1
|
Kurtz ML, Orona NS, Lezón C, Defosse VC, Astort F, Maglione GA, Boyer PM, Tasat DR. Decreased immune response in undernourished rats after air pollution exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104400. [PMID: 38408716 DOI: 10.1016/j.etap.2024.104400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Children are highly vulnerable subpopulation to malnutrition and air pollution. We investigate, in a rat nutritional growth retardation (NGR) model, the impact of Residual Oil Fly Ash (ROFA) on the lung immune response using in vitro and ex vivo methods. In vitro: Alveolar macrophages (AM) were isolated from Control (C) and NGR animals, cultured and treated with ROFA (1-100 µg/ml) for 24 h. Ex vivo: C and NGR rats were intranasally instilled with ROFA (1 mg/kg BW) or PBS. 24 h post-exposure AM were isolated and cultured. ROFA-treatment increased superoxide anion production and TNFα secretion in C-AM in vitro, though for NGR-AM this response was lower. A similar pattern was observed for TNFα and IL-6 secretion in ex vivo experiments. Regarding the antioxidant response, although NGR-AM showed increased Nrf2, after ROFA instillation an attenuated activation was observed. To conclude, chronic undernutrition altered AM response to ROFA affecting immune responsiveness to air pollutants.
Collapse
Affiliation(s)
- Melisa Lidia Kurtz
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Nadia Soledad Orona
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christian Lezón
- Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica Cecilia Defosse
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Francisco Astort
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo Alberto Maglione
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina
| | - Patricia Mónica Boyer
- Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Deborah Ruth Tasat
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina; Cátedra de Histología y Embriología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Feng Y, Guo K, Jiang J, Lin S. Mesenchymal stem cell-derived exosomes as delivery vehicles for non-coding RNAs in lung diseases. Biomed Pharmacother 2024; 170:116008. [PMID: 38071800 DOI: 10.1016/j.biopha.2023.116008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
The burden of lung diseases is gradually increasing with an increase in the average human life expectancy. Therefore, it is necessary to identify effective methods to treat lung diseases and reduce their social burden. Currently, an increasing number of studies focus on the role of mesenchymal stem cell-derived exosomes (MSC-Exos) as a cell-free therapy in lung diseases. They show great potential for application to lung diseases as a more stable and safer option than traditional cell therapies. MSC-Exos are rich in various substances, including proteins, nucleic acids, and DNA. Delivery of Non-coding RNAs (ncRNAs) enables MSC-Exos to communicate with target cells. MSC-Exos significantly inhibit inflammatory factors, reduce oxidative stress, promote normal lung cell proliferation, and reduce apoptosis by delivering ncRNAs. Moreover, MSC-Exos carrying specific ncRNAs affect the proliferation, invasion, and migration of lung cancer cells, thereby playing a role in managing lung cancer. The detailed mechanisms of MSC-Exos in the clinical treatment of lung disease were explored by developing standardized culture, isolation, purification, and administration strategies. In summary, MSC-Exo-based delivery methods have important application prospects for treating lung diseases.
Collapse
Affiliation(s)
- Yuqian Feng
- Hangzhou School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310003, China
| | - Jing Jiang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
3
|
Hickman E, Rebuli ME, Robinette C, Jaspers I. Understanding the Relationship Between Neutrophil Function and Demographic Variables. RESEARCH SQUARE 2023:rs.3.rs-3622445. [PMID: 38045266 PMCID: PMC10690322 DOI: 10.21203/rs.3.rs-3622445/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Neutrophils play a crucial role in the body's defense against respiratory pathogens, and dysregulation is linked to airway diseases. The study presented here explores the association between demographic factors (age, BMI, and sex) and functional phenotypes (oxidative burst and bioenergetics) of neutrophils. We measured PMA-stimulated oxidative burst (Seahorse XF) and phagocytosis (pHrodo red S. aureus ) of human peripheral blood neutrophils and determined whether there were significant demographic associations with cellular function. There were no significant associations between neutrophil oxidative burst bioenergetic parameters or phagocytosis and BMI or age. However, our data revealed sexual dimorphism in neutrophil phagocytosis, with males exhibiting significantly higher phagocytic capacity than females. Additionally, phagocytic capacity and bioenergetic parameters were correlated in males but not in females. The study indicates potential variations in neutrophil activation pathways between males and female and emphasizes the importance of considering sex as a biological variable in respiratory host defense research.
Collapse
|
4
|
Zhang Y, Li Z, Hong W, Hsu S, Wang B, Zeng Z, Du S. STING-Dependent Sensing of Self-DNA Driving Pyroptosis Contributes to Radiation-Induced Lung Injury. Int J Radiat Oncol Biol Phys 2023; 117:928-941. [PMID: 37230431 DOI: 10.1016/j.ijrobp.2023.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE Radiation therapy (RT) is indispensable for managing thoracic carcinomas. However, its application is limited by radiation-induced lung injury (RILI), one of the most common and fatal complications of thoracic RT. Nonetheless, the exact molecular mechanisms of RILI remain poorly understood. METHODS AND MATERIALS To elucidate the underlying mechanisms, various knockout mouse strains were subjected to 16 Gy whole-thoracic RT. RILI was assessed by quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, histology, western blot, immunohistochemistry, and computed tomography examination. To perform further mechanistic studies on the signaling cascade during the RILI process, pulldown, chromatin immunoprecipitation assay, and rescue assays were conducted. RESULTS We found that the cGAS-STING pathway was significantly upregulated after irradiation exposure in both the mouse models and clinical lung tissues. Knocking down either cGAS or STING led to attenuated inflammation and fibrosis in mouse lung tissues. NLRP3 is hardwired to the upstream DNA-sensing cGAS-STING pathway to trigger of the inflammasome and amplification of the inflammatory response. STING deficiency suppressed the expressions of the NLRP3 inflammasome and pyroptosis-pertinent components containing IL-1β, IL-18, GSDMD-N, and cleaved caspase-1. Mechanistically, interferon regulatory factor 3, the essential transcription factor downstream of cGAS-STING, promoted the pyroptosis by transcriptionally activating NLRP3. Moreover, we found that RT triggered the release of self-dsDNA in the bronchoalveolar space, which is essential for the activation of cGAS-STING and the downstream NLRP3-mediated pyroptosis. Of note, Pulmozyme, an old drug for the management of cystic fibrosis, was revealed to have the potential to mitigate RILI by degrading extracellular dsDNA and then inhibiting the cGAS-STING-NLRP3 signaling pathway. CONCLUSIONS These results delineated the crucial function of cGAS-STING as a key mediator of RILI and described a mechanism of pyroptosis linking cGAS-STING activation with the amplification of initial RILI. These findings indicate that the dsDNA-cGAS-STING-NLRP3 axis might be potentially amenable to therapeutic targeting for RILI.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zongjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Weifeng Hong
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shujung Hsu
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Biao Wang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Shisuo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Xue Y, Wang M, Han H. Interaction between alveolar macrophages and epithelial cells during Mycoplasma pneumoniae infection. Front Cell Infect Microbiol 2023; 13:1052020. [PMID: 37113130 PMCID: PMC10126420 DOI: 10.3389/fcimb.2023.1052020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Mycoplasma pneumoniae, as one of the most common pathogens, usually causes upper respiratory tract infections and pneumonia in humans and animals. It accounts for 10% to 40% of community-acquired pneumonia in children. The alveolar epithelial cells (AECs) are the first barrier against pathogen infections, triggering innate immune responses by recruiting and activating immune cells when pathogens invade into the lung. Alveolar macrophages (AMs) are the most plentiful innate immune cells in the lung, and are the first to initiate immune responses with pathogens invasion. The cross-talk between the alveolar epithelium and macrophages is necessary to maintain physiological homeostasis and to eradicate invaded pathogen by regulating immune responses during Mycoplasma pneumoniae infections. This review summarizes the communications between alveolar macrophages and epithelial cells during Mycoplasma pneumoniae infections, including cytokines-medicated communications, signal transduction by extracellular vesicles, surfactant associated proteins-medicated signal transmission and establishment of intercellular gap junction channels.
Collapse
Affiliation(s)
- Yazhi Xue
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengyao Wang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Hsiao TC, Han CL, Yang TT, Lee YL, Shen YF, Jheng YT, Lee CH, Chang JH, Chung KF, Kuo HP, Chuang HC. Importance of surface charge of soot nanoparticles in determining inhalation toxicity in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18985-18997. [PMID: 36223019 DOI: 10.1007/s11356-022-23444-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Physicochemical properties of nanoparticles are important in regulating nanoparticle toxicity; however, the contribution of nanoparticle charge remains unclear. The objective of this study was to investigate the pulmonary effects of inhalation of charged soot nanoparticles. We established a stably charged nanoparticle generation system for whole-body exposure in BALB/c mice, which produced positively charged, negatively charged, and neutral soot nanoparticles in a wide range of concentrations. After a 7-day exposure, pulmonary toxicity was assessed, together with proteomics analysis. The charged soot nanoparticles on average carried 1.17-1.35 electric charges, and the sizes for nanoparticles under different charging conditions were all fixed at 69 ~ 72 nm. We observed that charged soot nanoparticles induced cytotoxic LDH and increased lung permeability, with the release of 8-isoprostane and caspase-3 and systemic IL-6 in mice, especially for positively charged soot nanoparticles. Next, we observed that positive-charged soot nanoparticles upregulated Eif2, Eif4, sirtuin, mammalian target of rapamycin (mTOR), peroxisome proliferator-activated receptors (PPAR), and HIPPO-related signaling pathways in the lungs compared with negatively charged soot nanoparticles. HIF1α, sirt1, E-cadherin, and Yap were increased in mice's lungs by positively charged soot nanoparticle exposure. In conclusion, carbonaceous nanoparticles carrying electric ions, especially positive-charged, are particularly toxic when inhaled and should be of concern in terms of pulmonary health protection.
