1
|
Chen B, Liang H, Li A, Ji B, Zhang X, Liu Y. Impact of ibuprofen on microalgal-bacterial granular sludge: Metabolic pathways, functional gene responses and biodegradation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138180. [PMID: 40215934 DOI: 10.1016/j.jhazmat.2025.138180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/02/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025]
Abstract
Ibuprofen (IBU), a persistent and toxic emerging pollutant widely used as a nonsteroidal anti-inflammatory drug, poses significant challenges for wastewater treatment. This study investigates the effects of IBU on the microalgal-bacterial granular sludge (MBGS) process, a promising approach for wastewater treatment. Results indicate that MBGS can enhance its resilience by secreting more extracellular polymeric substances for effective adsorption. Proteobacteria displayed high adaptability to IBU, while the abundance of Cyanobacteria exhibited considerable fluctuations, leading to cellular structural deformation and a decrease in abundance under 1 mg/L IBU stress. The abundance of functional genes involved in nitrogen and organic matter metabolism, including GDH2, ACSS1_2, and mqo, was significantly influenced by IBU stress, thereby affecting overall system performance. Additionally, several degradation by-products of IBU which have lower toxicity were identified, suggesting the effective biodegradation within the MBGS system. Structural equation modeling indicated that IBU exerted a greater negative impact on microalgae than on bacteria. This study confirms the adaptability of the MBGS system to wastewater containing IBU, highlighting its promising application in treating wastewater with emerging contaminants.
Collapse
Affiliation(s)
- Bingheng Chen
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hua Liang
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiaoyuan Zhang
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Liu
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Zhou Q, Zhao C, Li X, Wang H, Huang Q, Sun Y, Zhou Y. Discovery of lactic acid bacteria with high nucleoside degradation and low purine production in tomato sour soup. Int J Food Microbiol 2025; 434:111139. [PMID: 40054042 DOI: 10.1016/j.ijfoodmicro.2025.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/09/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Tomato sour soup (TSS) is a traditional fermented food in the southwest of Guizhou province, China. In a previous study, we found that the purine nucleoside compound content in TSS was decreased after fermentation. In this study, we screened the nucleoside-degrading lactic acid bacteria in TSS and explored possible mechanisms for the degradation of purine nucleoside compound. Lp. plantarum ST-11 was chosen because of its strong guanosine and inosine degradation, low guanine and hypoxanthine production, safety, and probiotic characteristics. The whole genome sequence had 3,344,042 bp, and approximately 110 genes were related to nucleotide metabolism. Guanosine administration induced the downregulation of 26 metabolites and upregulation of 75 metabolites, which related to energy substances, purines, and pyrimidines et al. Thus, Lp. plantarum ST-11, with high nucleoside degradation and low purine production, was screened from TSS, as a potential probiotic to prevent hyperuricemia.
Collapse
Affiliation(s)
- Qingli Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China
| | - Chaoya Zhao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China
| | - Xiefei Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China
| | - Huiqun Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China
| | - Qun Huang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China
| | - Yong Sun
- Beijing Academy of Food Sciences, Beijing 100068, China
| | - Yan Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
3
|
Zheng Y, Cao X, Zhou Y, Ma S, Wang Y, Li Z, Zhao D, Yang Y, Zhang H, Meng C, Xie Z, Sui X, Xu K, Li Y, Zhang CS. Purines enrich root-associated Pseudomonas and improve wild soybean growth under salt stress. Nat Commun 2024; 15:3520. [PMID: 38664402 PMCID: PMC11045775 DOI: 10.1038/s41467-024-47773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The root-associated microbiota plays an important role in the response to environmental stress. However, the underlying mechanisms controlling the interaction between salt-stressed plants and microbiota are poorly understood. Here, by focusing on a salt-tolerant plant wild soybean (Glycine soja), we demonstrate that highly conserved microbes dominated by Pseudomonas are enriched in the root and rhizosphere microbiota of salt-stressed plant. Two corresponding Pseudomonas isolates are confirmed to enhance the salt tolerance of wild soybean. Shotgun metagenomic and metatranscriptomic sequencing reveal that motility-associated genes, mainly chemotaxis and flagellar assembly, are significantly enriched and expressed in salt-treated samples. We further find that roots of salt stressed plants secreted purines, especially xanthine, which induce motility of the Pseudomonas isolates. Moreover, exogenous application for xanthine to non-stressed plants results in Pseudomonas enrichment, reproducing the microbiota shift in salt-stressed root. Finally, Pseudomonas mutant analysis shows that the motility related gene cheW is required for chemotaxis toward xanthine and for enhancing plant salt tolerance. Our study proposes that wild soybean recruits beneficial Pseudomonas species by exudating key metabolites (i.e., purine) against salt stress.
Collapse
Affiliation(s)
- Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xuwen Cao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266200, China
| | - Yanan Zhou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, 271018, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Youqiang Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhe Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Donglin Zhao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yanzhe Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Han Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chen Meng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhihong Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, 271018, China
| | - Xiaona Sui
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Kangwen Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
4
|
Wang H, Tu R, Ruan Z, Wu D, Peng Z, Zhou X, Liu Q, Wu W, Cao L, Cheng S, Sun L, Zhan X, Shen X. STRIPE3, encoding a human dNTPase SAMHD1 homolog, regulates chloroplast development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111395. [PMID: 35878695 DOI: 10.1016/j.plantsci.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast is an important organelle for photosynthesis and numerous essential metabolic processes, thus ensuring plant fitness or survival. Although many genes involved in chloroplast development have been identified, mechanisms underlying such development are not fully understood. Here, we isolated and characterized the stripe3 (st3) mutant which exhibited white-striped leaves with reduced chlorophyll content and abnormal chloroplast development during the seedling stage, but gradually produced nearly normal green leaves as it developed. Map-based cloning and transgenic tests demonstrated that a splicing mutation in ST3, encoding a human deoxynucleoside triphosphate triphosphohydrolase (dNTPase) SAMHD1 homolog, was responsible for st3 phenotypes. ST3 is highly expressed in the third leaf at three-leaf stage and expressed constitutively in root, stem, leaf, sheath, and panicle, and the encoded protein, OsSAMHD1, is localized to the cytoplasm. The st3 mutant showed more severe albino leaf phenotype under exogenous 1-mM dATP/dA, dCTP/dC, and dGTP/dG treatments compared with the control conditions, indicating that ST3 is involved in dNTP metabolism. This study reveals a gene associated with dNTP catabolism, and propose a model in which chloroplast development in rice is regulated by the dNTP pool, providing a potential application of these results to hybrid rice breeding.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Ranran Tu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Zheyan Ruan
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Duo Wu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zequn Peng
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Xingpeng Zhou
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Qunen Liu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Weixun Wu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Lianping Sun
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| | - Xihong Shen
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| |
Collapse
|
5
|
Huang F, Abbas F, Fiaz S, Imran M, Yanguo K, Hassan W, Ashraf U, He Y, Cai X, Wang Z, Yu L, Ye X, Chen X. Comprehensive characterization of Guanosine monophosphate synthetase in Nicotiana tabacum. Mol Biol Rep 2022; 49:5265-5272. [PMID: 34689282 DOI: 10.1007/s11033-021-06718-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Guanosine monophosphate (GMP) synthetase is an enzyme that converts xanthosine monophosphate to GMP. GMP plays an essential role in plant development and responses to internal and external stimuli. It also plays a crucial role in several plant physiochemical processes, such as stomata closure, cation flux regulation, pathogen responses and chloroplast development. METHODS AND RESULTS The mRNA sequences of NtGMP synthase in tobacco (Nicotiana tabacum) were rapidly amplified from cDNA. The GMP synthase open reading frame contains a 1617 bp sequence encoding 538 amino acids. A sequence analysis showed that this sequence shares high homology with that of Nicotiana sylvestris, Nicotiana attenuata, N. tomentosiformis, Solanum tuberosum, Lycopersicon pennellii, L. esculentum, Capsicum annuum, C. chinense and C. baccatum GMP synthase. A BLAST analysis with a tobacco high-throughput genomic sequence database revealed that the tobacco GMP synthase gene has five introns and six exons. A phylogenetic analysis showed a close genetic evolutionary relationship with N. sylvestris GMP synthase. The tissue-specific expression profile was evaluated using quantitative real-time PCR. The data showed that NtGMP synthase was highly expressed in leaves and moderately expressed in roots, flowers, and stems. The subcellular localization was predicted using the WOLF PSORT webserver, which strongly suggested that it might be localized to the cytoplasm. CONCLUSIONS In the current study, we cloned and comprehensively characterized GMP synthase in tobacco (Nicotiana tabacum). Our results establish a basis for further research to explore the precise role of this enzyme in tobacco.
Collapse
Affiliation(s)
- Feiyan Huang
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ke Yanguo
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, China.
