1
|
Khademnematolahi S, Ponist S, Svik K, Drafi F, Slovak L, Muchova J, Mindang EL, Ahmad W, Bauerova K. Therapeutic Effects of Two Different Molecular Weights of Orally Administered Hyaluronan, Both as Monotherapy and in Combination with Methotrexate in a Rat Model of Arthritis. Int J Mol Sci 2025; 26:3958. [PMID: 40362197 PMCID: PMC12071860 DOI: 10.3390/ijms26093958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/02/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation and systemic involvement. This study investigates the therapeutic potential of oral hyaluronan (HA) with different molecular weights (SHA: 0.99 MDa and VHA: 1.73 MDa) as monotherapy and in combination with methotrexate (MTX) in a preclinical adjuvant arthritis (AA) model in Lewis rats. The aim was to evaluate the impact of these treatments on biometric, inflammatory, and oxidative stress parameters. The preliminary study tested two doses of HA (0.5 mg/kg and 5 mg/kg), and the pivotal study focused on the combination of 0.5 mg/kg HA with 0.3 mg/kg MTX. Based on our experimental findings on combined therapy, the MTX + SHA combination demonstrated superior efficacy compared to MTX + VHA and MTX monotherapy. Specifically, the MTX + SHA regimen significantly promoted weight gain and reduced hind-paw volume in all monitored experimental days. This treatment markedly reduced plasmatic IL-17A levels (day 21) and GGT activity in both the spleen and joints (day 28), showing the most pronounced effects among all groups, including the MTX monotherapy group. The MTX + VHA combination showed a therapeutic response comparable to MTX alone, indicating no additional benefit. These findings suggest a superior efficacy of the MTX + SHA combination in comparison to other studied treatments. The overall efficacy can be ranked as: MTX ≈ MTX + VHA < MTX + SHA.
Collapse
Affiliation(s)
- Sasan Khademnematolahi
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovakia; (S.K.); (S.P.); (K.S.); (F.D.); (W.A.)
- Faculty of Natural Sciences, Comenius University, 814 99 Bratislava, Slovakia
| | - Silvester Ponist
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovakia; (S.K.); (S.P.); (K.S.); (F.D.); (W.A.)
| | - Karol Svik
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovakia; (S.K.); (S.P.); (K.S.); (F.D.); (W.A.)
| | - Frantisek Drafi
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovakia; (S.K.); (S.P.); (K.S.); (F.D.); (W.A.)
| | - Lukas Slovak
- State Institute for Drug Control, 825 08 Bratislava, Slovakia;
| | - Jana Muchova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Elisabeth Louise Mindang
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaoundé P.O. Box 337, Cameroon;
| | - Waqar Ahmad
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovakia; (S.K.); (S.P.); (K.S.); (F.D.); (W.A.)
- Faculty of Natural Sciences, Comenius University, 814 99 Bratislava, Slovakia
| | - Katarina Bauerova
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovakia; (S.K.); (S.P.); (K.S.); (F.D.); (W.A.)
| |
Collapse
|
2
|
Ritter J, Menger M, Herath SC, Histing T, Kolbenschlag J, Daigeler A, Heinzel JC, Prahm C. Translational evaluation of gait behavior in rodent models of arthritic disorders with the CatWalk device - a narrative review. Front Med (Lausanne) 2023; 10:1255215. [PMID: 37869169 PMCID: PMC10587608 DOI: 10.3389/fmed.2023.1255215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Arthritic disorders have become one of the main contributors to the global burden of disease. Today, they are one of the leading causes of chronic pain and disability worldwide. Current therapies are incapable of treating pain sufficiently and preventing disease progression. The lack of understanding basic mechanisms underlying the initiation, maintenance and progression of arthritic disorders and related symptoms represent the major obstacle in the search for adequate treatments. For a long time, histological evaluation of joint pathology was the predominant outcome parameter in preclinical arthritis models. Nevertheless, quantification of pain and functional limitations analogs to arthritis related symptoms in humans is essential to enable bench to bedside translation and to evaluate the effectiveness of new treatment strategies. As the experience of pain and functional deficits are often associated with altered gait behavior, in the last decades, automated gait analysis has become a well-established tool for the quantitative evaluation of the sequalae of arthritic disorders in animal models. The purpose of this review is to provide a detailed overview on the current literature on the use of the CatWalk gait analysis system in rodent models of arthritic disorders, e.g., Osteoarthritis, Monoarthritis and Rheumatoid Arthritis. Special focus is put on the assessment and monitoring of pain-related behavior during the course of the disease. The capability of evaluating the effect of distinct treatment strategies and the future potential for the application of the CatWalk in rodent models of arthritic disorders is also addressed in this review. Finally, we discuss important consideration and provide recommendations on the use of the CatWalk in preclinical models of arthritic diseases.
Collapse
Affiliation(s)
- Jana Ritter
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Maximilian Menger
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Johannes C Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Li T, Liu X, Han P, Aimaier A, Zhang Y, Li J. Syringaldehyde ameliorates mouse arthritis by inhibiting dendritic cell maturation and proinflammatory cytokine secretion. Int Immunopharmacol 2023; 121:110490. [PMID: 37339567 DOI: 10.1016/j.intimp.2023.110490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
Syringaldehyde (SD), a kind of flavonoid polyphenolic small molecule compound, has the antioxidant and anti-inflammatory properties. But it is unknown whether SD has properties on the treatment of rheumatoid arthritis (RA) by modulating dendritic cells (DCs). We explored the effect of SD on the maturation of DCs in vitro and in vivo. The results showed that SD significantly down-regulated the expression of CD86, CD40 and MHC II, decreased the secretion of TNF-α, IL-6, IL-12p40 and IL-23, and increased IL-10 secretion and antigen phagocytosis in vitro induced by lipopolysaccharides in a dose-dependent manner through reducing the activation of MAPK/NF-κB signaling pathways. SD also significantly inhibited the expression of CD86, CD40 and MHC II on DCs in vivo. Moreover, SD suppressed the expression of CCR7 and the in vivo migration of DCs. In arthritis mouse models induced by λ-carrageenan and complete Freund's adjuvant, SD significantly alleviated paw and joint oedema, reduced the levels of pro-inflammatory cytokines TNF-α and IL-6 and increased the level of IL-10 in serum. Interestingly, SD significantly decreased the numbers of type I helper T cells (Th1), Th2, Th17 and Th17/Th1-like (CD4+IFN-γ+IL-17A+), but increased the numbers of regulatory T cells (Tregs) in spleens of mice. Importantly, the numbers of CD11c+IL-23+ and CD11c+IL-6+ cells were negatively correlated with the numbers of Th17 and Th17/Th1-like. These results suggested that SD ameliorated mouse arthritis through inhibiting the differentiation of Th1, Th17 and Th17/Th1-like and promoting the generation of Tregs via regulation of DC maturation.