Collapse
Affiliation(s)
- Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ting Yang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsin Chu City, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Fang Shen
- Graduate Institute of Environmental Engineering, National Center University, Tauyoun, Taiwan
| | - Yu-Teng Jheng
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Chii-Hong Lee
- Department of Pathology, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Han-Pin Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Department of Pathology, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
MiR-181a-5p Delivered by Adipose-Derived Mesenchymal Stem Cell Exosomes Alleviates Klebsiella pneumonia Infection-Induced Lung Injury by Targeting STAT3 Signaling. Mediators Inflamm 2022; 2022:5188895. [PMID: 36570020 PMCID: PMC9771653 DOI: 10.1155/2022/5188895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 12/23/2022] Open
Abstract
Background Klebsiella pneumoniae (K. pneu) is a leading cause of gram-negative pneumonia, which requires effective treatment. Adipose-derived mesenchymal stem cell- (ADSC-) derived exosomal microRNAs (miRNAs) have presented the inhibitory effect of multiple diseases. However, the function of ADSC-derived exosomal miRNAs in K. pneu remains unclear. Aim In this study, we aimed to explore the effect of ADSC-derived exosomal miR-181-5p on K. pneu infection-induced lung injury. Methods C57BL/6 mouse model was established by infection of K. pneu. ADSCs and exosomes were extracted and characterized in vitro. The translocation of ADSC-derived exosomes to bone marrow-derived macrophages (BMDMs) was detected. The level of miR-181a-5p was detected by real-time PCR. The secretion of inflammatory factors was determined by ELISA. The interaction between miR-181a-5p with STAT3 was identified. Results We successfully isolated the ADSCs that express positive markers CD90 and CD105 rather than CD31 and CD45. The exosomal miR-181a-5p secreted by ADSCs were internalized by BMDM and K. pneu infection stimulated the miR-181a-5p level in bronchoalveolar lavage fluid (BALF) and BMDM. ADSC-derived exosomal miR-181a-5p repressed pulmonary outgrowth and dissemination of K. pneu infection in mice, repressed cellular infiltration in lung tissue, and attenuated the inflammasome activity and the levels of IL-1β and IL-18 in the lung. Mechanically, miR-181a-5p was able to inhibit STAT3 expression at posttranscriptional levels and repressed Nlrp3 and Asc expression in BMDM. Conclusion Consequently, we concluded that ADSC-derived exosomal miR-181a-5p alleviated Klebsiella pneumonia infection-induced lung injury by targeting STAT3 signaling. ADSC-derived exosomal miR-181a-5p may serve as a potential candidate for the treatment of Klebsiella pneumonia infection-induced lung injury.
Collapse
|
8
|
Kirolos SA, Pilling D, Gomer RH. The extracellular sialidase NEU3 primes neutrophils. J Leukoc Biol 2022; 112:1399-1411. [PMID: 35899930 PMCID: PMC9701152 DOI: 10.1002/jlb.3a0422-217rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/28/2022] [Indexed: 01/04/2023] Open
Abstract
Some extracellular glycoconjugates have sialic acid as the terminal sugar, and sialidases are enzymes that remove this sugar. Mammals have 4 sialidases and can be elevated in inflammation and fibrosis. In this report, we show that incubation of human neutrophils with the extracellular human sialidase NEU3, but not NEU1, NEU2 or NEU4, induces human male and female neutrophils to change from a round to a more amoeboid morphology, causes the primed human neutrophil markers CD11b, CD18, and CD66a to localize to the cell cortex, and decreases the localization of the unprimed human neutrophil markers CD43 and CD62-L at the cell cortex. NEU3, but not the other 3 sialidases, also causes human male and female neutrophils to increase their F-actin content. Human neutrophils treated with NEU3 show a decrease in cortical levels of Sambucus nigra lectin staining and an increase in cortical levels of peanut agglutinin staining, indicating a NEU3-induced desialylation. The inhibition of NEU3 by the NEU3 inhibitor 2-acetylpyridine attenuated the NEU3 effect on neutrophil morphology, indicating that the effect of NEU3 is dependent on its enzymatic activity. Together, these results indicate that NEU3 can prime human male and female neutrophils, and that NEU3 is a potential regulator of inflammation.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Özarslan TO, Sırmatel F, Karabörk ŞÖ, Düzcü SE, Astarcı HM. Acinetobacter baumannii pneumonia increases surfactant proteins SP-A, SP-B, and SP-D levels, while decreasing SP-C level in bronchoalveolar lavage in rats. Microbes Infect 2022. [DOI: 10.1016/j.micinf.2022.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Risk factors for acute respiratory distress syndrome in sepsis patients: a retrospective study from a tertiary hospital in China. BMC Pulm Med 2022; 22:238. [PMID: 35729588 PMCID: PMC9210689 DOI: 10.1186/s12890-022-02015-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background Less is known about the risk factors for acute respiratory distress syndrome (ARDS) in sepsis patients diagnosed according to sepsis 3.0 criteria. Moreover, the risk factors for ARDS severity remain unclear. Methods We retrospectively collected the characteristics of sepsis patients from the intensive care unit of the First Affiliated Hospital of China Medical University from January 2017 to September 2018. Logistic regression was used in determining the risk factors. Results 529 patients with sepsis were enrolled and 179 developed ARDS. The most common infection sites were acute abdominal infection (n = 304) and pneumonia (n = 117). Multivariate analysis showed that patients with pancreatitis with local infection (odds ratio [OR], 3.601; 95% confidence interval [CI], 1.429–9.073, P = 0.007), pneumonia (OR 3.486; 95% CI 1.890–6.430, P < 0.001), septic shock (OR 2.163; 95% CI 1.429–3.275, P < 0.001), a higher sequential organ failure assessment (SOFA) score (OR 1.241; 95% CI 1.155–1.333, P < 0.001) and non-pulmonary SOFA score (OR 2.849; 95% CI 2.113–3.841, P < 0.001) were independent risk factors for ARDS. Moreover, pneumonia is associated with increased severity of ARDS (OR 2.512; 95% CI 1.039–6.067, P = 0.041). Conclusions We determined five risk factors for ARDS in sepsis patients. Moreover, pneumonia is significantly associated with an increased severity of ARDS.
Collapse
|
11
|
Liu J, Wei Q, Wang Z, Sun X, He QY. Proteomic Study of the Adaptive Mechanism of Ciprofloxacin-Resistant Staphylococcus aureus to the Host Environment. J Proteome Res 2022; 21:1537-1547. [PMID: 35594371 DOI: 10.1021/acs.jproteome.2c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic-resistant bacteria can escape host immune killing and settle in the host to form persistent infections. In this study we investigated the adaptive mechanism of resistant Staphylococcus aureus to the host environment by data-independent acquisition-based quantitative proteomics and functional validation. The growth curve and minimum inhibitory concentration (MIC) indicated that ciprofloxacin-resistant (Cip-R) S. aureus showed a survival advantage over sensitive strains. Cip-R also exhibited a stronger invasion and biofilm formation ability than sensitive bacteria. Cip-R stimulation resulted in the improved production of inflammatory factors of the host cells. Proteomics study combined with biochemical validations showed that Cip-R obtained adaptability to the host via upregulation of the tricarboxylic acid cycle (TCA cycle) and downregulation of ribosome metabolism and protein folding to maintain energy to support Cip-R's survival. Thus, this study will help us to further explain the growth strategy of resistant bacteria to adapt to the host environment, and provide important information for the development of new antibacterial drugs.
Collapse
Affiliation(s)
- Jiajia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiuxia Wei
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhen Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Effects of CNS Injury-Induced Immunosuppression on Pulmonary Immunity. Life (Basel) 2021; 11:life11060576. [PMID: 34207063 PMCID: PMC8235795 DOI: 10.3390/life11060576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Patients suffering from stroke, traumatic brain injury, or other forms of central nervous system (CNS) injury have an increased risk of nosocomial infections due to CNS injury-induced immunosuppression (CIDS). Immediately after CNS-injury, the response in the brain is pro-inflammatory; however, subsequently, local and systemic immunity is suppressed due to the compensatory release of immunomodulatory neurotransmitters. CIDS makes patients susceptible to contracting infections, among which pneumonia is very common and often lethal. Ventilator-acquired pneumonia has a mortality of 20–50% and poses a significant risk to vulnerable patients such as stroke survivors. The mechanisms involved in CIDS are not well understood. In this review, we consolidate the evidence for cellular processes underlying the pathogenesis of CIDS, the emerging treatments, and speculate further on the immune elements at play.
Collapse
|
14
|
Gusarova GA, Das SR, Islam MN, Westphalen K, Jin G, Shmarakov IO, Li L, Bhattacharya S, Bhattacharya J. Actin fence therapy with exogenous V12Rac1 protects against acute lung injury. JCI Insight 2021; 6:135753. [PMID: 33749665 PMCID: PMC8026177 DOI: 10.1172/jci.insight.135753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2021] [Indexed: 02/05/2023] Open
Abstract
High mortality in acute lung injury (ALI) results from sustained proinflammatory signaling by alveolar receptors, such as TNF-α receptor type 1 (TNFR1). Factors that determine the sustained signaling are not known. Unexpectedly, optical imaging of live alveoli revealed a major TNF-α–induced surge of alveolar TNFR1 due to a Ca2+-dependent mechanism that decreased the cortical actin fence. Mouse mortality due to inhaled LPS was associated with cofilin activation, actin loss, and the TNFR1 surge. The constitutively active form of the GTPase, Rac1 (V12Rac1), given intranasally (i.n.) as a noncovalent construct with a cell-permeable peptide, enhanced alveolar filamentous actin (F-actin) and blocked the TNFR1 surge. V12Rac1 also protected against ALI-induced mortality resulting from i.n. instillation of LPS or of Pseudomonas aeruginosa. We propose a potentially new therapeutic paradigm in which actin enhancement by exogenous Rac1 strengthens the alveolar actin fence, protecting against proinflammatory receptor hyperexpression, and therefore blocking ALI.