- College of Economics and Management, Kunming University, Kunming, China.
| | - Waseem Hassan
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, Pakistan
| | - Yuansheng He
- Lincang Tobacco Corporation of Yunnan Province, Kunming, China
| | - Xuanjie Cai
- Material Procurement Center, Shanghai Tobacco Group Co., Ltd, Shanghai, 200082, China
| | - Zhijiang Wang
- Kunming Tobacco Corporation of Yunnan Province, Kunming, 650021, China
| | - Lei Yu
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, China
| | - Xianwen Ye
- Kunming Tobacco Corporation of Yunnan Province, Kunming, 650021, China.
| | - Xiaolong Chen
- Tobacco Leaf Technology Centre, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China.
| |
Collapse
|
6
|
Zhao P, Wang C, Zhang S, Zheng L, Li F, Cao C, Cao L, Huang Q. Fungicide-loaded mesoporous silica nanoparticles promote rice seedling growth by regulating amino acid metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127892. [PMID: 34864538 DOI: 10.1016/j.jhazmat.2021.127892] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 05/18/2023]
Abstract
Mesoporous silica nanoparticles (MSN) are widely researched as carriers for pesticides (including fungicides, insecticides and herbicides) to improve their effective utilization rate in the target plant. However, pesticides enter the target crops and may bring some impacts on the growth and physiological function of plants. When they are loaded to nanoparticles, different effects on the metabolic properties of target plants will be produced. In this study, thifluzamide-loaded MSN was prepared with average diameter of 80-120 nm. Rice seedlings were exposed for 7 days to different treatments of MSN, thifluzamide, and thifluzamide-loaded MSN. After treatment, non-targeted metabolomic method was employed to explore the metabolic pathways. It was found that the negative effect of thifluzamide to rice seedling was alleviated by thifluzamide-loaded MSN, since it increased amino acid metabolic pathways, which improved purine and pyrimidine metabolism and induced the production of total protein. Thifluzamide-loaded MSN can also relieve the damage of thifluzamide to rice seedlings by altering the chlorophyll, phenols and flavonoids content. In conclusion, it was proposed that the mechanism of fungicide-loaded MSN prevent plant from negative effects of fungicides by regulating the amino acid metabolic pathways.
Collapse
Affiliation(s)
- Pengyue Zhao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Chaojie Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Shuojia Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Li Zheng
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Fengmin Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Chong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Lidong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| | - Qiliang Huang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
7
|
Proietti S, Bertini L, Falconieri GS, Baccelli I, Timperio AM, Caruso C. A Metabolic Profiling Analysis Revealed a Primary Metabolism Reprogramming in Arabidopsis glyI4 Loss-of-Function Mutant. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112464. [PMID: 34834827 PMCID: PMC8624978 DOI: 10.3390/plants10112464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 05/09/2023]
Abstract
Methylglyoxal (MG) is a cytotoxic compound often produced as a side product of metabolic processes such as glycolysis, lipid peroxidation, and photosynthesis. MG is mainly scavenged by the glyoxalase system, a two-step pathway, in which the coordinate activity of GLYI and GLYII transforms it into D-lactate, releasing GSH. In Arabidopsis thaliana, a member of the GLYI family named GLYI4 has been recently characterized. In glyI4 mutant plants, a general stress phenotype characterized by compromised MG scavenging, accumulation of reactive oxygen species (ROS), stomatal closure, and reduced fitness was observed. In order to shed some light on the impact of gly4 loss-of-function on plant metabolism, we applied a high resolution mass spectrometry-based metabolomic approach to Arabidopsis Col-8 wild type and glyI4 mutant plants. A compound library containing a total of 70 metabolites, differentially synthesized in glyI4 compared to Col-8, was obtained. Pathway analysis of the identified compounds showed that the upregulated pathways are mainly involved in redox reactions and cellular energy maintenance, and those downregulated in plant defense and growth. These results improved our understanding of the impacts of glyI4 loss-of-function on the general reprogramming of the plant's metabolic landscape as a strategy for surviving under adverse physiological conditions.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.P.); (L.B.); (G.S.F.)
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.P.); (L.B.); (G.S.F.)
| | - Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.P.); (L.B.); (G.S.F.)
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy;
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.P.); (L.B.); (G.S.F.)
- Correspondence: (A.M.T.); (C.C.); Tel.: +39-0761-357330 (C.C.)
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.P.); (L.B.); (G.S.F.)
- Correspondence: (A.M.T.); (C.C.); Tel.: +39-0761-357330 (C.C.)
| |
Collapse
|
8
|
Xiao J, Gu C, He S, Zhu D, Huang Y, Zhou Q. Widely targeted metabolomics analysis reveals new biomarkers and mechanistic insights on chestnut (Castanea mollissima Bl.) calcification process. Food Res Int 2021; 141:110128. [PMID: 33641995 DOI: 10.1016/j.foodres.2021.110128] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
Chestnut calcification is a quality deterioration due to fast water loss, which has been of deep concern for chestnut quality control because its mechanism is unclear. In order to find out the different key metabolites and metabolic pathways related to the occurrence of chestnut calcification, in this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) based widely targeted metabolomics analysis was performed on chestnuts that were stored at 50%-55% (low relative humidity, LRH) at 25 °C and 85%-90% (high relative humidity, HRH) at 25 °C. A total of 611 metabolites were detected, and 55 differentially accumulated metabolites were identified as key metabolites involved in chestnut calcification process. The decrease in some monosaccharides accompanied with the increase in some unsaturated fatty acids indicated the degradation of chestnut cell wall and cell membrane during calcification process. As a stress response, amino acid metabolism related to membrane stability was significantly activated. In addition, the enhancement of phenylpropanoid biosynthesis pathway and flavonoid biosynthesis pathway characterized by the accumulation of lignin precursors and antioxidants suggested that lignification process was triggered in calcified chestnut. Therefore, the degradation and hardening of the cell wall and membrane damage were proposed to be associated with the calcification occurrence of chestnut. The metabolic profile of chestnut characterized in this study provided new insights into chestnut calcification process and laid a foundation for further chestnut quality control.
Collapse
Affiliation(s)
- Jiaqi Xiao
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Caiqin Gu
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Shan He
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China; Institute for NanoScale Scale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park 5042, Australia.
| | - Dongxue Zhu
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yukai Huang
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Qiqin Zhou
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
9
|
Liu LL, You J, Zhu Z, Chen KY, Hu MM, Gu H, Liu ZW, Wang ZY, Wang YH, Liu SJ, Chen LM, Liu X, Tian YL, Zhou SR, Jiang L, Wan JM. WHITE STRIPE LEAF8, encoding a deoxyribonucleoside kinase, is involved in chloroplast development in rice. PLANT CELL REPORTS 2020; 39:19-33. [PMID: 31485784 DOI: 10.1007/s00299-019-02470-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
WSL8 encoding a deoxyribonucleoside kinase (dNK) that catalyzes the first step in the salvage pathway of nucleotide synthesis plays an important role in early chloroplast development in rice. The chloroplast is an organelle that converts light energy into chemical energy; therefore, the normal differentiation and development of chloroplast are pivotal for plant survival. Deoxyribonucleoside kinases (dNKs) play an important role in the salvage pathway of nucleotides. However, the relationship between dNKs and chloroplast development remains elusive. Here, we identified a white stripe leaf 8 (wsl8) mutant that exhibited a white stripe leaf phenotype at seedling stage (before the four-leaf stage). The mutant showed a significantly lower chlorophyll content and defective chloroplast morphology, whereas higher reactive oxygen species than the wild type. As the leaf developed, the chlorotic mutant plants gradually turned green, accompanied by the restoration in chlorophyll accumulation and chloroplast ultrastructure. Map-based cloning revealed that WSL8 encodes a dNK on chromosome 5. Compared with the wild type, a C-to-G single base substitution occurred in the wsl8 mutant, which caused a missense mutation (Leu 349 Val) and significantly reduced dNK enzyme activity. A subcellular localization experiment showed the WSL8 protein was targeted in the chloroplast and its transcripts were expressed in various tissues, with more abundance in young leaves and nodes. Ribosome and RNA-sequencing analysis indicated that some components and genes related to ribosome biosynthesis were down-regulated in the mutant. An exogenous feeding experiment suggested that the WSL8 performed the enzymic activity of thymidine kinase, especially functioning in the salvage synthesis of thymidine monophosphate. Our results highlight that the salvage pathway mediated by the dNK is essential for early chloroplast development in rice.
Collapse
Affiliation(s)
- L L Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - J You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - K Y Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - M M Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - H Gu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z W Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Y Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y H Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - S J Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - L M Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - X Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y L Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - S R Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - L Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - J M Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Cao X, Du B, Han F, Zhou Y, Ren J, Wang W, Chen Z, Zhang Y. Crystal Structure of the Chloroplastic Glutamine Phosphoribosylpyrophosphate Amidotransferase GPRAT2 From Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:157. [PMID: 32174940 PMCID: PMC7056826 DOI: 10.3389/fpls.2020.00157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/31/2020] [Indexed: 05/03/2023]
Abstract
Chloroplastic glutamine phosphoribosylpyrophosphate amidotransferase (GPRATase) catalyzes the first committed step of de novo purine biosynthesis in Arabidopsis thaliana, and DAS734 is a direct and specific inhibitor of AtGPRAT, with phytotoxic effects similar to the leaf beaching phenotypes of known AtGPRAT genetic mutants, especially cia1 and atd2. However, the structure of AtGPRAT and the inhibition mode of DAS734 still remain poorly understood. In this study, we solved the structure of AtGPRAT2, which revealed structural differences between AtGPRAT2 and bacterial enzymes. Kinetics assay demonstrated that DAS734 behaves as a competitive inhibitor for the substrate phosphoribosyl pyrophosphate (PRPP) of AtGPRAT2. Docking studies showed that DAS734 forms electrostatic interactions with R264 and hydrophobic interactions with several residues, which was verified by binding assays. Collectively, our study provides important insights into the inhibition mechanism of DAS734 to AtGPRAT2 and sheds light on future studies into further development of more potent herbicides targeting Arabidopsis GPRATases.
