3A4 inhibitor complexes. Lags in the onset of inhibition were observed when inhibitors were added to P450 3A4 in 7-benzoyl quinoline O-debenzylation reactions, and similar patterns were observed for inhibition of testosterone 6β-hydroxylation by ritonavir and indinavir. Upon mixing with inhibitors, P450 3A4 showed rapid binding as judged by a spectral shift with at least partial high-spin iron character, followed by a slower conversion to a low-spin iron-nitrogen complex. The changes were best described by two intermediate complexes, one being a partial high-spin form and the second another intermediate, with half-lives of seconds. The kinetics could be modeled in a system involving initial loose binding of inhibitor, followed by a slow step leading to a tighter complex on a multisecond time scale. Although some more complex possibilities cannot be dismissed, these results describe a system in which conformationally distinct forms of P450 3A4 bind inhibitors rapidly and two distinct P450-inhibitor complexes exist en route to the final enzyme-inhibitor complex with full inhibitory activity.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jesse G Chapman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
11
|
MacKenzie KR, Zhao M, Barzi M, Wang J, Bissig KD, Maletic-Savatic M, Jung SY, Li F. Metabolic profiling of norepinephrine reuptake inhibitor atomoxetine. Eur J Pharm Sci 2020; 153:105488. [PMID: 32712217 PMCID: PMC7506503 DOI: 10.1016/j.ejps.2020.105488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Atomoxetine (ATX), a selective and potent inhibitor of the presynaptic norepinephrine transporter, is used mainly to treat attention-deficit hyperactivity disorder. Although multiple adverse effects associated with ATX have been reported including severe liver injuries, the mechanisms of ATX-related toxicity remain largely unknown. Metabolism frequently contributes to adverse effects of a drug through reactive metabolites, and the bioactivation status of ATX is still not investigated yet. Here, we systematically investigated ATX metabolism, bioactivation, species difference in human, mouse, and rat liver microsomes (HLM, MLM, and RLM) and in mice using metabolomic approaches as mice and rats are commonly used animal models for the studies of drug toxicity. We identified thirty one ATX metabolites and adducts in LMs and mice, 16 of which are novel. In LMs, we uncovered two methoxyamine-trapped aldehydes, two cyclization metabolites, detoluene-ATX, and ATX-N-hydroxylation for the first time. Detoluene-ATX and one cyclization metabolite were also observed in mice. Using chemical inhibitors and recombinant CYP enzymes, we demonstrated that CYP2C8 and CYP2B6 mainly contribute to the formation of aldehyde; CYP2D6 is the dominant enzyme for the formation of ATX cyclization and detoluene-ATX; CYP3A4 is major enzyme responsible for the hydroxylamine formation. The findings concerning aldehydes should be very useful to further elucidate the mechanistic aspects of adverse effects associated with ATX from metabolic angles. Additionally, the species differences for each metabolite should be helpful to investigate the contribution of specific metabolites to ATX toxicity and possible drug-drug interactions in suitable models.
Collapse
Affiliation(s)
- Kevin R MacKenzie
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mingkun Zhao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mercedes Barzi
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletic-Savatic
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Li F, MacKenzie KR, Jain P, Santini C, Young DW, Matzuk MM. Metabolism of JQ1, an inhibitor of bromodomain and extra terminal bromodomain proteins, in human and mouse liver microsomes†. Biol Reprod 2020; 103:427-436. [PMID: 32285106 PMCID: PMC7401416 DOI: 10.1093/biolre/ioaa043] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
JQ1 is a small-molecule inhibitor of the bromodomain and extra terminal (BET) protein family that potently inhibits the bromodomain testis-specific protein (BRDT), which is essential for spermatogenesis. JQ1 treatment produces a reversible contraceptive effect by targeting the activity of BRDT in mouse male germ cells, validating BRDT as a male contraceptive target. Although JQ1 possesses favourable physical properties, it exhibits a short half-life. Because the details of xenobiotic metabolism play important roles in the optimization of drug candidates and in determining the role of metabolism in drug efficacy, we investigated the metabolism of JQ1 in human and mouse liver microsomes. We present the first comprehensive view of JQ1 metabolism in liver microsomes, distinguishing nine JQ1 metabolites, including three monohydroxylated, one de-tert-butylated, two dihydroxylated, one monohydroxylated/dehydrogenated, one monohydroxylated-de-tert-butylated and one dihydroxylated/dehydrogenated variant of JQ1. The dominant metabolite (M1) in both human and mouse liver microsomes is monohydroxylated on the fused three-ring core. Using recombinant cytochrome P450 (CYP) enzymes, chemical inhibitors and the liver S9 fraction of Cyp3a-null mice, we identify enzymes that contribute to the formation of these metabolites. Cytochrome P450 family 3 subfamily A member 4 (CYP3A4) is the main contributor to the production of JQ1 metabolites in vitro, and the CYP3A4/5 inhibitor ketoconazole strongly inhibits JQ1 metabolism in both human and mouse liver microsomes. Our findings suggest that JQ1 half-life and efficacy might be improved in vivo by co-administration of a selective CYP inhibitor, thereby impacting the use of JQ1 as a probe for BRDT activity in spermatogenesis and as a probe or therapeutic in other systems.
