1
|
Hartung F, Krutmann J, Haarmann-Stemmann T. Evidence that the aryl hydrocarbon receptor orchestrates oxinflammatory responses and contributes to airborne particulate matter-induced skin aging. Free Radic Biol Med 2025; 233:264-278. [PMID: 40157462 DOI: 10.1016/j.freeradbiomed.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Exposure to airborne particulate matter (PM) is a substantial threat to public health, contributing to respiratory, cardiovascular, and skin-related diseases. Population-based studies strongly indicate that chronic exposure to airborne PM, especially combustion-derived PM2.5, accelerates skin aging and thus reduces the quality of life of those affected. There is increasing evidence that especially PM-bound polycyclic aromatic hydrocarbons (PAHs) critically contribute to the clinical manifestation of skin aging, i.e. the development of lentigines/pigment spots and coarse wrinkles. PAHs harm human skin primarily by activating the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor amongst others involved in orchestrating xenobiotic metabolism and immune responses. In this review, we summarize the available population-based data linking particulate air pollution exposure to skin aging. We explain in detail how PAH-rich PM induces the formation of oxidative stress, the release of pro-inflammatory mediators, the expression extracellular matrix degrading metalloproteases, and melanin synthesis, in an AHR-dependent manner, and how these events may culminate in the development of pigment spots and wrinkles, respectively. We also review the current data on the interaction of airborne PM with another factor of the skin aging exposome that exerts its deleterious effects in part through AHR-dependent signaling pathways, namely solar ultraviolet radiation.
Collapse
Affiliation(s)
- Frederick Hartung
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany; Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | | |
Collapse
|
2
|
Silva-Parra J, Ramírez-Martínez L, Palafox-Gómez C, Sandu C, López-Bayghen E, Vega L, Elizondo G, Loaeza-Loaeza J, Hernández-Sotelo D, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Aryl Hydrocarbon Receptor Involvement in the Sodium-Dependent Glutamate/Aspartate Transporter Regulation in Cerebellar Bergmann Glia Cells. ACS Chem Neurosci 2024; 15:1276-1285. [PMID: 38454572 PMCID: PMC10958506 DOI: 10.1021/acschemneuro.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
Glutamate, the major excitatory neurotransmitter in the vertebrate brain, exerts its functions through the activation of specific plasma membrane receptors and transporters. Overstimulation of glutamate receptors results in neuronal cell death through a process known as excitotoxicity. A family of sodium-dependent glutamate plasma membrane transporters is responsible for the removal of glutamate from the synaptic cleft, preventing an excitotoxic insult. Glial glutamate transporters carry out more than 90% of the brain glutamate uptake activity and are responsible for glutamate recycling through the GABA/Glutamate/Glutamine shuttle. The aryl hydrocarbon receptor is a ligand-dependent transcription factor that integrates environmental clues through its ability to heterodimerize with different transcription factors. Taking into consideration the fundamental role of glial glutamate transporters in glutamatergic synapses and that these transporters are regulated at the transcriptional, translational, and localization levels in an activity-dependent fashion, in this contribution, we explored the involvement of the aryl hydrocarbon receptor, as a model of environmental integrator, in the regulation of the glial sodium-dependent glutamate/aspartate transporter. Using the model of chick cerebellar Bergmann glia cells, we report herein that the aryl hydrocarbon receptors exert a time-dependent decrease in the transporter mRNA levels and a diminution of its uptake activity. The nuclear factor kappa light chain enhancer of the activated B cell signaling pathway is involved in this regulation. Our results favor the notion of an environmentally dependent regulation of glutamate removal in glial cells and therefore strengthen the notion of the involvement of glial cells in xenobiotic neurotoxic effects.
Collapse
Affiliation(s)
- Janisse Silva-Parra
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Leticia Ramírez-Martínez
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Cecilia Palafox-Gómez
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Cristina Sandu
- Centre
National de la Recherche Scientifique, Université
de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg 00000, France
| | - Esther López-Bayghen
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Libia Vega
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Guillermo Elizondo
- Departamento
de Biología Celular, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Jaqueline Loaeza-Loaeza
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Daniel Hernández-Sotelo
- Facultad
de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Luisa C. Hernández-Kelly
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre
National de la Recherche Scientifique, Université
de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg 00000, France
| | - Arturo Ortega
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| |
Collapse
|
3
|
Camacho-Jiménez L, González-Ruiz R, Yepiz-Plascencia G. Persistent organic pollutants (POPs) in marine crustaceans: Bioaccumulation, physiological and cellular responses. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106184. [PMID: 37769555 DOI: 10.1016/j.marenvres.2023.106184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Persistent organic pollutants (POPs) are ubiquitous in marine ecosystems. These compounds can be accumulated in water, sediments and organisms, persist in time, and have toxic effects in human and wildlife. POPs can be uptaken and bioaccumulated by crustaceans, affecting different physiological processes, including energy metabolism, immunity, osmoregulation, excretion, growth, and reproduction. Nonetheless, animals have evolved sub-cellular mechanisms for detoxification and protection from chemical stress. POPs induce the activity of enzymes involved in xenobiotic metabolism and antioxidant systems, that in vertebrates are importantly regulated at gene expression (transcriptional) level. However, the activation and control of these enzyme systems upon the exposure to POPs have been scarcely studied in invertebrate species, including crustaceans. Herein, we summarize various aspects of the bioaccumulation of POPs in marine crustaceans and their physiological effects. We specially focus on the regulation of xenobiotics metabolism and antioxidant enzymes as key sub-cellular mechanisms for detoxification and protection from chemical stress.
Collapse
Affiliation(s)
- Laura Camacho-Jiménez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, Mexico.
| | - Ricardo González-Ruiz
- Instituto Potosino de Investigación Científica y Tecnológica A.C. (IPICYT A.C.), Camino a La Presa de San José 2055, San Luis Potosí, San Luis Potosí, 78216, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, Mexico
| |
Collapse
|
4
|
Kalocayova B, Kura B, Vlkovicova J, Snurikova D, Vrbjar N, Frimmel K, Hudec V, Ondrusek M, Gasparovic I, Sramaty R, Luptak J, Hulman M, LeBaron TW, Slezak J. Molecular hydrogen: prospective treatment strategy of kidney damage after cardiac surgery. Can J Physiol Pharmacol 2023; 101:502-508. [PMID: 37463517 DOI: 10.1139/cjpp-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cardiac surgery-associated acute kidney injury is a common post-operative complication, mostly due to increasing oxidative stress. Recently, molecular hydrogen (H2 gas) has also been applied to cardiac surgery due to its ability to reduce oxidative stress. We evaluated the potential effect of H2 application on the kidney in an in vivo model of simulated heart transplantation. Pigs underwent cardiac surgery within 3 h while connected to extracorporeal circulation (ECC) and subsequent 60 min of spontaneous reperfusion of the heart. We used two experimental groups: T-pigs after transplantation and TH-pigs after transplantation treated with 4% H2 mixed with air during inhalation of anesthesia and throughout oxygenation of blood in ECC. The levels of creatinine, urea and phosphorus were measured in plasma. Renal tissue samples were analyzed by Western blot method for protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap-1), and superoxide dismutase (SOD1). After cardiac surgery, selected plasma biomarkers were elevated. However, H2 therapy was followed by the normalization of all these parameters. Our results suggest activation of Nrf2/Keap1 pathway as well as increased SOD1 protein expression in the group treated with H2. The administration of H2 had a protective effect on the kidneys of pigs after cardiac surgery, especially in terms of normalization of plasma biomarkers to control levels.
Collapse
Affiliation(s)
- Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Vlkovicova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Denisa Snurikova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Norbert Vrbjar
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karel Frimmel
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladan Hudec
- Department of Cardiac Surgery, Faculty of Medicine, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Matej Ondrusek
- Department of Cardiac Surgery, Faculty of Medicine, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Ivo Gasparovic
- Department of Cardiac Surgery, Faculty of Medicine, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Rastislav Sramaty
- Department of Cardiac Surgery, Faculty of Medicine, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Jaroslav Luptak
- Department of Cardiac Surgery, Faculty of Medicine, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Michal Hulman
- Department of Cardiac Surgery, Faculty of Medicine, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Cedar City, UT 84720, USA
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Wilcock DJ, Badrock AP, Wong CW, Owen R, Guerin M, Southam AD, Johnston H, Telfer BA, Fullwood P, Watson J, Ferguson H, Ferguson J, Lloyd GR, Jankevics A, Dunn WB, Wellbrock C, Lorigan P, Ceol C, Francavilla C, Smith MP, Hurlstone AFL. Oxidative stress from DGAT1 oncoprotein inhibition in melanoma suppresses tumor growth when ROS defenses are also breached. Cell Rep 2022; 39:110995. [PMID: 35732120 PMCID: PMC9638004 DOI: 10.1016/j.celrep.2022.110995] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Dysregulated cellular metabolism is a cancer hallmark for which few druggable oncoprotein targets have been identified. Increased fatty acid (FA) acquisition allows cancer cells to meet their heightened membrane biogenesis, bioenergy, and signaling needs. Excess FAs are toxic to non-transformed cells but surprisingly not to cancer cells. Molecules underlying this cancer adaptation may provide alternative drug targets. Here, we demonstrate that diacylglycerol O-acyltransferase 1 (DGAT1), an enzyme integral to triacylglyceride synthesis and lipid droplet formation, is frequently up-regulated in melanoma, allowing melanoma cells to tolerate excess FA. DGAT1 over-expression alone transforms p53-mutant zebrafish melanocytes and co-operates with oncogenic BRAF or NRAS for more rapid melanoma formation. Antagonism of DGAT1 induces oxidative stress in melanoma cells, which adapt by up-regulating cellular reactive oxygen species defenses. We show that inhibiting both DGAT1 and superoxide dismutase 1 profoundly suppress tumor growth through eliciting intolerable oxidative stress.