Collapse
Affiliation(s)
- Xueli Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
| | - Bowen Du
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
| | - Fengjiao Han
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
| | - Yu Zhou
- Department of Computational Chemistry, National Institute of Biological Sciences, Beijing, China
| | - Junhui Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
| | - Wenhe Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
| | - Zeliang Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Yi Zhang,
| |
Collapse
|
11
|
The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:15297-15306. [PMID: 31296566 PMCID: PMC6660741 DOI: 10.1073/pnas.1908556116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many mutations that affect plastidial metabolism are embryo-lethal, as expected if the disrupted genes encode enzymes with essential housekeeping functions. However, some mutations that disrupt the plastidial oxidative pentose phosphate pathway (OPPP) cause developmental defects, as well as embryo arrest at the globular stage of development. We show that the OPPP provides the substrate for the pathway of purine synthesis, ribose-5-phosphate, and is thus essential for the generation of nucleic acids during the very early stages of embryo development. Inadequate purine synthesis leads to abnormal patterns of cell division in the embryo and blocks development beyond the globular stage. Therefore, defects in primary metabolic pathways can have profound consequences for development as well as simply reducing growth. Large numbers of genes essential for embryogenesis in Arabidopsis encode enzymes of plastidial metabolism. Disruption of many of these genes results in embryo arrest at the globular stage of development. However, the cause of lethality is obscure. We examined the role of the plastidial oxidative pentose phosphate pathway (OPPP) in embryo development. In nonphotosynthetic plastids the OPPP produces reductant and metabolic intermediates for central biosynthetic processes. Embryos with defects in various steps in the oxidative part of the OPPP had cell division defects and arrested at the globular stage, revealing an absolute requirement for the production via these steps of ribulose-5-phosphate. In the nonoxidative part of the OPPP, ribulose-5-phosphate is converted to ribose-5-phosphate (R5P)—required for purine nucleotide and histidine synthesis—and subsequently to erythrose-4-phosphate, which is required for synthesis of aromatic amino acids. We show that embryo development through the globular stage specifically requires synthesis of R5P rather than erythrose-4-phosphate. Either a failure to convert ribulose-5-phosphate to R5P or a block in purine nucleotide biosynthesis beyond R5P perturbs normal patterning of the embryo, disrupts endosperm development, and causes early developmental arrest. We suggest that seed abortion in mutants unable to synthesize R5P via the oxidative part of the OPPP stems from a lack of substrate for synthesis of purine nucleotides, and hence nucleic acids. Our results show that the plastidial OPPP is essential for normal developmental progression as well as for growth in the embryo.
Collapse
|
12
|
Sivaram AK, Subashchandrabose SR, Logeshwaran P, Lockington R, Naidu R, Megharaj M. Metabolomics reveals defensive mechanisms adapted by maize on exposure to high molecular weight polycyclic aromatic hydrocarbons. CHEMOSPHERE 2019; 214:771-780. [PMID: 30296765 DOI: 10.1016/j.chemosphere.2018.09.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/22/2018] [Accepted: 09/29/2018] [Indexed: 05/28/2023]
Abstract
Polycyclic aromatic hydrocarbons are an important group of persistent organic pollutants. Using plants to remediate PAHs has been recognized as a cost-effective and environmentally friendly technique. However, the overall impact of PAHs on the regulation of plant metabolism has not yet been explored. In this study, we analyzed the alteration in the maize (Zea mays L.) metabolome on exposure to high molecular weight PAHs such as benzo[a]pyrene (BaP) and pyrene (PYR) in a hydroponic medium, individually and as a mixture (BaP + PYR) using GC-MS. The differences in the metabolites were analyzed using XCMS (an acronym for various forms (X) of chromatography-mass spectrometry), an online-based data analysis tool. A significant variation in metabolites was observed between treatment groups and the unspiked control group. The univariate, multivariate and pathway impact analysis showed there were more significant alterations in metabolic profiles between individual PAHs and the mixture of BaP and PYR. The marked changes in the metabolites of galactose metabolism and aminoacyl tRNA biosynthesis in PAHs treated maize leaves exhibit the adaptive defensive mechanisms for individual and PAHs mixture. Therefore, the metabolomics approach is essential for an understanding of the complex biochemical responses of plants to PAHs contaminants. This knowledge will shed new light in the field of phytoremediation, bio-monitoring, and environmental risk assessment.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Suresh Ramraj Subashchandrabose
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Robin Lockington
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
13
|
Das A, Rushton PJ, Rohila JS. Metabolomic Profiling of Soybeans (Glycine max L.) Reveals the Importance of Sugar and Nitrogen Metabolism under Drought and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2017; 6:E21. [PMID: 28587097 PMCID: PMC5489793 DOI: 10.3390/plants6020021] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 02/01/2023]
Abstract
Soybean is an important crop that is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen as a result of alterations in metabolic homeostasis of vegetative tissues. At present an incomplete understanding of abiotic stress-associated metabolism and identification of associated metabolites remains a major gap in soybean stress research. A study with a goal to profile leaf metabolites under control conditions (28/24 °C), drought [28/24 °C, 10% volumetric water content (VWC)], and heat stress (43/35 °C) was conducted in a controlled environment. Analyses of non-targeted metabolomic data showed that in response to drought and heat stress, key metabolites (carbohydrates, amino acids, lipids, cofactors, nucleotides, peptides and secondary metabolites) were differentially accumulated in soybean leaves. The metabolites for various cellular processes, such as glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, and starch biosynthesis, that regulate carbohydrate metabolism, amino acid metabolism, peptide metabolism, and purine and pyrimidine biosynthesis, were found to be affected by drought as well as heat stress. Computationally based regulatory networks predicted additional compounds that address the possibility of other metabolites and metabolic pathways that could also be important for soybean under drought and heat stress conditions. Metabolomic profiling demonstrated that in soybeans, keeping up with sugar and nitrogen metabolism is of prime significance, along with phytochemical metabolism under drought and heat stress conditions.
Collapse
Affiliation(s)
- Aayudh Das
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA.
| | - Paul J Rushton
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- 22nd Century Group Inc., Clarence, NY 14031, USA.
| | - Jai S Rohila
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- Dale Bumpers National Rice Research Center, USDA-ARS, Stuttgart, AR 72160, USA.
| |
Collapse
|
14
|
Coleto I, Trenas AT, Erban A, Kopka J, Pineda M, Alamillo JM. Functional specialization of one copy of glutamine phosphoribosyl pyrophosphate amidotransferase in ureide production from symbiotically fixed nitrogen in Phaseolus vulgaris. PLANT, CELL & ENVIRONMENT 2016; 39:1767-1779. [PMID: 27004600 DOI: 10.1111/pce.12743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Purines are essential molecules formed in a highly regulated pathway in all organisms. In tropical legumes, the nitrogen fixed in the nodules is used to generate ureides through the oxidation of de novo synthesized purines. Glutamine phosphoribosyl pyrophosphate amidotransferase (PRAT) catalyses the first committed step of de novo purine synthesis. In Phaseolus vulgaris there are three genes coding for PRAT. The three full-length sequences, which are intron-less genes, were cloned, and their expression levels were determined under conditions that affect the synthesis of purines. One of the three genes, PvPRAT3, is highly expressed in nodules and protein amount and enzymatic activity in these tissues correlate with nitrogen fixation activity. Inhibition of PvPRAT3 gene expression by RNAi-silencing and subsequent metabolomic analysis of the transformed roots shows that PvPRAT3 is essential for the synthesis of ureides in P. vulgaris nodules.
Collapse
Affiliation(s)
- Inmaculada Coleto
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional Agroalimentario, CEIA3. Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Almudena T Trenas
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional Agroalimentario, CEIA3. Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Alexander Erban
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional Agroalimentario, CEIA3. Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Joachim Kopka
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional Agroalimentario, CEIA3. Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional Agroalimentario, CEIA3. Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Josefa M Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional Agroalimentario, CEIA3. Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
15
|
Xu J, Zhang L, Yang DL, Li Q, He Z. Thymidine kinases share a conserved function for nucleotide salvage and play an essential role in Arabidopsis thaliana growth and development. THE NEW PHYTOLOGIST 2015; 208:1089-1103. [PMID: 26139575 DOI: 10.1111/nph.13530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/23/2015] [Indexed: 06/04/2023]
Abstract
Thymidine kinases (TKs) are important components in the nucleotide salvage pathway. However, knowledge about plant TKs is quite limited. In this study, the molecular function of TKs in Arabidopsis thaliana was investigated. Two TKs were identified and named AtTK1 and AtTK2. Expression of both genes was ubiquitous, but AtTK1 was strongly expressed in high-proliferation tissues. AtTK1 was localized to the cytosol, whereas AtTK2 was localized to the mitochondria. Mutant analysis indicated that the two genes function coordinately to sustain normal plant development. Enzymatic assays showed that the two TK proteins shared similar catalytic specificity for pyrimidine nucleosides. They were able to complement an Escherichia coli strain lacking TK activity. 5'-Fluorodeoxyuridine (FdU) resistance and 5-ethynyl 2'-deoxyuridine (EdU) incorporation assays confirmed their activity in vivo. Furthermore, the tk mutant phenotype could be alleviated by nucleotide feeding, establishing that the biosynthesis of pyrimidine nucleotides was disrupted by the TK deficiency. Finally, both human and rice (Oryza sativa) TKs were able to rescue the tk mutants, demonstrating the functional conservation of TKs across organisms. Taken together, our findings clarify the specialized function of two TKs in A. thaliana and establish that the salvage pathway mediated by the kinases is essential for plant growth and development.