Collapse
Affiliation(s)
- Teng Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Alimu Aimaier
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yaosheng Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
4
|
Wang S, Zhou Y, Huang J, Li H, Pang H, Niu D, Li G, Wang F, Zhou Z, Liu Z. Advances in experimental models of rheumatoid arthritis. Eur J Immunol 2023; 53:e2249962. [PMID: 36330559 DOI: 10.1002/eji.202249962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/16/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by persistent articular inflammation and joint damage. RA was first described over 200 years ago; however, its etiology and pathophysiology remain insufficiently understood. The current treatment of RA is mainly empirical or based on the current understanding of etiology with limited efficacy and/or substantial side effects. Thus, the development of safer and more potent therapeutics, validated and optimized in experimental models, is urgently required. To improve the transition from bench to bedside, researchers must carefully select the appropriate experimental models as well as draw the right conclusions. Here, we summarize the establishment, pathological features, potential mechanisms, advantages, and limitations of the currently available RA models. The aim of the review is to help researchers better understand available RA models; discuss future trends in RA model development, which can help highlight new translational and human-based avenues in RA research.
Collapse
Affiliation(s)
- Siwei Wang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Yanhua Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Jiangrong Huang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huilin Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huidan Pang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Dandan Niu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Guangyao Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Fei Wang
- Department of Experiment and Training, Hubei College of Chinese Medicine, Hubei Province, China
| | - Zushan Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Zhenzhen Liu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
5
|
High-Throughput Metabolomics Integrated Network Pharmacology Reveals the Underlying Mechanism of Paeoniae Radix Alba Treating Rheumatoid Arthritis. Molecules 2022; 27:molecules27207014. [PMID: 36296605 PMCID: PMC9609690 DOI: 10.3390/molecules27207014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: The mechanism of action and potential targets of Paeoniae RadixAlba (Baishao, B) in the treatment of adjuvant-induced arthritis (AIA) rats are explained using metabolomics and network pharmacology techniques, and the research evidence for the development of anti-rheumatoid arthritis (RA) drugs is enriched. Methods: The rats were injected with Freund’s complete adjuvant (CFA) to induce arthritis. We then measured the general physical characteristics, examined their X-rays and histopathology to evaluate the pathological condition of the inflammation models, and conducted metabolomics studies on the change in urine metabolism caused by CFA. The lyophilized powder of B at a dose of 2.16 g/kg was orally administered to the rats continuously for 28 days, and the therapeutic effect was evaluated. Network pharmacology prediction shows that B contains the target action of the ingredient, and the simulation of the target molecular docking, in combination with the metabolomics analysis results, shows that B has a potential role in the treatment of AIA rats. Results: B can reduce the paw swelling and pathological changes in rats caused by CFA, reverse the levels of 12 urine biomarkers, and regulate histidine metabolism, phenylalanine metabolism, arginine, proline metabolism, pyrimidine metabolism, etc. The prediction of the active ingredient target in B indicates that it may act as an inflammatory signaling pathway in anti-RA, among them being paeoniflorin, palbinone, beta-sitosterol, kaempferol, and catechin, which are the significant active ingredients. Conclusion: The metabolomics results revealed the markers and metabolic mechanisms of urinary metabolic disorders in rats with AIA, demonstrated the efficacy of the therapeutic effect of B, and identified the key ingredients in B, providing theoretical support for the subsequent development and utilization of B.
Collapse
|
6
|
Zhao T, Xie Z, Xi Y, Liu L, Li Z, Qin D. How to Model Rheumatoid Arthritis in Animals: From Rodents to Non-Human Primates. Front Immunol 2022; 13:887460. [PMID: 35693791 PMCID: PMC9174425 DOI: 10.3389/fimmu.2022.887460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by both genetic and environmental factors. At present, rodent models are primarily used to study the pathogenesis and treatment of RA. However, the genetic divergences between rodents and humans determine differences in the development of RA, which makes it necessary to explore the establishment of new models. Compared to rodents, non-human primates (NHPs) are much more closely related to humans in terms of the immune system, metabolic conditions, and genetic make-up. NHPs model provides a powerful tool to study the development of RA and potential complications, as well as preclinical studies in drug development. This review provides a brief overview of the RA animal models, emphasizes the replication methods, pros and cons, as well as evaluates the validity of the rodent and NHPs models.
Collapse
Affiliation(s)
- Ting Zhao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yujiang Xi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Li Liu
- Ge Jiu People’s Hospital, Yunnan Honghe Prefecture Central Hospital, Gejiu, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
7
|
Ma X, Guo Z, Li Y, Yang K, Li X, Liu Y, Shen Z, Zhao L, Zhang Z. Phytochemical Constituents of Propolis Flavonoid, Immunological Enhancement, and Anti-porcine Parvovirus Activities Isolated From Propolis. Front Vet Sci 2022; 9:857183. [PMID: 35464376 PMCID: PMC9024060 DOI: 10.3389/fvets.2022.857183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 12/01/2022] Open
Abstract
Propolis is widely used in health preservation and disease healing; it contains many ingredients. The previous study had revealed that the ethanolic or water extracts of propolis have a wide range of efficacy, such as antiviral, immune enhancement, anti-inflammatory, and so on, but its antiviral components and underlying mechanism of action remain unknown. In this study, we investigated the chemical composition, anti-porcine parvovirus (PPV) effectiveness, and immunological enhancement of propolis flavone ethanolic extracts. The chemical composition of propolis flavone was distinguished by ultra-performance liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry analysis. In this study, the presence and characterization of 26 major components were distinguished in negative ionization modes to evaluate the effects of propolis flavonoid used as an adjuvant on the immune response of Landrace–Yorkshire hybrid sows immunized with an inactivated vaccine of PPV. Thirty Landrace-Yorkshire hybrid sows were randomly assigned to one of three groups, and the sows in the adjuvant groups were intramuscularly injected with PPV vaccine with a 2.0-ml propolis flavonoid adjuvant (PA) and oil emulsion adjuvant. After that, serum hemagglutination inhibition antibody titers and specific immunoglobulin (Ig)M and IgG subclasses were measured to evaluate the adjuvant effects of propolis flavonoid on the humoral immune responses, as well as peripheral lymphocyte proliferation activity and serum concentrations of Th1 and Th2 cytokines for cellular immunity. Results indicated an enhancing effect of PA on IgM, interleukins 2 and 4, interferon-γ, and IgG subclass responses. Especially in the effect of improving cellular immune response, the PA was the best. These findings suggested that PA can significantly enhance the immune responses against the PPV vaccine and could be an alternative way to improve PPV vaccination in sows. Furthermore, we screened the PF chemical components to the effectiveness of anti-PPV. Ferulic acid has an excellent anti-PPV effect.