Collapse
Affiliation(s)
- Galina A Gusarova
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Shonit R Das
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Mohammad N Islam
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Kristin Westphalen
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Guangchun Jin
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | - Li Li
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Sunita Bhattacharya
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,Department of Pediatrics, and
| | - Jahar Bhattacharya
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons of Columbia University, New York, New York, USA
| |
Collapse
|
15
|
Domon H, Maekawa T, Isono T, Furuta K, Kaito C, Terao Y. Proteolytic cleavage of HLA class II by human neutrophil elastase in pneumococcal pneumonia. Sci Rep 2021; 11:2432. [PMID: 33510372 PMCID: PMC7843615 DOI: 10.1038/s41598-021-82212-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Bacterial and viral respiratory infections can initiate acute lung injury and acute respiratory distress syndrome. Neutrophils and their granule enzymes, including neutrophil elastase, are key mediators of the pathophysiology of acute respiratory failure. Although intracellular neutrophil elastase functions as a host defensive factor against pathogens, its leakage into airway spaces induces degradation of host connective tissue components. This leakage disrupts host innate immune responses via proteolytic cleavage of Toll-like receptors and cytokines. Here, we investigated whether neutrophils possess proteases that cleave adaptive immune molecules. We found that expression of the human leukocyte antigen (HLA) class II molecule HLA-DP β1 was decreased in THP-1-derived macrophages treated with supernatants from dead neutrophils. This decreased HLA-DP β1 expression was counteracted by treatment with neutrophil elastase inhibitor, suggesting proteolytic cleavage of HLA-DP β1 by neutrophil elastase. SDS-PAGE showed that neutrophil elastase cleaved recombinant HLA-DP α1, -DP β1, -DQ α1, -DQ β1, -DR α, and -DR β1. Neutrophil elastase also cleaved HLA-DP β1 on extracellular vesicles isolated from macrophages without triggering morphological changes. Thus, leakage of neutrophil elastase may disrupt innate immune responses, antigen presentation, and T cell activation. Additionally, inhibition of neutrophil elastase is a potential therapeutic option for treating bacterial and viral pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuyuki Furuta
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
16
|
Schirm S, Ahnert P, Berger S, Nouailles G, Wienhold SM, Müller-Redetzky H, Suttorp N, Loeffler M, Witzenrath M, Scholz M. A biomathematical model of immune response and barrier function in mice with pneumococcal lung infection. PLoS One 2020; 15:e0243147. [PMID: 33270742 PMCID: PMC7714238 DOI: 10.1371/journal.pone.0243147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/16/2020] [Indexed: 11/19/2022] Open
Abstract
Pneumonia is one of the leading causes of death worldwide. The course of the disease is often highly dynamic with unforeseen critical deterioration within hours in a relevant proportion of patients. Besides antibiotic treatment, novel adjunctive therapies are under development. Their additive value needs to be explored in preclinical and clinical studies and corresponding therapy schedules require optimization prior to introduction into clinical practice. Biomathematical modeling of the underlying disease and therapy processes might be a useful aid to support these processes. We here propose a biomathematical model of murine immune response during infection with Streptococcus pneumoniae aiming at predicting the outcome of different treatment schedules. The model consists of a number of non-linear ordinary differential equations describing the dynamics and interactions of the pulmonal pneumococcal population and relevant cells of the innate immune response, namely alveolar- and inflammatory macrophages and neutrophils. The cytokines IL-6 and IL-10 and the chemokines CCL2, CXCL1 and CXCL5 are considered as major mediators of the immune response. We also model the invasion of peripheral blood monocytes, their differentiation into macrophages and bacterial penetration through the epithelial barrier causing blood stream infections. We impose therapy effects on this system by modelling antibiotic therapy and treatment with the novel C5a-inactivator NOX-D19. All equations are derived by translating known biological mechanisms into equations and assuming appropriate response kinetics. Unknown model parameters were determined by fitting the predictions of the model to time series data derived from mice experiments with close-meshed time series of state parameters. Parameter fittings resulted in a good agreement of model and data for the experimental scenarios. The model can be used to predict the performance of alternative schedules of combined antibiotic and NOX-D19 treatment. We conclude that we established a comprehensive biomathematical model of pneumococcal lung infection, immune response and barrier function in mice allowing simulations of new treatment schedules. We aim to validate the model on the basis of further experimental data. We also plan the inclusion of further novel therapy principles and the translation of the model to the human situation in the near future.
Collapse
Affiliation(s)
- Sibylle Schirm
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Sarah Berger
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Geraldine Nouailles
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sandra-Maria Wienhold
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Müller-Redetzky
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Martin Witzenrath
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center of Civilization Diseases, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
17
|
Korkmaz B, Lesner A, Marchand-Adam S, Moss C, Jenne DE. Lung Protection by Cathepsin C Inhibition: A New Hope for COVID-19 and ARDS? J Med Chem 2020; 63:13258-13265. [PMID: 32692176 PMCID: PMC7413214 DOI: 10.1021/acs.jmedchem.0c00776] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Cathepsin C (CatC) is a cysteine dipeptidyl aminopeptidase that activates most of tissue-degrading elastase-related serine proteases. Thus, CatC appears as a potential therapeutic target to impair protease-driven tissue degradation in chronic inflammatory and autoimmune diseases. A depletion of proinflammatory elastase-related proteases in neutrophils is observed in patients with CatC deficiency (Papillon-Lefèvre syndrome). To address and counterbalance unwanted effects of elastase-related proteases, chemical inhibitors of CatC are being evaluated in preclinical and clinical trials. Neutrophils may contribute to the diffuse alveolar inflammation seen in acute respiratory distress syndrome (ARDS) which is currently a growing challenge for intensive care units due to the outbreak of the COVID-19 pandemic. Elimination of elastase-related neutrophil proteases may reduce the progression of lung injury in these patients. Pharmacological CatC inhibition could be a potential therapeutic strategy to prevent the irreversible pulmonary failure threatening the life of COVID-19 patients.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM UMR-1100, Centre
d’Etude des Pathologies Respiratoires and
Université de Tours, 37032 Tours,
France
| | - Adam Lesner
- Faculty of Chemistry,
University of Gdansk, 80-398 Gdansk,
Poland
| | - Sylvain Marchand-Adam
- INSERM UMR-1100, Centre
d’Etude des Pathologies Respiratoires and
Université de Tours, 37032 Tours,
France
- Service de Pneumologie,
CHRU de Tours, 37032 Tours,
France
| | - Celia Moss
- Birmingham
Children’s Hospital and University of
Birmingham, B4 6NH Birmingham,
U.K.
| | - Dieter E. Jenne
- Comprehensive Pneumology Center,
Institute of Lung Biology and Disease, German Center for Lung Research
(DZL), Munich and Max-Planck Institute of
Neurobiology, 82152 Planegg-Martinsried,
Germany
| |
Collapse
|
18
|
Sou T, Bergström CAS. Contemporary Formulation Development for Inhaled Pharmaceuticals. J Pharm Sci 2020; 110:66-86. [PMID: 32916138 DOI: 10.1016/j.xphs.2020.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary delivery has gained increased interests over the past few decades. For respiratory conditions, targeted drug delivery directly to the site of action can achieve a high local concentration for efficacy with reduced systemic exposure and adverse effects. For systemic conditions, the unique physiology of the lung evolutionarily designed for rapid gaseous exchange presents an entry route for systemic drug delivery. Although the development of inhaled formulations has come a long way over the last few decades, many aspects of it remain to be elucidated. In particular, a reliable and well-understood method for in vitro-in vivo correlations remains to be established. With the rapid and ongoing advancement of technology, there is much potential to better utilise computational methods including different types of modelling and simulation approaches to support inhaled formulation development. This review intends to provide an introduction on some fundamental concepts in pulmonary drug delivery and inhaled formulation development followed by discussions on some challenges and opportunities in the translation of inhaled pharmaceuticals from preclinical studies to clinical development. The review concludes with some recent advancements in modelling and simulation approaches that could play an increasingly important role in modern formulation development of inhaled pharmaceuticals.
Collapse
Affiliation(s)
- Tomás Sou
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; Pharmacometrics, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Christel A S Bergström
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Thorenoor N, S. Phelps D, Kala P, Ravi R, Floros Phelps A, M. Umstead T, Zhang X, Floros J. Impact of Surfactant Protein-A Variants on Survival in Aged Mice in Response to Klebsiella pneumoniae Infection and Ozone: Serendipity in Action. Microorganisms 2020; 8:microorganisms8091276. [PMID: 32825654 PMCID: PMC7570056 DOI: 10.3390/microorganisms8091276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 01/10/2023] Open
Abstract
Innate immune molecules, SP-A1 (6A2, 6A4) and SP-A2 (1A0, 1A3), differentially affect young mouse survival after infection. Here, we investigated the impact of SP-A variants on the survival of aged mice. hTG mice carried a different SP-A1 or SP-A2 variant and SP-A-KO were either infected with Klebsiella pneumoniae or exposed to filtered air (FA) or ozone (O3) prior to infection, and their survival monitored over 14 days. In response to infection alone, no gene- or sex-specific (except for 6A2) differences were observed; variant-specific survival was observed (1A0 > 6A4). In response to O3, gene-, sex-, and variant-specific survival was observed with SP-A2 variants showing better survival in males than females, and 1A0 females > 1A3 females. A serendipitous, and perhaps clinically important observation was made; mice exposed to FA prior to infection exhibited significantly better survival than infected alone mice. 1A0 provided an overall better survival in males and/or females indicating a differential role for SP-A genetics. Improved ventilation, as provided by FA, resulted in a survival of significant magnitude in aged mice and perhaps to a lesser extent in young mice. This may have clinical application especially within the context of the current pandemic.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.T.); (J.F.)
