1
|
Qusairy Z, Rada M. Glycosylation in cancer: mechanisms, diagnostic markers, and therapeutic applications. Mol Cell Biochem 2025:10.1007/s11010-025-05303-1. [PMID: 40389792 DOI: 10.1007/s11010-025-05303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/04/2025] [Indexed: 05/21/2025]
Abstract
Glycosylation, a key post-translational modification, plays a pivotal role in cancer progression by influencing critical processes such as protein folding, immune modulation, and intercellular signaling. Altered glycosylation patterns are increasingly recognized as fundamental drivers of tumorigenesis, contributing to key cancer hallmarks like enhanced tumor migration, metastasis, and immune evasion. These aberrant glycosylation signatures not only offer insights into cancer biology but also serve as valuable diagnostic markers and potential therapeutic targets across a range of malignancies. This review explores the mechanisms underlying glycosylation alterations in cancer. We discuss the molecular basis of these changes, including genetic mutations, epigenetic regulation, and oncogene-driven shifts in glycosylation pathways. Additionally, we highlight recent advancements in glycomics research, with a focus on how these alterations influence tumor progression, angiogenesis, and the tumor microenvironment. Furthermore, the review considers the clinical implications of glycosylation changes, including their role in resistance to anti-cancer therapies and their potential as biomarkers for personalized treatment strategies. By bridging fundamental glycosylation research with clinical applications, this review underscores the promise of glycosylation as both a diagnostic tool and a therapeutic target in oncology, offering new avenues for improved patient stratification and precision medicine.
Collapse
Affiliation(s)
- Zahraa Qusairy
- McGill University Health Center Research Institute, Montreal, QC, H4A 3J1, Canada
| | - Miran Rada
- Medical Laboratory Science, Komar University of Science and Technology, Qularaisi, Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq.
- Komar Cancer Research Program, Komar University of Science and Technology, Qularaisi, Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq.
| |
Collapse
|
2
|
Xu Y, Wang Y, Höti N, Clark DJ, Chen SY, Zhang H. The next "sweet" spot for pancreatic ductal adenocarcinoma: Glycoprotein for early detection. MASS SPECTROMETRY REVIEWS 2023; 42:822-843. [PMID: 34766650 PMCID: PMC9095761 DOI: 10.1002/mas.21748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/07/2021] [Accepted: 10/24/2021] [Indexed: 05/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common neoplastic disease of the pancreas, accounting for more than 90% of all pancreatic malignancies. As a highly lethal malignancy, PDAC is the fourth leading cause of cancer-related deaths worldwide with a 5-year overall survival of less than 8%. The efficacy and outcome of PDAC treatment largely depend on the stage of disease at the time of diagnosis. Surgical resection followed by adjuvant chemotherapy remains the only possibly curative therapy, yet 80%-90% of PDAC patients present with nonresectable PDAC stages at the time of clinical presentation. Despite our advancing knowledge of PDAC, the prognosis remains strikingly poor, which is primarily due to the difficulty of diagnosing PDAC at the early stages. Recent advances in glycoproteomics and glycomics based on mass spectrometry have shown that aberrations in protein glycosylation plays a critical role in carcinogenesis, tumor progression, metastasis, chemoresistance, and immuno-response of PDAC and other types of cancers. A growing interest has thus been placed upon protein glycosylation as a potential early detection biomarker for PDAC. We herein take stock of the advancements in the early detection of PDAC that were carried out with mass spectrometry, with special focus on protein glycosylation.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuefan Wang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Naseruddin Höti
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David J Clark
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shao-Yung Chen
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Oh MJ, Lee SH, Kim U, An HJ. In-depth investigation of altered glycosylation in human haptoglobin associated cancer by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:496-518. [PMID: 34037272 DOI: 10.1002/mas.21707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 05/08/2023]
Abstract
Serum haptoglobin (Hp), a highly sialylated biomolecule with four N-glycosylation sites, is a positive acute-phase response glycoprotein that acts as an immunomodulator. Hp has gained considerable attention due to its potential as a signature molecule that exhibits aberrant glycosylation in inflammatory disorders and malignancies. Its glycosylation can be analyzed qualitatively and quantitatively by various methods using mass spectrometry. In this review, we have provided a brief overview of Hp structure and biological function and described mass spectrometry-based techniques for analyzing glycosylation ranging from macroheterogeneity to microheterogeneity of Hp in diseases and cancer. The sugars on haptoglobin can be a sweet bridge to link the potential of cancer-specific biomarkers to clinically relevant applications.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Sung Hyeon Lee
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, South Korea
| | - Unyoung Kim
- Division of Bioanalysis, Biocomplete Inc., Seoul, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
4
|
Zhang Y, Zhang S, Liu J, Zhang Y, Liu Y, Shen S, Tian F, Yan G, Gao Y, Qin X. Identification of serum glycobiomarkers for Hepatocellular Carcinoma using lectin microarrays. Front Immunol 2022; 13:973993. [PMID: 36341438 PMCID: PMC9634732 DOI: 10.3389/fimmu.2022.973993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is the sixth most commonly occurring cancer and ranks third in mortality among all malignant tumors; as a result, HCC represents a major human health issue. Although aberrant glycosylation is clearly implicated in HCC, changes in serum immunoglobulin (Ig)G and IgM glycosylation have not been comprehensively characterized. In this study, we used lectin microarrays to evaluate differences in serum IgG and IgM glycosylation among patients with HCC, hepatitis B cirrhosis (HBC), or chronic hepatitis B (CHB), and healthy normal controls (NC) and aimed to establish a model to improve the diagnostic accuracy of HCC. Methods In total, 207 serum samples collected in 2019–2020 were used for lectin microarray analyses, including 97 cases of HCC, 50 cases of HBC, 30 cases of CHB, and 30 cases of NC. Samples were randomly divided into training and validation groups at a 2:1 ratio. Training group data were used to investigate the diagnostic value of the relative signal intensity for the lectin probe combined with alpha-fetoprotein (AFP). The efficacy of models for HCC diagnosis were analyzed by receiver operating characteristic (ROC) curves. Results In terms of IgG, a model combining three lectins and AFP had good diagnostic accuracy for HCC. The area under the ROC curve was 0.96 (P < 0.05), the sensitivity was 82.54%, and the specificity was 100%. In terms of IgM, a model including one lectin combined with AFP had an area under the curve of 0.90 (P < 0.05), sensitivity of 75.41%, and specificity of 100%. Conclusion Estimation of serum IgG and IgM glycosylation could act as complementary techniques to improve diagnosis and shed light on the occurrence and development of the HCC
Collapse
Affiliation(s)
- Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Sihua Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yunli Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanjie Liu
- Department of Laboratory Medicine, Chaoyang Central Hospital, Chaoyang, China
| | - Shuang Shen
- Department of Laboratory Medicine, Huludao Central Hospital, Huludao, China
| | - Fangfang Tian
- Department of Laboratory Medicine, Fuxin Central Hospital, Fuxin, China
| | - Gaobo Yan
- Department of Laboratory Medicine, Dandong Central Hospital, Dandong, China
| | - Yongqing Gao
- Department of Laboratory Medicine, Tieling Central Hospital, Tieling, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
- *Correspondence: Xiaosong Qin,
| |
Collapse
|
5
|
Thimm JC, Beketow E, Thiem J. Studies of carbohydrate-carbohydrate-interactions by atomic force microscopy employing functionalized 4-acetylthio-butyl glucopyranosides. Carbohydr Res 2022; 521:108649. [PMID: 36037650 DOI: 10.1016/j.carres.2022.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
Abstract
By Fischer glycosylation both anomers of 4-chlorobutyl gluco-as well as galactopyranosides were obtained and transformed into the corresponding 4-acetylthio-butyl glycopyranosides. Dependent on the precursors two straightforward routes were followed to obtain the appropriate 3-O-sulfated derivatives. Unsubstituted and sulfated glucopyranosides were attached to gold surfaces a gold tips. Their interactions were studied using atomic force microscopy for simulations of intercellular glycoside-based interactions and discussed in-depth.
Collapse
Affiliation(s)
- Julian C Thimm
- Department of Chemistry, Faculty of Science, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Eugen Beketow
- Department of Chemistry, Faculty of Science, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Joachim Thiem
- Department of Chemistry, Faculty of Science, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| |
Collapse
|
6
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
7
|
Sheinboim D, Parikh S, Parikh R, Menuchin A, Shapira G, Kapitansky O, Elkoshi N, Ruppo S, Shaham L, Golan T, Elgavish S, Nevo Y, Bell RE, Malcov H, Shomron N, Taub JW, Izraeli S, Levy C. Slow transcription of the 99a/let-7c/125b-2 cluster results in differential miRNA expression and promotes melanoma phenotypic plasticity. J Invest Dermatol 2021; 141:2944-2956.e6. [PMID: 34186058 DOI: 10.1016/j.jid.2021.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/21/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Almost half of human miRNAs are encoded in clusters. Although transcribed as a single unit, the levels of individual mature miRNAs often differ. The mechanisms underlying differential biogenesis of clustered miRNAs and the resulting physiological implications are mostly unknown. Here, we report that the melanoma master transcription regulator MITF regulates the differential expression of the 99a/let-7c/125b-2 cluster by altering the distribution of RNA polymerase II (Pol-II) along the cluster. We discovered that MITF interacts with TRIM28, a known inhibitor of Pol-II transcription elongation, at the let-7c region resulting in Pol-II pausing and causing its elevated expression, whereas low levels of Pol-II occupation over miR-99a and miR-125b-2 regions decreases their biogenesis. Furthermore, we showed that this differential expression affects the phenotypic state of melanoma cells. RNA-seq analysis of proliferative melanoma cells that express miR-99a and miR-125b mimics revealed a transcriptomic shift toward an invasive phenotype. Conversely, expression of a let-7c mimic in invasive melanoma cells induced a shift to a more proliferative state. We confirmed direct target genes of these miRNAs: FGFR3, BAP1, Bcl2, TGFBR1, and CDKN1A. Our study demonstrates a MITF-governed biogenesis mechanism that results in differential expression of clustered 99a/let-7c/125b-2 miRNAs that control melanoma progression.