Collapse
Affiliation(s)
- Daniel J Wilcock
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Andrew P Badrock
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Chun W Wong
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Rhys Owen
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Melissa Guerin
- Program in Molecular Medicine, Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andrew D Southam
- School of Biosciences, Edgbaston, University of Birmingham, Birmingham B15 2TT, UK; Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Johnston
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Brian A Telfer
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Paul Fullwood
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Joanne Watson
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Harriet Ferguson
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Jennifer Ferguson
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Gavin R Lloyd
- School of Biosciences, Edgbaston, University of Birmingham, Birmingham B15 2TT, UK; Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andris Jankevics
- School of Biosciences, Edgbaston, University of Birmingham, Birmingham B15 2TT, UK; Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Warwick B Dunn
- School of Biosciences, Edgbaston, University of Birmingham, Birmingham B15 2TT, UK; Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Claudia Wellbrock
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Paul Lorigan
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Withington, Manchester M20 4BX, UK
| | - Craig Ceol
- Program in Molecular Medicine, Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Michael P Smith
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK.
| | - Adam F L Hurlstone
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology, The University of Manchester, Dover Street, Manchester M13 9PT, UK.
| |
Collapse
|
6
|
DeMoranville KJ, Carter WA, Pierce BJ, McWilliams SR. Flight and dietary antioxidants influence antioxidant expression and activity in a migratory bird. Integr Org Biol 2021; 4:obab035. [PMID: 35112051 PMCID: PMC8802218 DOI: 10.1093/iob/obab035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Ecologically relevant factors such as exercise and diet quality can directly influence how physiological systems work including those involved in maintaining oxidative balance; however, to our knowledge, no studies to date have focused on how such factors directly affect expression of key components of the endogenous antioxidant system (i.e., transcription factors, select antioxidant genes, and corresponding antioxidant enzymes) in several metabolically active tissues of a migratory songbird. We conducted a three-factor experiment that tested the following hypotheses: (H1) Daily flying over several weeks increases the expression of transcription factors NRF2 and PPARs as well as endogenous antioxidant genes (i.e., CAT, SOD1, SOD2, GPX1, GPX4), and upregulates endogenous antioxidant enzyme activities (i.e., CAT, SOD, GPx). (H2) Songbirds fed diets composed of more 18:2n-6 PUFA are more susceptible to oxidative damage and thus upregulate their endogenous antioxidant system compared with when fed diets with less PUFA. (H3) Songbirds fed dietary anthocyanins gain additional antioxidant protection and thus upregulate their endogenous antioxidant system less compared with songbirds not fed anthocyanins. Flight training increased the expression of 3 of the 6 antioxidant genes and transcription factors measured in the liver, consistent with H1, but for only one gene (SOD2) in the pectoralis. Dietary fat quality had no effect on antioxidant pathways (H2), whereas dietary anthocyanins increased the expression of select antioxidant enzymes in the pectoralis, but not in the liver (H3). These tissue-specific differences in response to flying and dietary antioxidants are likely explained by functional differences between tissues as well as fundamental differences in their turnover rates. The consumption of dietary antioxidants along with regular flying enables birds during migration to stimulate the expression of genes involved in antioxidant protection likely through increasing the transcriptional activity of NRF2 and PPARs, and thereby demonstrates for the first time that these relevant ecological factors affect the regulation of key antioxidant pathways in wild birds. What remains to be demonstrated is how the extent of these ecological factors (i.e., intensity or duration of flight, amounts of dietary antioxidants) influences the regulation of these antioxidant pathways and thus oxidative balance.
Collapse
Affiliation(s)
| | - Wales A Carter
- Dept. of Natural Resources Science, University of Rhode Island, Kingston RI 02881
| | | | - Scott R McWilliams
- Dept. of Natural Resources Science, University of Rhode Island, Kingston RI 02881
| |
Collapse
|
7
|
Rosa AC, Corsi D, Cavi N, Bruni N, Dosio F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021; 26:1844. [PMID: 33805942 PMCID: PMC8037464 DOI: 10.3390/molecules26071844] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Superoxide dismutases (SODs) are metalloenzymes that play a major role in antioxidant defense against oxidative stress in the body. SOD supplementation may therefore trigger the endogenous antioxidant machinery for the neutralization of free-radical excess and be used in a variety of pathological settings. This paper aimed to provide an extensive review of the possible uses of SODs in a range of pathological settings, as well as describe the current pitfalls and the delivery strategies that are in development to solve bioavailability issues. We carried out a PubMed query, using the keywords "SOD", "SOD mimetics", "SOD supplementation", which included papers published in the English language, between 2012 and 2020, on the potential therapeutic applications of SODs, including detoxification strategies. As highlighted in this paper, it can be argued that the generic antioxidant effects of SODs are beneficial under all tested conditions, from ocular and cardiovascular diseases to neurodegenerative disorders and metabolic diseases, including diabetes and its complications and obesity. However, it must be underlined that clinical evidence for its efficacy is limited and consequently, this efficacy is currently far from being demonstrated.
Collapse
Affiliation(s)
- Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Daniele Corsi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Niccolò Cavi
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| | - Natascia Bruni
- Istituto Farmaceutico Candioli, Strada Comunale di None, 1, 10092 Beinasco, Italy;
| | - Franco Dosio
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (D.C.); (N.C.); (F.D.)
| |
Collapse
|
8
|
Xu J, Liu J, Li Q, Mi Y, Zhou D, Meng Q, Chen G, Li N, Hou Y. Pterostilbene Alleviates Aβ 1-42 -Induced Cognitive Dysfunction via Inhibition of Oxidative Stress by Activating Nrf2 Signaling Pathway. Mol Nutr Food Res 2020; 65:e2000711. [PMID: 33280250 DOI: 10.1002/mnfr.202000711] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/04/2020] [Indexed: 12/19/2022]
Abstract
SCOPE In the present study, effect of pterostilbene on β-amyloid 1-42 (Aβ1-42 ) induced cognitive impairment in mice is investigated and explored its possible mechanism of action. METHODS AND RESULTS The behavior results show that pterostilbene alleviated Aβ1-42 -induces cognitive dysfunction assessed using the Y-maze test, novel object recognition task, Morris water maze test, and passive avoidance test. Pterostilbene alleviates neuron loss and accumulation of reactive oxygen species in Aβ1-42 treated mouse brain. Additionally, pterostilbene promotes nuclear factor-E2 p45-related factor 2 (Nrf2) nuclear translocation and enhance the transcription and expression of antioxidant genes such as heme oxygenase-1 and superoxide dismutase both in vivo and in vitro. Nrf2 inhibitor ML385 reverses the antioxidant function of pterostilbene in SH-SY5Y cells. Nrf2 is the master regulator of oxidative homeostasis and can be activated by substrate adaptor sequestosome-1 (also named p62). Pterostilbene promotes the binding of Kelch-like ECH-associated protein 1 and p62, which enhanced activation of Nrf2. CONCLUSION The present study reports that pterostilbene alleviated Aβ1-42 -induces cognitive dysfunction in mice. The mechanism of pterostilbene can be associated to the inhibition of oxidative stress through the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jikai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| | - Jingyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| | - Qing Li
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qingqi Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| |
Collapse
|
9
|
Saka WA, Ayoade TE, Akhigbe TM, Akhigbe RE. Moringa oleifera seed oil partially abrogates 2,3-dichlorovinyl dimethyl phosphate (Dichlorvos)-induced cardiac injury in rats: evidence for the role of oxidative stress. J Basic Clin Physiol Pharmacol 2020; 32:237-246. [PMID: 33141105 DOI: 10.1515/jbcpp-2019-0313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Cardiovascular diseases are major causes of non-infectious diseases globally. The use of pesticides has been linked with the high global burden of non-communicable diseases. Despite the indiscriminate exposure to dichlorvos (DDVP) by inhalation, no report exists on its possible cardiotoxic effect. This study investigated the cardiotoxicity of DDVP exposure by inhalation and the possible role of Moringa oleifera seed oil. METHODS Twenty-one male rats were randomly assigned into 3 groups. Group A (control) received only standard rat diet and water ad' libitum, group B (DDVP) was exposed to DDVP via inhalation for 15 min daily in addition to rat diet and water, and group C (DDVP + M. oleifera seed oil) received treatment as group B as well as 300 mg/kg of M. oleifera seed oil p.o for 28 days. RESULTS Significant reductions in body weight gain and cardiac weight were observed in DDVP-exposed animals (p<0.05). Similarly, 28 days of exposure to DDVP led to a significant increase in lactate dehydrogenase, creatinine kinase and troponin (p<0.05). DDVP-exposed rats also showed a significant increase in malondialdehyde, and a significant decline in superoxide dismutase and glutathione peroxidase (p<0.05). However, catalase was comparable in DDVP-exposed and control rats. Histopathological observations of the cardiac tissue revealed that DDVP caused marked fat degeneration and necrosis of the myocardial layer. The changes in DDVP-exposed rats were significantly, though not completely, restored by M. oleifera seed oil administration. CONCLUSIONS This study provides novel mechanistic information on the cardiotoxicity of DDVP inhalation, and the antioxidant potential of M. oleifera seed oil.
Collapse
Affiliation(s)
- Waid A Saka
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Titilayo E Ayoade
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Tunmise M Akhigbe
- Department of Crop Production and Soil Science, Faculty of Agricultural Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Roland E Akhigbe
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
10
|
Vernazza S, Tirendi S, Bassi AM, Traverso CE, Saccà SC. Neuroinflammation in Primary Open-Angle Glaucoma. J Clin Med 2020; 9:E3172. [PMID: 33007927 PMCID: PMC7601106 DOI: 10.3390/jcm9103172] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is the second leading cause of irreversible blindness worldwide. Increasing evidence suggests oxidative damage and immune response defects are key factors contributing to glaucoma onset. Indeed, both the failure of the trabecular meshwork tissue in the conventional outflow pathway and the neuroinflammation process, which drives the neurodegeneration, seem to be linked to the age-related over-production of free radicals (i.e., mitochondrial dysfunction) and to oxidative stress-linked immunostimulatory signaling. Several previous studies have described a wide range of oxidative stress-related makers which are found in glaucomatous patients, including low levels of antioxidant defences, dysfunction/activation of glial cells, the activation of the NF-κB pathway and the up-regulation of pro-inflammatory cytokines, and so on. However, the intraocular pressure is still currently the only risk factor modifiable by medication or glaucoma surgery. This present review aims to summarize the multiple cellular processes, which promote different risk factors in glaucoma including aging, oxidative stress, trabecular meshwork defects, glial activation response, neurodegenerative insults, and the altered regulation of immune response.