Collapse
Affiliation(s)
- Xia Ma
- Medicinal Engineering Department, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Zhengzhou Key Laboratory of Veterinary Immunopharmacology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Research Center for Inheritance and Innovation Technology of Classical and Prescriptions of Chinese Veterinary, Zhengzhou, China
- *Correspondence: Xia Ma
| | - ZhenHuan Guo
- Medicinal Engineering Department, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Zhengzhou Key Laboratory of Veterinary Immunopharmacology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Research Center for Inheritance and Innovation Technology of Classical and Prescriptions of Chinese Veterinary, Zhengzhou, China
| | - Yana Li
- Zhengzhou Key Laboratory of Veterinary Immunopharmacology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Research Center for Inheritance and Innovation Technology of Classical and Prescriptions of Chinese Veterinary, Zhengzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Kun Yang
- Medicinal Engineering Department, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Zhengzhou Key Laboratory of Veterinary Immunopharmacology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Research Center for Inheritance and Innovation Technology of Classical and Prescriptions of Chinese Veterinary, Zhengzhou, China
| | - Xianghui Li
- Medicinal Engineering Department, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Zhengzhou Key Laboratory of Veterinary Immunopharmacology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Research Center for Inheritance and Innovation Technology of Classical and Prescriptions of Chinese Veterinary, Zhengzhou, China
| | - Yonglu Liu
- Medicinal Engineering Department, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Zhengzhou Key Laboratory of Veterinary Immunopharmacology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Research Center for Inheritance and Innovation Technology of Classical and Prescriptions of Chinese Veterinary, Zhengzhou, China
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, China
| | - Li Zhao
- Medicinal Engineering Department, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Zhengzhou Key Laboratory of Veterinary Immunopharmacology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Research Center for Inheritance and Innovation Technology of Classical and Prescriptions of Chinese Veterinary, Zhengzhou, China
| | - Zhiqiang Zhang
- Zhengzhou Key Laboratory of Veterinary Immunopharmacology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Henan Research Center for Inheritance and Innovation Technology of Classical and Prescriptions of Chinese Veterinary, Zhengzhou, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Zhiqiang Zhang
| |
Collapse
|
8
|
Dionne CE, Laurin D, Desrosiers T, Abdous B, Sage NL, Frenette J, Mondor M. THE ASSOCIATION BETWEEN SELF-REPORTED CIGARETTE SMOKING AND SPINAL PAIN IS NOT EXPLAINED BY SERUM COTININE LEVELS. Ann Epidemiol 2021; 67:35-42. [PMID: 34906634 DOI: 10.1016/j.annepidem.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE The aim of this study was to check if self-reported smoking is still associated with back pain above and beyond its association with cotinine, to test the hypothesis that the association of self-reported cigarette smoking with back pain is due to residual confounding. METHODS Secondary analyses of population-based cross-sectional data pertaining to 4,470 adults were conducted. In multivariate analyses examining the associations of self-reported smoking with several spinal pain outcomes (neck pain, low back pain, low back pain with pain below knee, self-reported diagnosis of arthritis/rheumatism, and related limitations), further adjustment for serum cotinine concentrations was made. RESULTS Self-reported cigarette smoking was associated with neck pain (adjusted Odds Ratio (aOR) Regular smokers vs Non-smokers: 1.44; 95% Confidence Interval (CI): 1.14-1.82), low back pain (aOR: 1.48; 95% CI: 1.24-1.78), low back pain with pain below knee (aOR: 1.98; 95% CI: 1.42-2.76), as well as arthritis/rheumatism (aOR: 1.33; 95% CI: 1.03-1.71), and related functional limitations (p<0.05). Further adjustment for serum cotinine concentrations brought about little change in the ORs or beta coefficients. CONCLUSIONS These results do not support the hypothesis that serum cotinine concentrations explain the well-known relationship between cigarette smoking and spinal pain.
Collapse
Affiliation(s)
- Clermont E Dionne
- Centre de recherche CHU de Québec-Université Laval, Quebec City (QC), CANADA; Centre of Excellence on Aging (CEVQ), Quebec City (QC), CANADA; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City (QC), CANADA; VITAM - Centre de recherche en santé durable, Quebec City (QC), CANADA; Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Quebec City (QC), CANADA.
| | - Danielle Laurin
- Centre de recherche CHU de Québec-Université Laval, Quebec City (QC), CANADA; Centre of Excellence on Aging (CEVQ), Quebec City (QC), CANADA; VITAM - Centre de recherche en santé durable, Quebec City (QC), CANADA; Faculty of Pharmacy, Université Laval, Quebec City (QC), CANADA
| | | | - Belkacem Abdous
- Centre de recherche CHU de Québec-Université Laval, Quebec City (QC), CANADA; Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Quebec City (QC), CANADA
| | - Natalie Le Sage
- VITAM - Centre de recherche en santé durable, Quebec City (QC), CANADA; Department of Family Medicine and Emergency Medicine, Université Laval, Quebec City (QC), CANADA
| | - Jérôme Frenette
- Centre de recherche CHU de Québec-Université Laval, Quebec City (QC), CANADA; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City (QC), CANADA
| | - Myrto Mondor
- Centre de recherche CHU de Québec-Université Laval, Quebec City (QC), CANADA
| |
Collapse
|
9
|
Greener Synthesis of Pristane by Flow Dehydrative Hydrogenation of Allylic Alcohol Using a Packed-Bed Reactor Charged by Pd/C as a Single Catalyst. Molecules 2021; 26:molecules26195845. [PMID: 34641390 PMCID: PMC8510359 DOI: 10.3390/molecules26195845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Abstract
Our previous work established a continuous-flow synthesis of pristane, which is a saturated branched alkane obtained from a Basking Shark. The dehydration of an allylic alcohol that is the key to a tetraene was carried out using a packed-bed reactor charged by an acid–silica catalyst (HO-SAS) and flow hydrogenation using molecular hydrogen via a Pd/C catalyst followed. The present work relies on the additional propensity of Pd/C to serve as an acid catalyst, which allows us to perform a flow synthesis of pristane from the aforementioned key allylic alcohol in the presence of molecular hydrogen using Pd/C as a single catalyst, which is applied to both dehydration and hydrogenation. The present one-column-two-reaction-flow system could eliminate the use of an acid catalyst such as HO-SAS and lead to a significant simplification of the production process.
Collapse
|
10
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
11
|
Li X, Gao F, Zhu W, Jiang C, Xu J, Zhang J, Meng L, Lu S. Pristane promotes anaerobic glycolysis to facilitate proinflammatory activation of macrophages and development of arthritis. Exp Cell Res 2020; 398:112404. [PMID: 33245891 DOI: 10.1016/j.yexcr.2020.112404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022]
Abstract
Pristane-induced arthritis (PIA) could be adoptively transferred by splenic T cells in rats, and innate immunity should play critical roles in T cell activation. However, in pre-clinical stage, the activation mechanism of innate cells like macrophages remains unclear. Here we found that PIA was dependent on macrophages since cell depletion alleviated disease severity. Splenic macrophages of PIA rats showed M1 phenotypic shifting. The quantitative proteomics analysis suggested that macrophages initiated metabolic reprogramming with the conversion of aerobic oxidation to glycolysis in response to pristane in vivo. Notably, macrophages treated with pristane showed mitochondrial dysregulation and increased glycolysis flux and enzyme activity. Additionally, TNFα production, strongly associating with the glycolysis enzyme Ldha/Ldhb, could be reduced as glycolysis was inhibited or be enhanced as citrate cycle was blocked. This work provides detailed insights into the molecular mechanisms of pristane-mediated metabolic reprogramming in macrophages and suggests a new therapeutic strategy for arthritic disorders.