Collapse
Affiliation(s)
- Jing Xu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
16
|
Zhang SF, Zhang Y, Xie ZX, Zhang H, Lin L, Wang DZ. iTRAQ-based quantitative proteomic analysis of a toxigenic dinoflagellate Alexandrium catenella and its non-toxic mutant. Proteomics 2015; 15:4041-50. [PMID: 26417864 DOI: 10.1002/pmic.201500156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/01/2015] [Accepted: 09/22/2015] [Indexed: 11/06/2022]
Abstract
Paralytic shellfish toxins (PSTs) are a group of potent neurotoxic alkaloids produced by cyanobacteria and dinoflagellates. The PST biosynthesis gene cluster and several toxin-related proteins have been unveiled in cyanobacteria, yet little is known about dinoflagellates. Here, we compared the protein profiles of a toxin-producing dinoflagellate Alexandrium catenella (ACHK-T) and its non-toxic mutant (ACHK-NT), and characterized differentially displayed proteins using a combination of the iTRAQ-based proteomic approach and the transcriptomic database. Totally 3488 proteins were identified from A. catenella, and proteins involved in carbohydrate, amino acid and energy metabolism were the most abundant. Among them, 185 proteins were differentially displayed: proteins involved in amino acid biosynthesis, protein and carbohydrate metabolism and bioluminescence were more abundant in ACHK-T, while proteins participating in photosynthesis, fatty acid biosynthesis, and the processes occurring in peroxisome displayed higher abundances in ACHK-NT. Seven toxin-related proteins were identified but they varied insignificantly between the two strains. Different carbon and energy utilization strategies were potentially related to the toxin producing ability, and the regulation mechanism of PST biosynthesis was more complex in dinoflagellates. Our study provides the first comprehensive dataset on the dinoflagellate proteome and lays the groundwork for future proteomic study.
Collapse
Affiliation(s)
- Shu-Fei Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, P. R. China
| |
Collapse
|
17
|
Torre S, Tattini M, Brunetti C, Fineschi S, Fini A, Ferrini F, Sebastiani F. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development. PLoS One 2014; 9:e112487. [PMID: 25393112 PMCID: PMC4231058 DOI: 10.1371/journal.pone.0112487] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022] Open
Abstract
Quercus pubescens Willd., a species distributed from Spain to southwest Asia, ranks high for drought tolerance among European oaks. Q. pubescens performs a role of outstanding significance in most Mediterranean forest ecosystems, but few mechanistic studies have been conducted to explore its response to environmental constrains, due to the lack of genomic resources. In our study, we performed a deep transcriptomic sequencing in Q. pubescens leaves, including de novo assembly, functional annotation and the identification of new molecular markers. Our results are a pre-requisite for undertaking molecular functional studies, and may give support in population and association genetic studies. 254,265,700 clean reads were generated by the Illumina HiSeq 2000 platform, with an average length of 98 bp. De novo assembly, using CLC Genomics, produced 96,006 contigs, having a mean length of 618 bp. Sequence similarity analyses against seven public databases (Uniprot, NR, RefSeq and KOGs at NCBI, Pfam, InterPro and KEGG) resulted in 83,065 transcripts annotated with gene descriptions, conserved protein domains, or gene ontology terms. These annotations and local BLAST allowed identify genes specifically associated with mechanisms of drought avoidance. Finally, 14,202 microsatellite markers and 18,425 single nucleotide polymorphisms (SNPs) were, in silico, discovered in assembled and annotated sequences. We completed a successful global analysis of the Q. pubescens leaf transcriptome using RNA-seq. The assembled and annotated sequences together with newly discovered molecular markers provide genomic information for functional genomic studies in Q. pubescens, with special emphasis to response mechanisms to severe constrain of the Mediterranean climate. Our tools enable comparative genomics studies on other Quercus species taking advantage of large intra-specific ecophysiological differences.
Collapse
Affiliation(s)
- Sara Torre
- Institute for Plant Protection, Department of Biology, Agricultural and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Massimiliano Tattini
- Institute for Plant Protection, Department of Biology, Agricultural and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Cecilia Brunetti
- Institute for Plant Protection, Department of Biology, Agricultural and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino, Italy
- Department of Agri-Food and Environmental Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Silvia Fineschi
- Institute for Plant Protection, Department of Biology, Agricultural and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Alessio Fini
- Department of Agri-Food and Environmental Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Ferrini
- Department of Agri-Food and Environmental Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Federico Sebastiani
- Institute for Biosciences and BioResources, Department of Biology, Agricultural and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino, Italy
- * E-mail:
| |
Collapse
|
18
|
Coleto I, Pineda M, Rodiño AP, De Ron AM, Alamillo JM. Comparison of inhibition of N2 fixation and ureide accumulation under water deficit in four common bean genotypes of contrasting drought tolerance. ANNALS OF BOTANY 2014; 113:1071-82. [PMID: 24638821 PMCID: PMC3997645 DOI: 10.1093/aob/mcu029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/12/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Drought is the principal constraint on world production of legume crops. There is considerable variability among genotypes in sensitivity of nitrogen fixation to drought, which has been related to accumulation of ureides in soybean. The aim of this study was to search for genotypic differences in drought sensitivity and ureide accumulation in common bean (Phaseolus vulgaris) germplasm that may be useful in the improvement of tolerance to water deficit in common bean. METHODS Changes in response to water deficit of nitrogen fixation rates, ureide content and the expression and activity of key enzymes for ureide metabolism were measured in four P. vulgaris genotypes differing in drought tolerance. KEY RESULTS A variable degree of drought-induced nitrogen fixation inhibition was found among the bean genotypes. In addition to inhibition of nitrogen fixation, there was accumulation of ureides in stems and leaves of sensitive and tolerant genotypes, although this was higher in the leaves of the most sensitive ones. In contrast, there was no accumulation of ureides in the nodules or roots of stressed plants. In addition, the level of ureides in the most sensitive genotype increased after inhibition of nitrogen fixation, suggesting that ureides originate in vegetative tissues as a response to water stress, probably mediated by the induction of allantoinase. CONCLUSIONS Variability of drought-induced inhibition of nitrogen fixation among the P. vulgaris genotypes was accompanied by subsequent accumulation of ureides in stems and leaves, but not in nodules. The results indicate that shoot ureide accumulation after prolonged exposure to drought could not be the cause of inhibition of nitrogen fixation, as has been suggested in soybean. Instead, ureides seem to be produced as part of a general response to stress, and therefore higher accumulation might correspond to higher sensitivity to the stressful conditions.
Collapse
Affiliation(s)
- I. Coleto
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas del Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus Rabanales, Edif. Severo Ochoa, 1 planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - M. Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas del Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus Rabanales, Edif. Severo Ochoa, 1 planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - A. P. Rodiño
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC, El Palacio-Salcedo, 36143 Pontevedra, Spain
| | - A. M. De Ron
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC, El Palacio-Salcedo, 36143 Pontevedra, Spain
| | - J. M. Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas del Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus Rabanales, Edif. Severo Ochoa, 1 planta, Universidad de Córdoba, 14071 Córdoba, Spain
- For correspondence. E-mail
| |
Collapse
|
19
|
Ramírez M, Guillén G, Fuentes SI, Iñiguez LP, Aparicio-Fabre R, Zamorano-Sánchez D, Encarnación-Guevara S, Panzeri D, Castiglioni B, Cremonesi P, Strozzi F, Stella A, Girard L, Sparvoli F, Hernández G. Transcript profiling of common bean nodules subjected to oxidative stress. PHYSIOLOGIA PLANTARUM 2013; 149:389-407. [PMID: 23432573 DOI: 10.1111/ppl.12040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 06/01/2023]
Abstract
Several environmental stresses generate high amounts of reactive oxygen species (ROS) in plant cells, resulting in oxidative stress. Symbiotic nitrogen fixation (SNF) in the legume-rhizobia symbiosis is sensitive to damage from oxidative stress. Active nodules of the common bean (Phaseolus vulgaris) exposed to the herbicide paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride hydrate), which stimulates ROS accumulation, exhibited reduced nitrogenase activity and ureide content. We analyzed the global gene response of nodules subjected to oxidative stress using the Bean Custom Array 90K, which includes probes from 30,000 expressed sequence tags (ESTs). A total of 4280 ESTs were differentially expressed in stressed bean nodules; of these, 2218 were repressed. Based on Gene Ontology analysis, these genes were grouped into 42 different biological process categories. Analysis with the PathExpress bioinformatic tool, adapted for bean, identified five significantly repressed metabolic pathways related to carbon/nitrogen metabolism, which is crucial for nodule function. Quantitative reverse transcription (qRT)-PCR analysis of transcription factor (TF) gene expression showed that 67 TF genes were differentially expressed in nodules exposed to oxidative stress. Putative cis-elements recognized by highly responsive TF were detected in promoter regions of oxidative stress regulated genes. The expression of oxidative stress responsive genes and of genes important for SNF in bacteroids analyzed in stressed nodules revealed that these conditions elicited a transcriptional response.