Collapse
Affiliation(s)
- Feng Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.,NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine Houston, TX, USA
| | - Kevin R MacKenzie
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.,NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine Houston, TX, USA
| | - Prashi Jain
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Conrad Santini
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Damian W Young
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Jeon J, Hollender J. In vitro biotransformation of pharmaceuticals and pesticides by trout liver S9 in the presence and absence of carbamazepine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109513. [PMID: 31421535 DOI: 10.1016/j.ecoenv.2019.109513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to develop (i) a technique for identifying metabolites of organic contaminants by using an in vitro system of trout S9 and liquid chromatography-high-resolution mass spectrometry-based identification method and (ii) to apply this technique to identify the interactive potential of carbamazepine on the formation rate of other metabolites. The pharmaceuticals carbamazepine and propranolol and the pesticides azoxystrobin, diazinon, and fipronil were selected as test contaminants. As a result, a total of ten metabolites were identified for the five parent substances, six of which were confirmed using reference standards. Metabolic reactions included hydroxylation, epoxidation, S-oxidation, and dealkylation. The metabolic transformation rate ranged from 0.2 to 3.5 pmol/mg protein/min/μmol substrate. In the binary exposure experiment with increasing carbamazepine concentration, the formation rates of diazinon and fipronil metabolites (MDI2 and MFP2, respectively) increased, while formation of metabolites of propranolol and azoxystrobin (MPR1, MPR2, MPR3, and MAZ1) slowed down. Meanwhile, S9 pre-exposed to carbamazepine produced diazoxon, a toxic metabolite of diazinon, and pyrimidinol, a less toxic metabolite, more rapidly. These results suggest that carbamazepine, a perennial environmental pollutant, might modulate the toxicity of other substances such as diazinon but further in vivo studies are needed.
Collapse
Affiliation(s)
- Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092, Zürich, Switzerland
| |
Collapse
|
14
|
Schmitz LM, Schäper J, Rosenthal K, Lütz S. Accessing the Biocatalytic Potential for C−H‐Activation by Targeted Genome Mining and Screening. ChemCatChem 2019. [DOI: 10.1002/cctc.201901273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lisa Marie Schmitz
- Chair for Bioprocess Engineering Department of Biochemical and Chemical EngineeringTU Dortmund University Emil-Figge-Straße 66 Dortmund 44227 Germany
| | - Jonas Schäper
- Chair for Bioprocess Engineering Department of Biochemical and Chemical EngineeringTU Dortmund University Emil-Figge-Straße 66 Dortmund 44227 Germany
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering Department of Biochemical and Chemical EngineeringTU Dortmund University Emil-Figge-Straße 66 Dortmund 44227 Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering Department of Biochemical and Chemical EngineeringTU Dortmund University Emil-Figge-Straße 66 Dortmund 44227 Germany
| |
Collapse
|
15
|
Shehu AI, Lu J, Wang P, Zhu J, Wang Y, Yang D, McMahon D, Xie W, Gonzalez FJ, Ma X. Pregnane X receptor activation potentiates ritonavir hepatotoxicity. J Clin Invest 2019; 129:2898-2903. [PMID: 31039134 DOI: 10.1172/jci128274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ritonavir (RTV) is on the World Health Organization's List of Essential Medicines for antiretroviral therapy, but can cause hepatotoxicity by unknown mechanisms. Multiple clinical studies found that hepatotoxicity occurred in 100% of participants who were pretreated with rifampicin or efavirenz followed by RTV-containing regimens. Both rifampicin and efavirenz are activators of the pregnane X receptor (PXR), a transcription factor with significant inter-species differences in ligand-dependent activation. Using PXR-humanized mouse models, we recapitulated the RTV hepatotoxicity observed in the clinic. PXR was found to modulate RTV hepatotoxicity through CYP3A4-dependent pathways involved in RTV bioactivation, oxidative stress, and endoplasmic reticulum stress. In summary, the current work demonstrated the essential roles of human PXR and CYP3A4 in RTV hepatotoxicity, which can be applied to guide the safe use of RTV-containing regimens in the clinic.