Collapse
Affiliation(s)
- Xiaowei Li
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi, 710061, China; National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Fengjie Gao
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi, 710061, China; Yangling Demonstration Zone Hospital, Xianyang, Shaanxi, 712100, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Congshan Jiang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Jing Xu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Jing Zhang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi, 710061, China; National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi, 710061, China; National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, West Yanta Road No.76, Xi'an, Shaanxi, 710061, China; National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Damerau A, Gaber T. Modeling Rheumatoid Arthritis In Vitro: From Experimental Feasibility to Physiological Proximity. Int J Mol Sci 2020; 21:ijms21217916. [PMID: 33113770 PMCID: PMC7663779 DOI: 10.3390/ijms21217916] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, and systemic autoimmune disease that affects the connective tissue and primarily the joints. If not treated, RA ultimately leads to progressive cartilage and bone degeneration. The etiology of the pathogenesis of RA is unknown, demonstrating heterogeneity in its clinical presentation, and is associated with autoantibodies directed against modified self-epitopes. Although many models already exist for RA for preclinical research, many current model systems of arthritis have limited predictive value because they are either based on animals of phylogenetically distant origin or suffer from overly simplified in vitro culture conditions. These limitations pose considerable challenges for preclinical research and therefore clinical translation. Thus, a sophisticated experimental human-based in vitro approach mimicking RA is essential to (i) investigate key mechanisms in the pathogenesis of human RA, (ii) identify targets for new therapeutic approaches, (iii) test these approaches, (iv) facilitate the clinical transferability of results, and (v) reduce the use of laboratory animals. Here, we summarize the most commonly used in vitro models of RA and discuss their experimental feasibility and physiological proximity to the pathophysiology of human RA to highlight new human-based avenues in RA research to increase our knowledge on human pathophysiology and develop effective targeted therapies.
Collapse
Affiliation(s)
- Alexandra Damerau
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Timo Gaber
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
13
|
Tanner MR, Huq R, Sikkema WKA, Nilewski LG, Yosef N, Schmitt C, Flores-Suarez CP, Raugh A, Laragione T, Gulko PS, Tour JM, Beeton C. Antioxidant Carbon Nanoparticles Inhibit Fibroblast-Like Synoviocyte Invasiveness and Reduce Disease Severity in a Rat Model of Rheumatoid Arthritis. Antioxidants (Basel) 2020; 9:E1005. [PMID: 33081234 PMCID: PMC7602875 DOI: 10.3390/antiox9101005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species have been involved in the pathogenesis of rheumatoid arthritis (RA). Our goal was to determine the effects of selectively scavenging superoxide (O2•-) and hydroxyl radicals with antioxidant nanoparticles, called poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), on the pathogenic functions of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and on the progression of an animal model of RA. We used human FLS from patients with RA to determine PEG-HCC internalization and effects on FLS cytotoxicity, invasiveness, proliferation, and production of proteases. We used the pristane-induced arthritis (PIA) rat model of RA to assess the benefits of PEG-HCCs on reducing disease severity. PEG-HCCs were internalized by RA-FLS, reduced their intracellular O2•-, and reduced multiple measures of their pathogenicity in vitro, including proliferation and invasion. In PIA, PEG-HCCs caused a 65% reduction in disease severity, as measured by a standardized scoring system of paw inflammation and caused a significant reduction in bone and tissue damage, and circulating rheumatoid factor. PEG-HCCs did not induce lymphopenia during PIA. Our study demonstrated a role for O2•- and hydroxyl radicals in the pathogenesis of a rat model of RA and showed efficacy of PEG-HCCs in treating a rat model of RA.
Collapse
Affiliation(s)
- Mark R. Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William K. A. Sikkema
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
| | - Lizanne G. Nilewski
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
| | - Nejla Yosef
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cody Schmitt
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
| | - Carlos P. Flores-Suarez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arielle Raugh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Teresina Laragione
- Department of Medicine, Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY 11030, USA; (T.L.); (P.S.G.)
| | - Pércio S. Gulko
- Department of Medicine, Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY 11030, USA; (T.L.); (P.S.G.)
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
- The NanoCarbon Center, Rice University, Houston, TX 77005, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Mast Cell Biology and Linkages for Non-clonal Mast Cell Activation and Autoimmune/Inflammatory Syndrome Induced by Adjuvants. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42399-020-00494-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Piovezana Bossolani GD, Silva BT, Colombo Martins Perles JV, Lima MM, Vieira Frez FC, Garcia de Souza SR, Sehaber-Sierakowski CC, Bersani-Amado CA, Zanoni JN. Rheumatoid arthritis induces enteric neurodegeneration and jejunal inflammation, and quercetin promotes neuroprotective and anti-inflammatory actions. Life Sci 2019; 238:116956. [DOI: 10.1016/j.lfs.2019.116956] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
|
16
|
In Vitro Anti-Inflammatory and In Vivo Antiarthritic Activities of Aqueous and Ethanolic Extracts of Dissotis thollonii Cogn. (Melastomataceae) in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3612481. [PMID: 31827550 PMCID: PMC6881768 DOI: 10.1155/2019/3612481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023]
Abstract
Dissotis thollonii Cogn. (Melastomataceae) is a tropical plant widely used in traditional Cameroonian medicine to relieve and treat many pathologies. It is widespread in the western region where it is used to treat typhoid fever, gastrointestinal disorders, and inflammatory diseases. The purpose of this study is to scientifically demonstrate the anti-inflammatory and antiarthritic properties of the aqueous and ethanolic extracts of the leaves of Dissotis thollonii. The anti-inflammatory properties were evaluated in vitro by inhibition tests for cyclooxygenase, 5-lipoxygenase, protein denaturation, extracellular ROS production, and cell proliferation; while antiarthritic properties were evaluated in vivo in rats using the zymosan A-induced monoarthritis test and the CFA-induced polyarthritis model. This study shows that aqueous and ethanolic extracts at a concentration of 1000 μg/ml inhibit the activity of cyclooxygenase (47.07% and 63.36%) and 5-lipoxygenase (66.79% and 77.7%) and protein denaturation (42.51% and 44.44%). Similarly, both extracts inhibited extracellular ROS production (IC50 = 5.74 μg/ml and 2.96 μg/ml for polymorphonuclear leukocytes, 7.47 μg/ml and 3.28 μg ml for peritoneal macrophages of mouse) and cell proliferation (IC50 = 16.89 μg/ml and 3.29 μg/ml). At a dose of 500 mg/kg, aqueous and ethanolic extracts significantly reduce edema induced by zymosan A (69.30% and 81.80%) and CFA (71.85% and 79.03%). At the same dose, both extracts decreased sensitivity to mechanical hyperalgesia with 69.00% and 70.35% inhibition, respectively. Systemic and histological analyzes show that both extracts maintain the studied parameters very close to normal and greatly restored the normal architecture of the joint in animals. Dissotis thollonii would therefore be a very promising source for the treatment of inflammatory diseases.