Collapse
Affiliation(s)
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| | - Carlo Enrico Traverso
- Clinica Oculistica, DiNOGMI, University of Genoa, 16132 Genoa, Italy;
- Ophthalmology Unit, IRCCS-Polyclinic San Martino Hospital, 16132 Genoa, Italy;
| | | |
Collapse
|
11
|
Damiano S, Sozio C, La Rosa G, Guida B, Faraonio R, Santillo M, Mondola P. Metabolism Regulation and Redox State: Insight into the Role of Superoxide Dismutase 1. Int J Mol Sci 2020; 21:ijms21186606. [PMID: 32927603 PMCID: PMC7554782 DOI: 10.3390/ijms21186606] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Energy metabolism and redox state are strictly linked; energy metabolism is a source of reactive oxygen species (ROS) that, in turn, regulate the flux of metabolic pathways. Moreover, to assure redox homeostasis, metabolic pathways and antioxidant systems are often coordinately regulated. Several findings show that superoxide dismutase 1 (SOD1) enzyme has effects that go beyond its superoxide dismutase activity and that its functions are not limited to the intracellular compartment. Indeed, SOD1 is secreted through unconventional secretory pathways, carries out paracrine functions and circulates in the blood bound to lipoproteins. Striking experimental evidence links SOD1 to the redox regulation of metabolism. Important clues are provided by the systemic effects on energy metabolism observed in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). The purpose of this review is to analyze in detail the involvement of SOD1 in redox regulation of metabolism, nutrient sensing, cholesterol metabolism and regulation of mitochondrial respiration. The scientific literature on the relationship between ALS, mutated SOD1 and metabolism will also be explored, in order to highlight the metabolic functions of SOD1 whose biological role still presents numerous unexplored aspects that deserve further investigation.
Collapse
Affiliation(s)
- Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Concetta Sozio
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Bruna Guida
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli “Federico II”, 80131 Naples, Italy;
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
- Correspondence: (M.S.); (P.M.); Tel.: +39-081-746-3233 (M.S.); +39-081-746-3225 (P.M.)
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Naples, Italy; (S.D.); (C.S.); (G.L.R.); (B.G.)
- Correspondence: (M.S.); (P.M.); Tel.: +39-081-746-3233 (M.S.); +39-081-746-3225 (P.M.)
| |
Collapse
|
12
|
Gallego-Selles A, Martin-Rincon M, Martinez-Canton M, Perez-Valera M, Martín-Rodríguez S, Gelabert-Rebato M, Santana A, Morales-Alamo D, Dorado C, Calbet JAL. Regulation of Nrf2/Keap1 signalling in human skeletal muscle during exercise to exhaustion in normoxia, severe acute hypoxia and post-exercise ischaemia: Influence of metabolite accumulation and oxygenation. Redox Biol 2020; 36:101627. [PMID: 32863217 PMCID: PMC7358388 DOI: 10.1016/j.redox.2020.101627] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 01/07/2023] Open
Abstract
The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent.
Collapse
Affiliation(s)
- Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Saúl Martín-Rodríguez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, 35016, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway.
| |
Collapse
|
13
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
14
|
Characterization of the Cap 'n' Collar Isoform C gene in Spodoptera frugiperda and its Association with Superoxide Dismutase. INSECTS 2020; 11:insects11040221. [PMID: 32252427 PMCID: PMC7240359 DOI: 10.3390/insects11040221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Nuclear factor erythroid 2 related factor 2 (Nrf2) belongs to the cap 'n' collar basic region leucine zipper (CNC-bZIP) transcription factor family, and is activated by diverse oxidants, pro-oxidants, antioxidants, and chemo-preventive agents. Transcriptional regulation of a battery of detoxifying and antioxidant genes by Nrf2 has been shown to be important for protection against oxidative stress or chemically-induced cellular damages. In our research, we cloned the full length CncC gene from the Spodoptera frugiperda, named as SfCncC. The cDNA of the SfCncC consists of 2652 nucleotides that include a 2196-nucleotide open reading frame (ORF), encoding 731 amino acid residues, and 239- and 217-bp non-coding regions flanking at the 5'- and 3'-ends of the cDNA, respectively. Sequence analysis indicated SfCncC has the conserved domain (CNC-bZIP domain and a tetrapeptide motif, ETGE) character of Nrf2 and showed high identity compared with the CncC/Nrf2 from other insect and vertebrate species. Over-expression of SfCncC can up-regulate the transcription and activity of the SOD gene in Sf9 cells, and the RNAi of SfCncC in Sf9 cells and larvae of S. frugiperda can dramatically reduce the transcriptional level and activity of the SOD gene, as determined by real-time quantitative PCRs. So the SfCncC is involved in the Keap1-Nrf2-ARE pathway, acting the same as the transcriptional factor Nrf2 in vertebrate, and plays a role for host cell defense. The functional characterization of SfCncC provides the fundamental basis for us to further understand the regulatory mechanism of anti-oxidants and anti-xenobiotics in S. frugiperda.
Collapse
|
15
|
Hermanto FE, Soewondo A, Tsuboi H, Ibrahim M, Rifa'i M. The hepatoprotective effect of Cheral as anti-oxidant and anti-inflammation on mice (Mus musculus) with breast cancer. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.34172/jhp.2020.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction: Recent studies have reported that breast cancer may affect the physiology of other organs, including oxidative stress in the liver. On the other hand, some agents such as white turmeric (Curcuma longa) and Meniran (Phyllanthus niruri) seem to maintain redox stability and immunomodulation. Both of them are combined into Cheral potion. This study was aimed to investigate the Cheral efficacy in modulating oxidative stress based on Nuclear factor erythroid 2-related factor 2 (Nrf2), HEME OXIGenase (HO), and superoxide dismutase (SOD) levels as well as pro-inflammatory cytokines under breast cancer condition in vivo. Methods: Nrf2, HO, and SOD from hepatocytes, and tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) from splenocytes were measured by flow cytometry after 14 days of Cheral administration. Results: The results showed that mice model for breast cancer underwent oxidative stress denoted by high levels of HO, and SOD accompanied by increased levels of TNF-α and IFN-γ in the cancer group compared to normal healthy group (P<0.05). In contrast, Cheral treatment was able to modulate redox balance by declining levels of HO, SOD, TNF-α, and IFN-γ, but not Nrf2, compared to cancer group (P<0.05). Conclusion: The results showed that breast cancer could alter the host’s physiology, including liver oxidative stress. The levels of TNF-α and IFN-γ might contribute to regulation of redox balance in the liver. However, Cheral has potency as an alternative therapeutic agent to reduce oxidative stress in the liver under breast cancer condition.
Collapse
Affiliation(s)
- Feri Eko Hermanto
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran Malang 65145, East Java, Indonesia
| | - Aris Soewondo
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran Malang 65145, East Java, Indonesia
| | - Hideo Tsuboi
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mansur Ibrahim
- Pancasakti University, Makasar 90132, South Sulawesi, Indonesia
| | - Muhaimin Rifa'i
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran Malang 65145, East Java, Indonesia
- Biosystem Study Center, Brawijaya University, Jl. Veteran Malang 65145, East Java, Indonesia
| |
Collapse
|
16
|
Wei Y, Zhang J, Yan X, Peng X, Xu S, Chang H, Wang H, Gao Y. Remarkable Protective Effects of Nrf2-Mediated Antioxidant Enzymes and Tissue Specificity in Different Skeletal Muscles of Daurian Ground Squirrels Over the Torpor-Arousal Cycle. Front Physiol 2019; 10:1449. [PMID: 31824343 PMCID: PMC6883408 DOI: 10.3389/fphys.2019.01449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/08/2019] [Indexed: 01/07/2023] Open
Abstract
Hibernating mammals experience conditions of extreme oxidative stress, such as fasting, muscle disuse, and repeated hypoxic ischemia-reperfusion, during the torpor-arousal cycle. Despite this, they experience little oxidative injury and are thus an interesting model of anti-oxidative damage. Thus, in the current study, we explored the levels and underlying mechanism of oxidative stress and antioxidant capacity in three skeletal muscles [slow-twitch soleus (SOL), fast-twitch extensor digitorum longus (EDL), and mixed gastrocnemius (GAS)] of Daurian ground squirrels (Spermophilus dauricus) during hibernation. Results showed that hydrogen peroxide content in the EDL and GAS decreased significantly during pre-hibernation (PRE) and late torpor (LT) compared to levels in the summer active (SA) group. Furthermore, relative to SA levels, malondialdehyde content decreased significantly during interbout arousal (IBA) and early torpor (ET) in all three skeletal muscles and decreased in the EDL and GAS during LT. Compared with the SA group, glutathione peroxidase 1 (GPx1) and catalase (CAT) protein expression in the SOL and superoxide dismutase 1 (SOD1) and SOD2 expression in the GAS increased significantly during the entire hibernation season. Furthermore, SOD1 in the IBA group and CAT and GPx1 in the ET and LT groups increased significantly in the EDL. The activities of most tested antioxidant enzymes were higher in the IBA group than in the LT group, whereas CAT remained highly active throughout the hibernation season in all three muscles. Nrf2 and p-Nrf2 protein levels were significantly elevated in the SOL and EDL during hibernation, and increased during the PRE, IBA, and ET states in the GAS. Thus, activation of the Nrf2/Keap1 antioxidant pathway resulted in the elimination of excess reactive oxygen species (ROS). Specifically, ROS levels were maintained at physiological levels by the up-regulation of antioxidant enzyme expression in skeletal muscles under oxidative stress during hibernation, thus preventing oxidative injury over the torpor-arousal cycle. Different antioxidant patterns and oxidative stress levels were also observed among the different skeletal muscles of hibernating Daurian ground squirrels.