Collapse
Affiliation(s)
- Danna Sheinboim
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shivang Parikh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roma Parikh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amitai Menuchin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Shapira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oxana Kapitansky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nadav Elkoshi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shmuel Ruppo
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Lital Shaham
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Division of Pediatric Hematology-Oncology Department, Schneider Children's Medical Center, Petah Tikva 49202, Israel
| | - Tamar Golan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Rachel E Bell
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hagar Malcov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Edmond J. Safra Center of Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jeffrey W Taub
- Wayne State University School of Medicine, Detroit, MI 48201, USA; Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Shai Izraeli
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Carmit Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
8
|
Tajadura-Ortega V, Gambardella G, Skinner A, Halim A, Van Coillie J, Schjoldager KTBG, Beatson R, Graham R, Achkova D, Taylor-Papadimitriou J, Ciccarelli FD, Burchell JM. O-linked mucin-type glycosylation regulates the transcriptional programme downstream of EGFR. Glycobiology 2021; 31:200-210. [PMID: 32776095 DOI: 10.1093/glycob/cwaa075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Aberrant mucin-type O-linked glycosylation is a common occurrence in cancer where the upregulation of sialyltransferases is often seen leading to the early termination of O-glycan chains. Mucin-type O-linked glycosylation is not limited to mucins and occurs on many cell surface glycoproteins including EGFR, where the number of sites can be limited. Upon EGF ligation, EGFR induces a signaling cascade and may also translocate to the nucleus where it directly regulates gene transcription, a process modulated by Galectin-3 and MUC1 in some cancers. Here, we show that upon EGF binding, breast cancer cells carrying different O-glycans respond by transcribing different gene expression signatures. MMP10, the principal gene upregulated when cells carrying sialylated core 1 glycans were stimulated with EGF, is also upregulated in ER-positive breast carcinoma reported to express high levels of ST3Gal1 and hence mainly core 1 sialylated O-glycans. In contrast, isogenic cells engineered to carry core 2 glycans upregulate CX3CL1 and FGFBP1 and these genes are upregulated in ER-negative breast carcinomas, also known to express longer core 2 O-glycans. Changes in O-glycosylation did not significantly alter signal transduction downstream of EGFR in core 1 or core 2 O-glycan expressing cells. However, striking changes were observed in the formation of an EGFR/galectin-3/MUC1/β-catenin complex at the cell surface that is present in cells carrying short core 1-based O-glycans but absent in core 2 carrying cells.
Collapse
Affiliation(s)
- Virginia Tajadura-Ortega
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| | - Gennaro Gambardella
- Department of Chemical Materials and Industrial Engineering, University of Naples Federico II, 1-80125 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Alexandra Skinner
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Adnan Halim
- Functional and Cellular Glycobiology, Glycomics Programme, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Julie Van Coillie
- Functional and Cellular Glycobiology, Glycomics Programme, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | | - Richard Beatson
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Rosalind Graham
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Daniela Achkova
- CAR Mechanics Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
- Autolus Ltd. Forest House, 58 Wood Ln, White City, London W12 7RZ, UK
| | - Joyce Taylor-Papadimitriou
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
- CRUK King's Health Partner Centre, King's College London, London SE1 9RT, UK
| | - Joy M Burchell
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
9
|
Ribeiro Morais G, Falconer RA. Glycosyl disulfides: importance, synthesis and application to chemical and biological systems. Org Biomol Chem 2021; 19:82-100. [DOI: 10.1039/d0ob02079f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This review explores methodologies for the preparation of glycosyl disulfides, their utility as intermediates in carbohydrate synthesis, and evaluates their biological impact in glycoscience and beyond.
Collapse
Affiliation(s)
- Goreti Ribeiro Morais
- Institute of Cancer Therapeutics
- Faculty of Life Sciences
- University of Bradford
- Bradford BD7 1DP
- UK
| | - Robert A. Falconer
- Institute of Cancer Therapeutics
- Faculty of Life Sciences
- University of Bradford
- Bradford BD7 1DP
- UK
| |
Collapse
|
10
|
Canals Hernaez D, Hughes MR, Dean P, Bergqvist P, Samudio I, Blixt O, Wiedemeyer K, Li Y, Bond C, Cruz E, Köbel M, Gilks B, Roskelley CD, McNagny KM. PODO447: a novel antibody to a tumor-restricted epitope on the cancer antigen podocalyxin. J Immunother Cancer 2020; 8:jitc-2020-001128. [PMID: 33243933 PMCID: PMC7692987 DOI: 10.1136/jitc-2020-001128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background The success of new targeted cancer therapies has been dependent on the identification of tumor-specific antigens. Podocalyxin (Podxl) is upregulated on tumors with high metastatic index and its presence is associated with poor outcome, thus emerging as an important prognostic and theragnostic marker in several human cancers. Moreover, in human tumor xenograft models, Podxl expression promotes tumor growth and metastasis. Although a promising target for immunotherapy, the expression of Podxl on normal vascular endothelia and kidney podocytes could hamper efforts to therapeutically target this molecule. Since pathways regulating post-translational modifications are frequently perturbed in cancer cells, we sought to produce novel anti-Podxl antibodies (Abs) that selectively recognize tumor-restricted glycoepitopes on the extracellular mucin domain of Podxl. Methods Splenic B cells were isolated from rabbits immunized with a Podxl-expressing human tumor cell line. Abs from these B cells were screened for potent reactivity to Podxl+ neoplastic cell lines but not Podxl+ primary endothelial cells. Transcripts encoding heavy and light chain variable regions from promising B cells were cloned and expressed as recombinant proteins. Tumor specificity was assessed using primary normal tissue and an ovarian cancer tissue microarray (TMA). Mapping of the tumor-restricted epitope was performed using enzyme-treated human tumor cell lines and a glycan array. Results One mAb (PODO447) showed strong reactivity with a variety of Podxl+ tumor cell lines but not with normal primary human tissue including Podxl+ kidney podocytes and most vascular endothelia. Screening of an ovarian carcinoma TMA (219 cases) revealed PODO447 reactivity with the majority of tumors, including 65% of the high-grade serous histotype. Subsequent biochemical analyses determined that PODO447 reacts with a highly unusual terminal N-acetylgalactosamine beta-1 (GalNAcβ1) motif predominantly found on the Podxl protein core. Finally, Ab–drug conjugates showed specific efficacy in killing tumor cells in vitro. Conclusions We have generated a novel and exquisitely tumor-restricted mAb, PODO447, that recognizes a glycoepitope on Podxl expressed at high levels by a variety of tumors including the majority of life-threatening high-grade serous ovarian tumors. Thus, tumor-restricted PODO447 exhibits the appropriate specificity for further development as a targeted immunotherapy.
Collapse
Affiliation(s)
- Diana Canals Hernaez
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Hughes
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Bergqvist
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Ismael Samudio
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Ola Blixt
- Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, Kobenhavn, Denmark
| | - Katharina Wiedemeyer
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yicong Li
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Bond
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Eric Cruz
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Blake Gilks
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Li M, Xia S, Shi P. DPM1 expression as a potential prognostic tumor marker in hepatocellular carcinoma. PeerJ 2020; 8:e10307. [PMID: 33282554 PMCID: PMC7694566 DOI: 10.7717/peerj.10307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Background Altered glycosylation of proteins contributes to tumor progression. Dolichol phosphate mannose synthase (DPMS), an essential mannosyltransferase, plays a central role in post-translational modification of proteins, including N-linked glycoproteins, O-mannosylation, C-mannosylation and glycosylphosphatidylinositol anchors synthesis. Little is known about the function of DPMS in liver cancer. Methods The study explored the roles of DPMS in the prognosis of hepatocellular carcinoma using UALCAN, Human Protein Atlas, GEPIA, cBioPortal and Metascape databases. The mRNA expressions of DPM1/2/3 also were detected by quantitative real-time PCR experiments in vitro. Results The transcriptional and proteinic expressions of DPM1/2/3 were both over-expressed in patients with hepatocellular carcinoma. Over-expressions of DPMS were discovered to be dramatically associated with clinical cancer stages and pathological tumor grades in hepatocellular carcinoma patients. In addition, higher mRNA expressions of DPM1/2/3 were found to be significantly related to shorter overall survival in liver cancer patients. Futhermore, high genetic alteration rate of DPMS (41%) was also observed in patients with liver cancer, and genetic alteration in DPMS was associated with shorter overall survival in hepatocellular carcinoma patients. We also performed quantitative real-time PCR experiments in human normal hepatocytes and hepatoma cells to verify the expressions of DPM1/2/3 and results showed that the expression of DPM1 was significantly increased in hepatoma cells SMMC-7721 and HepG2. Conclusions Taken together, these results suggested that DPM1 could be a potential prognostic biomarker for survivals of hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shengli Xia
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
May C, Ji S, Syed ZA, Revoredo L, Paul Daniel EJ, Gerken TA, Tabak LA, Samara NL, Ten Hagen KG. Differential splicing of the lectin domain of an O-glycosyltransferase modulates both peptide and glycopeptide preferences. J Biol Chem 2020; 295:12525-12536. [PMID: 32669364 DOI: 10.1074/jbc.ra120.014700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Mucin-type O-glycosylation is an essential post-translational modification required for protein secretion, extracellular matrix formation, and organ growth. O-Glycosylation is initiated by a large family of enzymes (GALNTs in mammals and PGANTs in Drosophila) that catalyze the addition of GalNAc onto the hydroxyl groups of serines or threonines in protein substrates. These enzymes contain two functional domains: a catalytic domain and a C-terminal ricin-like lectin domain comprised of three potential GalNAc recognition repeats termed α, β, and γ. The catalytic domain is responsible for binding donor and acceptor substrates and catalyzing transfer of GalNAc, whereas the lectin domain recognizes more distant extant GalNAc on previously glycosylated substrates. We previously demonstrated a novel role for the α repeat of lectin domain in influencing charged peptide preferences. Here, we further interrogate how the differentially spliced α repeat of the PGANT9A and PGANT9B O-glycosyltransferases confers distinct preferences for a variety of endogenous substrates. Through biochemical analyses and in silico modeling using preferred substrates, we find that a combination of charged residues within the α repeat and charged residues in the flexible gating loop of the catalytic domain distinctively influence the peptide substrate preferences of each splice variant. Moreover, PGANT9A and PGANT9B also display unique glycopeptide preferences. These data illustrate how changes within the noncatalytic lectin domain can alter the recognition of both peptide and glycopeptide substrates. Overall, our results elucidate a novel mechanism for modulating substrate preferences of O-glycosyltransferases via alternative splicing within specific subregions of functional domains.