| | - David S. Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Padma Kala
- Independent Consultant, Upper Saddle River, NJ 07458, USA;
| | - Radhika Ravi
- Division of Anesthesia, Department of Surgery, Veterans Affairs New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07018, USA;
| | | | - Todd M. Umstead
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Xuesheng Zhang
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
- Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.T.); (J.F.)
| |
Collapse
|
20
|
Ornithine-A urea cycle metabolite enhances autophagy and controls Mycobacterium tuberculosis infection. Nat Commun 2020; 11:3535. [PMID: 32669568 PMCID: PMC7363810 DOI: 10.1038/s41467-020-17310-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Macrophages are professional phagocytes known to play a vital role in controlling Mycobacterium tuberculosis (Mtb) infection and disease progression. Here we compare Mtb growth in mouse alveolar (AMs), peritoneal (PMs), and liver (Kupffer cells; KCs) macrophages and in bone marrow-derived monocytes (BDMs). KCs restrict Mtb growth more efficiently than all other macrophages and monocytes despite equivalent infections through enhanced autophagy. A metabolomics comparison of Mtb-infected macrophages indicates that ornithine and imidazole are two top-scoring metabolites in Mtb-infected KCs and that acetylcholine is the top-scoring in Mtb-infected AMs. Ornithine, imidazole and atropine (acetylcholine inhibitor) inhibit Mtb growth in AMs. Ornithine enhances AMPK mediated autophagy whereas imidazole directly kills Mtb by reducing cytochrome P450 activity. Intranasal delivery of ornithine or imidazole or the two together restricts Mtb growth. Our study demonstrates that the metabolic differences between Mtb-infected AMs and KCs lead to differences in the restriction of Mtb growth. Kupffer cells are more resistant to M. tuberculosis when compared with alveolar macrophages. Here the authors show that this distinction is caused by the presence of ornithine and imidazole in Kupffer cells and that these metabolites can drive autophagy and M. tuberculosis killing in alveolar macrophages when given intranasally to infected mice.
Collapse
|
21
|
Patro LPP, Rathinavelan T. Targeting the Sugary Armor of Klebsiella Species. Front Cell Infect Microbiol 2019; 9:367. [PMID: 31781512 PMCID: PMC6856556 DOI: 10.3389/fcimb.2019.00367] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022] Open
Abstract
The emergence of multidrug-resistant strains of Gram-negative Klebsiella species is an urgent global threat. The World Health Organization has listed Klebsiella pneumoniae as one of the global priority pathogens in critical need of next-generation antibiotics. Compared to other Gram-negative pathogens, K. pneumoniae accumulates a greater diversity of antimicrobial-resistant genes at a higher frequency. The evolution of a hypervirulent phenotype of K. pneumoniae is yet another concern. It has a broad ecological distribution affecting humans, agricultural animals, plants, and aquatic animals. Extracellular polysaccharides of Klebsiella, such as lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, play crucial roles in conferring resistance against the host immune response, as well as in colonization, surface adhesion, and for protection against antibiotics and bacteriophages. These extracellular polysaccharides are major virulent determinants and are highly divergent with respect to their antigenic properties. Wzx/Wzy-, ABC-, and synthase-dependent proteinaceous nano-machineries are involved in the biosynthesis, transport, and cell surface expression of these sugar molecules. Although the proteins involved in the biosynthesis and surface expression of these sugar molecules represent potential drug targets, variation in the amino acid sequences of some of these proteins, in combination with diversity in their sugar composition, poses a major challenge to the design of a universal drug for Klebsiella infections. This review discusses the challenges in universal Klebsiella vaccine and drug development from the perspective of antigen sugar compositions and the proteins involved in extracellular antigen transport.
Collapse
|
22
|
Farris BY, Monaghan KL, Zheng W, Amend CD, Hu H, Ammer AG, Coad JE, Ren X, Wan ECK. Ischemic stroke alters immune cell niche and chemokine profile in mice independent of spontaneous bacterial infection. IMMUNITY INFLAMMATION AND DISEASE 2019; 7:326-341. [PMID: 31691533 PMCID: PMC6842816 DOI: 10.1002/iid3.277] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023]
Abstract
Introduction Stroke‐associated pneumonia (SAP) is a major cause of mortality in patients who have suffered from severe ischemic stroke. Although multifactorial in nature, stroke‐induced immunosuppression plays a key role in the development of SAP. Previous studies using a murine model of transient middle cerebral artery occlusion (tMCAO) have shown that focal ischemic stroke induction results in functional defects of lymphocytes in the spleen, thymus, and peripheral blood, leading to spontaneous bacterial infection in the lungs without inoculation. However, how ischemic stroke alters immune cell niche and the expression of cytokines and chemokines in the lungs has not been fully characterized. Methods Ischemic stroke was induced in mice by tMCAO. Immune cell profiles in the brain and the lungs at 24‐ and 72‐hour time points were compared by flow cytometric analysis. Cytokine and chemokine expression in the lungs were determined by multiplex bead arrays. Tissue damage and bacterial burden in the lungs following tMCAO were evaluated. Results Ischemic stroke increases the percentage of alveolar macrophages, neutrophils, and CD11b+ dendritic cells, but reduces the percentage of CD4+ T cells, CD8+ T cells, B cells, natural killer cells, and eosinophils in the lungs. The alteration of immune cell niche in the lungs coincides with a significant reduction in the levels of multiple chemokines in the lungs, including CCL3, CCL4, CCL5, CCL17, CCL20, CCL22, CXCL5, CXCL9, and CXCL10. Spontaneous bacterial infection and tissue damage following tMCAO, however, were not observed. Conclusion This is the first report to demonstrate a significant reduction of lymphocytes and multiple proinflammatory chemokines in the lungs following ischemic stroke in mice. These findings suggest that ischemic stroke directly impacts pulmonary immunity.
Collapse
Affiliation(s)
- Breanne Y Farris
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kelly L Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Wen Zheng
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Courtney D Amend
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Heng Hu
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Amanda G Ammer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - James E Coad
- Pathology Laboratory for Translational Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Xuefang Ren
- Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Edwin C K Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
23
|
Immunomodulatory Effects of Lactobacillus plantarum on Inflammatory Response Induced by Klebsiella pneumoniae. Infect Immun 2019; 87:IAI.00570-19. [PMID: 31481408 DOI: 10.1128/iai.00570-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Some respiratory infections have been associated with dysbiosis of the intestinal microbiota. The underlying mechanism is incompletely understood, but cross talk between the intestinal microbiota and local immune cells could influence the immune response at distal mucosal sites. This has led to the concept of enhancing respiratory defenses by modulating the intestinal microbiota with exogenous supplementation of beneficial strains. In this study, we examined the effect of Lactobacillus plantarum CIRM653 on the inflammatory response induced by the pathogen Klebsiella pneumoniae Oral administration of L. plantarum CIRM653 to mice subsequently infected by K. pneumoniae via the nasal route (i) reduced the pulmonary inflammation response, with decreased numbers of lung innate immune cells (macrophages and neutrophils) and cytokines (mouse keratinocyte-derived chemokine [KC], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) in the bronchoalveolar fluid, and (ii) induced an immunosuppressive Treg response in lungs. In vitro coincubation of L. plantarum CIRM653 and K. pneumoniae with human dendritic cells and peripheral blood mononuclear cells resulted in decreased Th1 (IL-12p70 and interferon gamma [IFN-γ]) and Th17 (IL-23 and IL-17) and increased Treg (IL-10) cytokine levels compared to those observed for K. pneumoniae-infected cells. Neither K. pneumoniae nor L. plantarum CIRM653 had any effect on cytokine production by intestinal epithelial cells in vitro, but the induction of the NF-κB pathway and IL-8 and IL-6 production by K. pneumoniae in airway epithelial cells was significantly reduced when the pathogen was coincubated with L. plantarum CIRM653. The remote IL-10-mediated modulation of the K. pneumoniae inflammatory response by L. plantarum CIRM653 supports the concept of immunomodulation by beneficial bacteria through the gut-lung axis.
Collapse
|
24
|
Castellani S, D'Oria S, Diana A, Polizzi AM, Di Gioia S, Mariggiò MA, Guerra L, Favia M, Vinella A, Leonetti G, De Venuto D, Gallo C, Montemurro P, Conese M. G-CSF and GM-CSF Modify Neutrophil Functions at Concentrations found in Cystic Fibrosis. Sci Rep 2019; 9:12937. [PMID: 31506515 PMCID: PMC6736848 DOI: 10.1038/s41598-019-49419-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023] Open
Abstract
The role of colony stimulating factors (CSFs) in cystic fibrosis (CF) circulating neutrophils has not been thoroughly evaluated, considering that the neutrophil burden of lung inflammation in these subjects is very high. The aim of this study was to assess granulocyte-CSF (G-CSF) and granulocyte-macrophage-CSF (GM-CSF) levels in CF patients in various clinical conditions and how these cytokines impact on activation and priming of neutrophils. G-CSF and GM-CSF levels were measured in sputum and serum samples of stable CF patients (n = 21) and in CF patients with acute exacerbation before and after a course of antibiotic therapy (n = 19). CSFs were tested on non CF neutrophils to investigate their effects on reactive oxygen species (ROS) production, degranulation (CD66b, elastase, lactoferrin, MMP-9), and chemotaxis. At very low concentrations found in CF patients (0.005-0.1 ng/ml), both cytokines inhibited ROS production, while higher concentrations (1-5 ng/ml) exerted a stimulatory effect. While either CSF induced elastase and MMP-9 secretion, lactoferrin levels were increased only by G-CSF. Chemotaxis was inhibited by GM-CSF, but was increased by G-CSF. However, when present together at low concentrations, CSFs increased basal and fMLP-stimulated ROS production and chemotaxis. These results suggest the CSF levels that circulating neutrophils face before extravasating into the lungs of CF patients may enhance their function contributing to the airway damage.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Susanna D'Oria
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Anna Diana
- Department of Biomedical Sciences and Human Oncology, Section of Medical Genetics, University of Bari, Bari, Italy
| | - Angela Maria Polizzi
- Department of Biomedical Sciences and Human Oncology, Section of Medical Genetics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Maria Addolorata Mariggiò
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Angela Vinella
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Giuseppina Leonetti
- Cystic Fibrosis Regional Center, Department of Biomedical and Human Oncology, Pediatrics Section, U.O. "B. Trambusti", Policlinico, University of Bari, Bari, Italy
| | - Domenica De Venuto
- Cystic Fibrosis Regional Center, Department of Biomedical and Human Oncology, Pediatrics Section, U.O. "B. Trambusti", Policlinico, University of Bari, Bari, Italy
| | - Crescenzio Gallo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pasqualina Montemurro
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy.