Collapse
Affiliation(s)
- Yanhong Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jie Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xia Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xin Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Shenhui Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
17
|
Choi EM, Suh KS, Jung WW, Yun S, Park SY, Chin SO, Rhee SY, Chon S. Catalpol protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytotoxicity in osteoblastic MC3T3-E1 cells. J Appl Toxicol 2019; 39:1710-1719. [PMID: 31429101 DOI: 10.1002/jat.3896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a well-known environmental contaminant that produces a wide variety of adverse effects in humans. Catalpol, a major bioactive compound enriched in the dried root of Rehmannia glutinosa, is a major iridoid glycoside that alleviates bone loss. However, the detailed mechanisms underlying the effects of catalpol remain unclear. The present study evaluated the effects of catalpol on TCDD-induced cytotoxicity in osteoblastic MC3T3-E1 cells. Catalpol inhibited TCDD-induced reduction in cell viability and increases in apoptosis and autophagic activity in osteoblastic MC3T3-E1 cells. Additionally, pretreatment with catalpol significantly decreased the nitric oxide and nitrite levels compared with a control in TCDD-treated cells and significantly inhibited TCDD-induced increases in the levels of cytochrome P450 1A1 and extracellular signal-regulated kinase. Pretreatment with catalpol also effectively restored the expression of superoxide dismutase and extracellular signal-regulated kinase 1 and significantly enhanced the expression of glutathione peroxidase 4 and osteoblast differentiation markers, including alkaline phosphatase and osterix. Taken together, these findings demonstrate that catalpol has preventive effects against TCDD-induced damage in MC3T3-E1 osteoblastic cells.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Soojin Yun
- Department of Medicine, Graduate School, Kyung Hee University, Seoule, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - So Young Park
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| |
Collapse
|
18
|
Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1. Int J Oral Sci 2019; 11:6. [PMID: 30783082 PMCID: PMC6381107 DOI: 10.1038/s41368-018-0039-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Periodontal disease is associated with chronic oxidative stress and inflammation. Caffeic acid phenethyl ester (CAPE), which is a potent inducer of heme oxygenase 1 (HO1), is a central active component of propolis, and the application of propolis improves periodontal status in diabetic patients. Here, primary murine macrophages were exposed to CAPE. Target gene expression was assessed by whole-genome microarray, RT-PCR and Western blotting. The antioxidative and anti-inflammatory activities of CAPE were examined by exposure of the cells to hydrogen peroxide, saliva and periodontal pathogens. The involvement of HO1 was investigated with the HO1 inhibitor tin protoporphyrin (SnPP) and knockout mice for Nrf2, which is a transcription factor for detoxifying enzymes. CAPE increased HO1 and other heat shock proteins in murine macrophages. A p38 MAPK inhibitor and Nrf2 knockout attenuated CAPE-induced HO1 expression in macrophages. CAPE exerted strong antioxidative activity. Additionally, CAPE reduced the inflammatory response to saliva and periodontal pathogens. Blocking HO1 decreased the antioxidative activity and attenuated the anti-inflammatory activity of CAPE. In conclusion, CAPE exerted its antioxidative effects through the Nrf2-mediated HO1 pathway and its anti-inflammatory effects through NF-κB inhibition. However, preclinical models evaluating the use of CAPE in periodontal inflammation are necessary in future studies. Propolis, also known as ‘honeybee glue,’ may protect teeth and gums against periodontal disease. In periodontal disease, chronic inflammation and oxidative damage harm gum tissue and lead to tooth loss; propolis has been shown to improve periodontal health for patients with diabetes. Bees make propolis by mixing beeswax, honey, plant resins and their own saliva, and use it to patch honeycomb and prevent growth of microbes in the hive. Reinhard Gruber of the Department of Oral Biology at the Medical University of Vienna and of the Department of Periodontology, University of Bern and co-workers investigated the effects of one of propolis’ active ingredients, caffeic acid phenethyl ester (CAPE), on oxidative stress and inflammation. They found that CAPE reduced oxidative damage and dampened inflammation; further investigation revealed the genetic basis of the beneficial effects, paving the way for future clinical studies. These results may help identify alternative treatments for periodontal disease.
Collapse
|
19
|
Parascandolo A, Laukkanen MO. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal 2019; 30:443-486. [PMID: 29478325 PMCID: PMC6393772 DOI: 10.1089/ars.2017.7268] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34+ cell differentiation in thyroid, colon, lung, breast, and hematological cancers. CRITICAL ISSUES Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. FUTURE DIRECTIONS The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies.
Collapse
|
20
|
Shaw P, Mondal P, Bandyopadhyay A, Chattopadhyay A. Environmentally relevant concentration of chromium activates Nrf2 and alters transcription of related XME genes in liver of zebrafish. CHEMOSPHERE 2019; 214:35-46. [PMID: 30253254 DOI: 10.1016/j.chemosphere.2018.09.104] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Fish is an excellent model to decipher the mechanism of toxicity of aquatic contaminants such as hexavalent chromium (Cr [VI]). The present study looked into the manifestation of stress in liver of zebrafish exposed to an environmentally relevant concentration (2 mgL-1), and the functioning of the cytoprotective machinery that pacifies the formed stress. The results lead us to hypothesize that oxidative stress plays a key role in chromium-induced toxicity resulting in lipid peroxidation and extensive changes in tissue ultrastructure. In treated fish, production of reactive oxygen species, increase in reduced glutathione content and increase in malondialdehyde content along with enhanced catalase activity were evident. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was found to increase both at transcriptional and translational level and its translocation into the nucleus was confirmed by fluorescence-based immunohistochemical studies. The mRNA levels of genes like Nqo1, Cyp1a and Cu/Zn Sod were found to increase whereas Ho1, Hsp70 and Ucp2 were down-regulated. The sensitivity of these genes towards Cr [VI] validates their candidature as important biomarkers of Cr [VI] exposure in zebrafish.
Collapse
Affiliation(s)
- Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan-731235, West Bengal, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan-731235, West Bengal, India
| | | | | |
Collapse
|
21
|
Wei Y, Zhang J, Xu S, Peng X, Yan X, Li X, Wang H, Chang H, Gao Y. Controllable oxidative stress and tissue specificity in major tissues during the torpor-arousal cycle in hibernating Daurian ground squirrels. Open Biol 2018; 8:rsob.180068. [PMID: 30305429 PMCID: PMC6223210 DOI: 10.1098/rsob.180068] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023] Open
Abstract
Mammalian hibernators experience repeated hypoxic ischaemia and reperfusion during the torpor–arousal cycle. We investigated levels of oxidative stress, antioxidant capacity, and the underlying mechanism in heart, liver, brain and kidney tissue as well as plasma during different periods of hibernation in Daurian ground squirrels (Spermophilus dauricus). Our data showed that the levels of hydrogen peroxide significantly increased in the heart and brain during late torpor (LT) compared with levels during the summer active (SA) state. The content of malondialdehyde (MDA) was significantly lower during interbout arousal (IBA) and early torpor (ET) than that during SA or pre-hibernation (PRE), and MDA levels in the LT brain were significantly higher than the levels in other states. Superoxide dismutase 2 protein levels increased markedly in the heart throughout the entire torpor–arousal cycle. Catalase expression remained at an elevated level in the liver during the hibernation cycle. Superoxide dismutase 1 and glutathione peroxidase 1 (GPx1) expression increased considerably in all tissues during the IBA and ET states. In addition, the activities of the various antioxidant enzymes were higher in all tissues during IBA and ET than during LT; however, GPx activity in plasma decreased significantly during the hibernation season. The expression of p-Nrf2 decreased in all tissue types during IBA, but significantly increased during LT, especially in liver tissue. Interestingly, most changed indicators recovered to SA or PRE levels in post-hibernation (POST). These results suggest that increased reactive oxygen species during LT may activate the Nrf2/Keap1 antioxidant pathway and may contribute to the decreased MDA levels found during the IBA and ET states, thereby protecting organisms from oxidative damage over the torpor-arousal cycle of hibernation. This is the first report on the remarkable controllability of oxidative stress and tissue specificity in major oxidative tissues of a hibernator.
Collapse
Affiliation(s)
- Yanhong Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, People's Republic of China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Jie Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, People's Republic of China
| | - Shenhui Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, People's Republic of China
| | - Xin Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, People's Republic of China
| | - Xia Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, People's Republic of China
| | - Xiaoyu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, People's Republic of China
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, People's Republic of China
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, People's Republic of China
| | - Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, People's Republic of China
| |
Collapse
|
22
|
SOD1 in Amyotrophic Lateral Sclerosis: "Ambivalent" Behavior Connected to the Disease. Int J Mol Sci 2018; 19:ijms19051345. [PMID: 29751510 PMCID: PMC5983710 DOI: 10.3390/ijms19051345] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
In 1993, Rosen and collaborators discovered that the gene encoding SOD1 has mutations in amyotrophic lateral sclerosis (ALS) patients; moreover, these mutations are found in the exon regions, suggesting that their toxic effects are the consequence of protein dysfunction with an increase of oxidative stress. While a clear genetic picture has been delineated, a more complex scenario has been ascribed to the SOD1 protein. On the one hand, some evidence sustains the hypothesis of an additionally toxic role for wild-type SOD1 (WT-SOD1) in the pathogenesis of sporadic ALS. On the other hand, our group identified a discrepancy among WT-SOD1 protein expression levels and mRNA in ALS sporadic patients, thus providing the hypothesis of a re-localization of the “missing” SOD1 in a different sub-cellular compartment, i.e., nucleus, or an aggregation/precipitation in the insoluble fraction. Moreover, our data also indicate an association between longer disease duration and higher amounts of soluble SOD1 within the nucleus, suggesting a possible defensive role of the protein in this compartment. Starting from this evidence, in this review we will attempt to resolve the “ambivalent” behavior of SOD1 in ALS disease and we will try to classify sporadic ALS patients according to a novel biological signature, i.e., SOD localization.
Collapse
|
23
|
Gao B, Bian X, Chi L, Tu P, Ru H, Lu K. Editor's Highlight: OrganophosphateDiazinon Altered Quorum Sensing, Cell Motility, Stress Response, and Carbohydrate Metabolism of Gut Microbiome. Toxicol Sci 2018; 157:354-364. [PMID: 28369659 DOI: 10.1093/toxsci/kfx053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome plays a key role in energy production, immune system development, and host resistance against invading pathogens, etc. Disruption of gut bacterial homeostasis is associated with a number of human diseases. Several environmental chemicals have been reported to induce alterations of the gut microbiome. Diazinon, one of important organophosphate insecticides, has been widely used in agriculture. Diazinon and its metabolites are readily detected in different environmental settings and human urine. The toxicity of organophosphates has been a long-standing public health concern. We recently demonstrated that organophosphate insecticide diazinon perturbed the gut microbiome composition of mice. However, the functional impact of exposure on the gut microbiome has not been adequately assessed yet. In particular, the molecular mechanism responsible for exposure-induced microbial profile and community structure changes has not been identified. Therefore, in this study, we used metatranscriptomics to examine the effects of diazinon exposure on the gut metatranscriptome in C57BL/6 mice. Herein, we demonstrated for the first time that organophosphate diazinon modulated quorum sensing, which may serve as a key mechanism to regulate bacterial population, composition, and more importantly, their functional genes. In addition, we also found that diazinon exposure activated diverse stress response pathways and profoundly impaired energy metabolism of gut bacteria. These findings provide new understandings of the functional interplay between the gut microbiome and environmental chemicals, such as organophosphates.