Collapse
Affiliation(s)
- Amina I Shehu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, and
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, and
| | - Pengcheng Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, and
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, and
| | - Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, and
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, and
| | - Deborah McMahon
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, and
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, and
| |
Collapse
|
16
|
Zhu J, Wang P, Shehu AI, Lu J, Bi H, Ma X. Identification of Novel Pathways in Idelalisib Metabolism and Bioactivation. Chem Res Toxicol 2018; 31:548-555. [PMID: 29896955 DOI: 10.1021/acs.chemrestox.8b00023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Idelalisib (ILB) is a selective phosphatidylinositol-3-kinase delta inhibitor approved for the treatment of hematological malignancies. However, ILB frequently causes hepatotoxicity, and the exact mechanism remains unclear. The current study profiled the metabolites of ILB in mouse liver, urine, and feces. The major metabolites found in the liver were oxidized metabolite GS-563117 (M1) and ILB-glutathione (GSH) adduct (M2). These metabolic pathways were confirmed by analysis of urine and feces from mice treated with ILB. Identification of ILB-GSH adduct (M2) suggests the formation of reactive metabolites of ILB. We also found that M1 can produce reactive metabolites and form M1-GSH adducts. The GSH-conjugates identified in mouse liver were also found in the incubations of ILB and M1 with human liver microsomes. Furthermore, we illustrated that CYP3A4 and 2C9 are the key enzymes contributing to the bioactivation pathway of ILB and M1. In summary, our work revealed that both ILB and its major metabolite M1 can undergo bioactivation to produce reactive metabolites in the liver. Further studies are required to determine whether these metabolic pathways contribute to ILB hepatotoxicity.
Collapse
Affiliation(s)
- Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Pengcheng Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Amina I Shehu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Huichang Bi
- School of Phamaceutical Science , Sun Yat-sen University , 132 Waihuandong Road , University City of Guangzhou, Guangzhou 510006 , China
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
17
|
Le Guillou D, Bucher S, Begriche K, Hoët D, Lombès A, Labbe G, Fromenty B. Drug-Induced Alterations of Mitochondrial DNA Homeostasis in Steatotic and Nonsteatotic HepaRG Cells. J Pharmacol Exp Ther 2018; 365:711-726. [PMID: 29669730 DOI: 10.1124/jpet.117.246751] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/06/2018] [Indexed: 12/19/2022] Open
Abstract
Although mitochondriotoxicity plays a major role in drug-induced hepatotoxicity, alteration of mitochondrial DNA (mtDNA) homeostasis has been described only with a few drugs. Because it requires long drug exposure, this mechanism of toxicity cannot be detected with investigations performed in isolated liver mitochondria or cultured cells exposed to drugs for several hours or a few days. Thus, a first aim of this study was to determine whether a 2-week treatment with nine hepatotoxic drugs could affect mtDNA homeostasis in HepaRG cells. Previous investigations with these drugs showed rapid toxicity on oxidative phosphorylation but did not address the possibility of delayed toxicity secondary to mtDNA homeostasis impairment. The maximal concentration used for each drug induced about 10% cytotoxicity. Two other drugs, zalcitabine and linezolid, were used as positive controls for their respective effects on mtDNA replication and translation. Another goal was to determine whether drug-induced mitochondriotoxicity could be modulated by lipid overload mimicking nonalcoholic fatty liver. Among the nine drugs, imipramine and ritonavir induced mitochondrial effects suggesting alteration of mtDNA translation. Ritonavir toxicity was stronger in nonsteatotic cells. None of the nine drugs decreased mtDNA levels. However, increased mtDNA was observed with five drugs, especially in nonsteatotic cells. The mtDNA levels could not be correlated with the expression of key factors involved in mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), PGC1β, and AMP-activated protein kinase α-subunit. Hence, drug-induced impairment of mtDNA translation might not be rare, and increased mtDNA levels could be a frequent adaptive response to slight energy shortage. Nevertheless, this adaptation could be impaired by lipid overload.