Collapse
Affiliation(s)
- Mario Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Cuernavaca, Mor. 62209, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Torales SL, Rivarola M, Pomponio MF, Gonzalez S, Acuña CV, Fernández P, Lauenstein DL, Verga AR, Hopp HE, Paniego NB, Poltri SNM. De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species Prosopis alba. BMC Genomics 2013; 14:705. [PMID: 24125525 PMCID: PMC4008253 DOI: 10.1186/1471-2164-14-705] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/07/2013] [Indexed: 11/10/2022] Open
Abstract
Background Prosopis alba (Fabaceae) is an important native tree adapted to arid and semiarid regions of north-western Argentina which is of great value as multipurpose species. Despite its importance, the genomic resources currently available for the entire Prosopis genus are still limited. Here we describe the development of a leaf transcriptome and the identification of new molecular markers that could support functional genetic studies in natural and domesticated populations of this genus. Results Next generation DNA pyrosequencing technology applied to P. alba transcripts produced a total of 1,103,231 raw reads with an average length of 421 bp. De novo assembling generated a set of 15,814 isotigs and 71,101 non-assembled sequences (singletons) with an average of 991 bp and 288 bp respectively. A total of 39,000 unique singletons were identified after clustering natural and artificial duplicates from pyrosequencing reads. Regarding the non-redundant sequences or unigenes, 22,095 out of 54,814 were successfully annotated with Gene Ontology terms. Moreover, simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 5,992 and 6,236 markers, respectively, throughout the genome. For the validation of the the predicted SSR markers, a subset of 87 SSRs selected through functional annotation evidence was successfully amplified from six DNA samples of seedlings. From this analysis, 11 of these 87 SSRs were identified as polymorphic. Additionally, another set of 123 nuclear polymorphic SSRs were determined in silico, of which 50% have the probability of being effectively polymorphic. Conclusions This study generated a successful global analysis of the P. alba leaf transcriptome after bioinformatic and wet laboratory validations of RNA-Seq data. The limited set of molecular markers currently available will be significantly increased with the thousands of new markers that were identified in this study. This information will strongly contribute to genomics resources for P. alba functional analysis and genetics. Finally, it will also potentially contribute to the development of population-based genome studies in the genera.
Collapse
Affiliation(s)
- Susana L Torales
- Instituto de Recursos Biológicos, IRB, Instituto Nacional de Tecnología Agropecuaria (INTA Castelar), CC 25, Castelar B1712WAA, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shin I, Percudani R, Rhee S. Structural and functional insights into (S)-ureidoglycine aminohydrolase, key enzyme of purine catabolism in Arabidopsis thaliana. J Biol Chem 2012; 287:18796-805. [PMID: 22493446 DOI: 10.1074/jbc.m111.331819] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ureide pathway has recently been identified as the metabolic route of purine catabolism in plants and some bacteria. In this pathway, uric acid, which is a major product of the early stage of purine catabolism, is degraded into glyoxylate and ammonia via stepwise reactions of seven different enzymes. Therefore, the pathway has a possible physiological role in mobilization of purine ring nitrogen for further assimilation. (S)-Ureidoglycine aminohydrolase enzyme converts (S)-ureidoglycine into (S)-ureidoglycolate and ammonia, providing the final substrate to the pathway. Here, we report a structural and functional analysis of this enzyme from Arabidopsis thaliana (AtUGlyAH). The crystal structure of AtUGlyAH in the ligand-free form shows a monomer structure in the bicupin fold of the β-barrel and an octameric functional unit as well as a Mn(2+) ion binding site. The structure of AtUGlyAH in complex with (S)-ureidoglycine revealed that the Mn(2+) ion acts as a molecular anchor to bind (S)-ureidoglycine, and its binding mode dictates the enantioselectivity of the reaction. Further kinetic analysis characterized the functional roles of the active site residues, including the Mn(2+) ion binding site and residues in the vicinity of (S)-ureidoglycine. These analyses provide molecular insights into the structure of the enzyme and its possible catalytic mechanism.
Collapse
Affiliation(s)
- Inchul Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
22
|
El-Bakatoushi R. Identification and characterization of up-regulated genes in the halophyte Limoniastrum monopetalum (L.) Boiss grown under crude oil pollution. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2011. [DOI: 10.1016/j.jgeb.2011.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Cornelius S, Witz S, Rolletschek H, Möhlmann T. Pyrimidine degradation influences germination seedling growth and production of Arabidopsis seeds. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5623-32. [PMID: 21865177 PMCID: PMC3223058 DOI: 10.1093/jxb/err251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/30/2011] [Accepted: 07/18/2011] [Indexed: 05/20/2023]
Abstract
PYD1 (dihydropyrimidine dehydogenase) initiates the degradation of pyrimidine nucleobases and is located in plastids. In this study, a physiological analysis of PYD1 employing T-DNA knockout mutants and overexpressors was carried out. PYD1 knockout mutants were restricted in degradation of exogenously provided uracil and accumulated high uracil levels in plant organs throughout development, especially in dry seeds. Moreover, PYD1 knockout mutants showed delayed germination which was accompanied by low invertase activity and decreased monosaccharide levels. Abscisic acid (ABA) is an important regulator of seed germination, and ABA-responsive genes were deregulated in PYD1 knockout mutants. Together with an observed increased PYD1 expression in wild-type seedlings upon ABA treatment, an interference of PYD1 with ABA signalling can be assumed. Constitutive PYD1 overexpression mutants showed increased growth and higher seed number compared with wild-type and knockout mutant plants. During senescence PYD1 expression increased to allow uracil catabolism. From this it is concluded that early in development and during seed production PYD1 is needed to balance pyrimidine catabolism versus salvage.
Collapse
Affiliation(s)
- Stefanie Cornelius
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| | - Sandra Witz
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| | - Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Technische Universität Kaiserslautern, Corrensstraße 3, D-06466 Gatersleben, Germany
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| |
Collapse
|
24
|
Alamillo JM, Díaz-Leal JL, Sánchez-Moran MV, Pineda M. Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L. PLANT, CELL & ENVIRONMENT 2010; 33:1828-37. [PMID: 20545885 DOI: 10.1111/j.1365-3040.2010.02187.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Under water deficit, ureidic legumes accumulate ureides in plant tissues, and this accumulation has been correlated with the inhibition of nitrogen fixation. In this work we used a molecular approach to characterize ureide accumulation under drought stress in Phaseolus vulgaris. Accumulation of ureides, mainly allantoate, was found in roots, shoots and leaves, but only a limited transient increase was observed in nodules from drought-stressed plants. We show that ureide accumulation is regulated at the transcriptional level mainly through induction of allantoinase (ALN), whereas allantoate amidohydrolase (AAH), involved in allantoate degradation, was slightly reduced, indicating that inhibition of this enzyme, key in ureide breakdown in aerial tissues, is not the main cause of allantoate accumulation. Expression of the ureide metabolism genes analysed in this study was induced by abscisic acid (ABA), suggesting the involvement of this plant hormone in ureide accumulation. Moreover, we observed that increases of ureide levels in P. vulgaris drought-stressed tissues were similar in non-nodulated, nitrate-fed plants, and in plants cultured under nitrogen-fixation conditions. Our results indicate that ureide accumulation in response to water deficit is independent from de novo synthesis of ureides in nodules, and therefore uncoupled from nitrogen fixation.
Collapse
Affiliation(s)
- Josefa M Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1(a) Planta, Universidad de Córdoba, 14071-Córdoba, Spain
| | | | | | | |
Collapse
|
25
|
Möhlmann T, Bernard C, Hach S, Ekkehard Neuhaus H. Nucleoside transport and associated metabolism. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:26-34. [PMID: 20712618 DOI: 10.1111/j.1438-8677.2010.00351.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nucleosides are intermediates of nucleotide metabolism. Nucleotide de novo synthesis generates the nucleoside monophosphates AMP and UMP, which are further processed to all purine and pyrimidine nucleotides involved in multiple cellular reactions, including the synthesis of nucleic acids. Catabolism of these substances results in the formation of nucleosides, which are further degraded by nucleoside hydrolase to nucleobases. Both nucleosides and nucleobases can be exchanged between cells and tissues through multiple isoforms of corresponding transport proteins. After uptake into a cell, nucleosides and nucleobases can undergo salvage reactions or catabolism. Whereas energy is preserved by salvage pathway reactions, catabolism liberates ammonia, which is then incorporated into amino acids. Keeping the balance between nitrogen consumption during nucleotide de novo synthesis and ammonia liberation by nucleotide catabolism is essential for correct plant development. Senescence and seed germination represent situations in plant development where marked fluctuations in nucleotide pools occur. Furthermore, extracellular nucleotide metabolism has become an immensely interesting research topic. In addition, selected aspects of nucleoside transport in yeast, protists and humans are discussed.