Collapse
|
17
|
Liu FC, Yu HP, Chen PJ, Yang HW, Chang SH, Tzeng CC, Cheng WJ, Chen YR, Chen YL, Hwang TL. A novel NOX2 inhibitor attenuates human neutrophil oxidative stress and ameliorates inflammatory arthritis in mice. Redox Biol 2019; 26:101273. [PMID: 31325723 PMCID: PMC6639650 DOI: 10.1016/j.redox.2019.101273] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
Neutrophil infiltration plays a significant pathological role in inflammatory diseases. NADPH oxidase type 2 (NOX2) is a respiratory burst oxidase that generates large amounts of superoxide anion (O2•−) and subsequent other reactive oxygen species (ROS). NOX2 is an emerging therapeutic target for treating neutrophilic inflammatory diseases. Herein, we show that 4-[(4-(dimethylamino)butoxy)imino]-1-methyl-1H-benzo[f]indol-9(4H)-one (CYR5099) acts as a NOX2 inhibitor and exerts a protective effect against complete Freund's adjuvant (CFA)-induced inflammatory arthritis in mice. CYR5099 restricted the production of O2•− and ROS, but not the elastase release, in human neutrophils activated with various stimulators. The upstream signaling pathways of NOX2 were not inhibited by CYR5099. Significantly, CYR5099 inhibited NOX2 activity in activated human neutrophils and in reconstituted subcellular assays. In addition, CYR5099 reduced ROS production, neutrophil infiltration, and edema in CFA-induced arthritis in mice. Our findings suggest that CYR5099 is a NOX2 inhibitor and has therapeutic potential for treating neutrophil-dominant oxidative inflammatory disorders. CYR5099 is a NOX2 inhibitor. CYR5099 inhibits human neutrophil respiratory burst and adhesion. CYR5099 reduces ROS production, neutrophil infiltration, and edema on mouse arthritis. CYR5099 has potential to treat neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Fu-Chao Liu
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Huang-Ping Yu
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung, 433, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Hsuan-Wu Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Cherng-Chyi Tzeng
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University-Hospital, Kaohsiung, 807, Taiwan
| | - Wei-Jen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Traditional Chinese Medicine, Center of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - You-Ren Chen
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University-Hospital, Kaohsiung, 807, Taiwan
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University-Hospital, Kaohsiung, 807, Taiwan.
| | - Tsong-Long Hwang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| |
Collapse
|
18
|
Song H, Wen J, Li H, Meng Y, Zhang Y, Zhang N, Zheng W. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome. Int J Nanomedicine 2019; 14:3177-3188. [PMID: 31118630 PMCID: PMC6504668 DOI: 10.2147/ijn.s188842] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/19/2019] [Indexed: 12/02/2022] Open
Abstract
Background: Transdermal drug delivery system (TDDS) curing rheumatoid arthritis (RA) for long-term treatment can improve patients' compliance and reduce the accumulation of drug side effects. However, TDDS is constrained by the tight junction of the stratum corneum and low permeation efficiency. It is necessary to adopt proper permeation methods to ensure the therapeutic effect. The transethosome (TE), which is derived from transfersome and ethosome (E), containing a high content of ethanol along with an edge activator or permeation enhancer, has superior deformability and higher permeation efficiency. Methods and Results: In this study, sinomenine hydrochloride-loaded TE was decorated with ascorbic acid to form antioxidant surface transethosome (AS-TE). It was revealed that TE and AS-TE containing sodium deoxycholate can effectively increase the entrapment efficiency of hydrophilic drug, and has superior deformability and higher permeation efficiency than E group. The plasma pharmacokinetics of rabbits showed that TE group and AS-TE group had similar blood concentration and bioavailability; however, micro-dialysis on synovial fluid demonstrated that AS-TE group had higher drug concentration. In RA rat models, the alleviation of the joint swell of AS-TE group was more obvious in the course of 3 weeks of treatment. The inflammatory cytokines and erythrocyte sedimentation rate were significantly lower than those in the negative control group and TE1 group. Conclusion: AS-TE, which can enhance transdermal permeability and drug deposition for the oxidant stress of RA, had further research potential to serve as a TDDS of RA.
Collapse
Affiliation(s)
- Hui Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Jin Wen
- Academic Department, Chinese Pharmaceutical Association, Beijing, 100022, People’s Republic of China
| | - He Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Ya Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Yujia Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Nan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Wensheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| |
Collapse
|
19
|
Ren SX, Zhang B, Lin Y, Ma DS, Li H. Mechanistic evaluation of anti-arthritic activity of β-methylphenylalanine in experimental rats. Biomed Pharmacother 2019; 113:108730. [PMID: 30861411 DOI: 10.1016/j.biopha.2019.108730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/21/2023] Open
Abstract
Arthritis is a common chronic joint disorder, with general symptoms including stiffness and joint pain. β-methylphenylalanine is a well-known non-proteogenic unnatural amino acid. This study analyzes the anti-arthritic activity of β-methylphenylalanine in experimental rats. The experimental groups were as follows: group I, sham; group II, control; group III, 100 mg/kg of β-methylphenylalanine; and group IV, 200 mg/kg of β-methylphenylalanine. Lipid peroxidation, glutathione peroxidase (Gpx), reduced glutathione (GSH), superoxide dismutase (SOD), catalase, prostaglandin E2 (PGE2), matrix metalloproteinase-3 (MMP-3), ceruloplasmin, zinc, copper, mRNA, and protein expression of inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) were determined. Supplementation with β-methylphenylalanine significantly reduced lipid peroxidation, copper, PGE2 and MMP-3 levels, whereas GSH, Gpx, catalase, SOD and zinc levels were increased. Supplementation with β-methylphenylalanine significantly reduced NF-κB mRNA expression by 26% and 47.8% in groups III and IV, respectively (P < 0.045), while iNOS mRNA expression was reduced by 14.3 and 47.6% in groups III and IV, respectively. NF-κB and iNOS protein expression increased by 160% and 120% respectively, in the control rats compared to the sham rats. However, supplementation with β-methylphenylalanine significantly reduced NF-κB protein expression by 27% and 50% in groups III and IV, respectively, while iNOS protein expression was reduced by 22.7% and 45.4% in groups III and IV, respectively. Taken together, our data show that supplementation of β-methylphenylalanine was effective against arthritis in a rat model.
Collapse
Affiliation(s)
- Shi-Xiang Ren
- Department of Orthopedics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Bo Zhang
- Department of Orthopedics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Yuan Lin
- Department of Orthopedics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - De-Si Ma
- Department of Orthopedics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Huan Li
- Department of Orthopedics, The First People's Hospital of Changzhou, Jiangsu Province (The Third Affiliated Hospital of Soochow University), Changzhou City, Jiangsu Province, 213003 China.
| |
Collapse
|
20
|
Fangchinoline supplementation attenuates inflammatory markers in experimental rheumatoid arthritis-induced rats. Biomed Pharmacother 2019; 111:142-150. [DOI: 10.1016/j.biopha.2018.12.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
|
21
|
Liu Y, Wei M, Yue K, Wang R, Ma Y, Men L, Pi Z, Liu Z, Liu Z. Non-target metabonomic method provided new insights on the therapeutical mechanism of Gancao Fuzi decoction on rheumatoid arthritis rats. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:93-103. [DOI: 10.1016/j.jchromb.2018.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
|
22
|
Filippini HF, Scalzilli PA, Costa KM, Freitas RDS, Campos MM. Activation of trigeminal ganglion satellite glial cells in CFA-induced tooth pulp pain in rats. PLoS One 2018; 13:e0207411. [PMID: 30419075 PMCID: PMC6231674 DOI: 10.1371/journal.pone.0207411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
This study further investigated the mechanisms underlying the rat model of tooth pulp inflammatory pain elicited by complete Freund's adjuvant (CFA), in comparison to other pulpitis models. Pulps of the left maxillary first molars were accessed. In the CFA group, the pulps were exposed, and CFA application was followed by dental sealing. In the open group, the pulps were left exposed to the oral cavity. For the closed group, the pulps were exposed, and the teeth were immediately sealed. Naïve rats were used as negative controls. Several parameters were evaluated at 1, 2, 3 and 8 days. There was no statistical significant difference among the groups when body weight variation, food or water consumption were compared. Analysis of serum cytokines (IL-1β, TNF or IL-6) or differential blood cell counts did not reveal any evidence of systemic inflammation. The CFA group displayed a significant reduction in the locomotor activity (at 1 and 3 days), associated with an increased activation of satellite glial cells in the ipsilateral trigeminal ganglion (TG; for up to 8 days). Amygdala astrocyte activation was unaffected in any experimental groups. We provide novel evidence indicating that CFA-induced pulp inflammation impaired the locomotor activity, with persistent activation of ipsilateral TG satellite cells surrounding sensory neurons, without any evidence of systemic inflammation or amygdala astrogliosis.