Collapse
Affiliation(s)
- Dounia Le Guillou
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Simon Bucher
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Karima Begriche
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Delphine Hoët
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Anne Lombès
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Gilles Labbe
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| | - Bernard Fromenty
- INSERM, INRA, Université de Rennes, UBL, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France (D.L.G., S.B., K.B., B.F.); Sanofi, Investigative Toxicology, Alfortville, France (D.H., G.L.); and INSERM, UMR 1016, Institut Cochin, Université Paris V René Descartes, Paris, France (A.L.)
| |
Collapse
|
18
|
McMillan JM, Cobb DA, Lin Z, Banoub MG, Dagur RS, Branch Woods AA, Wang W, Makarov E, Kocher T, Joshi PS, Quadros RM, Harms DW, Cohen SM, Gendelman HE, Gurumurthy CB, Gorantla S, Poluektova LY. Antiretroviral Drug Metabolism in Humanized PXR-CAR-CYP3A-NOG Mice. J Pharmacol Exp Ther 2018; 365:272-280. [PMID: 29476044 PMCID: PMC5878674 DOI: 10.1124/jpet.117.247288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/22/2018] [Indexed: 12/16/2022] Open
Abstract
Antiretroviral drug (ARV) metabolism is linked largely to hepatic cytochrome P450 activity. One ARV drug class known to be metabolized by intestinal and hepatic CYP3A are the protease inhibitors (PIs). Plasma drug concentrations are boosted by CYP3A inhibitors such as cobisistat and ritonavir (RTV). Studies of such drug-drug interactions are limited since the enzyme pathways are human specific. While immune-deficient mice reconstituted with human cells are an excellent model to study ARVs during human immunodeficiency virus type 1 (HIV-1) infection, they cannot reflect human drug metabolism. Thus, we created a mouse strain with the human pregnane X receptor, constitutive androstane receptor, and CYP3A4/7 genes on a NOD.Cg-Prkdcscid Il2rgtm1Sug /JicTac background (hCYP3A-NOG) and used them to evaluate the impact of human CYP3A metabolism on ARV pharmacokinetics. In proof-of-concept studies we used nanoformulated atazanavir (nanoATV) with or without RTV. NOG and hCYP3A-NOG mice were treated weekly with 50 mg/kg nanoATV alone or boosted with nanoformulated ritonavir (nanoATV/r). Plasma was collected weekly and liver was collected at 28 days post-treatment. Plasma and liver atazanavir (ATV) concentrations in nanoATV/r-treated hCYP3A-NOG mice were 2- to 4-fold higher than in replicate NOG mice. RTV enhanced plasma and liver ATV concentrations 3-fold in hCYP3A-NOG mice and 1.7-fold in NOG mice. The results indicate that human CYP3A-mediated drug metabolism is reduced compared with mouse and that RTV differentially affects human gene activity. These differences can affect responses to PIs in humanized mouse models of HIV-1 infection. Importantly, hCYP3A-NOG mice reconstituted with human immune cells can be used for bench-to-bedside translation.
Collapse
Affiliation(s)
- JoEllyn M McMillan
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Denise A Cobb
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Zhiyi Lin
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Mary G Banoub
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Raghubendra S Dagur
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Amanda A Branch Woods
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Weimin Wang
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Ted Kocher
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Poonam S Joshi
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Rolen M Quadros
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Donald W Harms
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Samuel M Cohen
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience (J.M.M., D.A.C., M.G.B., R.S.D., A.A.B.W., W.W., E.M., T.K., P.S.J., H.E.G., S.G., L.Y.P.), Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation (C.B.G.), Department of Pharmaceutical Sciences (Z.L.), Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office (R.M.Q., D.W.H., C.B.G.), and Department of Pathology and Microbiology (S.M.C.), University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
19
|
Samuels ER, Sevrioukova I. Inhibition of Human CYP3A4 by Rationally Designed Ritonavir-Like Compounds: Impact and Interplay of the Side Group Functionalities. Mol Pharm 2017; 15:279-288. [PMID: 29232137 DOI: 10.1021/acs.molpharmaceut.7b00957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-function relationships of nine rationally designed ritonavir-like compounds were investigated to better understand the ligand binding and inhibitory mechanism in human drug-metabolizing cytochrome P450 3A4 (CYP3A4). The analogs had a similar backbone and pyridine and tert-butyloxycarbonyl (Boc) as the heme-ligating and terminal groups, respectively. N-Isopropyl, N-cyclopentyl, or N-phenyl were the R1-side group substituents alone (compounds 5a-c) or in combination with phenyl or indole at the R2 position (8a-c and 8d-f subseries, respectively). Our experimental and structural data indicate that (i) for all analogs, a decrease in the dissociation constant (Ks) coincides with a decrease in IC50, but no relation with other derived parameters is observed; (ii) an increase in the R1 volume, hydrophobicity, and aromaticity markedly lowers Ks and IC50, whereas the addition of aromatic R2 has a more pronounced positive effect on the inhibitory potency than the binding strength; (iii) the ligands' association mode is strongly influenced by the mutually dependent R1-R2 interplay, but the R1-mediated interactions are dominant and define the overall conformation in the active site; (iv) formation of a strong H-bond with Ser119 is a prerequisite for potent CYP3A4 inhibition; and (v) the strongest inhibitor in the series, the R1-phenyl/R2-indole containing 8f (Ks and IC50 of 0.08 and 0.43 μM, respectively), is still less potent than ritonavir, even under conditions that prevent the mechanism based inactivation of CYP3A4. Crystallographic data were essential for better understanding and interpretation of the experimental results, and suggested how the inhibitor design could be further optimized.