Collapse
Affiliation(s)
- Carolyn May
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| | - Suena Ji
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| | - Zulfeqhar A Syed
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| | - Leslie Revoredo
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland, USA.,Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Earnest James Paul Daniel
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas A Gerken
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lawrence A Tabak
- Section on Biological Chemistry, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| | - Nadine L Samara
- Structural Biochemistry Unit, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Liu C, Li Z, Xu L, Shi Y, Zhang X, Shi S, Hou K, Fan Y, Li C, Wang X, Zhou L, Liu Y, Qu X, Che X. GALNT6 promotes breast cancer metastasis by increasing mucin-type O-glycosylation of α2M. Aging (Albany NY) 2020; 12:11794-11811. [PMID: 32559179 PMCID: PMC7343513 DOI: 10.18632/aging.103349] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/14/2020] [Indexed: 01/22/2023]
Abstract
Breast cancer is the most lethal malignancy in women. N-acetylgalactosaminyltransferase 6 (GALNT6) is an enzyme which mediates the initial step of mucin-type O-glycosylation, and has been reported to be involved in mammary carcinogenesis. However, the molecular mechanism of GALNT6 in breast cancer metastasis has not been fully explored. In this study, based on online database analyses and tissue microarrays, the overall survival (OS) of breast cancer patients with high expression of GALNT6 was found to be shorter than those with low expression of GALNT6. Also, high GALNT6 expression was positively correlated with advanced pN stage and pTNM stage. GALNT6 was shown to be able to promote the migration and invasion of breast cancer cells, and enhance the level of mucin-type O-glycosylation of substrates in the supernatants of breast cancer cells. Qualitative mucin-type glycosylomics analysis identified α2M as a novel substrate of GALNT6. Further investigation showed that GALNT6 increased O-glycosylation of α2M, and the following activation of the downstream PI3K/Akt signaling pathway was involved in the promotion of migration and invasion of breast cancer cells. This study identified a new substrate of GALNT6 and provides novel understanding of the role of GALNT6 in promoting metastasis and poor prognosis in breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/diagnosis
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Breast Neoplasms, Male/diagnosis
- Breast Neoplasms, Male/mortality
- Breast Neoplasms, Male/pathology
- Breast Neoplasms, Male/surgery
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Cell Line, Tumor
- Datasets as Topic
- Female
- Follow-Up Studies
- Glycosylation
- Humans
- Kaplan-Meier Estimate
- Male
- Mastectomy
- Middle Aged
- N-Acetylgalactosaminyltransferases/metabolism
- Neoplasm Metastasis/pathology
- Neoplasm Staging
- Phosphatidylinositol 3-Kinases/metabolism
- Prognosis
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Tissue Array Analysis
- alpha-Macroglobulins/metabolism
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Chang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Department of Internal Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yu Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaojie Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaoxun Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lu Zhou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
14
|
Gerber HP, Sibener LV, Lee LJ, Gee M. Intracellular targets as source for cleaner targets for the treatment of solid tumors. Biochem Pharmacol 2019; 168:275-284. [DOI: 10.1016/j.bcp.2019.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023]
|
15
|
't Hart IME, Li T, Wolfert MA, Wang S, Moremen KW, Boons GJ. Chemoenzymatic synthesis of the oligosaccharide moiety of the tumor-associated antigen disialosyl globopentaosylceramide. Org Biomol Chem 2019; 17:7304-7308. [PMID: 31339142 PMCID: PMC6852662 DOI: 10.1039/c9ob01368g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Disialosyl globopentaosylceramide (DSGb5) is often expressed by renal cell carcinomas. To investigate properties of DSGb5, we have prepared its oligosaccharide moiety by chemically synthesizing Gb5 which was enzymatically sialylated using the mammalian sialyltransferases ST3Gal1 and ST6GalNAc5. Glycan microarray binding studies indicate that Siglec-7 does not recognize DSGb5, and preferentially binds Neu5Acα(2,8)Neu5Ac containing glycans.
Collapse
Affiliation(s)
- Ingrid M E 't Hart
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Peixoto A, Relvas-Santos M, Azevedo R, Santos LL, Ferreira JA. Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Front Oncol 2019; 9:380. [PMID: 31157165 PMCID: PMC6530332 DOI: 10.3389/fonc.2019.00380] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Decades of research have disclosed a plethora of alterations in protein glycosylation that decisively impact in all stages of disease and ultimately contribute to more aggressive cell phenotypes. The biosynthesis of cancer-associated glycans and its reflection in the glycoproteome is driven by microenvironmental cues and these events act synergistically toward disease evolution. Such intricate crosstalk provides the molecular foundations for the activation of relevant oncogenic pathways and leads to functional alterations driving invasion and disease dissemination. However, it also provides an important source of relevant glyco(neo)epitopes holding tremendous potential for clinical intervention. Therefore, we highlight the transversal nature of glycans throughout the currently accepted cancer hallmarks, with emphasis on the crosstalk between glycans and the tumor microenvironment stromal components. Focus is also set on the pressing need to include glycans and glycoconjugates in comprehensive panomics models envisaging molecular-based precision medicine capable of improving patient care. We foresee that this may provide the necessary rationale for more comprehensive studies and molecular-based intervention.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Tumour and Microenvironment Interactions Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center, Porto, Portugal
| |
Collapse
|
18
|
Hassinen A, Khoder-Agha F, Khosrowabadi E, Mennerich D, Harrus D, Noel M, Dimova EY, Glumoff T, Harduin-Lepers A, Kietzmann T, Kellokumpu S. A Golgi-associated redox switch regulates catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I. Redox Biol 2019; 24:101182. [PMID: 30959459 PMCID: PMC6454061 DOI: 10.1016/j.redox.2019.101182] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylation, a common modification of cellular proteins and lipids, is often altered in diseases and pathophysiological states such as hypoxia, yet the underlying molecular causes remain poorly understood. By utilizing lectin microarray glycan profiling, Golgi pH and redox screens, we show here that hypoxia inhibits terminal sialylation of N- and O-linked glycans in a HIF- independent manner by lowering Golgi oxidative potential. This redox state change was accompanied by loss of two surface-exposed disulfide bonds in the catalytic domain of the α-2,6-sialyltransferase (ST6Gal-I) and its ability to functionally interact with B4GalT-I, an enzyme adding the preceding galactose to complex N-glycans. Mutagenesis of selected cysteine residues in ST6Gal-I mimicked these effects, and also rendered the enzyme inactive. Cells expressing the inactive mutant, but not those expressing the wild type ST6Gal-I, were able to proliferate and migrate normally, supporting the view that inactivation of the ST6Gal-I help cells to adapt to hypoxic environment. Structure comparisons revealed similar disulfide bonds also in ST3Gal-I, suggesting that this O-glycan and glycolipid modifying sialyltransferase is also sensitive to hypoxia and thereby contribute to attenuated sialylation of O-linked glycans in hypoxic cells. Collectively, these findings unveil a previously unknown redox switch in the Golgi apparatus that is responsible for the catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I.