Collapse
Affiliation(s)
- Bei Gao
- Department of Environmental Health Science, University of Georgia, Athens, Georgia 30602.,Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Xiaoming Bian
- Department of Environmental Health Science, University of Georgia, Athens, Georgia 30602.,Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina 27607
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
24
|
Wilkinson DA, Pandey AS, Thompson BG, Keep RF, Hua Y, Xi G. Injury mechanisms in acute intracerebral hemorrhage. Neuropharmacology 2017; 134:240-248. [PMID: 28947377 DOI: 10.1016/j.neuropharm.2017.09.033] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is the most common hemorrhagic stroke subtype, and rates are increasing with an aging population. Despite an increase in research and trials of therapies for ICH, mortality remains high and no interventional therapy has been demonstrated to improve outcomes. We review known mechanisms of injury, recent clinical trial results, and newly discovered signaling pathways involved in hematoma clearance. Enthusiasm remains high for methods of minimally invasive clot removal as well as pharmacologic strategies to improve recovery after ICH, both of which are currently being evaluated in clinical trials. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Corrales J, Kristofco LA, Steele WB, Saari GN, Kostal J, Williams ES, Mills M, Gallagher EP, Kavanagh TJ, Simcox N, Shen LQ, Melnikov F, Zimmerman JB, Voutchkova-Kostal AM, Anastas PT, Brooks BW. Toward the Design of Less Hazardous Chemicals: Exploring Comparative Oxidative Stress in Two Common Animal Models. Chem Res Toxicol 2016; 30:893-904. [PMID: 27750016 DOI: 10.1021/acs.chemrestox.6b00246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sustainable molecular design of less hazardous chemicals presents a potentially transformative approach to protect public health and the environment. Relationships between molecular descriptors and toxicity thresholds previously identified the octanol-water distribution coefficient, log D, and the HOMO-LUMO energy gap, ΔE, as two useful properties in the identification of reduced aquatic toxicity. To determine whether these two property-based guidelines are applicable to sublethal oxidative stress (OS) responses, two common aquatic in vivo models, the fathead minnow (Pimephales promelas) and zebrafish (Danio rerio), were employed to examine traditional biochemical biomarkers (lipid peroxidation, DNA damage, and total glutathione) and antioxidant gene activation following exposure to eight structurally diverse industrial chemicals (bisphenol A, cumene hydroperoxide, dinoseb, hydroquinone, indene, perfluorooctanoic acid, R-(-)-carvone, and tert-butyl hydroperoxide). Bisphenol A, cumene hydroperoxide, dinoseb, and hydroquinone were consistent inducers of OS. Glutathione was the most consistently affected biomarker, suggesting its utility as a sensitivity response to support the design of less hazardous chemicals. Antioxidant gene expression (changes in nrf2, gclc, gst, and sod) was most significantly (p < 0.05) altered by R-(-)-carvone, cumene hydroperoxide, and bisphenol A. Results from the present study indicate that metabolism of parent chemicals and the role of their metabolites in molecular initiating events should be considered during the design of less hazardous chemicals. Current empirical and computational findings identify the need for future derivation of sustainable molecular design guidelines for electrophilic reactive chemicals (e.g., SN2 nucleophilic substitution and Michael addition reactivity) to reduce OS related adverse outcomes in vivo.
Collapse
Affiliation(s)
- Jone Corrales
- Department of Environmental Science, Baylor University , Waco, Texas 76798, United States
| | - Lauren A Kristofco
- Department of Environmental Science, Baylor University , Waco, Texas 76798, United States
| | - W Baylor Steele
- Department of Environmental Science, Baylor University , Waco, Texas 76798, United States
| | - Gavin N Saari
- Department of Environmental Science, Baylor University , Waco, Texas 76798, United States
| | - Jakub Kostal
- Department of Chemistry, George Washington University , Washington, D.C. 20052, United States
| | - E Spencer Williams
- Department of Environmental Science, Baylor University , Waco, Texas 76798, United States
| | - Margaret Mills
- Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington 98195, United States
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington 98195, United States
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington 98195, United States
| | - Nancy Simcox
- Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington 98195, United States
| | - Longzhu Q Shen
- Center for Green Chemistry and Green Engineering, Yale University , New Haven, Connecticut 06520, United States
| | - Fjodor Melnikov
- Center for Green Chemistry and Green Engineering, Yale University , New Haven, Connecticut 06520, United States
| | - Julie B Zimmerman
- Center for Green Chemistry and Green Engineering, Yale University , New Haven, Connecticut 06520, United States.,Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06520, United States
| | | | - Paul T Anastas
- Center for Green Chemistry and Green Engineering, Yale University , New Haven, Connecticut 06520, United States
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University , Waco, Texas 76798, United States
| |
Collapse
|
26
|
Antioxidant Functions of the Aryl Hydrocarbon Receptor. Stem Cells Int 2016; 2016:7943495. [PMID: 27829840 PMCID: PMC5088273 DOI: 10.1155/2016/7943495] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT) and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.
Collapse
|
27
|
Greco T, Glenn TC, Hovda DA, Prins ML. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. J Cereb Blood Flow Metab 2016; 36:1603-13. [PMID: 26661201 PMCID: PMC5012517 DOI: 10.1177/0271678x15610584] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/14/2015] [Indexed: 01/24/2023]
Abstract
Cerebral metabolism of ketones after traumatic brain injury (TBI) improves neuropathology and behavior in an age-dependent manner. Neuroprotection is attributed to improved cellular energetics, although other properties contribute to the beneficial effects. Oxidative stress is responsible for mitochondrial dysfunction after TBI. Ketones decrease oxidative stress, increase antioxidants and scavenge free radicals. It is hypothesized that ketogenic diet (KD) will decrease post-TBI oxidative stress and improve mitochondria. Postnatal day 35 (PND35) male rats were given sham or controlled cortical impact (CCI) injury and placed on standard (STD) or KD. Ipsilateral cortex homogenates and mitochondria were assayed for markers of oxidative stress, antioxidant expression and mitochondrial function. Oxidative stress was significantly increased at 6 and 24 h post-injury and attenuated by KD while inducing protein expression of antioxidants, NAD(P)H dehydrogenase quinone 1 (NQO1) and superoxide dismutase (SOD1/2). Complex I activity was inhibited in STD and KD groups at 6 h and normalized by 24 h. KD significantly improved Complex II-III activity that was reduced in STD at 6 h. Activity remained reduced at 24 h in STD and unchanged in KD animals. These results strongly suggest that ketones improve post-TBI cerebral metabolism by providing alternative substrates and through antioxidant properties, preventing oxidative stress-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Tiffany Greco
- Department of Neurosurgery, Los Angeles, CA, USA The UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Thomas C Glenn
- Department of Neurosurgery, Los Angeles, CA, USA The UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - David A Hovda
- Department of Neurosurgery, Los Angeles, CA, USA The UCLA Brain Injury Research Center, Los Angeles, CA, USA The Interdepartmental Program for Neuroscience, Los Angeles, CA, USA Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mayumi L Prins
- Department of Neurosurgery, Los Angeles, CA, USA The UCLA Brain Injury Research Center, Los Angeles, CA, USA The Interdepartmental Program for Neuroscience, Los Angeles, CA, USA
| |
Collapse
|
28
|
Peng T, Pan Y, Gao X, Xi J, Zhang L, Yang C, Bi R, Yang S, Xin X, Shang Q. Cytochrome P450 CYP6DA2 regulated by cap 'n'collar isoform C (CncC) is associated with gossypol tolerance in Aphis gossypii Glover. INSECT MOLECULAR BIOLOGY 2016; 25:450-9. [PMID: 27005728 DOI: 10.1111/imb.12230] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cotton plants accumulate phytotoxins, such as gossypol and related sesquiterpene aldehydes, to resist insect herbivores. The survival of insects exposed to toxic secondary metabolites depends on the detoxification metabolism mediated by limited groups of cytochrome P450. Gossypol has an antibiotic effect on Aphis gossypii, and as the concentrations of gossypol were increased in the present study, the mortality of cotton aphids increased from 4 to 28%. The fecundity of the cotton aphids exposed to gossypol was also significantly reduced compared with the control. The transcriptional levels of CYP6DA2 in cotton aphids were significantly induced when exposed to gossypol, and knockdown of the CYP6DA2 transcripts by RNA interference (RNAi) significantly increased the toxicity of gossypol to cotton aphids. To further understand the gossypol regulatory cascade, the 5'-flanking promoter sequences of CYP6DA2 were isolated with a genome walker, and the promoter was very active and was inducible by gossypol. Co-transfection of the cap 'n' collar isoform C (CncC) and CYP6DA2 promoters dramatically increased the expression of CYP6DA2, and suppression of the CncC transcripts by RNAi significantly decreased the expression levels of CYP6DA2, and significantly increased the toxicity of gossypol to cotton aphids. Thus, the transcriptional regulation of CYP6DA2 involved the transcriptional factor CncC.
Collapse
Affiliation(s)
- T Peng
- College of Plant Science, Jilin University, Changchun, China
| | - Y Pan
- College of Plant Science, Jilin University, Changchun, China
| | - X Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - J Xi
- College of Plant Science, Jilin University, Changchun, China
| | - L Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - C Yang
- College of Plant Science, Jilin University, Changchun, China
| | - R Bi
- College of Plant Science, Jilin University, Changchun, China
- Department of Entomology, Jilin Agricultural University, Changchun, China
| | - S Yang
- College of Plant Science, Jilin University, Changchun, China
| | - X Xin
- College of Plant Science, Jilin University, Changchun, China
| | - Q Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
29
|
Dasgupta S, DiGiulio RT, Drollette BD, L Plata D, Brownawell BJ, McElroy AE. Hypoxia depresses CYP1A induction and enhances DNA damage, but has minimal effects on antioxidant responses in sheepshead minnow (Cyprinodon variegatus) larvae exposed to dispersed crude oil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:250-60. [PMID: 27315012 DOI: 10.1016/j.aquatox.2016.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/14/2016] [Accepted: 05/22/2016] [Indexed: 05/26/2023]
Abstract
The growing incidence of hypoxic regions in coastal areas receiving high volumes of anthropogenic discharges requires more focused risk assessment of multiple stressors. One area needing further study is the combined effect of hypoxia and oil exposure. This study examined the short-term sublethal effects of co-exposure to hypoxia and water accommodated fractions (WAF) and chemically enhanced WAFs (CEWAFs) of Southern Louisiana Crude oil on detoxification, antioxidant defenses and genotoxicity in early life stage sheepshead minnow (Cyprinodon variegatus). CYP1A induction (evaluated by measuring EROD activity), activity of a number of key antioxidant enzymes (GST, GR, GPx, SOD, CAT, and GCL), levels of antioxidants (tGSH, GSH, and GSSG), evidence of lipid peroxidation (evaluated using the TBARS assay), and DNA damage (evaluated using the comet assay) provided a broad assessment of responses. Contaminant detoxification pathways induced by oil exposure were inhibited by co-exposure to hypoxia, indicating a maladaptive response. The interactive effects of oil and hypoxia on antioxidant defenses were mixed, but generally indicated less pronounced alterations, with significant increases in lipid peroxidation not observed. Hypoxia significantly enhanced DNA damage induced by oil exposure indicating the potential for significant deleterious effects post exposure. This study demonstrates the importance of considering hypoxia as an enhanced risk factor in assessing the effects of contaminants in areas where seasonal hypoxia may be prevalent.