Collapse
Affiliation(s)
- Eric R Samuels
- Departments of Pharmaceutical Sciences and ‡Molecular Biology and Biochemistry, University of California , Irvine, California 92697-3900, United States
| | - Irina Sevrioukova
- Departments of Pharmaceutical Sciences and ‡Molecular Biology and Biochemistry, University of California , Irvine, California 92697-3900, United States
| |
Collapse
|
20
|
Revisiting the Metabolism and Bioactivation of Ketoconazole in Human and Mouse Using Liquid Chromatography-Mass Spectrometry-Based Metabolomics. Int J Mol Sci 2017; 18:ijms18030621. [PMID: 28335386 PMCID: PMC5372636 DOI: 10.3390/ijms18030621] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023] Open
Abstract
Although ketoconazole (KCZ) has been used worldwide for 30 years, its metabolic characteristics are poorly described. Moreover, the hepatotoxicity of KCZ limits its therapeutic use. In this study, we used liquid chromatography–mass spectrometry-based metabolomics to evaluate the metabolic profile of KCZ in mouse and human and identify the mechanisms underlying its hepatotoxicity. A total of 28 metabolites of KCZ, 11 of which were novel, were identified in this study. Newly identified metabolites were classified into three categories according to the metabolic positions of a piperazine ring, imidazole ring, and N-acetyl moiety. The metabolic characteristics of KCZ in human were comparable to those in mouse. Moreover, three cyanide adducts of KCZ were identified in mouse and human liver microsomal incubates as “flags” to trigger additional toxicity study. The oxidation of piperazine into iminium ion is suggested as a biotransformation responsible for bioactivation. In summary, the metabolic characteristics of KCZ, including reactive metabolites, were comprehensively understood using a metabolomics approach.
Collapse
|
21
|
Abstract
Although safety of drug candidates is carefully monitored in preclinical and clinical studies using a variety of approaches, drug toxicity may still occur in clinical practice. Therefore, novel approaches are needed to complement the current drug safety evaluation system. Metabolomics comprehensively analyzes the metabolites altered by drug exposure, which can therefore be used to profile drug metabolism, endobiotic metabolism, and drug-microbiota interactions. The information from metabolomic analysis can be used to determine the off-targets of a drug candidate, and thus provide a mechanistic understanding of drug toxicity. We herein discuss the opportunities of metabolomics in drug safety evaluation.
Collapse
|
22
|
A Synopsis of the Properties and Applications of Heteroaromatic Rings in Medicinal Chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2017. [DOI: 10.1016/bs.aihch.2016.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Liu X, Lu YF, Guan X, Zhao M, Wang J, Li F. Characterizing novel metabolic pathways of melatonin receptor agonist agomelatine using metabolomic approaches. Biochem Pharmacol 2016; 109:70-82. [PMID: 27021842 DOI: 10.1016/j.bcp.2016.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/24/2016] [Indexed: 12/19/2022]
Abstract
Agomelatine (AGM), an analog of melatonin, is a potential agonist at melatonin receptors 1/2 and a selective antagonist at 5-hydroxytryptamine 2C receptors. AGM is widely used for the treatment of major depressive episodes in adults. However, multiple adverse effects associated with AGM have been reported in clinical practice. It is little known about AGM metabolism in vitro and in vivo, although metabolism plays a pivotal role in its efficacy and safety. To elucidate metabolic pathways of AGM, we systemically investigated AGM metabolism and its bioactivation in human liver microsomes (HLM) and mice using metabolomic approaches. We identified thirty-eight AGM metabolites and adducts, among which thirty-two are novel. In HLM, we uncovered five GSH-trapped adducts and two semicarbazide-trapped aldehydes. Moreover, we characterized three N-acetyl cysteine conjugated-AGM adducts in mouse urine and feces, which were formed from the degradation of AGM_GSH adducts. Using recombinant CYP450 isoenzymes and chemical inhibitors, we demonstrated that CYP1A2 and CYP3A4 are primary enzymes contributing to the formation of AGM_GSH adducts and AGM_hydrazones. This study provided a global view of AGM metabolism and identified the novel pathways of AGM bioactivation, which could be utilized for further understanding the mechanism of adverse effects related to AGM and possible drug-drug interactions.