Collapse
Affiliation(s)
- Antti Hassinen
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Fawzi Khoder-Agha
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Elham Khosrowabadi
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Daniela Mennerich
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Deborah Harrus
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Maxence Noel
- Université de Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Elitsa Y Dimova
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Tuomo Glumoff
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Sakari Kellokumpu
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland.
| |
Collapse
|
19
|
Ahat E, Xiang Y, Zhang X, Bekier ME, Wang Y. GRASP depletion-mediated Golgi destruction decreases cell adhesion and migration via the reduction of α5β1 integrin. Mol Biol Cell 2019; 30:766-777. [PMID: 30649990 PMCID: PMC6589770 DOI: 10.1091/mbc.e18-07-0462] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 11/21/2022] Open
Abstract
The Golgi apparatus is a membrane-bound organelle that serves as the center for trafficking and processing of proteins and lipids. To perform these functions, the Golgi forms a multilayer stacked structure held by GRASP55 and GRASP65 trans-oligomers and perhaps their binding partners. Depletion of GRASP proteins disrupts Golgi stack formation and impairs critical functions of the Golgi, such as accurate protein glycosylation and sorting. However, how Golgi destruction affects other cellular activities is so far unknown. Here, we report that depletion of GRASP proteins reduces cell attachment and migration. Interestingly, GRASP depletion reduces the protein level of α5β1 integrin, the major cell adhesion molecule at the surface of HeLa and MDA-MB-231 cells, due to decreased integrin protein synthesis. GRASP depletion also increases cell growth and total protein synthesis. These new findings enrich our understanding on the role of the Golgi in cell physiology and provide a potential target for treating protein-trafficking disorders.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yi Xiang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Michael E. Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085
| |
Collapse
|
20
|
Affiliation(s)
- Joachim Thiem
- Faculty of Science, Department of Chemistry, University of Hamburg, Hamburg, D-20146, Germany
| | - Lothar Laupichler
- Faculty of Science, Department of Chemistry, University of Hamburg, Hamburg, D-20146, Germany
| |
Collapse
|
21
|
Sletmoen M, Gerken TA, Stokke BT, Burchell J, Brewer CF. Tn and STn are members of a family of carbohydrate tumor antigens that possess carbohydrate-carbohydrate interactions. Glycobiology 2018; 28:437-442. [PMID: 29618060 PMCID: PMC6001880 DOI: 10.1093/glycob/cwy032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
The mucin-type O-glycome in cancer aberrantly expresses the truncated glycans Tn (GalNAcα1-Ser/Thr) and STn (Neu5Acα2,6GalNAcα1-Ser/Thr). However, the role of Tn and STn in cancer and other diseases is not well understood. Our recent discovery of the self-binding properties (carbohydrate-carbohydrate interactions, CCIs) of Tn (Tn-Tn) and STn (STn-STn) provides a model for their possible roles in cellular transformation. We also review evidence that Tn and STn are members of a larger family of glycan tumor antigens that possess CCIs, which may participate in oncogenesis.
Collapse
Affiliation(s)
- Marit Sletmoen
- Department of Biotechnology and Food Science, NTNU The Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas A Gerken
- Departments of Pediatrics and Biochemistry, W. A. Bernbaum Center for Cystic Fibrosis Research, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Bjørn T Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim, Norway
| | - Joy Burchell
- Breast Cancer Biology, King’s College London, Guy’s Hospital, London, UK
| | - C Fred Brewer
- Departments of Molecular Pharmacology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
22
|
Coebergh van den Braak RRJ, Sieuwerts AM, Lalmahomed ZS, Smid M, Wilting SM, Bril SI, Xiang S, van der Vlugt-Daane M, de Weerd V, van Galen A, Biermann K, van Krieken JHJM, Kloosterman WP, Foekens JA, Martens JWM, IJzermans JNM. Confirmation of a metastasis-specific microRNA signature in primary colon cancer. Sci Rep 2018; 8:5242. [PMID: 29588449 PMCID: PMC5869672 DOI: 10.1038/s41598-018-22532-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
The identification of patients with high-risk stage II colon cancer who may benefit from adjuvant therapy may allow the clinical approach to be tailored for these patients based on an understanding of tumour biology. MicroRNAs have been proposed as markers of the prognosis or treatment response in colorectal cancer. Recently, a 2-microRNA signature (let-7i and miR-10b) was proposed to identify colorectal cancer patients at risk of developing distant metastasis. We assessed the prognostic value of this signature and additional candidate microRNAs in an independent, clinically well-defined, prospectively collected cohort of primary colon cancer patients including stage I-II colon cancer without and stage III colon cancer with adjuvant treatment. The 2-microRNA signature specifically predicted hepatic recurrence in the stage I-II group, but not the overall ability to develop distant metastasis. The addition of miR-30b to the 2-microRNA signature allowed the prediction of both distant metastasis and hepatic recurrence in patients with stage I-II colon cancer who did not receive adjuvant chemotherapy. Available gene expression data allowed us to associate miR-30b expression with axon guidance and let-7i expression with cell adhesion, migration, and motility.
Collapse
Affiliation(s)
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Cancer Genomics Center Netherlands, Amsterdam, The Netherlands
| | - Zarina S Lalmahomed
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandra I Bril
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shanshan Xiang
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michelle van der Vlugt-Daane
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anne van Galen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology, Erasmus MC Medical Center, Rotterdam, The Netherlands
| | - J Han J M van Krieken
- Department of Pathology, Radboud UMC, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Wigard P Kloosterman
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Cancer Genomics Center Netherlands, Amsterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Polypeptide N-acetylgalactosaminyltransferase-6 expression independently predicts poor overall survival in patients with lung adenocarcinoma after curative resection. Oncotarget 2018; 7:54463-54473. [PMID: 27276675 PMCID: PMC5342355 DOI: 10.18632/oncotarget.9810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Background Polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) are important glycosyltransferases in cancer, but the clinical role of its individual isoforms is unclear. We investigated the clinical significance and survival relevance of one isoform, GalNAc-T6 in lung adenocarcinoma after curative resection. Results GalNAc-T6 was identified in 27.8% (55/198) of patients, and statistically indicated advanced TNM stage (P = 0.069). Multivariate analysis showed GalNAc-T6 to be an independent predictor for reduced overall survival of patients (P = 0.027), and the result was confirmed with bootstraping techniques, and on line “Kaplan-Meier Plotter” and “SurvExpress” database analysis, respectively. Moreover, ROC curve demonstrated that GalNAc-T6 expression significantly improved the accuracy of survival prediction. Methods With 198 paraffin-embedded tumor samples from lung adenocarcinoma patients, GalNAc-T6 expression was immunohistochemically assessed for the association with clinicopathological parameters. The prognostic significance was evaluated by Cox proportional hazards regression analysis with 1000 bootstraping. “Kaplan-Meier Plotter”, “SurvExpress” database analysis, and receiver-operating characteristic (ROC) curve were performed to provide further validation. Conclusions GalNAc-T6 expression correlated significantly with advanced TNM stage, and independently predicted worse OS for lung adenocarcinoma.
Collapse
|
24
|
Sarbu M, Vukelić Ž, Clemmer DE, Zamfir AD. Ion mobility mass spectrometry provides novel insights into the expression and structure of gangliosides in the normal adult human hippocampus. Analyst 2018; 143:5234-5246. [DOI: 10.1039/c8an01118d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
General work-flow for ganglioside analysis by IM-MS.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry
- University of Zagreb Medical School
- Zagreb
- Croatia
| | | | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
- “Aurel Vlaicu” University of Arad
- Arad
| |
Collapse
|
25
|
Chen Y, Liu H, Xiong Y, Ju H. Quantitative Screening of Cell‐Surface Gangliosides by Nondestructive Extraction and Hydrophobic Collection. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Yingying Xiong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| |
Collapse
|
26
|
Chen Y, Liu H, Xiong Y, Ju H. Quantitative Screening of Cell-Surface Gangliosides by Nondestructive Extraction and Hydrophobic Collection. Angew Chem Int Ed Engl 2017; 57:785-789. [PMID: 29205712 DOI: 10.1002/anie.201710984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Indexed: 11/09/2022]
Abstract
A screening strategy involving designed extractors and collectors was used for the nondestructive quantitation of gangliosides on cell surfaces. The extractors were constructed by functionalizing maleimide silica bubbles with a DNA probe, which contains an endonuclease cleavage site and a boronic acid end to extract cell-surface sialic acid-containing compounds through simple centrifugation. After the extractors containing the extracted compounds were incubated with endonuclease, the released oligonucleotide-gangliosides were selectively collected by silanized collector bubbles through hydrophobic interactions. The in vitro fluorescent signals from the collectors were used for the quantitation of cell-surface gangliosides. By combining with sialidase cleavage, a protocol for the identification of ganglioside subtypes was developed. The successful monitoring of the regeneration of cell-surface gangliosides demonstrates the potential of this strategy in probing related biological processes.
Collapse
Affiliation(s)
- Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Yingying Xiong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
27
|
Peng C, Zhu Y, Zhang W, Liao Q, Chen Y, Zhao X, Guo Q, Shen P, Zhen B, Qian X, Yang D, Zhang JS, Xiao D, Qin W, Pei H. Regulation of the Hippo-YAP Pathway by Glucose Sensor O-GlcNAcylation. Mol Cell 2017; 68:591-604.e5. [PMID: 29100056 DOI: 10.1016/j.molcel.2017.10.010] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/07/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023]
Abstract
The Hippo pathway is crucial in organ size control and tissue homeostasis, with deregulation leading to cancer. An extracellular nutrition signal, such as glucose, regulates the Hippo pathway activation. However, the mechanisms are still not clear. Here, we found that the Hippo pathway is directly regulated by the hexosamine biosynthesis pathway (HBP) in response to metabolic nutrients. Mechanistically, the core component of Hippo pathway (YAP) is O-GlcNAcylated by O-GlcNAc transferase (OGT) at serine 109. YAP O-GlcNAcylation disrupts its interaction with upstream kinase LATS1, prevents its phosphorylation, and activates its transcriptional activity. And this activation is not dependent on AMPK. We also identified OGT as a YAP-regulated gene that forms a feedback loop. Finally, we confirmed that glucose-induced YAP O-GlcNAcylation and activation promoted tumorigenesis. Together, our data establish a molecular mechanism and functional significance of the HBP in directly linking extracellular glucose signal to the Hippo-YAP pathway and tumorigenesis.