Collapse
Affiliation(s)
- Helena F. Filippini
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
| | - Paulo A. Scalzilli
- Laboratório de Patologia, Escola de Ciência da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
| | - Kesiane M. Costa
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| | - Raquel D. S. Freitas
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| | - Maria M. Campos
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Laboratório de Patologia, Escola de Ciência da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| |
Collapse
|
23
|
Long-lasting immunosuppressive effects of tacrolimus-loaded micelle NK61060 in preclinical arthritis and colitis models. Ther Deliv 2018; 9:711-729. [PMID: 30277135 DOI: 10.4155/tde-2018-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Tacrolimus (TAC) is an important drug for inflammatory diseases. However, TAC has several limitations, such as variable trough concentrations among individuals and a high medication frequency. In this study, we created NK61060, a novel micellar TAC formulation, to circumvent these disadvantages. MATERIALS & METHODS Immunosuppressive activity of NK61060 was determined in the collagen-induced arthritis rat model, mannan-induced arthritis mouse model and dextran sodium sulfate-induced colitis mouse model. The pharmacokinetics and toxicology of NK61060 were evaluated in those models. RESULTS In arthritis and colitis models, NK61060 exhibited superior immunosuppressive activity compared with that of TAC. Pharmacokinetic and toxicological analyses indicated that NK61060 had a wider safety margin and could be administered at a reduced medication frequency. CONCLUSION NK61060 mitigates the trough concentration variability and the medication frequency and it may be a safer and more effective option for use in clinical settings. Further studies are needed to determine its clinical usefulness.
Collapse
|
24
|
Tian C, Liu X, Zhu X, Cao Y, Deng N, Hasty KA, Stuart JM, Gu W, Jiao Y. Ifi204 as the most favored candidate gene that regulates susceptibility to spontaneous arthritis in mice deficient in IL-1ra. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Abstract
STUDY DESIGN A nationwide cross-sectional study. OBJECTIVES To measure the associations between cigarette smoking (defined as serum cotinine concentration >15 ng/mL) and the 3-month prevalence of spinal pain (neck pain, low back pain, low back pain with pain below knee, and self-reported diagnosis of arthritis/rheumatism) and related limitations, and to verify whether these associations are mediated by serum concentrations of vitamin C. SUMMARY OF BACKGROUND DATA Cigarette smoking has been consistently associated with back pain, but this association has never been explained. Because vitamin C has recently been reported to be associated with spinal pain and related functional limitations, and the metabolism of vitamin C differs between smokers and nonsmokers, we hypothesized that the prevalence of spinal pain and related limitations might be greater among smokers because they are more susceptible to be in a state of hypovitaminosis C. METHODS We conducted secondary analyses of National Health and Nutrition Examination Survey (NHANES) 2003 to 2004 data on 4438 individuals aged ≥20 years. RESULTS Serum concentrations of vitamin C and cotinine were strongly and inversely correlated (r = -0.35, P < 0.0001). Smoking was statistically associated with the prevalence of neck pain [adjusted odds ratio: aOR: 1.25; 95% confidence interval (95% CI): 1.06-1.47], low back pain (aOR: 1.20; 95% CI: 1.04-1.39), and low back pain with pain below knee (aOR: 1.58; 95% CI: 1.13-2.22) and related limitations, with a dose-response relationship (P < 0.05). However, the associations between smoking and spinal pain were not mediated by concentrations of vitamin C. CONCLUSION These results confirm the relationship between smoking and spinal pain, but they do not support a mediating effect of vitamin C on this relationship. LEVEL OF EVIDENCE 2.
Collapse
|
26
|
Abstract
The emergence of autoimmunity after vaccination has been described in many case reports and series. Everyday there is more evidence that this relationship is more than casual. In humans, adjuvants can induce non-specific constitutional, musculoskeletal or neurological clinical manifestations and in certain cases can lead to the appearance or acceleration of an autoimmune disease in a subject with genetic susceptibility. The fact that vaccines and adjuvants can trigger a pathogenic autoimmune response is corroborated by animal models. The use of animal models has enabled the study of the effects of application of adjuvants in a homogeneous population with certain genetic backgrounds. In some cases, adjuvants may trigger generalized autoimmune response, resulting in multiple auto-antibodies, but sometimes they can reproduce human autoimmune diseases including rheumatoid arthritis, systemic lupus erythematosus, Sjögren syndrome, autoimmune thyroiditis and antiphospholipid syndrome and may provide insights about the potential adverse effects of adjuvants. Likewise, they give information about the clinical, immunological and histologic characteristics of autoimmune diseases in many organs, especially secondary lymphoid tissue. Through the description of the physiopathological characteristics of autoimmune diseases reproduced in animal models, new treatment targets can be described and maybe in the future, we will be able to recognize some high-risk population in whom the avoidance of certain adjuvants can reduce the incidence of autoimmune diseases, which typically results in high morbidity and mortality in young people. Herein, we describe the main animal models that can reproduce human autoimmune diseases with emphasis in how they are similar to human conditions.
Collapse
Affiliation(s)
- Jiram Torres Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Luis Luján
- Department of Animal Pathology, Zaragoza University, Saragossa, Spain
| | - Miri Blank
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 52621, Tel-Hashomer, Israel.
- Incumbent of the Laura Schwartz Kipp Chair for Research of Autoimmune Diseases, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
27
|
Choudhary N, Bhatt LK, Prabhavalkar KS. Experimental animal models for rheumatoid arthritis. Immunopharmacol Immunotoxicol 2018; 40:193-200. [PMID: 29433367 DOI: 10.1080/08923973.2018.1434793] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune systemic disorder of unknown etiology and is characterized by chronic inflammation and synovial infiltration of immune cells. RA is associated with decreased life expectancy and quality of life. The research on RA is greatly simplified by animal models that help us to investigate the complex system involving inflammation, immunological tolerance and autoimmunity. The animal models of RA with a proven track record of predictability for efficacy in humans include: collagen type II induced arthritis in rats as well as mice, adjuvant induced arthritis in rats and antigen induced arthritis in several species. The development of novel treatments for RA requires the interplay between clinical observations and studies in animal models. However, each model features a different mechanism driving the disease expression; the benefits of each should be evaluated carefully in making the appropriate choice for the scientific problem to be investigated. In this review article, we focus on animal models of arthritis induced in various species along with the genetic models. The review also discussed the similarity and dissimilarities with respect to human RA.