Collapse
Affiliation(s)
- Xing Liu
- Department of Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuan-Fu Lu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Xinfu Guan
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mingkun Zhao
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Department of Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Wang P, Shehu AI, Liu K, Lu J, Ma X. Biotransformation of Cobicistat: Metabolic Pathways and Enzymes. Drug Metab Lett 2016; 10:111-123. [PMID: 26935921 PMCID: PMC5348081 DOI: 10.2174/1872312810666160303112212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 06/04/2023]
Abstract
BACKGROUND Cobicistat (COBI) is a pharmacoenhancer for antiretroviral therapy. OBJECTIVE The current study was designed to profile the metabolic pathways of COBI and to determine the enzymes that contribute to COBI metabolism. METHOD We screened COBI metabolites in mice and human liver microsomes. We also used cDNAexpressed human cytochromes P450 (CYPs) to explore the role of human enzymes in COBI metabolism. RESULTS Twenty new and three known metabolites of COBI were identified in mouse urine and feces. These new metabolic pathways of COBI include glycine conjugation, N-acetyl cysteine conjugation, morpholine ring-opening, and thiazole ring-opening. Twelve of COBI metabolites were further confirmed in mouse and human liver microsomes, including nine new metabolites. Consistent with the previous report, CYP3A4 and CYP2D6 were determined as the major enzymes that contribute to COBI metabolism. CONCLUSION This study provided a full map of COBI metabolism. These results can be used to manage CYP-mediated drug-drug interactions and adverse drug reactions that are associated with COBI-containing regimens in human.
Collapse
Affiliation(s)
| | | | | | | | - Xiaochao Ma
- 309 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA 15261, USA.
| |
Collapse
|
25
|
|
26
|
Gonzalez FJ, Fang ZZ, Ma X. Transgenic mice and metabolomics for study of hepatic xenobiotic metabolism and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:869-81. [PMID: 25836352 DOI: 10.1517/17425255.2015.1032245] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The study of xenobiotic metabolism and toxicity has been greatly aided by the use of genetically modified mouse models and metabolomics. AREAS COVERED Gene knockout mice can be used to determine the enzymes responsible for the metabolism of xenobiotics in vivo and to examine the mechanisms of xenobiotic-induced toxicity. Humanized mouse models are especially important because there exist marked species differences in the xenobiotic-metabolizing enzymes and the nuclear receptors that regulate these enzymes. Humanized mice expressing CYPs and nuclear receptors including the pregnane X receptor, the major regulator of xenobiotic metabolism and transport were produced. With genetically modified mouse models, metabolomics can determine the metabolic map of many xenobiotics with a level of sensitivity that allows the discovery of even minor metabolites. This technology can be used for determining the mechanism of xenobiotic toxicity and to find early biomarkers for toxicity. EXPERT OPINION Metabolomics and genetically modified mouse models can be used for the study of xenobiotic metabolism and toxicity by: i) comparison of the metabolomics profiles between wild-type and genetically modified mice, and searching for genotype-dependent endogenous metabolites; ii) searching for and elucidating metabolites derived from xenobiotics; and iii) discovery of specific alterations of endogenous compounds induced by xenobiotics-induced toxicity.
Collapse
Affiliation(s)
- Frank J Gonzalez
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Metabolism , Bethesda, MD 20892 , USA +1 301 496 9067 ; +1 301 496 8419 ;
| | | | | |
Collapse
|
27
|
What role can metabolomics play in the discovery and development of new medicines for infectious diseases? Bioanalysis 2015; 7:629-31. [DOI: 10.4155/bio.15.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
28
|
Raber PL, Thevenot P, Sierra R, Wyczechowska D, Halle D, Ramirez ME, Ochoa A, Fletcher M, Velasco C, Wilk A, Reiss K, Rodriguez PC. Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer 2014; 134:2853-2864. [PMID: 24259296 PMCID: PMC3980009 DOI: 10.1002/ijc.28622] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/17/2013] [Accepted: 11/05/2013] [Indexed: 12/13/2022]
Abstract
The accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing hosts is a hallmark of malignancy-associated inflammation and a major mediator for the induction of T cell suppression in cancer. MDSC can be divided phenotypically into granulocytic (G-MDSC) and monocytic (Mo-MDSC) subgroups. Several mechanisms mediate the induction of T cell anergy by MDSC; however, the specific role of these pathways in the inhibitory activity of MDSC subpopulations remains unclear. Therefore, we aimed to determine the effector mechanisms by which subsets of tumor-infiltrating MDSC block T cell function. We found that G-MDSC had a higher ability to impair proliferation and expression of effector molecules in activated T cells, as compared to Mo-MDSC. Interestingly, both MDSC subgroups inhibited T cells through nitric oxide (NO)-related pathways, but expressed different effector inhibitory mechanisms. Specifically, G-MDSC impaired T cells through the production of peroxynitrites (PNT), while Mo-MDSC suppressed by the release of NO. The production of PNT in G-MDSC depended on the expression of gp91(phox) and endothelial NO synthase (eNOS), while inducible NO synthase (iNOS) mediated the generation of NO in Mo-MDSC. Deletion of eNOS and gp91(phox) or scavenging of PNT blocked the suppressive function of G-MDSC and induced anti-tumoral effects, without altering Mo-MDSC inhibitory activity. Furthermore, NO-scavenging or iNOS knockdown prevented Mo-MDSC function, but did not affect PNT production or suppression by G-MDSC. These results suggest that MDSC subpopulations utilize independent effector mechanisms to regulate T cell function. Inhibition of these pathways is expected to specifically block MDSC subsets and overcome immune suppression in cancer.