Collapse
Affiliation(s)
- T Möhlmann
- Abteilung Pflanzenphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
26
|
Zhang Z, Caradoc-Davies TT, Dickson JM, Baker EN, Squire CJ. Structures of Glycinamide Ribonucleotide Transformylase (PurN) from Mycobacterium tuberculosis Reveal a Novel Dimer with Relevance to Drug Discovery. J Mol Biol 2009; 389:722-33. [DOI: 10.1016/j.jmb.2009.04.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 11/29/2022]
|
27
|
Jung B, Flörchinger M, Kunz HH, Traub M, Wartenberg R, Jeblick W, Neuhaus HE, Möhlmann T. Uridine-ribohydrolase is a key regulator in the uridine degradation pathway of Arabidopsis. THE PLANT CELL 2009; 21:876-91. [PMID: 19293370 PMCID: PMC2671717 DOI: 10.1105/tpc.108.062612] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 02/03/2009] [Accepted: 03/03/2009] [Indexed: 05/17/2023]
Abstract
Nucleoside degradation and salvage are important metabolic pathways but hardly understood in plants. Recent work on human pathogenic protozoans like Leishmania and Trypanosoma substantiates an essential function of nucleosidase activity. Plant nucleosidases are related to those from protozoans and connect the pathways of nucleoside degradation and salvage. Here, we describe the cloning of such an enzyme from Arabidopsis thaliana, Uridine-Ribohydrolase 1 (URH1) and the characterization by complementation of a yeast mutant. Furthermore, URH1 was synthesized as a recombinant protein in Escherichia coli. The pure recombinant protein exhibited highest hydrolase activity for uridine, followed by inosine and adenosine, the corresponding K(m) values were 0.8, 1.4, and 0.7 mM, respectively. In addition, URH1 was able to cleave the cytokinin derivative isopentenyladenine-riboside. Promoter beta-glucuronidase fusion studies revealed that URH1 is mainly transcribed in the vascular cells of roots and in root tips, guard cells, and pollen. Mutants expressing the Arabidopsis enzyme or the homolog from rice (Oryza sativa) exhibit resistance toward toxic fluorouridine, fluorouracil, and fluoroorotic acid, providing clear evidence for a pivotal function of URH1 as regulative in pyrimidine degradation. Moreover, mutants with increased and decreased nucleosidase activity are delayed in germination, indicating that this enzyme activity must be well balanced in the early phase of plant development.
Collapse
Affiliation(s)
- Benjamin Jung
- Abteilung Pflanzenphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Collakova E, Goyer A, Naponelli V, Krassovskaya I, Gregory JF, Hanson AD, Shachar-Hill Y. Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration. THE PLANT CELL 2008; 20:1818-32. [PMID: 18628352 PMCID: PMC2518232 DOI: 10.1105/tpc.108.058701] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 05/16/2008] [Accepted: 06/27/2008] [Indexed: 05/03/2023]
Abstract
In prokaryotes, PurU (10-formyl tetrahydrofolate [THF] deformylase) metabolizes 10-formyl THF to formate and THF for purine and Gly biosyntheses. The Arabidopsis thaliana genome contains two putative purU genes, At4g17360 and At5g47435. Knocking out these genes simultaneously results in plants that are smaller and paler than the wild type. These double knockout (dKO) mutant plants show a 70-fold increase in Gly levels and accumulate elevated levels of 5- and 10-formyl THF. Embryo development in dKO mutants arrests between heart and early bent cotyledon stages. Mature seeds are shriveled, accumulate low amounts of lipids, and fail to germinate. However, the dKO mutant is only conditionally lethal and is rescued by growth under nonphotorespiratory conditions. In addition, culturing dKO siliques in the presence of sucrose restores normal embryo development and seed viability, suggesting that the seed and embryo development phenotypes are a result of a maternal effect. Our findings are consistent with the involvement of At4g17360 and At5g47435 proteins in photorespiration, which is to prevent excessive accumulation of 5-formyl THF, a potent inhibitor of the Gly decarboxylase/Ser hydroxymethyltransferase complex. Supporting this role, deletion of the At2g38660 gene that encodes the bifunctional 5,10-methylene THF dehydrogenase/5,10-methenyl THF cyclohydrolase that acts upstream of 5-formyl THF formation restored the wild-type phenotype in dKO plants.
Collapse
Affiliation(s)
- Eva Collakova
- Plant Biology Department, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Lange PR, Geserick C, Tischendorf G, Zrenner R. Functions of chloroplastic adenylate kinases in Arabidopsis. PLANT PHYSIOLOGY 2008; 146:492-504. [PMID: 18162585 PMCID: PMC2245825 DOI: 10.1104/pp.107.114702] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/21/2007] [Indexed: 05/02/2023]
Abstract
Adenosine monophosphate kinase (AMK; adenylate kinase) catalyses the reversible formation of ADP by the transfer of one phosphate group from ATP to AMP, thus equilibrating adenylates. The Arabidopsis (Arabidopsis thaliana) genome contains 10 genes with an adenylate/cytidylate kinase signature; seven of these are identified as putative adenylate kinases. Encoded proteins of at least two members of this Arabidopsis adenylate kinase gene family are targeted to plastids. However, when the individual genes are disrupted, the phenotypes of both mutants are strikingly different. Although absence of AMK2 causes only 30% reduction of total adenylate kinase activity in leaves, there is loss of chloroplast integrity leading to small, pale-looking plantlets from embryo to seedling development. In contrast, no phenotype for disruption of the second plastid adenylate kinase was found. From this analysis, we conclude that AMK2 is the major activity for equilibration of adenylates and de novo synthesis of ADP in the plastid stroma.
Collapse
Affiliation(s)
- Peter Robert Lange
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | | | | | | |
Collapse
|
30
|
Bylesjö M, Eriksson D, Kusano M, Moritz T, Trygg J. Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1181-91. [PMID: 17931352 DOI: 10.1111/j.1365-313x.2007.03293.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The technological advances in the instrumentation employed in life sciences have enabled the collection of a virtually unlimited quantity of data from multiple sources. By gathering data from several analytical platforms, with the aim of parallel monitoring of, e.g. transcriptomic, metabolomic or proteomic events, one hopes to answer and understand biological questions and observations. This 'systems biology' approach typically involves advanced statistics to facilitate the interpretation of the data. In the present study, we demonstrate that the O2PLS multivariate regression method can be used for combining 'omics' types of data. With this methodology, systematic variation that overlaps across analytical platforms can be separated from platform-specific systematic variation. A study of Populus tremula x Populus tremuloides, investigating short-day-induced effects at transcript and metabolite levels, is employed to demonstrate the benefits of the methodology. We show how the models can be validated and interpreted to identify biologically relevant events, and discuss the results in relation to a pairwise univariate correlation approach and principal component analysis.
Collapse
Affiliation(s)
- Max Bylesjö
- Research group for Chemometrics, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
31
|
Rébeillé F, Ravanel S, Marquet A, Mendel RR, Webb ME, Smith AG, Warren MJ. Roles of vitamins B5, B8, B9, B12 and molybdenum cofactor at cellular and organismal levels. Nat Prod Rep 2007; 24:949-62. [PMID: 17898891 DOI: 10.1039/b703104c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many efforts have been made in recent decades to understand how coenzymes, including vitamins, are synthesised in organisms. In the present review, we describe the most recent findings about the biological roles of five coenzymes: folate (vitamin B9), pantothenate (vitamin B5), cobalamin (vitamin B12), biotin (vitamin B8) and molybdenum cofactor (Moco). In the first part, we will emphasise their biological functions, including the specific roles found in some organisms. In the second part we will present some nutritional aspects and potential strategies to enhance the cofactor contents in organisms of interest.
Collapse
Affiliation(s)
- Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, UMR5168, Université Joseph Fourier-CNRS-CEA-INRA, Institut de Recherche en Technologies et Sciences du Vivant, CEA-Grenoble, Grenoble, Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Walsh TA, Bauer T, Neal R, Merlo AO, Schmitzer PR, Hicks GR, Honma M, Matsumura W, Wolff K, Davies JP. Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:1292-304. [PMID: 17616508 PMCID: PMC1914136 DOI: 10.1104/pp.107.099705] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 05/19/2007] [Indexed: 05/16/2023]
Abstract
A novel phenyltriazole acetic acid compound (DAS734) produced bleaching of new growth on a variety of dicotyledonous weeds and was a potent inhibitor of Arabidopsis (Arabidopsis thaliana) seedling growth. The phytotoxic effects of DAS734 on Arabidopsis were completely alleviated by addition of adenine to the growth media. A screen of ethylmethanesulfonate-mutagenized Arabidopsis seedlings recovered seven lines with resistance levels to DAS734 ranging from 5- to 125-fold. Genetic tests determined that all the resistance mutations were dominant and allelic. One mutation was mapped to an interval on chromosome 4 containing At4g34740, which encodes an isoform of glutamine phosphoribosylamidotransferase (AtGPRAT2), the first enzyme of the purine biosynthetic pathway. Sequencing of At4g34740 from the resistant lines showed that all seven contained mutations producing changes in the encoded polypeptide sequence. Two lines with the highest level of resistance (125-fold) contained the mutation R264K. The wild-type and mutant AtGPRAT2 enzymes were cloned and functionally overexpressed in Escherichia coli. Assays of the recombinant enzyme showed that DAS734 was a potent, slow-binding inhibitor of the wild-type enzyme (I(50) approximately 0.2 microm), whereas the mutant enzyme R264K was not significantly inhibited by 200 microm DAS734. Another GPRAT isoform in Arabidopsis, AtGPRAT3, was also inhibited by DAS734. This combination of chemical, genetic, and biochemical evidence indicates that the phytotoxicity of DAS734 arises from direct inhibition of GPRAT and establishes its utility as a new and specific chemical genetic probe of plant purine biosynthesis. The effects of this novel GPRAT inhibitor are compared to the phenotypes of known AtGPRAT genetic mutants.