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
25
|
|
26
|
Abdel-Aziz MM, Yosri M, Amin BH. Control of imipenem resistant-Klebsiella pneumoniaepulmonary infection by oral treatment using a combination of mycosynthesized Ag-nanoparticles and imipenem. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marwa M. Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-azhar University, Cairo, Egypt
| | - Mohamed Yosri
- The Regional Center for Mycology and Biotechnology, Al-azhar University, Cairo, Egypt
| | - Basma H. Amin
- The Regional Center for Mycology and Biotechnology, Al-azhar University, Cairo, Egypt
| |
Collapse
|
27
|
García-Fojeda B, González-Carnicero Z, de Lorenzo A, Minutti CM, de Tapia L, Euba B, Iglesias-Ceacero A, Castillo-Lluva S, Garmendia J, Casals C. Lung Surfactant Lipids Provide Immune Protection Against Haemophilus influenzae Respiratory Infection. Front Immunol 2019; 10:458. [PMID: 30936871 PMCID: PMC6431623 DOI: 10.3389/fimmu.2019.00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) causes persistent respiratory infections in patients with chronic obstructive pulmonary disease (COPD), probably linked to its capacity to invade and reside within pneumocytes. In the alveolar fluid, NTHi is in contact with pulmonary surfactant, a lipoprotein complex that protects the lung against alveolar collapse and constitutes the front line of defense against inhaled pathogens and toxins. Decreased levels of surfactant phospholipids have been reported in smokers and patients with COPD. The objective of this study was to investigate the effect of surfactant phospholipids on the host-pathogen interaction between NTHi and pneumocytes. For this purpose, we used two types of surfactant lipid vesicles present in the alveolar fluid: (i) multilamellar vesicles (MLVs, > 1 μm diameter), which constitute the tensioactive material of surfactant, and (ii) small unilamellar vesicles (SUVs, 0.1 μm diameter), which are generated after inspiration/expiration cycles, and are endocytosed by pneumocytes for their degradation and/or recycling. Results indicated that extracellular pulmonary surfactant binds to NTHi, preventing NTHi self-aggregation and inhibiting adhesion of NTHi to pneumocytes and, consequently, inhibiting NTHi invasion. In contrast, endocytosed surfactant lipids, mainly via the scavenger receptor SR-BI, did not affect NTHi adhesion but inhibited NTHi invasion by blocking bacterial uptake in pneumocytes. This blockade was made possible by inhibiting Akt phosphorylation and Rac1 GTPase activation, which are signaling pathways involved in NTHi internalization. Administration of the hydrophobic fraction of lung surfactant in vivo accelerated bacterial clearance in a mouse model of NTHi pulmonary infection, supporting the notion that the lipid component of lung surfactant protects against NTHi infection. These results suggest that alterations in surfactant lipid levels in COPD patients may increase susceptibility to infection by this pathogen.
Collapse
Affiliation(s)
- Belén García-Fojeda
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Zoe González-Carnicero
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Alba de Lorenzo
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Carlos M Minutti
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia de Tapia
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Begoña Euba
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Agrobiotecnología, Mutilva, Spain
| | - Alba Iglesias-Ceacero
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Sonia Castillo-Lluva
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Junkal Garmendia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Agrobiotecnología, Mutilva, Spain
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
29
|
Buss CG, Dudani JS, Akana RTK, Fleming HE, Bhatia SN. Protease activity sensors noninvasively classify bacterial infections and antibiotic responses. EBioMedicine 2018; 38:248-256. [PMID: 30503861 PMCID: PMC6306379 DOI: 10.1016/j.ebiom.2018.11.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Respiratory tract infections represent a significant public health risk, and timely and accurate detection of bacterial infections facilitates rapid therapeutic intervention. Furthermore, monitoring the progression of infections after intervention enables 'course correction' in cases where initial treatments are ineffective, avoiding unnecessary drug dosing that can contribute to antibiotic resistance. However, current diagnostic and monitoring techniques rely on non-specific or slow readouts, such as radiographic imaging and sputum cultures, which fail to specifically identify bacterial infections and take several days to identify optimal antibiotic treatments. METHODS Here we describe a nanoparticle system that detects P. aeruginosa lung infections by sensing host and bacterial protease activity in vivo, and that delivers a urinary detection readout. One protease sensor is comprised of a peptide substrate for the P. aeruginosa protease LasA. A second sensor designed to detect elastases is responsive to recombinant neutrophil elastase and secreted proteases from bacterial strains. FINDINGS In mice infected with P. aeruginosa, nanoparticle formulations of these protease sensors-termed activity-based nanosensors (ABNs)-detect infections and monitor bacterial clearance from the lungs over time. Additionally, ABNs differentiate between appropriate and ineffective antibiotic treatments acutely, within hours after the initiation of therapy. INTERPRETATION These findings demonstrate how activity measurements of disease-associated proteases can provide a noninvasive window into the dynamic process of bacterial infection and resolution, offering an opportunity for detecting, monitoring, and characterizing lung infections. FUND: National Cancer Institute, National Institute of Environmental Health Sciences, National Institutes of Health, National Science Foundation Graduate Research Fellowship Program, and Howard Hughes Medical Institute.
Collapse
Affiliation(s)
- Colin G Buss
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaideep S Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Reid T K Akana
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather E Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
S N SG, Raviraj R, Nagarajan D, Zhao W. Radiation-induced lung injury: impact on macrophage dysregulation and lipid alteration - a review. Immunopharmacol Immunotoxicol 2018; 41:370-379. [PMID: 30442050 DOI: 10.1080/08923973.2018.1533025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer continues to be the leading cause of cancer deaths and more than one million lung cancer patients will die every year worldwide. Radiotherapy (RT) plays an important role in lung cancer treatment, but the side effects of RT are pneumonitis and pulmonary fibrosis. RT-induced lung injury causes damage to alveolar-epithelial cells and vascular endothelial cells. Macrophages play an important role in the development of pulmonary fibrosis despite its role in immune response. These injury activated macrophages develop into classically activated M1 macrophage or alternative activated M2 macrophage. It secretes cytokines, interleukins, interferons, and nitric oxide. Several pro-inflammatory lipids and pro-apoptotic proteins cause lipotoxicity such as LDL, FC, DAG, and FFA. The overall findings in this review conclude the importance of macrophages in inducing toxic/inflammatory effects during RT of lung cancer, which is clinically vital to treat the radiation-induced fibrosis.
Collapse
Affiliation(s)
- Sunil Gowda S N
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Raghavi Raviraj
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Devipriya Nagarajan
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Weiling Zhao
- b School of Biomedical Informatics , The University of Texas Health Sciences Center , Houston , TX , USA
| |
Collapse
|
31
|
Young TR, Boczko EM. Early treatment gains for antibiotic administration and within human host time series data. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 35:203-224. [PMID: 28339789 PMCID: PMC5998801 DOI: 10.1093/imammb/dqw025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 12/30/2016] [Indexed: 11/13/2022]
Abstract
As technological improvements continue to infiltrate and impact medical practice, it has become possible to non-invasively collect dense physiological time series data from individual patients in real time. These advances continue to improve physicians' ability to detect and to treat infections early. One important benefit of early detection and treatment of nascent infections is that it leads to earlier resolution. In response to current and anticipated advances in data capture, we introduce the Early Treatment Gain (ETG) as a measure to quantify this benefit. Roughly, we define the gain to be the limiting ratio: ETG=differential change in time of resolutiondifferential change in treatment time.We study the gain using standard dynamical models and demonstrate its use with time series data from Surgical Intensive Care Unit (SICU) patients facing ventilator associated pneumonia. The main conclusion from the mathematical modelling is that the ETG is always greater than one unless there is an effective immune response, in which case the ETG can be less than one. Using real patient time series data, we observe that the formula derived for a linear model can be applied and that this produces a ETG greater than one.
Collapse
Affiliation(s)
- Todd R Young
- Mathematics, Ohio University, Morton, Athens, Ohio, USA
| | - Erik M Boczko
- Mathematics, Ohio University, Morton, Athens, Ohio, USA
| |
Collapse
|
32
|
Casals C, Campanero-Rhodes MA, García-Fojeda B, Solís D. The Role of Collectins and Galectins in Lung Innate Immune Defense. Front Immunol 2018; 9:1998. [PMID: 30233589 PMCID: PMC6131309 DOI: 10.3389/fimmu.2018.01998] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Different families of endogenous lectins use complementary defense strategies against pathogens. They may recognize non-self glycans typically found on pathogens and/or host glycans. The collectin and galectin families are prominent examples of these two lectin categories. Collectins are C-type lectins that contain a carbohydrate recognition domain and a collagen-like domain. Members of this group include surfactant protein A (SP-A) and D (SP-D), secreted by the alveolar epithelium to the alveolar fluid. Lung collectins bind to several microorganisms, which results in pathogen aggregation and/or killing, and enhances phagocytosis of pathogens by alveolar macrophages. Moreover, SP-A and SP-D influence macrophage responses, contributing to resolution of inflammation, and SP-A is essential for tissue-repair functions of macrophages. Galectins also function by interacting directly with pathogens or by modulating the immune system in response to the infection. Direct binding may result in enhanced or impaired infection of target cells, or can have microbicidal effects. Immunomodulatory effects of galectins include recruitment of immune cells to the site of infection, promotion of neutrophil function, and stimulation of the bactericidal activity of infected macrophages. Moreover, intracellular galectins can serve as danger receptors, promoting autophagy of the invading pathogen. This review will focus on the role of collectins and galectins in pathogen clearance and immune response activation in infectious diseases of the respiratory system.