Collapse
Affiliation(s)
- Patrick L. Raber
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Paul Thevenot
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Rosa Sierra
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Daniel Halle
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Maria E. Ramirez
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Augusto Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
- Department of Pediatrics, Louisiana State University Health Sciences Center
| | - Matthew Fletcher
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
- Department of Pediatrics, Louisiana State University Health Sciences Center
| | - Cruz Velasco
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Anna Wilk
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Krzysztof Reiss
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Paulo C. Rodriguez
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
29
|
Li F, Lu J, Ma X. CPY3A4-mediated α-hydroxyaldehyde formation in saquinavir metabolism. Drug Metab Dispos 2014; 42:213-20. [PMID: 24212380 PMCID: PMC3912542 DOI: 10.1124/dmd.113.054874] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/08/2013] [Indexed: 11/22/2022] Open
Abstract
Saquinavir (SQV) is a protease inhibitor widely used for the treatment of human immunodeficiency virus (HIV) infection. We profiled SQV metabolism in mice using a metabolomic approach. Thirty SQV metabolites were identified in mouse feces and urine, of which 20 are novel. Most metabolites observed in mice were recapitulated in human liver microsomes. Among these novel metabolites, one α-hydroxyaldehyde produced from SQV N-dealkylation was noted and verified for the first time. Meanwhile, the corresponding product (3S)-N-tert-butyldecahydro-isoquinoline-3-carboxamide and its further metabolites were identified in mouse urine. The α-hydroxyaldehyde pathway was confirmed by using semicarbazide as a trapping reagent as well. Using recombinant cytochrome P450 (CYP450) isoenzymes and Cyp3a-null mice, CYP3A was identified as the dominant enzyme contributing to the formation of α-hydroxyaldehyde. This study enhances our knowledge of SQV metabolism, which can be used for predicting drug-drug interactions and further understanding the mechanism of adverse effects associated with SQV.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (F.L.); Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.L., X.M.)
| | | | | |
Collapse
|
30
|
Lin HL, D'Agostino J, Kenaan C, Calinski D, Hollenberg PF. The effect of ritonavir on human CYP2B6 catalytic activity: heme modification contributes to the mechanism-based inactivation of CYP2B6 and CYP3A4 by ritonavir. Drug Metab Dispos 2013; 41:1813-24. [PMID: 23886699 PMCID: PMC3781371 DOI: 10.1124/dmd.113.053108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/25/2013] [Indexed: 12/28/2022] Open
Abstract
The mechanism-based inactivation of human CYP2B6 by ritonavir (RTV) in a reconstituted system was investigated. The inactivation is time, concentration, and NADPH dependent and exhibits a K(I) of 0.9 μM, a k(inact) of 0.05 min⁻¹, and a partition ratio of approximately 3. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the protonated molecular ion of RTV exhibits an m/z at 721 and its two major metabolites are an oxidation product with MH⁺ at m/z 737 and a deacylated product with MH⁺ at m/z 580. Inactivation of CYP2B6 by incubation with 10 μM RTV for 10 min resulted in an approximately 50% loss of catalytic activity and native heme, but no modification of the apoprotein was observed. RTV was found to be a potent mixed-type reversible inhibitor (K(i) = 0.33 μM) and a type II ligand (spectral dissociation constant-K(s) = 0.85 μM) of CYP2B6. Although previous studies have demonstrated that RTV is a potent mechanism-based inactivator of CYP3A4, the molecular mechanism responsible for the inactivation has not been determined. Here, we provide evidence that RTV inactivation of CYP3A4 is due to heme destruction with the formation of a heme-protein adduct. Similar to CYP2B6, there is no significant modification of the apoprotein. Furthermore, LC-MS/MS analysis revealed that both CYP3A4 and human liver microsomes form an RTV-glutathione conjugate having a MH⁺ at m/z 858 during metabolism of RTV, suggesting the formation of an isocyanate intermediate leading to formation of the conjugate.