Collapse
Affiliation(s)
- Changmin Peng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No 29, 13ST. TEDA, Tianjin 300457, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yue Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Anhui Medical University, Hefei 230032, China; Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Qinchao Liao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No 29, 13ST. TEDA, Tianjin 300457, China
| | - Yali Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinyuan Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Qiang Guo
- Cell Signaling and Epigenetics Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Pan Shen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Bei Zhen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jin-San Zhang
- Cell Signaling and Epigenetics Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No 29, 13ST. TEDA, Tianjin 300457, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Huadong Pei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Science, 2300 Eye Street, N.W., Washington, DC 20037, USA.
| |
Collapse
|
28
|
Zhang S, Cao X, Gao Q, Liu Y. Protein glycosylation in viral hepatitis-related HCC: Characterization of heterogeneity, biological roles, and clinical implications. Cancer Lett 2017; 406:64-70. [PMID: 28789967 DOI: 10.1016/j.canlet.2017.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022]
|
29
|
Nigjeh EN, Chen R, Allen-Tamura Y, Brand RE, Brentnall TA, Pan S. Spectral library-based glycopeptide analysis-detection of circulating galectin-3 binding protein in pancreatic cancer. Proteomics Clin Appl 2017. [PMID: 28627758 DOI: 10.1002/prca.201700064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease characterized by its late diagnosis, poor prognosis and rapid development of drug resistance. Using the data-independent acquisition (DIA) technique, the authors applied a spectral library-based proteomic approach to analyze N-glycosylated peptides in human plasma, in the context of pancreatic cancer study. EXPERIMENTAL DESIGN The authors extended the application of DIA to the quantification of N-glycosylated peptides enriched from plasma specimens from a clinically well-defined cohort that consists of patients with early stage PDAC, chronic pancreatitis and healthy subjects. RESULTS The analytical platform was evaluated in light of its robustness for quantitative analysis of large-scale clinical specimens. The authors analysis indicated that the level of N-glycosylated peptides derived from galectin-3 binding proteins (LGALS3BP) were frequently elevated in plasma from PDAC patients, concurrent with the altered N-glycosylation of LGALS3BP observed in the tumor tissue. CONCLUSION AND CLINICAL RELEVANCE The glycosylation form of LGALS3BP influences its function in the galectin network, which profoundly involves in cancer progression, immune response and drug resistance. As one of the major binding ligands of galectin network, discovery of site specific N-glycosylation changes of LGALS3BP in association of PDAC may provide useful clues to facilitate cancer detection or phenotype stratification.
Collapse
Affiliation(s)
- Eslam N Nigjeh
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ru Chen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Randall E Brand
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Chen NT, Souris JS, Cheng SH, Chu CH, Wang YC, Konda V, Dougherty U, Bissonnette M, Mou CY, Chen CT, Lo LW. Lectin-functionalized mesoporous silica nanoparticles for endoscopic detection of premalignant colonic lesions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1941-1952. [PMID: 28363770 DOI: 10.1016/j.nano.2017.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-deaths worldwide. Methods for the early in situ detection of colorectal adenomatous polyps and their precursors - prior to their malignancy transformation into CRC - are urgently needed. Unfortunately at present, the primary diagnostic method, colonoscopy, can only detect polyps and carcinomas by shape/morphology; with sessile polyps more likely to go unnoticed than polypoid lesions. Here we describe our development of polyp-targeting, fluorescently-labeled mesoporous silica nanoparticles (MSNs) that serve as targeted endoscopic contrast agents for the early detection of colorectal polyps and cancer. In vitro cell studies, ex vivo histopathological analysis, and in vivo colonoscopy and endoscopy of murine colorectal cancer models, demonstrate significant binding specificity of our nanoconstructs to pathological lesions via targeting aberrant α-L-fucose expression. Our findings strongly suggest that lectin-functionalized fluorescent MSNs could serve as a promising endoscopic contrast agent for in situ diagnostic imaging of premalignant colonic lesions.
Collapse
Affiliation(s)
- Nai-Tzu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Chemistry, National Taiwan University Taipei, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA; Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Jeffrey S Souris
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Shih-Hsun Cheng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Vani Konda
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University Taipei, Taiwan
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan.
| |
Collapse
|
31
|
Zhao YP, Zhou PT, Ji WP, Wang H, Fang M, Wang MM, Yin YP, Jin G, Gao CF. Validation of N-glycan markers that improve the performance of CA19-9 in pancreatic cancer. Clin Exp Med 2017; 17:9-18. [PMID: 26714469 DOI: 10.1007/s10238-015-0401-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 11/02/2015] [Indexed: 01/05/2023]
Abstract
Pancreatic cancer (PC) has a high mortality rate because it is usually diagnosed late. Glycosylation of proteins is known to change in tumor cells during the development of PC. The objectives of this study were to identify and validate the diagnostic value of novel biomarkers based on N-glycomic profiling for PC. In total, 217 individuals including subjects with PC, pancreatitis, and healthy controls were divided randomly into a training group (n = 164) and validation groups (n = 53). Serum N-glycomic profiling was analyzed by DSA-FACE. The diagnostic model was constructed based on N-glycan markers with logistic stepwise regression. The diagnostic performance of the model was assessed further in validation cohort. The level of total core fucose residues was increased significantly in PC. Two diagnostic models designated GlycoPCtest and PCmodel (combining GlycoPCtest and CA19-9) were constructed to differentiate PC from normal. The area under the receiver operating characteristic curve (AUC) of PCmodel was higher than that of CA19-9 (0.925 vs. 0.878). The diagnostic models based on N-glycans are new, valuable, noninvasive alternatives for identifying PC. The diagnostic efficacy is improved by combined GlycoPCtest and CA19-9 for the discrimination of patients with PC from healthy controls.
Collapse
Affiliation(s)
- Yun-Peng Zhao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Ping-Ting Zhou
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Wei-Ping Ji
- Department of Surgery, Changhai Hospital, Second Military Medical University, 116 Changhai Rd, Shanghai, 200438, China
| | - Hao Wang
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Meng-Meng Wang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Yue-Peng Yin
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Gang Jin
- Department of Surgery, Changhai Hospital, Second Military Medical University, 116 Changhai Rd, Shanghai, 200438, China.
| | - Chun-Fang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China.
| |
Collapse
|
32
|
Pan S, Brentnall TA, Chen R. Glycoproteins and glycoproteomics in pancreatic cancer. World J Gastroenterol 2016; 22:9288-9299. [PMID: 27895417 PMCID: PMC5107693 DOI: 10.3748/wjg.v22.i42.9288] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Aberrations in protein glycosylation and polysaccharides play a pivotal role in pancreatic tumorigenesis, influencing cancer progression, metastasis, immuno-response and chemoresistance. Abnormal expression in sugar moieties can impact the function of various glycoproteins, including mucins, surface receptors, adhesive proteins, proteoglycans, as well as their effectors and binding ligands, resulting in an increase in pancreatic cancer invasiveness and a cancer-favored microenvironment. Recent advance in glycoproteomics, glycomics and other chemical biology techniques have been employed to better understand the complex mechanism of glycosylation events and how they orchestrate molecular activities in genomics, proteomics and metabolomics implicated in pancreatic adenocarcinoma. A variety of strategies have been demonstrated targeting protein glycosylation and polysaccharides for diagnostic and therapeutic development.
Collapse
|
33
|
Ashline DJ, Zhang H, Reinhold VN. Isomeric complexity of glycosylation documented by MS n. Anal Bioanal Chem 2016; 409:439-451. [PMID: 27826629 DOI: 10.1007/s00216-016-0018-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Re-analysis of two breast cancer cell lines, MCF-7 and MDA-MB-231, has shown multiple isomeric structures exposed by sequential mass spectrometry, MS n . Several released glycan compositions were re-evaluated, which indicated variations in polylactosamine and fucosylation structures. Probable isomer numbers, when considering both stereo and structural entities, are significant and the varying types are mentioned. The structural isomers of linkage position are most frequently considered, while stereo isomers are usually assumed from biosynthetic data. Evaluation of any new sample should be cautious and merits careful attention to empirical data. While isomers are usually considered a chromatographic problem (e.g., LCMS, IMMS) and most frequently considered a separations problem, such results will always be challenged by identification and documentation. MSn data provide a direct spatial solution that includes spectral data for characterization (mass and abundance) supported by a universal library match feature.