Collapse
Affiliation(s)
- Cristina Casals
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - María A Campanero-Rhodes
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| | - Belén García-Fojeda
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Solís
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| |
Collapse
|
33
|
Sharma L, Amick AK, Vasudevan S, Lee SW, Marion CR, Liu W, Brady V, Losier A, Bermejo SD, Britto CJ, Lee CG, Elias JA, Dela Cruz CS. Regulation and Role of Chitotriosidase during Lung Infection with Klebsiella pneumoniae. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:615-626. [PMID: 29891554 PMCID: PMC6291403 DOI: 10.4049/jimmunol.1701782] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/15/2018] [Indexed: 12/20/2022]
Abstract
Chitinases and chitinase-like proteins are an evolutionary conserved group of proteins. In the absence of chitin synthesis in mammals, the conserved presence of chitinases suggests their roles in physiology and immunity, but experimental evidence to prove these roles is scarce. Chitotriosidase (chit1) is one of the two true chitinases present in mammals and the most prevalent chitinase in humans. In this study, we investigated the regulation and the role of chit1 in a mouse model of Klebsiella pneumoniae lung infection. We show that chitinase activity in bronchoalveolar lavage fluid is significantly reduced during K. pneumoniae lung infection. This reduced activity is inversely correlated with the number of neutrophils. Further, instilling neutrophil lysates in lungs decreased chitinase activity. We observed degradation of chit1 by neutrophil proteases. In a mouse model, chit1 deficiency provided a significant advantage to the host during K. pneumoniae lung infection by limiting bacterial dissemination. This phenotype was independent of inflammatory changes in chit1-/- mice as they exerted a similar inflammatory response. The decreased dissemination resulted in improved survival in chit1-/- mice infected with K. pneumoniae in the presence or absence of antibiotic therapy. The beneficial effects of chit1 deficiency were associated with altered Akt activation in the lungs. Chit1-/- mice induced a more robust Akt activation postinfection. The role of the Akt pathway in K. pneumoniae lung infection was confirmed by using an Akt inhibitor, which impaired health and survival. These data suggest a detrimental role of chit1 in K. pneumoniae lung infections.
Collapse
Affiliation(s)
- Lokesh Sharma
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Alyssa K Amick
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Swathy Vasudevan
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Sei Won Lee
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Chad R Marion
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Wei Liu
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Virginia Brady
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Ashley Losier
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Santos D Bermejo
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Clemente J Britto
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912; and
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912; and
| | - Charles S Dela Cruz
- Section of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT 06520;
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
34
|
Domon H, Nagai K, Maekawa T, Oda M, Yonezawa D, Takeda W, Hiyoshi T, Tamura H, Yamaguchi M, Kawabata S, Terao Y. Neutrophil Elastase Subverts the Immune Response by Cleaving Toll-Like Receptors and Cytokines in Pneumococcal Pneumonia. Front Immunol 2018; 9:732. [PMID: 29922273 PMCID: PMC5996908 DOI: 10.3389/fimmu.2018.00732] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Excessive activation of neutrophils results in the release of neutrophil elastase (NE), which leads to lung injury in severe pneumonia. Previously, we demonstrated a novel immune subversion mechanism involving microbial exploitation of this NE ability, which eventually promotes disruption of the pulmonary epithelial barrier. In the present study, we investigated the effect of NE on host innate immune response. THP-1-derived macrophages were stimulated with heat-killed Streptococcus pneumoniae or lipopolysaccharide in the presence or absence of NE followed by analysis of toll-like receptor (TLR) and cytokine expression. Additionally, the biological significance of NE was confirmed in an in vivo mouse intratracheal infection model. NE downregulated the gene transcription of multiple cytokines in THP-1-derived macrophages through the cleavage of TLRs and myeloid differentiation factor 2. Additionally, NE cleaved inflammatory cytokines and chemokines. In a mouse model of intratracheal pneumococcal challenge, administration of an NE inhibitor significantly increased proinflammatory cytokine levels in bronchoalveolar lavage fluid, enhanced bacterial clearance, and improved survival rates. Our work indicates that NE subverts the innate immune response and that inhibition of this enzyme may constitute a novel therapeutic option for the treatment of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Nagai
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daisuke Yonezawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Wataru Takeda
- Faculty of Dentistry, Niigata University, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
35
|
Immormino RM, Lauzier DC, Nakano H, Hernandez ML, Alexis NE, Ghio AJ, Tilley SL, Doerschuk CM, Peden DB, Cook DN, Moran TP. Neuropilin-2 regulates airway inflammatory responses to inhaled lipopolysaccharide. Am J Physiol Lung Cell Mol Physiol 2018; 315:L202-L211. [PMID: 29671604 PMCID: PMC6139664 DOI: 10.1152/ajplung.00067.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuropilins are multifunctional receptors that play important roles in immune regulation. Neuropilin-2 (NRP2) is expressed in the lungs, but whether it regulates airway immune responses is unknown. Here, we report that Nrp2 is weakly expressed by alveolar macrophages (AMs) in the steady state but is dramatically upregulated following in vivo lipopolysaccharide (LPS) inhalation. Ex vivo treatment of human AMs with LPS also increased NRP2 mRNA expression and cell-surface display of NRP2 protein. LPS-induced Nrp2 expression in AMs was dependent upon the myeloid differentiation primary response 88 signaling pathway and the transcription factor NF-κB. In addition to upregulating display of NRP2 on the cell membrane, inhaled LPS also triggered AMs to release soluble NRP2 into the airways. Finally, myeloid-specific ablation of NRP2 resulted in increased expression of the chemokine (C-C motif) ligand 2 ( Ccl2) in the lungs and prolonged leukocyte infiltration in the airways following LPS inhalation. These findings suggest that NRP2 expression by AMs regulates LPS-induced inflammatory cell recruitment to the airways and reveal a novel role for NRP2 during innate immune responses in the lungs.
Collapse
Affiliation(s)
- Robert M Immormino
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina , Chapel Hill, North Carolina
| | - David C Lauzier
- Department of Pediatrics, University of North Carolina , Chapel Hill, North Carolina
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina
| | - Michelle L Hernandez
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina , Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina , Chapel Hill, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina , Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina , Chapel Hill, North Carolina
| | - Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency , Chapel Hill, North Carolina
| | - Stephen L Tilley
- Department of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - Claire M Doerschuk
- Department of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina , Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina , Chapel Hill, North Carolina
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina
| | - Timothy P Moran
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina , Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
36
|
Felix KM, Jaimez IA, Nguyen TVV, Ma H, Raslan WA, Klinger CN, Doyle KP, Wu HJJ. Gut Microbiota Contributes to Resistance Against Pneumococcal Pneumonia in Immunodeficient Rag -/- Mice. Front Cell Infect Microbiol 2018; 8:118. [PMID: 29755958 PMCID: PMC5932343 DOI: 10.3389/fcimb.2018.00118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae causes infection-related mortality worldwide. Immunocompromised individuals, including young children, the elderly, and those with immunodeficiency, are especially vulnerable, yet little is known regarding S. pneumoniae-related pathogenesis and protection in immunocompromised hosts. Recently, strong interest has emerged in the gut microbiota's impact on lung diseases, or the "gut-lung axis." However, the mechanisms of gut microbiota protection against gut-distal lung diseases like pneumonia remain unclear. We investigated the role of the gut commensal, segmented filamentous bacteria (SFB), against pneumococcal pneumonia in immunocompetent and immunocompromised mouse models. For the latter, we chose the Rag-/- model, with adaptive immune deficiency. Immunocompetent adaptive protection against S. pneumoniae infection is based on antibodies against pneumococcal capsular polysaccharides, prototypical T cell independent-II (TI-II) antigens. Although SFB colonization enhanced TI-II antibodies in C57BL/6 mice, our data suggest that SFB did not further protect these immunocompetent animals. Indeed, basal B cell activity in hosts without SFB is sufficient for essential protection against S. pneumoniae. However, in immunocompromised Rag-/- mice, we demonstrate a gut-lung axis of communication, as SFB influenced lung protection by regulating innate immunity. Neutrophil resolution is crucial to recovery, since an unchecked neutrophil response causes severe tissue damage. We found no early neutrophil recruitment differences between hosts with or without SFB; however, we observed a significant drop in lung neutrophils in the resolution phase of S. pneumoniae infection, which corresponded with lower CD47 expression, a molecule that inhibits phagocytosis of apoptotic cells, in SFB-colonized Rag-/- mice. SFB promoted a shift in lung neutrophil phenotype from inflammatory neutrophils expressing high levels of CD18 and low levels of CD62L, to pro-resolution neutrophils with low CD18 and high CD62L. Blocking CD47 in SFB(-) mice increased pro-resolution neutrophils, suggesting CD47 down-regulation may be one neutrophil-modulating mechanism SFB utilizes. The SFB-induced lung neutrophil phenotype remained similar with heat-inactivated S. pneumoniae treatment, indicating these SFB-induced changes in neutrophil phenotype during the resolution phase are not simply secondary to better bacterial clearance in SFB(+) than SFB(-) mice. Together, these data demonstrate that the gut commensal SFB may provide much-needed protection in immunocompromised hosts in part by promoting neutrophil resolution post lung infection.