Collapse
Affiliation(s)
- Hsia-lien Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | |
Collapse
|
31
|
Sevrioukova IF, Poulos TL. Pyridine-substituted desoxyritonavir is a more potent inhibitor of cytochrome P450 3A4 than ritonavir. J Med Chem 2013; 56:3733-41. [PMID: 23586711 DOI: 10.1021/jm400288z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Utilization of the cytochrome P450 3A4 (CYP3A4) inhibitor ritonavir as a pharmacoenhancer for anti-HIV drugs revolutionized the treatment of HIV infection. However, owing to ritonavir-related complications, there is a need for development of new CYP3A4 inhibitors with improved pharmacochemical properties, which requires a full understanding of the CYP3A4 inactivation mechanisms and the unraveling of possible inhibitor binding modes. We investigated the mechanism of CYP3A4 interaction with three desoxyritonavir analogues, containing the heme-ligating imidazole, oxazole, or pyridine group instead of the thiazole moiety (compounds 1, 2, and 3, respectively). Our data show that compound 3 is superior to ritonavir in terms of binding affinity and inhibitory potency owing to greater flexibility and the ability to adopt a conformation that minimizes steric clashing and optimizes protein-ligand interactions. Additionally, Ser119 was identified as a key residue assisting binding of ritonavir-like inhibitors, which emphasizes the importance of polar interactions in the CYP3A4-ligand association.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States.
| | | |
Collapse
|
32
|
Lan K, Xie G, Jia W. Towards polypharmacokinetics: pharmacokinetics of multicomponent drugs and herbal medicines using a metabolomics approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:819147. [PMID: 23573155 PMCID: PMC3612473 DOI: 10.1155/2013/819147] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/29/2013] [Indexed: 12/14/2022]
Abstract
Determination of pharmacokinetics (PKs) of multicomponent pharmaceuticals and/or nutraceuticals (polypharmacokinetics, poly-PKs) is difficult due to the vast number of compounds present in natural products, their various concentrations across a wide range, complexity of their interactions, as well as their complex degradation dynamics in vivo. Metabolomics coupled with multivariate statistical tools that focus on the comprehensive analysis of small molecules in biofluids is a viable approach to address the challenges of poly-PK. This paper discusses recent advances in the characterization of poly-PK and the metabolism of multicomponent xenobiotic agents, such as compound drugs, dietary supplements, and herbal medicines, using metabolomics strategy. We propose a research framework that integrates the dynamic concentration profile of bioavailable xenobiotic molecules that result from in vivo absorption and hepatic and gut bacterial metabolism, as well as the human metabolic response profile. This framework will address the bottleneck problem in the pharmacological evaluation of multicomponent pharmaceuticals and nutraceuticals, leading to the direct elucidation of the pharmacological and molecular mechanisms of these compounds.
Collapse
Affiliation(s)
- Ke Lan
- Key laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guoxiang Xie
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Wei Jia
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| |
Collapse
|
33
|
Sun J, Beger RD, Schnackenberg LK. Metabolomics as a tool for personalizing medicine: 2012 update. Per Med 2013; 10:149-161. [DOI: 10.2217/pme.13.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Numerous factors in conjunction with an individual’s genetic make up will determine predisposition to disease, adverse or beneficial effects of drug treatment or therapy, and disease progression. A major limitation of current clinical measures is that the disease phenotype, which is comprised of the genotype and other environmental factors, is underestimated. Rather, each disease is treated similarly even though the disease process is highly complex. Methods that evaluate the interaction of genotype and environmental factors would likely be a better indicator of patients’ response to medical treatments. The omics technologies, specifically metabolomics, will play a major role in the movement towards personalized medicine. Metabolomics is phenotype driven and should provide better clinical biomarkers. Furthermore, recent studies have shown that associations between genetic variants and downstream metabolite changes can provide a unique description of an individual’s genotype and phenotype, which will further enhance the movement towards personalized medicine.
Collapse
Affiliation(s)
- Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Laura K Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| |
Collapse
|
34
|
Orr STM, Ripp SL, Ballard TE, Henderson JL, Scott DO, Obach RS, Sun H, Kalgutkar AS. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks. J Med Chem 2012; 55:4896-933. [PMID: 22409598 DOI: 10.1021/jm300065h] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Suvi T M Orr
- Worldwide Medicinal Chemistry, Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | | | | | | | | | | | | | | |
Collapse
|