Collapse
Affiliation(s)
- David J Ashline
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| | - Hailong Zhang
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| | - Vernon N Reinhold
- The Glycomics Center, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA.
| |
Collapse
|
34
|
Jiang Z, Liu Z, Zou S, Ni J, Shen L, Zhou Y, Hua D, Wu S. Transcription factor c-jun regulates β3Gn-T8 expression in gastric cancer cell line SGC-7901. Oncol Rep 2016; 36:1353-60. [PMID: 27459970 DOI: 10.3892/or.2016.4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/16/2016] [Indexed: 11/05/2022] Open
Abstract
Aberrant glycosylation, a common feature of malignant alteration, is partly due to changes in the expression of glycosyltransferases, including β1,3-N-acetyl-glucosaminyltrans-ferase 8 (β3Gn‑T8), which synthesizes poly-N-acetyllactosamine (poly-LacNAc) chains on β1,6 branched N‑glycans. Although the role of β3Gn‑T8 in tumors has been reported, the regulation of β3Gn‑T8 expression, however, is still poorly understood. In the present study, we used three online bioinformatic software tools to identify multiple c‑jun binding sites in the promoter of the β3Gn‑T8 gene. Using luciferase reporter assay, chromatin immunoprecipitation (ChIP) analysis, RT‑PCR and western blot analysis, we revealed that c‑jun could bind to and activate the β3Gn‑T8 promoter, thus upregulating β3Gn‑T8 expression. This was also confirmed by changes in β3Gn‑T8 activity as demonstrated by flow cytometry, immunofluorescence and lectin blot analysis using LEA lectin. Moreover, expression of glycoprotein HG‑CD147, the substrate of β3Gn‑T8, was also regulated by c‑jun. In addition, c‑jun and β3Gn‑T8 were more highly expressed in the gastric cancer tissues when compared to these levels in the adjacent non‑tumor gastric tissues, and β3Gn‑T8 expression was positively correlated with c‑jun expression. These results suggest that c‑jun plays a significant role in regulating the expression of β3Gn‑T8 in the SGC‑7901 cell line and may be involved in the development of malignancy via the activity of β3Gn‑T8.
Collapse
Affiliation(s)
- Zhi Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhenhua Liu
- Department of Inspection, Suzhou Health College, Suzhou, Jiangsu 215001, P.R. China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215001, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Li Shen
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Dong Hua
- The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
35
|
Sarbu M, Robu AC, Ghiulai RM, Vukelić Ž, Clemmer DE, Zamfir AD. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides. Anal Chem 2016; 88:5166-78. [PMID: 27088833 DOI: 10.1021/acs.analchem.6b00155] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series.
Collapse
Affiliation(s)
- Mirela Sarbu
- Aurel Vlaicu University of Arad , 310130 Arad, Romania.,National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| | - Adrian C Robu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania.,West University of Timisoara , 300223 Timisoara, Romania
| | - Roxana M Ghiulai
- Department of Pharmacy, Victor Babes University of Medicine and Pharmacy , 300041 Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, University of Zagreb Medical School , HR-10000 Zagreb, Croatia
| | - David E Clemmer
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Alina D Zamfir
- Aurel Vlaicu University of Arad , 310130 Arad, Romania.,National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| |
Collapse
|
36
|
Serra-Peinado C, Sicart A, Llopis J, Egea G. Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex. J Biol Chem 2016; 291:7286-99. [PMID: 26872971 DOI: 10.1074/jbc.m115.675272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and thetrans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H(+)-translocating ATPase (V-ATPase), whose V1domain subunitsBandCbind actin. We have generated a GFP-tagged subunitB2construct (GFP-B2) that is incorporated into the V1domain, which in turn is coupled to the V0sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0domains, which entails subunitB2translocation from Golgi membranes to the cytosol. Moreover, molecular interaction between subunitsB2andC1and actin were detected. In addition, Golgi membrane lipid order disruption byd-ceramide-C6 causes Golgi pH alkalization. We conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0domains of V-ATPase through the binding of microfilaments to subunitsBandCand preserving the integrity of detergent-resistant membrane organization. These results establish the Golgi-associated V-ATPase activity as the molecular link between actin and the Golgi pH.
Collapse
Affiliation(s)
- Carla Serra-Peinado
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona
| | - Adrià Sicart
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona
| | - Juan Llopis
- the Facultad de Medicina de Albacete and Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, E-0200 Albacete, Spain
| | - Gustavo Egea
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona, the Institut d'Investigació Biomèdica August Pi i Sunyer, E-08036 Barcelona, the Institut de Nanociència i Nanotecnologia (INUB), E-08036 Barcelona, and
| |
Collapse
|
37
|
Ward JP, Gubin MM, Schreiber RD. The Role of Neoantigens in Naturally Occurring and Therapeutically Induced Immune Responses to Cancer. Adv Immunol 2016; 130:25-74. [PMID: 26922999 DOI: 10.1016/bs.ai.2016.01.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Definitive experimental evidence from mouse cancer models and strong correlative clinical data gave rise to the Cancer Immunoediting concept that explains the dual host-protective and tumor-promoting actions of immunity on developing cancers. Tumor-specific neoantigens can serve as targets of spontaneously arising adaptive immunity to cancer and thereby determine the ultimate fate of developing tumors. Tumor-specific neoantigens can also function as optimal targets of cancer immunotherapy against established tumors. These antigens are derived from nonsynonymous mutations that occur during cellular transformation and, because they are foreign to the host genome, are not subject to central tolerance. In this review, we summarize the experimental evidence indicating that cancer neoantigens are the source of both spontaneously occurring and therapeutically induced immune responses against cancer. We also review the advances in genomics, bioinformatics, and cancer immunotherapy that have facilitated identification of neoantigens and have moved personalized cancer immunotherapies into clinical trials, with the promise of providing more specific, safer, more effective, and perhaps even more generalizable treatments to cancer patients than current immunotherapies.
Collapse
Affiliation(s)
- Jeffrey P Ward
- Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew M Gubin
- Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
38
|
Stone JA, Nicola AV, Baum LG, Aguilar HC. Multiple Novel Functions of Henipavirus O-glycans: The First O-glycan Functions Identified in the Paramyxovirus Family. PLoS Pathog 2016; 12:e1005445. [PMID: 26867212 PMCID: PMC4750917 DOI: 10.1371/journal.ppat.1005445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/19/2016] [Indexed: 01/13/2023] Open
Abstract
O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.
Collapse
Affiliation(s)
- Jacquelyn A. Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Anthony V. Nicola
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, United States of America
| | - Hector C. Aguilar
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
39
|
Zhang X, Wang Y. GRASPs in Golgi Structure and Function. Front Cell Dev Biol 2016; 3:84. [PMID: 26779480 PMCID: PMC4701983 DOI: 10.3389/fcell.2015.00084] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022] Open
Abstract
The Golgi apparatus is a central intracellular membrane organelle for trafficking and modification of proteins and lipids. Its basic structure is a stack of tightly aligned flat cisternae. In mammalian cells, dozens of stacks are concentrated in the pericentriolar region and laterally connected to form a ribbon. Despite extensive research in the last decades, how this unique structure is formed and why its formation is important for proper Golgi functioning remain largely unknown. The Golgi ReAssembly Stacking Proteins, GRASP65, and GRASP55, are so far the only proteins shown to function in Golgi stacking. They are peripheral membrane proteins on the cytoplasmic face of the Golgi cisternae that form trans-oligomers through their N-terminal GRASP domain, and thereby function as the “glue” to stick adjacent cisternae together into a stack and to link Golgi stacks into a ribbon. Depletion of GRASPs in cells disrupts the Golgi structure and results in accelerated protein trafficking and defective glycosylation. In this minireview we summarize our current knowledge on how GRASPs function in Golgi structure formation and discuss why Golgi structure formation is important for its function.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn Arbor, MI, USA; Department of Neurology, University of Michigan School of MedicineAnn Arbor, MI, USA
| |
Collapse
|
40
|
Barkeer S, Guha N, Hothpet V, Saligrama Adavigowda D, Hegde P, Padmanaban A, Yu LG, Swamy BM, Inamdar SR. Molecular mechanism of anticancer effect of Sclerotium rolfsii lectin in HT29 cells involves differential expression of genes associated with multiple signaling pathways: A microarray analysis. Glycobiology 2015; 25:1375-91. [PMID: 26347523 DOI: 10.1093/glycob/cwv067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022] Open
Abstract
Sclerotium rolfsii lectin (SRL) is a lectin isolated from fungus S. rolfsii and has high binding specificity toward the oncofetal Thomsen-Friedenreich carbohydrate antigen (Galβ1-3GalNAc-α-O-Ser/Thr, T or TF), which is expressed in more than 90% of human cancers. Our previous studies have shown that binding of SRL to human colon, breast and ovarian cancer cells induces cell apoptosis in vitro and suppresses tumor growth in vivo. This study investigated the SRL-mediated cell signaling in human colon cancer HT29 cells by mRNA and miRNA microarrays. It was found that SRL treatment results in altered expression of several hundred molecules including mitogen-activated protein kinase (MAPK) and c-JUN-associated, apoptosis-associated and cell cycle and DNA replication-associated signaling molecules. Pathway analysis using GeneSpring 12.6.1 revealed that SRL treatment induces changes of MAPK and c-JUN-associated signaling pathways as early as 2 h while changes of cell cycle, DNA replication and apoptosis pathways were significantly affected only after 24 h. A significant change of cell miRNA expression was also observed after 12 h treatment of the cells with SRL. These changes were further validated by quantitative real time polymerase chain reaction and immunoblotting. This study thus suggests that the presence of SRL affects multiple signaling pathways in cancer cells with early effects on cell proliferation pathways associated with MAPK and c-JUN, followed by miRNA-associated cell activity and apoptosis. This provides insight information into the molecular mechanism of the anticancer activity of this fungal lectin.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Nilanjan Guha
- Agilent Technologies India Pvt. Ltd, Bangalore 560048, India
| | | | | | - Prajna Hegde
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | | | - Lu-Gang Yu
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
41
|
Beatson R, Maurstad G, Picco G, Arulappu A, Coleman J, Wandell HH, Clausen H, Mandel U, Taylor-Papadimitriou J, Sletmoen M, Burchell JM. The Breast Cancer-Associated Glycoforms of MUC1, MUC1-Tn and sialyl-Tn, Are Expressed in COSMC Wild-Type Cells and Bind the C-Type Lectin MGL. PLoS One 2015; 10:e0125994. [PMID: 25951175 PMCID: PMC4423978 DOI: 10.1371/journal.pone.0125994] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/27/2015] [Indexed: 11/19/2022] Open
Abstract
Aberrant glycosylation occurs in the majority of human cancers and changes in mucin-type O-glycosylation are key events that play a role in the induction of invasion and metastases. These changes generate novel cancer-specific glyco-antigens that can interact with cells of the immune system through carbohydrate binding lectins. Two glyco-epitopes that are found expressed by many carcinomas are Tn (GalNAc-Ser/Thr) and STn (NeuAcα2,6GalNAc-Ser/Thr). These glycans can be carried on many mucin-type glycoproteins including MUC1. We show that the majority of breast cancers carry Tn within the same cell and in close proximity to extended glycan T (Galβ1,3GalNAc) the addition of Gal to the GalNAc being catalysed by the T synthase. The presence of active T synthase suggests that loss of the private chaperone for T synthase, COSMC, does not explain the expression of Tn and STn in breast cancer cells. We show that MUC1 carrying both Tn or STn can bind to the C-type lectin MGL and using atomic force microscopy show that they bind to MGL with a similar dead adhesion force. Tumour associated STn is associated with poor prognosis and resistance to chemotherapy in breast carcinomas, inhibition of DC maturation, DC apoptosis and inhibition of NK activity. As engagement of MGL in the absence of TLR triggering may lead to anergy, the binding of MUC1-STn to MGL may be in part responsible for some of the characteristics of STn expressing tumours.