Collapse
Affiliation(s)
- Subham Dasgupta
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11790, New York, United States
| | - Richard T DiGiulio
- Nicholas School of Environment, Duke University, Durham, NC 27708, United States
| | - Brian D Drollette
- School of Engineering & Applied Science, Yale University, New Haven, CT 06520, United States
| | - Desire L Plata
- School of Engineering & Applied Science, Yale University, New Haven, CT 06520, United States
| | - Bruce J Brownawell
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11790, New York, United States
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11790, New York, United States.
| |
Collapse
|
30
|
Wolinski L, Modenutti B, Souza MS, Balseiro E. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:135-142. [PMID: 26895537 DOI: 10.1016/j.envpol.2016.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
Ultraviolet Radiation (UVR) is a stressor for aquatic organisms affecting enzyme activities in planktonic populations because of the increase in reactive oxygen species. In addition, UVR exposure combined with other environmental factors (i.e. temperature and food quality) could have even higher detrimental effects. In this work, we aimed to determine the effect of UVR on somatic Alkaline Phosphatase Activity (APA) and Glutathione S-Transferase (GST) activity on the cladoceran Daphnia commutata under two different temperatures (10 °C and 20 °C) and under three food qualities (carbon:phosphorus ratios: 1150, 850 and 550). APA is a biomarker that is considered as a P deficiency indicator in zooplankton. Since recovery from UVR damage under dark conditions is an ATP depending reaction we also measured APA during recovery phases. We carried out a laboratory experiment combining different temperatures and food qualities with exposition to UVR followed by luminic and dark phases for recovery. In addition, we exposed organisms to H2O2, to establish if the response on APA to UVR was a consequence of the reactive oxygen species produced these short wavelengths. Our results showed that somatic APA was negatively affected by UVR exposure and this effect was enhanced under high temperature and low food quality. Consistently, GST activity was higher when exposed to UVR under both temperatures. The H2O2 experiments showed the same trend as UVR exposure, indicating that APA is affected mainly by oxidative stress than by direct effect of UVR on the enzyme. Finally, APA was affected in the dark phase of recovery confirming the P demands. These results enlighten the importance of food quality in the interacting effect of UVR and temperature, showing that C:P food ratio could determine the success or failure of zooplanktonic populations in a context of global change.
Collapse
Affiliation(s)
- Laura Wolinski
- Laboratorio de Limnología, INIBIOMA (CONICET-UNComahue), Quintral 1250, Bariloche, Río Negro R8400, Argentina.
| | - Beatriz Modenutti
- Laboratorio de Limnología, INIBIOMA (CONICET-UNComahue), Quintral 1250, Bariloche, Río Negro R8400, Argentina
| | - Maria Sol Souza
- Laboratorio de Limnología, INIBIOMA (CONICET-UNComahue), Quintral 1250, Bariloche, Río Negro R8400, Argentina
| | - Esteban Balseiro
- Laboratorio de Limnología, INIBIOMA (CONICET-UNComahue), Quintral 1250, Bariloche, Río Negro R8400, Argentina
| |
Collapse
|
31
|
Liu H, Nie FH, Lin HY, Ma Y, Ju XH, Chen JJ, Gooneratne R. Developmental toxicity, oxidative stress, and related gene expression induced by dioxin-like PCB 126 in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2016; 31:295-303. [PMID: 25213558 DOI: 10.1002/tox.22044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/17/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
3,3',4,4',5-Pentachlorobiphenyl (PCB126) cause multiple adverse effects in organisms including animals and humans. Although PCB toxicities are linked to oxidative damage in rodents, the mechanism in early life stages of zebrafish is not clear. To explore the developmental toxicity mechanism of PCB126, three paradigms (toxicological phenotypes, biochemical changes, and molecular changes) were studied in 3-h postfertilization (hpf) zebrafish (Danio rerio) embryos exposed to different PCB126 concentrations (0, 16, 32, 64, and 128 μg/L) until 168 hpf. Developmental malformations, including pericardial and yolk sac edema, impaired lower jaw growth, spinal curvature, head edema and failure to inflate the swim bladder were observed, some as early as 72 hpf. Mortality was not apparent in early stages but significantly increased in a dose-dependent manner from 144 hpf onward. A dose-dependent significant increase in malformation rate was observed from 72 hpf onward with up to 100% at 132 hpf in embryos exposed to 128 μg/L of PCB126. Higher doses of PCB126 significantly decreased the copper-zinc superoxide dismutase (CuZn-Sod), catalase (Cat), and glutathione peroxidase (Gpx) enzyme activities at 96, 132 hpf, but markedly declined from thereafter. PCB126 at 128 μg/L significantly increased the malondialdehyde content at 72, 96, and 132 hpf. The transcriptional gene expression of antioxidant enzymes Cat and Gpx was upregulated in embryos exposed to 64 μg/L of PCB126 at 24 and 96 hpf. Sod1 messenger RNA (mRNA) was low in embryos exposed to 32 μg/L at 72 and 96 hpf but was induced in embryos exposed to 64 and 128 μg/L doses at 132 hpf. Collectively, the results suggest oxidative stress as a major factor in the induction of multiple developmental abnormalities in early life stages of zebrafish exposed to PCB126. However, the relationship between the antioxidant enzyme activity and the mRNA expression was not clear and the potential reasons for this are discussed.
Collapse
Affiliation(s)
- Han Liu
- Department of Veterinary Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Fang-Hong Nie
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hong-Ying Lin
- Department of Veterinary Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yi Ma
- Department of Veterinary Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiang-Hong Ju
- Department of Veterinary Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jin-Jun Chen
- Department of Veterinary Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
32
|
Faust D, Nikolova T, Wätjen W, Kaina B, Dietrich C. The Brassica-derived phytochemical indolo[3,2-b]carbazole protects against oxidative DNA damage by aryl hydrocarbon receptor activation. Arch Toxicol 2016; 91:967-982. [DOI: 10.1007/s00204-016-1672-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022]
|
33
|
Dell'Orco M, Milani P, Arrigoni L, Pansarasa O, Sardone V, Maffioli E, Polveraccio F, Bordoni M, Diamanti L, Ceroni M, Peverali FA, Tedeschi G, Cereda C. Hydrogen peroxide-mediated induction of SOD1 gene transcription is independent from Nrf2 in a cellular model of neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:315-23. [DOI: 10.1016/j.bbagrm.2015.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
|
34
|
Abstract
The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a major regulator of oxidative stress defence in the human body. As Nrf2 regulates the expression of a large battery of cytoprotective genes, it plays a crucial role in the prevention of degenerative disease in multiple organs. Thus it has been the focus of research as a pharmacological target that could be used for prevention and treatment of chronic diseases such as multiple sclerosis, chronic kidney disease or cardiovascular diseases. The present review summarizes promising findings from basic research and shows which Nrf2-targeting therapies are currently being investigated in clinical trials and which agents have already entered clinical practice.
Collapse
|
35
|
Mota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, Fonseca AC, Baldeiras I, Cunha C, Letra L, Oliveira CR, Pereira CMF, Rego AC. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1428-41. [PMID: 25857617 DOI: 10.1016/j.bbadis.2015.03.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 12/30/2022]
Abstract
Oxidative stress and endoplasmic reticulum (ER) stress have been associated with Alzheimer's disease (AD) progression. In this study we analyzed whether oxidative stress involving changes in Nrf2 and ER stress may constitute early events in AD pathogenesis by using human peripheral blood cells and an AD transgenic mouse model at different disease stages. Increased oxidative stress and increased phosphorylated Nrf2 (p(Ser40)Nrf2) were observed in human peripheral blood mononuclear cells (PBMCs) isolated from individuals with mild cognitive impairment (MCI). Moreover, we observed impaired ER Ca2+ homeostasis and increased ER stress markers in PBMCs from MCI individuals and mild AD patients. Evidence of early oxidative stress defense mechanisms in AD was substantiated by increased p(Ser40)Nrf2 in 3month-old 3xTg-AD male mice PBMCs, and also with increased nuclear Nrf2 levels in brain cortex. However, SOD1 protein levels were decreased in human MCI PBMCs and in 3xTg-AD mice brain cortex; the latter further correlated with reduced SOD1 mRNA levels. Increased ER stress was also detected in the brain cortex of young female and old male 3xTg-AD mice. We demonstrate oxidative stress and early Nrf2 activation in AD human and mouse models, which fails to regulate some of its targets, leading to repressed expression of antioxidant defenses (e.g., SOD-1), and extending to ER stress. Results suggest markers of prodromal AD linked to oxidative stress associated with Nrf2 activation and ER stress that may be followed in human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Sandra I Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal
| | - Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal
| | - Ildete L Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Portugal; Neurology Unit of Coimbra University Hospital Center, Coimbra, Portugal
| | - Gladys L Caldeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Carmela Padovano
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana C Fonseca
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - Catarina Cunha
- Neurology Unit of Coimbra University Hospital Center, Coimbra, Portugal
| | - Liliana Letra
- Neurology Unit of Coimbra University Hospital Center, Coimbra, Portugal
| | - Catarina R Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - Cláudia M F Pereira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal.
| | - Ana Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
36
|
Sex-specific differences in hyperoxic lung injury in mice: role of cytochrome P450 (CYP)1A. Toxicology 2015; 331:14-23. [PMID: 25703676 DOI: 10.1016/j.tox.2015.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/27/2023]
Abstract
Sex-specific differences in pulmonary morbidity in adults and preterm infants are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. Cytochrome P450 (CYP) 1A enzymes have been shown to play a mechanistic role in hyperoxic lung injury (HLI) in animal models. Whether CYP1A enzymes contribute to gender-specific differences in relation to HLI is unknown. In this investigation, we tested the hypothesis that mice will display gender-specific differences in HLI, and that this phenomenon will be altered in mice lacking the genes for Cyp1a1 or 1a2. Eight week-old male and female wild type (WT) (C57BL/6J) mice, Cyp1a1-/-, and Cyp1a2-/- mice were exposed to 72h of hyperoxia (FiO2>0.95). Lung injury and inflammation were assessed and pulmonary and hepatic CYP1A1 and CYP1A2 levels were quantified at the enzyme activity, protein and mRNA level. Upon exposure to hyperoxia, liver and lung microsomal proteins showed higher pulmonary CYP1A1 (apoprotein level and activity) in WT females compared to WT males and a greater induction in hepatic CYP1A2 mRNA levels and activity in WT females after hyperoxia exposure. The gender based female advantage was lost or reversed in Cyp1a1-/- and Cyp1a2-/- mice. These findings suggest an important role for CYP1A enzymes in the gender-specific modulation of hyperoxic lung injury.