Collapse
Affiliation(s)
- Terence A Walsh
- Dow AgroSciences, Discovery Research, Indianapolis, IN 46268, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Martin T, Ludewig F. Transporters in starch synthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:474-479. [PMID: 32689376 DOI: 10.1071/fp06280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 01/12/2007] [Indexed: 06/11/2023]
Abstract
Starch is synthesised and stored in plastids. In autotrophic tissues, the carbon skeletons and energy required for starch synthesis are directly available from photosynthesis. However, plastids of heterotrophic tissues require the metabolites for starch synthesis to be imported. Depending on plant species and tissue type, import is facilitated by several different plastid inner envelope metabolite transporters. Commonly, glucose-6-phosphate/phosphate translocators and adenylate translocators are used, but in the cereal endosperm, the role is carried out by ADP glucose transporters (Brittle1, BT1). This review predominantly focuses on transporters of the plastid inner envelope membrane. Their roles are discussed within an overview of starch synthesis. We also examine additional functions of these transporters according to our current knowledge.
Collapse
Affiliation(s)
- Thomas Martin
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Frank Ludewig
- Botanical Institute, University of Cologne, Gyrhofstr. 15, 50931 Cologne, Germany
| |
Collapse
|
34
|
Rébeillé F, Alban C, Bourguignon J, Ravanel S, Douce R. The role of plant mitochondria in the biosynthesis of coenzymes. PHOTOSYNTHESIS RESEARCH 2007; 92:149-62. [PMID: 17464574 DOI: 10.1007/s11120-007-9167-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 04/05/2007] [Indexed: 05/15/2023]
Abstract
This last decade, many efforts were undertaken to understand how coenzymes, including vitamins, are synthesized in plants. Surprisingly, these metabolic pathways were often "quartered" between different compartments of the plant cell. Among these compartments, mitochondria often appear to have a key role, catalyzing one or several steps in these pathways. In the present review we will illustrate these new and important biosynthetic functions found in plant mitochondria by describing the most recent findings about the synthesis of two vitamins (folate and biotin) and one non-vitamin coenzyme (lipoate). The complexity of these metabolic routes raise intriguing questions, such as how the intermediate metabolites and the end-product coenzymes are exchanged between the various cellular territories, or what are the physiological reasons, if any, for such compartmentalization.
Collapse
Affiliation(s)
- Fabrice Rébeillé
- Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168 CEA/CNRS/INRA/Université Joseph Fourier Grenoble, CEA-Grenoble, 17 rue des Martyrs, Grenoble Cedex 9, 38054, France,
| | | | | | | | | |
Collapse
|
35
|
Katahira R, Ashihara H. Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. PLANTA 2006; 225:115-26. [PMID: 16845529 DOI: 10.1007/s00425-006-0334-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 05/25/2006] [Indexed: 05/10/2023]
Abstract
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [(14)C]formate, [2-(14)C]glycine and [2-(14)C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP --> IMP --> inosine --> hypoxanthine --> xanthine and GMP --> guanosine --> xanthosine --> xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.
Collapse
Affiliation(s)
- Riko Katahira
- Department of Advanced Bioscience, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan
| | | |
Collapse
|
36
|
Jung DK, Lee Y, Park SG, Park BC, Kim GH, Rhee S. Structural and functional analysis of PucM, a hydrolase in the ureide pathway and a member of the transthyretin-related protein family. Proc Natl Acad Sci U S A 2006; 103:9790-5. [PMID: 16782815 PMCID: PMC1502532 DOI: 10.1073/pnas.0600523103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Indexed: 11/18/2022] Open
Abstract
The ureide pathway, which produces ureides from uric acid, is an essential purine catabolic process for storing and transporting the nitrogen fixed in leguminous plants and some bacteria. PucM from Bacillus subtilis was recently characterized and found to catalyze the second reaction of the pathway, hydrolyzing 5-hydroxyisourate (HIU), a product of uricase in the first step. PucM has 121 amino acid residues and shows high sequence similarity to the functionally unrelated protein transthyretin (TTR), a thyroid hormone-binding protein. Therefore, PucM belongs to the TTR-related proteins (TRP) family. The crystal structures of PucM at 2.0 A and its complexes with the substrate analogs 8-azaxanthine and 5,6-diaminouracil reveal that even with their overall structure similarity, homotetrameric PucM and TTR are completely different, both in their electrostatic potential and in the size of the active sites located at the dimeric interface. Nevertheless, the absolutely conserved residues across the TRP family, including His-14, Arg-49, His-105, and the C-terminal Tyr-118-Arg-119-Gly-120-Ser-121, indeed form the active site of PucM. Based on the results of site-directed mutagenesis of these residues, we propose a possible mechanism for HIU hydrolysis. The PucM structure determined for the TRP family leads to the conclusion that diverse members of the TRP family would function similarly to PucM as HIU hydrolase.
Collapse
Affiliation(s)
- Du-Kyo Jung
- *School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Korea
| | - Youra Lee
- Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Korea; and
| | - Sung Goo Park
- Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Korea; and
| | - Byoung Chul Park
- Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Korea; and
| | | | - Sangkee Rhee
- *School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
37
|
Zrenner R, Stitt M, Sonnewald U, Boldt R. Pyrimidine and purine biosynthesis and degradation in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:805-36. [PMID: 16669783 DOI: 10.1146/annurev.arplant.57.032905.105421] [Citation(s) in RCA: 381] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nucleotide metabolism operates in all living organisms, embodies an evolutionarily ancient and indispensable complex of metabolic pathways and is of utmost importance for plant metabolism and development. In plants, nucleotides can be synthesized de novo from 5-phosphoribosyl-1-pyrophosphate and simple molecules (e.g., CO(2), amino acids, and tetrahydrofolate), or be derived from preformed nucleosides and nucleobases via salvage reactions. Nucleotides are degraded to simple metabolites, and this process permits the recycling of phosphate, nitrogen, and carbon into central metabolic pools. Despite extensive biochemical knowledge about purine and pyrimidine metabolism, comprehensive studies of the regulation of this metabolism in plants are only starting to emerge. Here we review progress in molecular aspects and recent studies on the regulation and manipulation of nucleotide metabolism in plants.
Collapse
Affiliation(s)
- Rita Zrenner
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam OT Golm, Germany.
| | | | | | | |
Collapse
|
38
|
Balmer Y, Vensel WH, DuPont FM, Buchanan BB, Hurkman WJ. Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1591-602. [PMID: 16595579 DOI: 10.1093/jxb/erj156] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
By contrast to chloroplasts, our knowledge of amyloplasts--organelles that synthesize and store starch in heterotrophic plant tissues--is in a formative stage. While our understanding of what is considered their primary function, i.e. the biosynthesis and degradation of starch, has increased dramatically in recent years, relatively little is known about other biochemical processes taking place in these organelles. To help fill this gap, a proteomic analysis of amyloplasts isolated from the starchy endosperm of wheat seeds (10 d post-anthesis) has been conducted. The study has led to the identification of 289 proteins that function in a range of processes, including carbohydrate metabolism, cytoskeleton/plastid division, energetics, nitrogen and sulphur metabolism, nucleic acid-related reactions, synthesis of various building blocks, protein-related reactions, transport, signalling, stress, and a variety of other activities grouped under 'miscellaneous'. The function of 12% of the proteins was unknown. The results highlight the role of the amyloplast as a starch-storing organelle that fulfills a spectrum of biosynthetic needs of the parent tissue. When compared with a recent proteomic analysis of whole endosperm, the current study demonstrates the advantage of using isolated organelles in proteomic studies.
Collapse
Affiliation(s)
- Yves Balmer
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
39
|
El Bassiou HM, . MEG, . AAR. Effect of Antioxidants on Growth, Yield and Favism Causative Agents in Seeds of Vicia faba L. Plants Grown under Reclaimed Sandy Soil. ACTA ACUST UNITED AC 2005. [DOI: 10.3923/ja.2005.281.287] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Schröder M, Giermann N, Zrenner R. Functional analysis of the pyrimidine de novo synthesis pathway in solanaceous species. PLANT PHYSIOLOGY 2005; 138:1926-38. [PMID: 16024685 PMCID: PMC1183384 DOI: 10.1104/pp.105.063693] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/14/2005] [Accepted: 05/16/2005] [Indexed: 05/03/2023]
Abstract
Pyrimidines are particularly important in dividing tissues as building blocks for nucleic acids, but they are equally important for many biochemical processes, including sucrose and cell wall polysaccharide metabolism. In recent years, the molecular organization of nucleotide biosynthesis in plants has been analyzed. Here, we present a functional analysis of the pyrimidine de novo synthesis pathway. Each step in the pathway was investigated using transgenic plants with reduced expression of the corresponding gene to identify controlling steps and gain insights into the phenotypic and metabolic consequences. Inhibition of expression of 80% based on steady-state mRNA level did not lead to visible phenotypes. Stepwise reduction of protein abundance of Asp transcarbamoylase or dihydro orotase resulted in a corresponding inhibition of growth. This was not accompanied by pleiotropic effects or by changes in the developmental program. A more detailed metabolite analysis revealed slightly different responses in roots and shoots of plants with decreased abundance of proteins involved in pyrimidine de novo synthesis. Whereas in leaves the nucleotide and amino acid levels were changed only in the very strong inhibited plants, the roots show a transient increase of these metabolites in intermediate plants followed by a decrease in the strong inhibited plants. Growth analysis revealed that elongation rates and number of organs per plant were reduced, without large changes in the average cell size. It is concluded that reduced pyrimidine de novo synthesis is compensated for by reduction in growth rates, and the remaining nucleotide pools are sufficient for running basic metabolic processes.