Collapse
Affiliation(s)
- Krysta M. Felix
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Ivan A. Jaimez
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Thuy-Vi V. Nguyen
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Heqing Ma
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Walid A. Raslan
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | | | - Kristian P. Doyle
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Hsin-Jung J. Wu
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- Arizona Arthritis Center, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
37
|
Li Z, Wu Y, Chen HP, Zhu C, Dong L, Wang Y, Liu H, Xu X, Zhou J, Wu Y, Li W, Ying S, Shen H, Chen ZH. MTOR Suppresses Environmental Particle-Induced Inflammatory Response in Macrophages. THE JOURNAL OF IMMUNOLOGY 2018; 200:2826-2834. [PMID: 29563176 DOI: 10.4049/jimmunol.1701471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/21/2018] [Indexed: 11/19/2022]
Abstract
Increasing toxicological and epidemiological studies have demonstrated that ambient particulate matter (PM) could cause adverse health effects including inflammation in the lung. Alveolar macrophages represent a major type of innate immune responses to foreign substances. However, the detailed mechanisms of inflammatory responses induced by PM exposure in macrophages are still unclear. We observed that coarse PM treatment rapidly activated mechanistic target of rapamycin (MTOR) in mouse alveolar macrophages in vivo, and in cultured mouse bone marrow-derived macrophages, mouse peritoneal macrophages, and RAW264.7 cells. Pharmacological inhibition or genetic knockdown of MTOR in bone marrow-derived macrophages leads to an amplified cytokine production upon PM exposure, and mice with specific knockdown of MTOR or ras homolog enriched in brain in myeloid cells exhibit significantly aggregated airway inflammation. Mechanistically, PM activated MTOR through modulation of ERK, AKT serine/threonine kinase 1, and tuberous sclerosis complex signals, whereas MTOR deficiency further enhanced the PM-induced necroptosis and activation of subsequent NF κ light-chain-enhancer of activated B cells (NFKB) signaling. Inhibition of necroptosis or NFKB pathways significantly ameliorated PM-induced inflammatory response in MTOR-deficient macrophages. The present study thus demonstrates that MTOR serves as an early adaptive signal that suppresses the PM-induced necroptosis, NFKB activation, and inflammatory response in lung macrophages, and suggests that activation of MTOR or inhibition of necroptosis in macrophages may represent novel therapeutic strategies for PM-related airway disorders.
Collapse
Affiliation(s)
- Zhouyang Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Yinfang Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Hai-Pin Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Chen Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Lingling Dong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Yong Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Huiwen Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Xuchen Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Jiesen Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Yanping Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and .,State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; and
| |
Collapse
|
38
|
Hartl D, Tirouvanziam R, Laval J, Greene CM, Habiel D, Sharma L, Yildirim AÖ, Dela Cruz CS, Hogaboam CM. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. J Innate Immun 2018; 10:487-501. [PMID: 29439264 DOI: 10.1159/000487057] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
The respiratory tract is faced daily with 10,000 L of inhaled air. While the majority of air contains harmless environmental components, the pulmonary immune system also has to cope with harmful microbial or sterile threats and react rapidly to protect the host at this intimate barrier zone. The airways are endowed with a broad armamentarium of cellular and humoral host defense mechanisms, most of which belong to the innate arm of the immune system. The complex interplay between resident and infiltrating immune cells and secreted innate immune proteins shapes the outcome of host-pathogen, host-allergen, and host-particle interactions within the mucosal airway compartment. Here, we summarize and discuss recent findings on pulmonary innate immunity and highlight key pathways relevant for biomarker and therapeutic targeting strategies for acute and chronic diseases of the respiratory tract.
Collapse
Affiliation(s)
- Dominik Hartl
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, .,Roche Pharma Research and Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center Basel, Basel,
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Julie Laval
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - David Habiel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
39
|
Neutrophil Fates in Bronchiectasis and Alpha-1 Antitrypsin Deficiency. Ann Am Thorac Soc 2018; 13 Suppl 2:S123-9. [PMID: 27115946 DOI: 10.1513/annalsats.201512-805kv] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The neutrophil is a powerful cellular defender of the vulnerable interface between the environment and pulmonary tissues. This cell's potent weapons are carefully calibrated in the healthy state to maximize effectiveness in fighting pathogens while minimizing tissue damage and allowing for repair of what damage does occur. The three related chronic airway disorders of cystic fibrosis, non-cystic fibrosis bronchiectasis, and alpha-1 antitrypsin deficiency all demonstrate significant derangements of this homeostatic system that result in their respective pathologies. An important shared feature among them is the inefficient resolution of chronic inflammation that serves as a central means for neutrophil-driven lung damage resulting in disease progression. Examining the commonalities and divergences between these diseases in the light of their immunopathology is informative and may help guide us toward future therapeutics designed to modulate the neutrophil's interplay with the pulmonary environment.
Collapse
|
40
|
Complement and Immunoglobulin Biology Leading to Clinical Translation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Ghio AJ. Particle Exposure and the Historical Loss of Native American Lives to Infections. Am J Respir Crit Care Med 2017; 195:1673. [PMID: 28617079 DOI: 10.1164/rccm.201609-1810le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrew J Ghio
- 1 Environmental Protection Agency Research Triangle Park, North Carolina
| |
Collapse
|
42
|
Itzek A, Chen Z, Merritt J, Kreth J. Effect of salivary agglutination on oral streptococcal clearance by human polymorphonuclear neutrophil granulocytes. Mol Oral Microbiol 2017; 32:197-210. [PMID: 27194631 PMCID: PMC5116291 DOI: 10.1111/omi.12164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/20/2022]
Abstract
Salivary agglutination is an important host defense mechanism to aggregate oral commensal bacteria as well as invading pathogens. Saliva flow and subsequent swallowing more easily clear aggregated bacteria compared with single cells. Phagocytic clearance of bacteria through polymorphonuclear neutrophil granulocytes also seems to increase to a certain extent with the size of bacterial aggregates. To determine a connection between salivary agglutination and the host innate immune response by phagocytosis, an in vitro agglutination assay was developed reproducing the average size of salivary bacterial aggregates. Using the oral commensal Streptococcus gordonii as a model organism, the effect of salivary agglutination on phagocytic clearance through polymorphonuclear neutrophil granulocytes was investigated. Here we describe how salivary aggregates of S. gordonii are readily cleared through phagocytosis, whereas single bacterial cells showed a significant delay in being phagocytosed and killed. Furthermore, before phagocytosis the polymorphonuclear neutrophil granulocytes were able to induce a specific de-aggregation, which was dependent on serine protease activity. The data presented suggest that salivary agglutination of bacterial cells leads to an ideal size for recognition by polymorphonuclear neutrophil granulocytes. As a first line of defense, these phagocytic cells are able to recognize the aggregates and de-aggregate them via serine proteases to a more manageable size for efficient phagocytosis and subsequent killing in the phagolysosome. This observed mechanism not only prevents the rapid spreading of oral bacterial cells while entering the bloodstream but would also avoid degranulation of involved polymorphonuclear neutrophil granulocytes, so preventing collateral damage to nearby tissue.
Collapse
Affiliation(s)
- Andreas Itzek
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zhiyun Chen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
43
|
Moser EK, Field NS, Oliver PM. Aberrant Th2 inflammation drives dysfunction of alveolar macrophages and susceptibility to bacterial pneumonia. Cell Mol Immunol 2017; 15:480-492. [PMID: 28260794 DOI: 10.1038/cmi.2016.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 12/28/2022] Open
Abstract
The ubiquitin ligase, Itch, is required to prevent autoinflammatory disease in mice and humans. Itch-deficient mice develop lethal pulmonary inflammation characterized by the production of Th2 cytokines (for example, interleukin-4 (IL-4)); however, the contribution of Itch to immune defense against respiratory pathogens has not been determined. We found that Itch-deficient mice were highly susceptible to intranasal infection with the respiratory pathogen Klebsiella pneumoniae. Infected Itch-deficient mice exhibited increased immune cell infiltration, cytokine levels and bacterial burden in the respiratory tract compared with control mice. However, numbers of resident alveolar macrophages were reduced in the lungs from Itch-deficient mice both before and after infection. High levels of Th2 cytokines in the respiratory tract correlated with deceased alveolar macrophages, and genetic ablation of IL-4 restored alveolar macrophages and host defense to K. pneumoniae in Itch-deficient mice, suggesting that loss of alveolar macrophages occurred as a consequence of Th2 inflammation. Adoptive transfer of Itch-/- CD4+ T cells into Rag-/- mice was sufficient to drive reduction in numbers of Itch-replete alveolar macrophages. Finally, we found that Stat6 signaling downstream of the IL-4 receptor directly reduced fitness of alveolar macrophages when these cells were exposed to the Itch-/- inflamed respiratory tract. These data suggest that Th2 inflammation directly impairs alveolar macrophage fitness in Itch-/- mice, and elucidate a previously unappreciated link between Th2 cells, alveolar macrophages and susceptibility to bacterial infection.
Collapse
Affiliation(s)
- Emily K Moser
- Cell Pathology Division, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA.
| | - Natania S Field
- Cell and Molecular Biology Program, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Paula M Oliver
- Cell Pathology Division, Children's Hospital of Philadelphia, 19104, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| |
Collapse
|
44
|
Bolling AK, Solhaug A, Morisbak E, Holme JA, Samuelsen JT. The dental monomer hydroxyethyl methacrylate (HEMA) counteracts lipopolysaccharide-induced IL-1β release-Possible role of glutathione. Toxicol Lett 2017; 270:25-33. [PMID: 28188892 DOI: 10.1016/j.toxlet.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
Methacrylate monomers, like 2-hydroxyethyl methacrylate (HEMA), are common components of resin based dental materials. Leakage of unpolymerized monomers after placement and curing leads to human exposure. HEMA is known to inhibit lipopolysaccharide (LPS) induced cytokine release. In this study we explore a possible role of the antioxidant glutathione (GSH) in this effect. In the RAW 264.7 murine macrophage cell line, HEMA (<2mM) did not induce cell death, but reduced cellular GSH levels, increased cellular ROS and decreased the IL-1β release from LPS-stimulated cells. Moreover, the IL-1β mRNA levels were reduced after 3-6h exposure, suggesting transcriptional effects of HEMA. The GSH modulators butylsulfoximine (BSO; inhibitor of GSH synthesis) and 2-oxothiazolidine-4-carboxylate (OTC; Cysteine precursor) caused a decrease and increase in the LPS-induced IL-1β release, respectively, suggesting a role for GSH in negative regulation of LPS-induced IL-1β release. However, the magnitude and dynamics of the effects of HEMA and BSO on LPS-induced IL-1β release and GSH depletion differed considerably. Thus, GSH depletion alone could not explain the strong attenuation of LPS-induced IL-1β release caused by HEMA. Formation of HEMA-protein conjugates due to the thiol reactivity of HEMA emerges as a likely candidate for the molecular mechanism accounting for this effect.