Collapse
Affiliation(s)
- Narayan Choudhary
- a Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Vile Parle (W) , Mumbai , India
| | - Lokesh K Bhatt
- a Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Vile Parle (W) , Mumbai , India
| | - Kedar S Prabhavalkar
- a Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Vile Parle (W) , Mumbai , India
| |
Collapse
|
28
|
Yau ACY, Lönnblom E, Zhong J, Holmdahl R. Influence of hydrocarbon oil structure on adjuvanticity and autoimmunity. Sci Rep 2017; 7:14998. [PMID: 29118363 PMCID: PMC5678145 DOI: 10.1038/s41598-017-15096-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023] Open
Abstract
Mineral oils are extensively used in our daily life, in food, cosmetics, biomedicine, vaccines and in different industrial applications. However, exposure to these mineral oils has been associated with immune adjuvant effects and the development of autoimmune diseases. Here we investigate the structural impacts of the hydrocarbon oil molecules on their adjuvanticity and autoimmunity. First, we showed that hydrocarbon oil molecules with small atomic differences could result in experimental arthritis in DA rats differing in disease severity, incidence, weight change and serum levels of acute phase proteins. Injection of these hydrocarbon oils resulted in the activation, proliferation and elevated expression of Th1 and especially Th17 cytokines by the T cells, which correlate with the arthritogenicity of the T cells. Furthermore, the more arthritogenic hydrocarbon oils resulted in an increased production of autoantibodies against cartilage joint specific, triple-helical type II collagen epitopes. When injected together with ovalbumin, the more arthritogenic hydrocarbon oils resulted in an increased production of αβ T cell-dependent anti-ovalbumin antibodies. This study shows the arthritogenicity of hydrocarbon oils is associated with their adjuvant properties with implications to not only arthritis research but also other diseases and medical applications such as vaccines in which oil adjuvants are involved.
Collapse
Affiliation(s)
- Anthony C Y Yau
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Erik Lönnblom
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Jianghong Zhong
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
29
|
van Tok MN, Satumtira N, Dorris M, Pots D, Slobodin G, van de Sande MG, Taurog JD, Baeten DL, van Duivenvoorde LM. Innate Immune Activation Can Trigger Experimental Spondyloarthritis in HLA-B27/Huβ2m Transgenic Rats. Front Immunol 2017; 8:920. [PMID: 28824645 PMCID: PMC5545590 DOI: 10.3389/fimmu.2017.00920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/20/2017] [Indexed: 01/06/2023] Open
Abstract
Spondyloarthritis (SpA) does not display the typical features of auto-immune disease. Despite the strong association with MHC class I, CD8+ T cells are not required for disease induction in the HLA-B27/Huβ2m transgenic rats. We used Lewis HLA-B27/Huβ2m transgenic rats [21-3 × 283-2]F1, HLA-B7/Huβ2m transgenic rats [120-4 × 283-2]F1, and wild-type rats to test our hypothesis that SpA may be primarily driven by the innate immune response. In vitro, splenocytes were stimulated with heat-inactivated Mycobacterium tuberculosis and cytokine expression and production was measured. In vivo, male and female rats were immunized with 30, 60, or 90 µg of heat-inactivated M. tuberculosis and clinically monitored for spondylitis and arthritis development. After validation of the model, we tested whether prophylactic and therapeutic TNF targeting affected spondylitis and arthritis. In vitro stimulation with heat-inactivated M. tuberculosis strongly induced gene expression of pro-inflammatory cytokines such as TNF, IL-6, IL-1α, and IL-1β, in the HLA-B27 transgenic rats compared with controls. In vivo immunization induced an increased spondylitis and arthritis incidence and an accelerated and synchronized onset of spondylitis and arthritis in HLA-B27 transgenic males and females. Moreover, immunization overcame the protective effect of orchiectomy. Prophylactic TNF targeting resulted in delayed spondylitis and arthritis development and reduced arthritis severity, whereas therapeutic TNF blockade did not affect spondylitis and arthritis severity. Collectively, these data indicate that innate immune activation plays a role in the initiation of HLA-B27-associated disease and allowed to establish a useful in vivo model to study the cellular and molecular mechanisms of disease initiation and progression.
Collapse
Affiliation(s)
- Melissa N van Tok
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Nimman Satumtira
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Martha Dorris
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Desirée Pots
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gleb Slobodin
- Internal Medicine, Bnai Zion Medical Center, Haifa, Israel
| | - Marleen G van de Sande
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joel D Taurog
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dominique L Baeten
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Leonie M van Duivenvoorde
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Li X, DuBois DC, Song D, Almon RR, Jusko WJ, Chen X. Modeling Combined Immunosuppressive and Anti-inflammatory Effects of Dexamethasone and Naproxen in Rats Predicts the Steroid-Sparing Potential of Naproxen. Drug Metab Dispos 2017; 45:834-845. [PMID: 28416614 PMCID: PMC5469402 DOI: 10.1124/dmd.117.075614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/13/2017] [Indexed: 12/29/2022] Open
Abstract
Dexamethasone (DEX), a widely prescribed corticosteroid, has long been the cornerstone of the treatment of inflammation and immunologic dysfunctions in rheumatoid arthritis. Corticosteroids are frequently used in combination with other antirheumatic agents such as nonsteroidal anti-inflammatory drugs (NSAIDs) and disease-modifying antirheumatic drugs to mitigate disease symptoms and minimize unwanted effects. We explored the steroid dose-sparing potential of the NSAID naproxen (NPX) with in vitro and in vivo studies. The single and joint suppressive effects of DEX and NPX on the in vitro mitogen-induced proliferation of T lymphocytes in blood and their anti-inflammatory actions on paw edema were investigated in female and male Lewis rats with collagen-induced arthritis (CIA). As expected, DEX was far more potent than NPX in these systems. Mathematical models incorporating an interaction term ψ were applied to quantitatively assess the nature and intensity of pharmacodynamic interactions between DEX and NPX. Modest synergistic effects of the two drugs were found in suppressing the mitogenic response of T lymphocytes. A pharmacokinetic/pharmacodynamic/disease progression model integrating dual drug inhibition quantitatively described the pharmacokinetics, time-course of single and joint anti-inflammatory effects (paw edema), and sex differences in CIA rats, and indicated additive effects of DEX and NPX. Further model simulations demonstrated the promising steroid-sparing potential of NPX in CIA rats, with the beneficial effects of the combination therapy more likely in males than females.
Collapse
Affiliation(s)
- Xiaonan Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Dawei Song
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
31
|
Fischer BD, Adeyemo A, O'Leary ME, Bottaro A. Animal models of rheumatoid pain: experimental systems and insights. Arthritis Res Ther 2017; 19:146. [PMID: 28666464 PMCID: PMC5493070 DOI: 10.1186/s13075-017-1361-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Severe chronic pain is one of the hallmarks and most debilitating manifestations of inflammatory arthritis. It represents a significant problem in the clinical management of patients with common chronic inflammatory joint conditions such as rheumatoid arthritis, psoriatic arthritis and spondyloarthropathies. The functional links between peripheral inflammatory signals and the establishment of the neuroadaptive mechanisms acting in nociceptors and in the central nervous system in the establishment of chronic and neuropathic pain are still poorly understood, representing an area of intense study and translational priority. Several well-established inducible and spontaneous animal models are available to study the onset, progression and chronicization of inflammatory joint disease, and have been instrumental in elucidating its immunopathogenesis. However, quantitative assessment of pain in animal models is technically and conceptually challenging, and it is only in recent years that inflammatory arthritis models have begun to be utilized systematically in experimental pain studies using behavioral and neurophysiological approaches to characterize acute and chronic pain stages. This article aims primarily to provide clinical and experimental rheumatologists with an overview of current animal models of arthritis pain, and to summarize emerging findings, challenges and unanswered questions in the field.