Collapse
Affiliation(s)
- Richard Beatson
- Breast Cancer Biology, King’s College London, Guy’s Hospital, London, SE1 9RT, United Kingdom
| | - Gjertrud Maurstad
- Department of Physics, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Gianfranco Picco
- Breast Cancer Biology, King’s College London, Guy’s Hospital, London, SE1 9RT, United Kingdom
| | - Appitha Arulappu
- Breast Cancer Biology, King’s College London, Guy’s Hospital, London, SE1 9RT, United Kingdom
| | - Julia Coleman
- Breast Cancer Biology, King’s College London, Guy’s Hospital, London, SE1 9RT, United Kingdom
| | - Hans H. Wandell
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | | | - Marit Sletmoen
- Department of Physics, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Joy M. Burchell
- Breast Cancer Biology, King’s College London, Guy’s Hospital, London, SE1 9RT, United Kingdom
| |
Collapse
|
42
|
Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains. J Virol 2015; 89:6093-104. [PMID: 25833045 DOI: 10.1128/jvi.00543-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Coronaviruses (CoVs) and low-pathogenicity influenza A viruses (LP IAVs) depend on target cell proteases to cleave their viral glycoproteins and prime them for virus-cell membrane fusion. Several proteases cluster into tetraspanin-enriched microdomains (TEMs), suggesting that TEMs are preferred virus entry portals. Here we found that several CoV receptors and virus-priming proteases were indeed present in TEMs. Isolated TEMs, when mixed with CoV and LP IAV pseudoparticles, cleaved viral fusion proteins to fusion-primed fragments and potentiated viral transductions. That entering viruses utilize TEMs as a protease source was further confirmed using tetraspanin antibodies and tetraspanin short hairpin RNAs (shRNAs). Tetraspanin antibodies inhibited CoV and LP IAV infections, but their virus-blocking activities were overcome by expressing excess TEM-associated proteases. Similarly, cells with reduced levels of the tetraspanin CD9 resisted CoV pseudoparticle transductions but were made susceptible by overproducing TEM-associated proteases. These findings indicated that antibodies and CD9 depletions interfere with viral proteolytic priming in ways that are overcome by surplus proteases. TEMs appear to be exploited by some CoVs and LP IAVs for appropriate coengagement with cell receptors and proteases. IMPORTANCE Enveloped viruses use their surface glycoproteins to catalyze membrane fusion, an essential cell entry step. Host cell components prime these viral surface glycoproteins to catalyze membrane fusion at specific times and places during virus cell entry. Among these priming components are proteases, which cleave viral surface glycoproteins, unleashing them to refold in ways that catalyze virus-cell membrane fusions. For some enveloped viruses, these proteases are known to reside on target cell surfaces. This research focuses on coronavirus and influenza A virus cell entry and identifies TEMs as sites of viral proteolysis, thereby defining subcellular locations of virus priming with greater precision. Implications of these findings extend to the use of virus entry antagonists, such as protease inhibitors, which might be most effective when localized to these microdomains.
Collapse
|
43
|
Demian WLL, Kottari N, Shiao TC, Randell E, Roy R, Banoub JH. Direct targeted glycation of the free sulfhydryl group of cysteine residue (Cys-34) of BSA. Mapping of the glycation sites of the anti-tumor Thomsen-Friedenreich neoglycoconjugate vaccine prepared by Michael addition reaction. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1223-1233. [PMID: 25476939 DOI: 10.1002/jms.3448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/22/2014] [Indexed: 06/04/2023]
Abstract
We present in this manuscript the characterization of the exact glycation sites of the Thomsen-Friedenreich antigen-BSA vaccine (TF antigen:BSA) prepared using a Michael addition reaction between the saccharide antigen as an electrophilic acceptor and the nucleophilic thiol and L-Lysine ε-amino groups of BSA using different ligation conditions. Matrix laser desorption ionization time-of-flight mass spectrometry of the neoglycoconjugates prepared with TF antigen:protein ratios of 2:1 and 8:1, allowed to observe, respectively, the protonated molecules for each neoglycoconjugates: [M + H](+) at m/z 67,599 and 70,905. The measurements of these molecular weights allowed us to confirm exactly the carbohydrate:protein ratios of these two synthetic vaccines. These were found to be closely formed by a TF antigen:BSA ratios of 2:1 and 8:1, respectively. Trypsin digestion and liquid chromatography coupled with electrospray ionization mass spectrometry allowed us to identify the series of released glycopeptide and peptide fragments. De novo sequencing affected by low-energy collision dissociation tandem mass spectrometry was then employed to unravel the precise glycation sites of these neoglycoconjugate vaccines. Finally, we identified, respectively, three diagnostic and characteristic glycated peptides for the synthetic glycoconjugate possessing a TF antigen:BSA ratio 2:1, whereas we have identified for the synthetic glycoconjugate having a TF:BSA ratio 8:1 a series of 14 glycated peptides. The net increase in the occupancy sites of these neoglycoconjugates was caused by the large number of glycoforms produced during the chemical ligation of the synthetic carbohydrate antigen onto the protein carrier.
Collapse
Affiliation(s)
- Wael L L Demian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's Newfoundland, A1B 3X9, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Makhoul I, Hutchins L, Emanuel PD, Pennisi A, Siegel E, Jousheghany F, Monzavi-Karbassi B, Kieber-Emmons T. Moving a Carbohydrate Mimetic Peptide into the clinic. Hum Vaccin Immunother 2014; 11:37-44. [PMID: 25483513 DOI: 10.4161/hv.34300] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tumor-Associated Carbohydrate Antigens (TACAs) are broad-spectrum targets for immunotherapy. Immunization with Carbohydrate Mimetic Peptides (CMPs) is a strategy to induce broad-spectrum TACA-reactive antibodies hypothesized to interfere with cellular pathways involved in tumor cell survival. A Phase I study was conducted with a first-in-man CMP referred to as P10s, conjugated to the Pan T cell carrier PADRE, along with MONTANIDE(™) ISA 51 VG as adjuvant over a course of 5 immunizations. While designed as a safety and tolerability study, the potential for therapeutic impact was observed in a subject with metastatic lesions as evaluated before and after vaccine treatment. The subject received Vinorelbine and Trastuzumab (VT) for two months prior to study eligibility. PET scans showed partial response in the lungs and complete resolution of a previously enlarged subpectoral lymph node. Immunization with P10s vaccine resulted in responses to P10s, with serum and plasma antibodies reactive with and cytotoxic to human breast cancer cells in vitro, including the Trastuzumab-resistant HCC1954 cell line. However, the patient developed cystic masses in the brain parenchyma with no apparent evidence of metastases. The subject was switched to Docetaxel, Pertuzumab and Trastuzumab a year later, and her last PET scan showed a complete response in the lungs and lymph nodes. Incubation of cancer cells with a combination of vaccine-induced serum and docetaxel suggests that the induced antibodies sensitize tumor cells for more efficient killing upon administration of docetaxel. The data suggest that P10s-PADRE induces anti-tumor antibody response that in combination with chemotherapy can affect metastatic lesions in breast cancer patients.