Collapse
Affiliation(s)
- Anette Kocbach Bolling
- Nordic Institute of Dental Materials, Sognsveien 70A, N-0855 Oslo, Norway; Norwegian Institute of Public Health, Domain of Infection Control and Environmental Health, P.O. Box 4404, N-0403 Oslo, Norway.
| | - Anita Solhaug
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Else Morisbak
- Nordic Institute of Dental Materials, Sognsveien 70A, N-0855 Oslo, Norway
| | - Jørn A Holme
- Norwegian Institute of Public Health, Domain of Infection Control and Environmental Health, P.O. Box 4404, N-0403 Oslo, Norway
| | - Jan Tore Samuelsen
- Nordic Institute of Dental Materials, Sognsveien 70A, N-0855 Oslo, Norway
| |
Collapse
|
45
|
Parumasivam T, Chang RYK, Abdelghany S, Ye TT, Britton WJ, Chan HK. Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev 2016; 102:83-101. [PMID: 27212477 DOI: 10.1016/j.addr.2016.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB) is an intracellular infectious disease caused by the airborne bacterium, Mycobacterium tuberculosis. Despite considerable research efforts, the treatment of TB continues to be a great challenge in part due to the requirement of prolonged therapy with multiple high-dose drugs and associated side effects. The delivery of pharmacological agents directly to the respiratory system, following the natural route of infection, represents a logical therapeutic approach for treatment or vaccination against TB. Pulmonary delivery is non-invasive, avoids first-pass metabolism in the liver and enables targeting of therapeutic agents to the infection site. Inhaled delivery also potentially reduces the dose requirement and the accompanying side effects. Dry powder is a stable formulation of drug that can be stored without refrigeration compared to liquids and suspensions. The dry powder inhalers are easy to use and suitable for high-dose formulations. This review focuses on the current innovations of inhalable dry powder formulations of drug and vaccine delivery for TB, including the powder production method, preclinical and clinical evaluations of inhaled dry powder over the last decade. Finally, the risks associated with pulmonary therapy are addressed. A novel dry powder formulation with high percentages of respirable particles coupled with a cost effective inhaler device is an appealing platform for TB drug delivery.
Collapse
Affiliation(s)
- Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Sharif Abdelghany
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Jordan, Amman 1192, Jordan
| | - Tian Tian Ye
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Warwick John Britton
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, NSW 2006, Australia; Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
46
|
Abstract
Ventilator-associated pneumonia is the most frequent intensive care unit (ICU)-related infection in patients requiring mechanical ventilation. In contrast to other ICU-related infections, which have a low mortality rate, the mortality rate for ventilator-associated pneumonia ranges from 20% to 50%. These clinically significant infections prolong duration of mechanical ventilation and ICU length of stay, underscoring the financial burden these infections impose on the health care system. The causes of ventilator-associated pneumonia are varied and differ across different patient populations and different types of ICUs. This varied presentation underscores the need for the intensivist treating the patient with ventilator-associated pneumonia to have a clear knowledge of the ambient microbiologic flora in their ICU. Prevention of this disease process is of paramount importance and requires a multifaceted approach. Once a diagnosis of ventilator-associated pneumonia is suspected, early broad-spectrum antibiotic administration decreases morbidity and mortality and should be based on knowledge of the sensitivities of common infecting organisms in the ICU. De-escalation of therapy, once final culture results are available, is necessary to minimize development of resistant pathogens. Duration of therapy should be based on the patient’s clinical response, and every effort should be made to minimize duration of therapy, thus further minimizing the risk of resistance.
Collapse
Affiliation(s)
- Kimberly A Davis
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, Loyola University Medical Center, Maywood, IL, USA.
| |
Collapse
|
47
|
Meng K, Wu B, Gao J, Cai Y, Yao M, Wei L, Chai T. Immunity-Related Protein Expression and Pathological Lung Damage in Mice Poststimulation with Ambient Particulate Matter from Live Bird Markets. Front Immunol 2016; 7:252. [PMID: 27446082 PMCID: PMC4921493 DOI: 10.3389/fimmu.2016.00252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/13/2016] [Indexed: 12/02/2022] Open
Abstract
The objective of this study was to obtain insight into the adverse health effects of airborne particulate matter (PM) collected from live bird markets and to determine whether biological material in PM accounts for immune-related inflammatory response. Mice were exposed to a single or repeated dose of PM, after which the expression of toll-like receptors (TLRs), cytokines, and chemokines in the lungs of infected mice were examined by enzyme-linked immunosorbent assay and histopathological analysis. Results after single and repeated PM stimulation with PM2.5+,PM2.5−,PM10+, and PM10− indicated that TLR2 and TLR4 played a dominant role in the inflammatory responses of the lung. Further analysis demonstrated that the expression levels of IL-1β, TNF-α, IFN-γ, IL-8, IP-10, and MCP-1 increased significantly, which could eventually contribute to lung injury. Moreover, biological components in PM were critical in mediating immune-related inflammatory responses and should therefore not be overlooked.
Collapse
Affiliation(s)
- Kai Meng
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases, Taishan Medical College, Tai'an, China
| | - Bo Wu
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Veterinary Medicine, Shandong Agricultural University , Tai'an , China
| | - Jing Gao
- Taian Central Hospital , Tai'an , China
| | - Yumei Cai
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Veterinary Medicine, Shandong Agricultural University , Tai'an , China
| | - Meiling Yao
- Zaozhuang Vocational College , Shandong , China
| | - Liangmeng Wei
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases, Taishan Medical College, Tai'an, China
| | - Tongjie Chai
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases, Taishan Medical College, Tai'an, China
| |
Collapse
|
48
|
Youssef SA, Clark ME, Caswell JL. Effect of Bovine Granulocyte Colony-Stimulating Factor on the Development of Pneumonia Caused by Mannheimia haemolytica. Vet Pathol 2016; 41:649-57. [PMID: 15557073 DOI: 10.1354/vp.41-6-649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of recruited neutrophils in Mannheimia haemolytica infection is controversial. We hypothesized that the neutrophilia induced by recombinant bovine granulocyte colony-stimulating factor (GCSF) would lead to rapid bacterial clearance and less severe lesions after infection with M. haemolytica. Two experiments (A and B) were conducted in which four calves per experiment were treated daily with 5 μg/kg GCSF and four calves per experiment were treated with saline. All 16 calves were challenged with 5 × 109 colony-forming units (cfu)/ml (experiment A) or 4.5 × 108 cfu/ml (experiment B) of M. haemolytica bacteria, into the right bronchus by bronchoscope-placed catheter. The mean maximal blood neutrophil counts in non-GCSF-treated and GCSF-treated calves before bacterial challenge were 5.6 ± 0.7 × 109/liter and 25.4 ± 2.7 × 109/liter, respectively. Two untreated calves became neutropenic and were euthanatized 2 days after infection because of severe respiratory distress. GCSF-treated calves had a 37% reduction in lung lesions compared with nontreated calves, and this difference was significant ( P = 0.04) when the effect of previous antibody titre to leukotoxin was considered. The effect of GCSF treatment on the severity of clinical signs seemed to be influenced by the antibody titre to M. haemolytica leukotoxin, although this effect could not be conclusively addressed. In conclusion, GCSF induced neutrophilia and partially protected calves against experimental infection with M. haemolytica. These results imply that increased numbers of neutrophils may, under some circumstances, protect against severe pneumonia caused by M. haemolytica.
Collapse
Affiliation(s)
- S A Youssef
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W, Canada
| | | | | |
Collapse
|
49
|
Abstract
Klebsiella pneumoniae causes a wide range of infections, including pneumonias, urinary tract infections, bacteremias, and liver abscesses. Historically, K. pneumoniae has caused serious infection primarily in immunocompromised individuals, but the recent emergence and spread of hypervirulent strains have broadened the number of people susceptible to infections to include those who are healthy and immunosufficient. Furthermore, K. pneumoniae strains have become increasingly resistant to antibiotics, rendering infection by these strains very challenging to treat. The emergence of hypervirulent and antibiotic-resistant strains has driven a number of recent studies. Work has described the worldwide spread of one drug-resistant strain and a host defense axis, interleukin-17 (IL-17), that is important for controlling infection. Four factors, capsule, lipopolysaccharide, fimbriae, and siderophores, have been well studied and are important for virulence in at least one infection model. Several other factors have been less well characterized but are also important in at least one infection model. However, there is a significant amount of heterogeneity in K. pneumoniae strains, and not every factor plays the same critical role in all virulent Klebsiella strains. Recent studies have identified additional K. pneumoniae virulence factors and led to more insights about factors important for the growth of this pathogen at a variety of tissue sites. Many of these genes encode proteins that function in metabolism and the regulation of transcription. However, much work is left to be done in characterizing these newly discovered factors, understanding how infections differ between healthy and immunocompromised patients, and identifying attractive bacterial or host targets for treating these infections.
Collapse
|
50
|
A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces. PLoS One 2016; 11:e0156341. [PMID: 27227828 PMCID: PMC4881956 DOI: 10.1371/journal.pone.0156341] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allows several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. We anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.
Collapse
|