Collapse
|
37
|
Habte-Tsion HM, Ge X, Liu B, Xie J, Ren M, Zhou Q, Miao L, Pan L, Chen R. A deficiency or an excess of dietary threonine level affects weight gain, enzyme activity, immune response and immune-related gene expression in juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2015; 42:439-446. [PMID: 25463293 DOI: 10.1016/j.fsi.2014.11.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
A feeding trial was conducted to investigate the impacts of deficient and excess dietary threonine levels on weight gain, plasma enzymes activities, immune responses and expressions of immune-related genes in the intestine of juvenile blunt snout bream. Triplicate groups of fish (initial weight 3.01 ± 0.01 g, 30 fish per tank) were fed with deficient (0.58%), optimum (1.58%) and excess (2.58%) threonine level diets to near satiation four times a day for 9 weeks. A mixture of l-amino acids was supplemented to simulate the whole body amino acid pattern of blunt snout bream, except for threonine. The results showed that both deficiency and excess threonine level diets significantly (P < 0.05) reduced the weight gain of blunt snout bream. Excess dietary threonine level triggered plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities (P < 0.05); whereas superoxide dismutase (SOD) activity was not significantly influenced by imbalanced-dietary threonine level (P > 0.05). Plasma complement component 3 (C3) and component 4 (C4) concentrations were significantly depressed by the deficiency of dietary threonine (P < 0.05). Dietary threonine regulated the target of rapamycin (TOR), eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2), tumour necrosis factor alpha (TNF-α) and copper-zinc superoxide dismutase (Cu/Zn-SOD) gene expressions in the intestine of blunt snout bream, which may go further to explain the adverse effects of a deficient and/or an excess dietary threonine level on growth, immunity and health of fish. Furthermore, the present study also suggests that an optimum dietary threonine could play an important role in improving growth, enhancing immune function and maintaining health of fish.
Collapse
Affiliation(s)
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Linghong Miao
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| | - Ruli Chen
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui East Road No. 9, Wuxi, Jiangsu 214081, PR China
| |
Collapse
|
38
|
Zhao X, Sun G, Ting SM, Song S, Zhang J, Edwards NJ, Aronowski J. Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J Neurochem 2014; 133:144-52. [PMID: 25328080 DOI: 10.1111/jnc.12974] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 12/30/2022]
Abstract
As a consequence of intracerebral hemorrhage (ICH), blood components enter brain parenchyma causing progressive damage to the surrounding brain. Unless hematoma is cleared, the reservoirs of blood continue to inflict injury to neurovascular structures and blunt the brain repair processes. Microglia/macrophages (MMΦ) represent the primary phagocytic system that mediates the cleanup of hematoma. Thus, the efficacy of phagocytic function by MMΦ is an essential step in limiting ICH-mediated damage. Using primary microglia to model red blood cell (main component of hematoma) clearance, we studied the role of transcription factor nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a master-regulator of antioxidative defense, in the hematoma clearance process. We showed that in cultured microglia, activators of Nrf2 (i) induce antioxidative defense components, (ii) reduce peroxide formation, (iii) up-regulate phagocytosis-mediating scavenger receptor CD36, and (iv) enhance red blood cells (RBC) phagocytosis. Through inhibiting Nrf2 or CD36 in microglia, by DNA decoy or neutralizing antibody, we documented the important role of Nrf2 and CD36 in RBC phagocytosis. Using autologous blood injection ICH model to measure hematoma resolution, we showed that Nrf2 activator, sulforaphane, injected to animals after the onset of ICH, induced CD36 expression in ICH-affected brain and improved hematoma clearance in rats and wild-type mice, but expectedly not in Nrf2 knockout (KO) mice. Normal hematoma clearance was impaired in Nrf2-KO mice. Our experiments suggest that Nrf2 in microglia play an important role in augmenting the antioxidative capacity, phagocytosis, and hematoma clearance after ICH.
Collapse
Affiliation(s)
- Xiurong Zhao
- Stroke Program - Department of Neurology, University of Texas Health Science Center, Medical School at Houston, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Santhanam AVR, d'Uscio LV, Katusic ZS. Erythropoietin increases bioavailability of tetrahydrobiopterin and protects cerebral microvasculature against oxidative stress induced by eNOS uncoupling. J Neurochem 2014; 131:521-9. [PMID: 25041251 PMCID: PMC4222993 DOI: 10.1111/jnc.12824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
This study was designed to determine whether treatment with erythropoietin (EPO) could protect cerebral microvasculature against the pathological consequences of endothelial nitric oxide (NO) synthase uncoupling. Wild-type and GTP cyclohydrolase I (GTPCH-I)-deficient hph1 mice were administered EPO (1000 U/kg/day, s.c., 3 days). Cerebral microvessels of hph1 mice demonstrated reduced tetrahydrobiopterin (BH4) bioavailability, increased production of superoxide anions and impaired endothelial NO signaling. Treatment of hph1 mice with EPO attenuated the levels of 7,8-dihydrobiopterin, the oxidized product of BH4, and significantly increased the ratio of BH4 to 7,8-dihydrobiopterin. Moreover, EPO decreased the levels of superoxide anions and increased NO bioavailability in cerebral microvessels of hph1 mice. Attenuated oxidation of BH4 and inhibition of endothelial NO synthase uncoupling were explained by the increased expression of antioxidant proteins, manganese superoxide dismutase, and catalase. The protective effects of EPO observed in cerebral microvessels of hph1 mice were also observed in GTPCH-I siRNA-treated human brain microvascular endothelial cells exposed to EPO (1 U/mL or 10 U/mL; 3 days). Our results suggest that EPO might protect the neurovascular unit against oxidative stress by restoring bioavailability of BH4 and endothelial NO in the cerebral microvascular endothelium. We demonstrate that treatment with erythropoietin (EPO) could protect cerebral microvasculature against the pathological consequences of endothelial nitric oxide (NO) synthase uncoupling. Our results suggest that EPO might protect the neurovascular unit against oxidative stress by restoring bioavailability of tetrahydrobiopterin (BH4) and endothelial nitric oxide.
Collapse
Affiliation(s)
- Anantha Vijay R Santhanam
- Departments of Anesthesiology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | |
Collapse
|
40
|
MARINA RAQUEL, GONZÁLEZ PAQUITA, FERRERAS MCARMEN, COSTILLA SERAFÍN, BARRIO JUANPABLO. Hepatic Nrf2 expression is altered by quercetin supplementation in X-irradiated rats. Mol Med Rep 2014; 11:539-46. [DOI: 10.3892/mmr.2014.2741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 07/04/2014] [Indexed: 11/06/2022] Open
|
41
|
Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest 2014; 124:3489-500. [PMID: 25036708 DOI: 10.1172/jci71981] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 05/23/2014] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by a deficiency in β cell mass, increased β cell apoptosis, and extracellular accumulation of islet amyloid derived from islet amyloid polypeptide (IAPP), which β cells coexpress with insulin. IAPP expression is increased in the context of insulin resistance, the major risk factor for developing T2D. Human IAPP is potentially toxic, especially as membrane-permeant oligomers, which have been observed to accumulate within β cells of patients with T2D and rodents expressing human IAPP. Here, we determined that β cell IAPP content is regulated by autophagy through p62-dependent lysosomal degradation. Induction of high levels of human IAPP in mouse β cells resulted in accumulation of this amyloidogenic protein as relatively inert fibrils within cytosolic p62-positive inclusions, which temporarily averts formation of toxic oligomers. Mice hemizygous for transgenic expression of human IAPP did not develop diabetes; however, loss of β cell-specific autophagy in these animals induced diabetes, which was attributable to accumulation of toxic human IAPP oligomers and loss of β cell mass. In human IAPP-expressing mice that lack β cell autophagy, increased oxidative damage and loss of an antioxidant-protective pathway appeared to contribute to increased β cell apoptosis. These findings indicate that autophagy/lysosomal degradation defends β cells against proteotoxicity induced by oligomerization-prone human IAPP.