Collapse
Affiliation(s)
- Issam Makhoul
- a Departments of Medicine; Winthrop P. Rockefeller Cancer Institute; University of Arkansas for Medical Sciences; Little Rock, AR USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bubka M, Link-Lenczowski P, Janik M, Pocheć E, Lityńska A. Overexpression of N-acetylglucosaminyltransferases III and V in human melanoma cells. Implications for MCAM N-glycosylation. Biochimie 2014; 103:37-49. [DOI: 10.1016/j.biochi.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/01/2014] [Indexed: 01/25/2023]
|
46
|
Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling MP, Pavão MSG. Extracellular galectin-3 in tumor progression and metastasis. Front Oncol 2014; 4:138. [PMID: 24982845 PMCID: PMC4058817 DOI: 10.3389/fonc.2014.00138] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022] Open
Abstract
Galectin-3, the only chimera galectin found in vertebrates, is one of the best-studied galectins. It is expressed in several cell types and is involved in a broad range of physiological and pathological processes, such as cell adhesion, cell activation and chemoattraction, cell cycle, apoptosis, and cell growth and differentiation. However, this molecule raises special interest due to its role in regulating cancer cell activities. Galectin-3 has high affinity for β-1,6-N-acetylglucosamine branched glycans, which are formed by the action of the β1,6-N-acetylglucosaminyltransferase V (Mgat5). Mgat5-related changes in protein/lipid glycosylation on cell surface lead to alterations in the clustering of membrane proteins through lattice formation, resulting in functional advantages for tumor cells. Galectin-3 presence enhances migration and/or invasion of many tumors. Galectin-3-dependent clustering of integrins promotes ligand-induced integrin activation, leading to cell motility. Galectin-3 binding to mucin-1 increases transendothelial invasion, decreasing metastasis-free survival in an experimental metastasis model. Galectin-3 also affects endothelial cell behavior by regulating capillary tube formation. This lectin is found in the tumor stroma, suggesting a role for microenvironmental galectin-3 in tumor progression. Galectin-3 also seems to be involved in the recruitment of tumor-associated macrophages, possibly contributing to angiogenesis and tumor growth. This lectin can be a relevant factor in turning bone marrow in a sanctuary for leukemia cells, favoring resistance to therapy. Finally, galectin-3 seems to play a relevant role in orchestrating distinct cell events in tumor microenvironment and for this reason, it can be considered a target in tumor therapies. In conclusion, this review aims to describe the processes of tumor progression and metastasis involving extracellular galectin-3 and its expression and regulation.
Collapse
Affiliation(s)
- Anneliese Fortuna-Costa
- Programa de Glicobiologia, Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Angélica M Gomes
- Programa de Glicobiologia, Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Eliene O Kozlowski
- Programa de Glicobiologia, Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Mariana P Stelling
- Programa de Glicobiologia, Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Mauro S G Pavão
- Programa de Glicobiologia, Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
47
|
Gabrielsen M, Abdul-Rahman PS, Othman S, Hashim OH, Cogdell RJ. Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins. Acta Crystallogr F Struct Biol Commun 2014; 70:709-16. [PMID: 24915077 PMCID: PMC4051521 DOI: 10.1107/s2053230x14008966] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/19/2014] [Indexed: 11/10/2022] Open
Abstract
Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding.
Collapse
Affiliation(s)
- Mads Gabrielsen
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, 120 University Avenue, Glasgow G12 8TA, Scotland
| | | | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Onn H. Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, 120 University Avenue, Glasgow G12 8TA, Scotland
| |
Collapse
|
48
|
Chik JHL, Zhou J, Moh ESX, Christopherson R, Clarke SJ, Molloy MP, Packer NH. Comprehensive glycomics comparison between colon cancer cell cultures and tumours: implications for biomarker studies. J Proteomics 2014; 108:146-62. [PMID: 24840470 DOI: 10.1016/j.jprot.2014.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 01/27/2023]
Abstract
UNLABELLED Altered glycosylation is commonly observed in colorectal cancer. In vitro models are frequently used to study this cancer but little is known about the differences that may exist between these model cell systems and tumour tissue. We have compared the membrane protein glycosylation of five colorectal cancer cell lines (SW1116, SW480, SW620, SW837, LS174T) with epithelial cells from colorectal tumours using liquid chromatography tandem mass spectrometry. Remarkably, there were five abundant O-glycans in the tumour cells that were undetected in the low-mucin producing cell lines, although two were found in the mucinous LS174T cells. The O-glycans included the well-known glycan cancer marker, sialyl-Tn, which has been associated with mucins. Using qRT-PCR, sialyl-Tn expression was found to be associated with an increase in α2,6-sialyltransferase gene (ST6GALNAC1) and a decrease in core 1 synthase gene (C1GALT1) in LS174T cells. The expression of a subset of mucins (MUC2, MUC6, MUC5B) was also correlated with sialyl-Tn expression in LS174T cells. Overall, the membrane protein glycosylation of the model cell lines was found to differ from each other and from the epithelial cells of tumour tissue. These findings should be noted in the design of biomarker discovery experiments particularly when cell surface targets are being investigated. BIOLOGICAL SIGNIFICANCE The extent of protein glycosylation differences between in vitro cell lines and ex vivo tumours in colorectal cancer research is unknown. Our study expands current knowledge by characterising the membrane protein glycosylation profiles of five different colorectal cancer cell lines and of epithelial cells derived from resected colorectal cancer tumour tissue, using liquid chromatography tandem mass spectrometry. The detailed structural differences found in both N- and O-linked glycan structures on the membrane glycoproteins were determined and correlated with the mRNA expression of the relevant proteins in the cell lines. The glycosylation differences found between cultured cancer cell lines and epithelial cells from tumour tissue have important implications for glycan biomarker discovery.
Collapse
Affiliation(s)
- Jenny H L Chik
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia
| | - Jerry Zhou
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Edward S X Moh
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia
| | | | - Stephen J Clarke
- Department of Medicine, Royal North Shore Hospital, University of Sydney, Australia
| | - Mark P Molloy
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia.
| |
Collapse
|
49
|
Ong YS, Tran THT, Gounko NV, Hong W. TMEM115 is an integral membrane protein of the Golgi complex involved in retrograde transport. J Cell Sci 2014; 127:2825-39. [PMID: 24806965 PMCID: PMC4077589 DOI: 10.1242/jcs.136754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Searching and evaluating the Human Protein Atlas for transmembrane proteins enabled us to identify an integral membrane protein, TMEM115, that is enriched in the Golgi complex. Biochemical and cell biological analysis suggested that TMEM115 has four candidate transmembrane domains located in the N-terminal region. Both the N- and C-terminal domains are oriented towards the cytoplasm. Immunofluorescence analysis supports that TMEM115 is enriched in the Golgi cisternae. Functionally, TMEM115 knockdown or overexpression delays Brefeldin-A-induced Golgi-to-ER retrograde transport, phenocopying cells with mutations or silencing of the conserved oligomeric Golgi (COG) complex. Co-immunoprecipitation and in vitro binding experiments reveals that TMEM115 interacts with the COG complex, and might self-interact to form dimers or oligomers. A short region (residues 206–229) immediately to the C-terminal side of the fourth transmembrane domain is both necessary and sufficient for Golgi targeting. Knockdown of TMEM115 also reduces the binding of the lectins peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA), suggesting an altered O-linked glycosylation profile. These results establish that TMEM115 is an integral membrane protein of the Golgi stack regulating Golgi-to-ER retrograde transport and is likely to be part of the machinery of the COG complex.
Collapse
Affiliation(s)
- Yan Shan Ong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ton Hoai Thi Tran
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Natalia V Gounko
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore IMB-IMCB Joint Electron Microscopy Suite, 20 Biopolis Street, Singapore 138671, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore Department of Biochemistry, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
50
|
Freire-de-Lima L. Sweet and sour: the impact of differential glycosylation in cancer cells undergoing epithelial-mesenchymal transition. Front Oncol 2014; 4:59. [PMID: 24724053 PMCID: PMC3971198 DOI: 10.3389/fonc.2014.00059] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/11/2014] [Indexed: 01/11/2023] Open
Abstract
Glycosylation changes are a feature of disease states. One clear example is cancer cells, which commonly express glycans at atypical levels or with different structural attributes than those found in normal cells. Epithelial–mesenchymal transition (EMT) was initially recognized as an important step for morphogenesis during embryonic development, and is now shown to be one of the key steps promoting tumor metastasis. Cancer cells undergoing EMT are characterized by significant changes in glycosylation of the extracellular matrix (ECM) components and cell-surface glycoconjugates. Current scientific methodology enables all hallmarks of EMT to be monitored in vitro and this experimental model has been extensively used in oncology research during the last 10 years. Several studies have shown that cell-surface carbohydrates attached to proteins through the amino acids, serine, or threonine (O-glycans), are involved in tumor progression and metastasis, however, the impact of O-glycans on EMT is poorly understood. Recent studies have demonstrated that transforming growth factor-beta (TGF-β), a known EMT inducer, has the ability to promote the up-regulation of a site-specific O-glycosylation in the IIICS domain of human oncofetal fibronectin, a major ECM component expressed by cancer cells and embryonic tissues. Armed with the knowledge that cell-surface glycoconjugates play a major role in the maintenance of cell homeostasis and that EMT is closely associated with glycosylation changes, we may benefit from understanding how unusual glycans can govern the molecular pathways associated with cancer progression. This review initially focuses on some well-known changes found in O-glycans expressed by cancer cells, and then discusses how these alterations may modulate the EMT process.
Collapse
Affiliation(s)
- Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , RJ, Brazil
| |
Collapse
|