Collapse
Affiliation(s)
- Michael Schröder
- Botanisches Institut, Im Neuenheimer Feld 360, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
41
|
Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC. Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. THE PLANT CELL 2005; 17:2089-106. [PMID: 15923352 PMCID: PMC1167554 DOI: 10.1105/tpc.104.030577] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 04/07/2005] [Accepted: 04/08/2005] [Indexed: 05/02/2023]
Abstract
Plants that hyperaccumulate Ni exhibit an exceptional degree of Ni tolerance and the ability to translocate Ni in large amounts from root to shoot. In hyperaccumulator plants in the genus Alyssum, free His is an important Ni binding ligand that increases in the xylem proportionately to root Ni uptake. To determine the molecular basis of the His response and its contribution to Ni tolerance, transcripts representing seven of the eight enzymes involved in His biosynthesis were investigated in the hyperaccumulator species Alyssum lesbiacum by RNA gel blot analysis. None of the transcripts changed in abundance in either root or shoot tissue when plants were exposed to Ni, but transcript levels were constitutively higher in A. lesbiacum than in the congeneric nonaccumulator A. montanum, especially for the first enzyme in the biosynthetic pathway, ATP-phosphoribosyltransferase (ATP-PRT). Comparison with the weak hyperaccumulator A. serpyllifolium revealed a close correlation between Ni tolerance, root His concentration, and ATP-PRT transcript abundance. Overexpression of an A. lesbiacum ATP-PRT cDNA in transgenic Arabidopsis thaliana increased the pool of free His up to 15-fold in shoot tissue, without affecting the concentration of any other amino acid. His-overproducing lines also displayed elevated tolerance to Ni but did not exhibit increased Ni concentrations in either xylem sap or shoot tissue, suggesting that additional factors are necessary to recapitulate the complete hyperaccumulator phenotype. These results suggest that ATP-PRT expression plays a major role in regulating the pool of free His and contributes to the exceptional Ni tolerance of hyperaccumulator Alyssum species.
Collapse
Affiliation(s)
- Robert A Ingle
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Tuytten R, Lemière F, Van Dongen W, Slegers H, Newton RP, Esmans EL. Investigation of the use of immobilised metal affinity chromatography for the on-line sample clean up and pre-concentration of nucleotides prior to their determination by ion pair liquid chromatography-electrospray mass spectrometry: a pilot study. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 809:189-98. [PMID: 15315764 DOI: 10.1016/j.jchromb.2004.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 06/01/2004] [Accepted: 06/07/2004] [Indexed: 11/19/2022]
Abstract
This study explored an alternative way to enrich and pre-purify biological samples containing nucleoside mono-, di- and triphosphates. These compounds were trapped by immobilised metal affinity chromatography (IMAC) on a Poros 20 MC IMAC-column, which was conditioned with Fe3+. The IMAC-column was implemented in a column switching set-up separating nucleoside mono-, di- and triphosphates on a Hypersil ODS 35 mm x 0.3 mm capillary column hyphenated to electrospray mass spectrometry resulting in the first miniaturised column switching liquid chromatography-mass spectrometry (LC-MS) system for nucleotides.
Collapse
Affiliation(s)
- Robin Tuytten
- The Nucleoside Research and Mass Spectrometry Unit, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Leroch M, Kirchberger S, Haferkamp I, Wahl M, Neuhaus HE, Tjaden J. Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum. J Biol Chem 2005; 280:17992-8000. [PMID: 15737999 DOI: 10.1074/jbc.m412462200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologs of BT1 (the Brittle1 protein) are found to be phylogenetically related to the mitochondrial carrier family and appear to occur in both mono- and dicotyledonous plants. Whereas BT1 from cereals is probably involved in the transport of ADP-glucose, which is essential for starch metabolism in endosperm plastids, BT1 from a noncereal plant, Solanum tuberosum (StBT1), catalyzes an adenine nucleotide uniport when functionally integrated into the bacterial cytoplasmic membrane. Import studies into intact Escherichia coli cells harboring StBT1 revealed a narrow substrate spectrum with similar affinities for AMP, ADP, and ATP of about 300-400 mum. Transiently expressed StBT1-green fluorescent protein fusion protein in tobacco leaf protoplasts showed a plastidic localization of the StBT1. In vitro synthesized radioactively labeled StBT1 was targeted to the envelope membranes of isolated spinach chloroplasts. Furthermore, we showed by real time reverse transcription-PCR a ubiquitous expression pattern of the StBT1 in autotrophic and heterotrophic potato tissues. We therefore propose that StBT1 is a plastidic adenine nucleotide uniporter used to provide the cytosol and other compartments with adenine nucleotides exclusively synthesized inside plastids.
Collapse
Affiliation(s)
- Michaela Leroch
- Pflanzenphysiologie, Technische Universität Kaiserslautern, Erwin-Schroedinger-Strasse 22, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Wormit A, Traub M, FLöRCHINGER M, Neuhaus H, MöHLMANN T. Characterization of three novel members of the Arabidopsis thaliana equilibrative nucleoside transporter (ENT) family. Biochem J 2004; 383:19-26. [PMID: 15228386 PMCID: PMC1134039 DOI: 10.1042/bj20040389] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 06/29/2004] [Accepted: 06/30/2004] [Indexed: 11/17/2022]
Abstract
Research on metabolism of nucleotides and their derivatives has gained increasing interest in the recent past. This includes de novo synthesis, analysis of salvage pathways, breakdown and transport of nucleotides, nucleosides and nucleobases. To perform a further step towards the analysis of nucleoside transport in Arabidopsis, we incubated leaf discs with various radioactively labelled nucleosides. Leaf cells imported labelled nucleosides and incorporated these compounds into RNA, but not into DNA. Furthermore, we report on the biochemical properties of three so far uncharacterized members of the Arabidopsis ENT (equilibrative nucleoside transporter) family (AtENT4, AtENT6 and AtENT7). After heterologous expression in yeast, all three proteins exhibited broad substrate specificity and transported the purine nucleosides adenosine and guanosine, as well as the pyrimidine nucleosides cytidine and uridine. The apparent K(m) values were in the range 3-94 microM, and transport was inhibited most strongly by deoxynucleosides, and to a smaller extent by nucleobases. Typical inhibitors of mammalian ENT proteins, such as dilazep and NBMPR (nitrobenzylmercaptopurine ribonucleoside, also known as nitrobenzylthioinosine) surprisingly exerted almost no effect on Arabidopsis ENT proteins. Transport mediated by the AtENT isoforms differed in pH-dependency, e.g. AtENT7 was not affected by changes in pH, AtENT3, 4 and 6 exhibited a less pronounced pH-dependency, and AtENT1 activity was clearly pH-dependent. Using a GFP (green fluorescent protein)-fusion protein transiently expressed in tobacco leaf protoplasts, a localization of AtENT6 in the plant plasma membrane has been revealed.
Collapse
Affiliation(s)
- Alexandra Wormit
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Michaela Traub
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Martin FLöRCHINGER
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - H. Ekkehard Neuhaus
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Torsten MöHLMANN
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| |
Collapse
|
45
|
Hung WF, Chen LJ, Boldt R, Sun CW, Li HM. Characterization of Arabidopsis glutamine phosphoribosyl pyrophosphate amidotransferase-deficient mutants. PLANT PHYSIOLOGY 2004; 135:1314-23. [PMID: 15266056 PMCID: PMC519050 DOI: 10.1104/pp.104.040956] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Revised: 05/03/2004] [Accepted: 05/06/2004] [Indexed: 05/18/2023]
Abstract
Using a transgene-based screening, we previously isolated several Arabidopsis mutants defective in protein import into chloroplasts. Positional cloning of one of the loci, CIA1, revealed that CIA1 encodes Gln phosphoribosyl pyrophosphate amidotransferase 2 (ATase2), one of the three ATase isozymes responsible for the first committed step of de novo purine biosynthesis. The cia1 mutant had normal green cotyledons but small and albino/pale-green mosaic leaves. Adding AMP, but not cytokinin or NADH, to plant liquid cultures partially complemented the mutant phenotypes. Both ATase1 and ATase2 were localized to chloroplasts. Overexpression of ATase1 fully complemented the ATase2-deficient phenotypes. A T-DNA insertion knockout mutant of the ATase1 gene was also obtained. The mutant was indistinguishable from the wild type. A double mutant of cia1/ATase1-knockout had the same phenotype as cia1, suggesting at least partial gene redundancy between ATase1 and ATase2. Characterizations of the cia1 mutant revealed that mutant leaves had slightly smaller cell size but only half the cell number of wild-type leaves. This phenotype confirms the role of de novo purine biosynthesis in cell division. Chloroplasts isolated from the cia1 mutant imported proteins at an efficiency less than 50% that of wild-type chloroplasts. Adding ATP and GTP to isolated mutant chloroplasts could not restore the import efficiency. We conclude that de novo purine biosynthesis is not only important for cell division, but also for chloroplast biogenesis.
Collapse
Affiliation(s)
- Wei-Fon Hung
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | | | | | | | | |
Collapse
|