Collapse
|
42
|
Reisman SA, Lee CYI, Meyer CJ, Proksch JW, Sonis ST, Ward KW. Topical Application of the Synthetic Triterpenoid RTA 408 Protects Mice from Radiation-Induced Dermatitis. Radiat Res 2014; 181:512-20. [DOI: 10.1667/rr13578.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | - Keith W. Ward
- Reata Pharmaceuticals, Inc., Irving, Texas 75063; and
| |
Collapse
|
43
|
Hitchler MJ, Domann FE. Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis. Antioxid Redox Signal 2014; 20:1590-8. [PMID: 23795822 PMCID: PMC3960847 DOI: 10.1089/ars.2013.5385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Molecular oxygen is a Janus-faced electron acceptor for biological systems, serving as a reductant for respiration, or as the genesis for oxygen-derived free radicals that damage macromolecules. Superoxide is well known to perturb nonheme iron proteins, including Fe/S proteins such as aconitase and succinate dehydrogenase, as well as other enzymes containing labile iron such as the prolyl hydroxylase domain-containing family of enzymes; whereas hydrogen peroxide is more specific for two-electron reactions with thiols on glutathione, glutaredoxin, thioredoxin, and the peroxiredoxins. RECENT ADVANCES Over the past two decades, familial cases of amyotrophic lateral sclerosis (ALS) have been shown to have an association with commonly altered superoxide dismutase 1 (SOD1) activity, expression, and protein structure. This has led to speculation that an altered redox balance may have a role in creating the ALS phenotype. CRITICAL ISSUES While SOD1 alterations in familial ALS are manifold, they generally create perturbations in the flux of electrons. The nexus of SOD1 between one- and two-electron signaling processes places it at a key signaling regulatory checkpoint for governing cellular responses to physiological and environmental cues. FUTURE DIRECTIONS The manner in which ALS-associated mutations adjust SOD1's role in controlling the flow of electrons between one- and two-electron signaling processes remains obscure. Here, we discuss the ways in which SOD1 mutations influence the form and function of copper zinc SOD, the consequences of these alterations on free radical biology, and how these alterations might influence cell signaling during the onset of ALS.
Collapse
Affiliation(s)
- Michael J Hitchler
- 1 Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center , Los Angeles, California
| | | |
Collapse
|
44
|
Manzetti S, van der Spoel ER, van der Spoel D. Chemical Properties, Environmental Fate, and Degradation of Seven Classes of Pollutants. Chem Res Toxicol 2014; 27:713-37. [DOI: 10.1021/tx500014w] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sergio Manzetti
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, University of Uppsala, Box 596, SE-75124 Uppsala, Sweden
- Fjordforsk A.S., Midtun, 6894 Vangsnes, Norway
| | - E. Roos van der Spoel
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, University of Uppsala, Box 596, SE-75124 Uppsala, Sweden
| | - David van der Spoel
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, University of Uppsala, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
45
|
Milani P, Amadio M, Laforenza U, Dell'Orco M, Diamanti L, Sardone V, Gagliardi S, Govoni S, Ceroni M, Pascale A, Cereda C. Posttranscriptional regulation of SOD1 gene expression under oxidative stress: Potential role of ELAV proteins in sporadic ALS. Neurobiol Dis 2013; 60:51-60. [DOI: 10.1016/j.nbd.2013.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/05/2013] [Accepted: 08/07/2013] [Indexed: 11/28/2022] Open
|
46
|
Redox activation of Nrf2 & NF-κB: a double end sword? Cell Signal 2013; 25:2548-57. [PMID: 23993959 DOI: 10.1016/j.cellsig.2013.08.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022]
Abstract
Moderate concentrations of reactive oxygen species (ROS) are produced by diverse sources under physiological conditions. At such low levels, these molecules may act as upstream mediators of relevant signaling pathways; however an increase in their concentration with respect to the antioxidant system activity, changes their redox signaling function into a deleterious role. Thus, cell health depends, at least in part, on redox balance. This review includes global aspects of oxygen chemistry, ROS generation, antioxidant system, and redox signaling. It is also focused on the description of two relevant redox-sensitive transcription factors: nuclear factor erythroid 2-related factor 2 (Nrf2), which may be a potential target to confer cell protection, and nuclear factor κB (NF-κB), which is involved in deleterious effects in the cell. Finally, recent findings on the interplay between both factors for the development of different pathologies are discussed.
Collapse
|
47
|
Lingappan K, Jiang W, Wang L, Couroucli XI, Barrios R, Moorthy B. Sex-specific differences in hyperoxic lung injury in mice: implications for acute and chronic lung disease in humans. Toxicol Appl Pharmacol 2013; 272:281-90. [PMID: 23792423 DOI: 10.1016/j.taap.2013.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 01/12/2023]
Abstract
Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO2>0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F2 alpha (8-iso-PGF 2α) (LC-MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F>M) and VEGF (M>F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans.
Collapse
Affiliation(s)
- Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Arambašić J, Mihailović M, Uskoković A, Dinić S, Grdović N, Marković J, Poznanović G, Bajec D, Vidaković M. Alpha-lipoic acid upregulates antioxidant enzyme gene expression and enzymatic activity in diabetic rat kidneys through an O-GlcNAc-dependent mechanism. Eur J Nutr 2012; 52:1461-73. [PMID: 23064900 DOI: 10.1007/s00394-012-0452-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/26/2012] [Indexed: 12/30/2022]
Abstract
PURPOSE The combined hyperglycemia lowering and antioxidant actions of α-lipoic acid (LA) contribute to its usefulness in preventing renal injury and other diabetic complications. The precise mechanisms by which LA alters diabetic oxidative renal injury are not known. We hypothesized that LA through its hypoglycemic effect lowers O-GlcNAcylation which influences the expression and activities of antioxidant enzymes which assume important roles in preventing diabetes-induced oxidative renal injury. METHODS An experimental model of diabetes was induced in rats by the administration of 40 mg/kg streptozotocin (STZ) intraperitoneally (i.p.) for five consecutive days. LA was applied at a dose of 10 mg/kg i.p. for 4 weeks, starting from the last day of STZ administration. RESULTS An improved glycemic status of LA-treated diabetic rats was accompanied by a significant suppression of oxidative stress and a reduction of oxidative damage of lipids, proteins and DNA. LA treatment normalized CuZn-superoxide dismutase (SOD) and catalase activities in renal tissue of diabetic rats. These changes were allied with upregulated gene expression and lower levels of O-GlcNA glycosylation. The accompanying increase in MnSOD activity was only linked with upregulated gene expression. The observed antioxidant enzyme gene regulation was accompanied by nuclear translocation of Nuclear factor-erythroid-2-related factor 2 (Nrf2), enhanced expression of heat shock proteins (HSPs) and by reduction in O-GlcNAcylation of HSP90, HSP70, and extracellular regulated kinase and p38. CONCLUSION α-Lipoic acid administration activates a coordinated cytoprotective response against diabetes-induced oxidative injury in kidney tissue through an O-GlcNAc-dependent mechanism.
Collapse
Affiliation(s)
- Jelena Arambašić
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 10060, Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li Y, Li M, Shi J, Yang X, Wang Z. Hepatic antioxidative responses to PCDPSs and estimated short-term biotoxicity in freshwater fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 120-121:90-98. [PMID: 22640874 DOI: 10.1016/j.aquatox.2012.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/31/2012] [Accepted: 04/03/2012] [Indexed: 06/01/2023]
Abstract
This study evaluated the short-term toxicity of polychlorinated diphenylsulfides (PCDPSs) in freshwater fish. Laboratory experiments were performed to determine the oxidative stress and antioxidative responses of 12 different types of PCDPSs in the liver of goldfish, Carassius auratus. Fish were injected with increasing concentrations (0.1, 1, 10, 100 μg/kg body weight for various PCDPSs and 1, 10, 100 mg/kg for diphenylsulfides (DPS)) of test compounds for 12h, with one group assigned as the control. We simultaneously evaluated the time-dependent effects of PCDPSs on the antioxidant defense system, using Tris-, Penta- and Hepta-CDPS. Fish were acutely injected with either 10 μg/kg of such PCDPSs or corn oil alone (control), and then liver samples were collected at 0.5, 1, 2, 3 and 5d for analysis of antioxidant content. Changes in the activities of superoxide dismutase (SOD), catalase (CAT), and in the levels of malondialdehyde (MDA) were detected, suggesting that PCDPSs exhibit potential biotoxicity. In addition, our data indicated that PCDPS toxicity varies with the degree of substitution and the position of substitution attached to two benzene rings, results that were also partly supported by the time-dependent effects elicited by the Tris-, Penta- and Hepta-CDPSs. In particular, our results indicate that Penta- and Hexa-CDPSs may act as highly toxic contaminants that exhibit striking enzymatic inhibitory activity. Furthermore, our results suggest that altered levels of antioxidant enzymes, including SOD and CAT, along with MDA, may serve as potential biomarkers of PCDPS contamination.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | | | | | | | | |
Collapse
|
50
|
Chorley BN, Campbell MR, Wang X, Karaca M, Sambandan D, Bangura F, Xue P, Pi J, Kleeberger SR, Bell DA. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res 2012; 40:7416-29. [PMID: 22581777 PMCID: PMC3424561 DOI: 10.1093/nar/gks409] [Citation(s) in RCA: 446] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/14/2022] Open
Abstract
Cellular oxidative and electrophilic stress triggers a protective response in mammals regulated by NRF2 (nuclear factor (erythroid-derived) 2-like; NFE2L2) binding to deoxyribonucleic acid-regulatory sequences near stress-responsive genes. Studies using Nrf2-deficient mice suggest that hundreds of genes may be regulated by NRF2. To identify human NRF2-regulated genes, we conducted chromatin immunoprecipitation (ChIP)-sequencing experiments in lymphoid cells treated with the dietary isothiocyanate, sulforaphane (SFN) and carried out follow-up biological experiments on candidates. We found 242 high confidence, NRF2-bound genomic regions and 96% of these regions contained NRF2-regulatory sequence motifs. The majority of binding sites were near potential novel members of the NRF2 pathway. Validation of selected candidate genes using parallel ChIP techniques and in NRF2-silenced cell lines indicated that the expression of about two-thirds of the candidates are likely to be directly NRF2-dependent including retinoid X receptor alpha (RXRA). NRF2 regulation of RXRA has implications for response to retinoid treatments and adipogenesis. In mouse, 3T3-L1 cells' SFN treatment affected Rxra expression early in adipogenesis, and knockdown of Nrf2-delayed Rxra expression, both leading to impaired adipogenesis.
Collapse
Affiliation(s)
- Brian N. Chorley
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, The Hamner Institutes and Environmental Genetics Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michelle R. Campbell
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, The Hamner Institutes and Environmental Genetics Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Xuting Wang
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, The Hamner Institutes and Environmental Genetics Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Mehmet Karaca
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, The Hamner Institutes and Environmental Genetics Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Deepa Sambandan
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, The Hamner Institutes and Environmental Genetics Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Fatu Bangura
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, The Hamner Institutes and Environmental Genetics Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Peng Xue
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, The Hamner Institutes and Environmental Genetics Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jingbo Pi
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, The Hamner Institutes and Environmental Genetics Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Steven R. Kleeberger
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, The Hamner Institutes and Environmental Genetics Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Douglas A. Bell
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, The Hamner Institutes and Environmental Genetics Section, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|