Collapse
Affiliation(s)
- Bradford D Fischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 S. Broadway, Camden, NJ, 08103, USA
| | - Adeshina Adeyemo
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 S. Broadway, Camden, NJ, 08103, USA
| | - Michael E O'Leary
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 S. Broadway, Camden, NJ, 08103, USA
| | - Andrea Bottaro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 S. Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
32
|
Camps-Bossacoma M, Massot-Cladera M, Abril-Gil M, Franch A, Pérez-Cano FJ, Castell M. Cocoa Diet and Antibody Immune Response in Preclinical Studies. Front Nutr 2017; 4:28. [PMID: 28702458 PMCID: PMC5484773 DOI: 10.3389/fnut.2017.00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
The ability of cocoa to interact with the immune system in vitro and in vivo has been described. In the latter context, a cocoa-enriched diet in healthy rats was able to modify the immune system's functionality. This fact could be observed in the composition and functionality of lymphoid tissues, such as the thymus, spleen, and lymph nodes. Consequently, immune effector mechanisms, such as antibody synthesis, were modified. A cocoa-enriched diet in young rats was able to attenuate the serum levels of immunoglobulin (Ig) G, IgM, and IgA and also the intestinal IgM and IgA secretion. Moreover, in immunized rats, the intake of cocoa decreased specific IgG1, IgG2a, IgG2c, and IgM concentrations in serum. This immune-regulator potential was then tested in disease models in which antibodies play a pathogenic role. A cocoa-enriched diet was able to partially prevent the synthesis of autoantibodies in a model of autoimmune arthritis in rats and was also able to protect against IgE and T helper 2-related antibody synthesis in two rat models of allergy. Likewise, a cocoa-enriched diet prevented an oral sensitization process in young rats. In this review, we will focus on the influence of cocoa on the acquired branch of the immune function. Therefore, we will focus on how a cocoa diet influences lymphocyte function both in the systemic and intestinal immune system. Likewise, its potential role in preventing some antibody-induced immune diseases is also included. Although further studies must characterize the particular cocoa components responsible for such effects and nutritional studies in humans need to be carried out, cocoa has potential as a nutraceutical agent in some hypersensitivity status.
Collapse
Affiliation(s)
- Mariona Camps-Bossacoma
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Malen Massot-Cladera
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Mar Abril-Gil
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Angels Franch
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
33
|
van Aalst S, Ludwig IS, van der Zee R, van Eden W, Broere F. Bystander activation of irrelevant CD4+ T cells following antigen-specific vaccination occurs in the presence and absence of adjuvant. PLoS One 2017; 12:e0177365. [PMID: 28489886 PMCID: PMC5425230 DOI: 10.1371/journal.pone.0177365] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
Autoimmune and other chronic inflammatory diseases (AID) are prevalent diseases which can severely impact the quality of life of those that suffer from the disease. In most cases, the etiology of these conditions have remained unclear. Immune responses that take place e.g. during natural infection or after vaccination are often linked with the development or exacerbation of AID. It is highly debated if vaccines induce or aggravate AID and in particular adjuvants are mentioned as potential cause. Since vaccines are given on a large scale to healthy individuals but also to elderly and immunocompromised individuals, more research is warranted. Non-specific induction of naïve or memory autoreactive T cells via bystander activation is one of the proposed mechanisms of how vaccination might be involved in AID. During bystander activation, T cells unrelated to the antigen presented can be activated without (strong) T cell receptor (TCR) ligation, but via signals derived from the ongoing response directed against the vaccine-antigen or adjuvant at hand. In this study we have set up a TCR transgenic T cell transfer mouse model by which we were able to measure local bystander activation of transferred and labeled CD4+ T cells. Intramuscular injection with the highly immunogenic Complete Freund's Adjuvant (CFA) led to local in vivo proliferation and activation of intravenously transferred CD4+ T cells in the iliac lymph node. This local bystander activation was also observed after CFA prime and Incomplete Freund's Adjuvant (IFA) boost injection. Furthermore, we showed that an antigen specific response is sufficient for the induction of a bystander activation response and the general, immune stimulating effect of CFA or IFA does not appear to increase this effect. In other words, no evidence was obtained that adjuvation of antigen specific responses is essential for bystander activation.
Collapse
Affiliation(s)
- Susan van Aalst
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Irene S. Ludwig
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Ruurd van der Zee
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
34
|
Yau AC, Tuncel J, Holmdahl R. The Major Histocompatibility Complex Class III Haplotype Ltab-Ncr3 Regulates Adjuvant-Induced but Not Antigen-Induced Autoimmunity. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:987-998. [DOI: 10.1016/j.ajpath.2016.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022]
|
35
|
Li X, DuBois DC, Almon RR, Jusko WJ. Effect of Disease-Related Changes in Plasma Albumin on the Pharmacokinetics of Naproxen in Male and Female Arthritic Rats. Drug Metab Dispos 2017; 45:476-483. [PMID: 28246126 PMCID: PMC5399645 DOI: 10.1124/dmd.116.074500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/29/2022] Open
Abstract
Naproxen (NPX) is used in the treatment of rheumatoid arthritis (RA) for alleviation of pain and inflammation. In view of the extensive albumin binding of NPX, this study investigates whether chronic inflammation and sex influence the physiologic albumin concentrations, plasma protein binding, and pharmacokinetics (PK) of NPX. The PK of NPX was evaluated in a rat model of RA [collagen-induced arthritis (CIA) in Lewis rats] and in healthy controls. These PK studies included 1) NPX in female and male CIA rats that received 10, 25, or 50 mg/kg NPX i.p.; and 2) NPX in healthy female and male rats after i.p. dosing of NPX at 50 mg/kg. Plasma albumin concentrations were quantified by enzyme-linked immunosorbent assay, and protein binding was assessed using ultrafiltration. The NPX concentrations in plasma and filtrates were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plasma concentration-time data of NPX were first assessed by noncompartmental analysis (NCA). Nonlinear PK as indicated by dose-dependent NCA clearances and distribution volumes was observed. A two-compartment model with a first-order absorption process incorporating nonlinear protein binding in plasma and tissues jointly described the PK data of all groups. Saturable albumin binding accounts for the nonlinearity of NPX PK in all rats as well as part of the PK differences in arthritic rats. The CIA rats exhibited reduced albumin concentrations, reduced overall protein binding, and reduced clearances of unbound NPX, consistent with expectations during inflammation. The net effect of chronic inflammation was an elevation of the Cmax and area under the plasma concentration-time curve (AUC) of unbound drug.
Collapse
Affiliation(s)
- Xiaonan Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China (X.L.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China (X.L.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China (X.L.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China (X.L.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
36
|
Li X, DuBois DC, Almon RR, Jusko WJ. Modeling Sex Differences in Pharmacokinetics, Pharmacodynamics, and Disease Progression Effects of Naproxen in Rats with Collagen-Induced Arthritis. Drug Metab Dispos 2017; 45:484-491. [PMID: 28246127 PMCID: PMC5399646 DOI: 10.1124/dmd.116.074526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/18/2022] Open
Abstract
Naproxen (NPX) is a frequently used nonsteroidal anti-inflammatory drug for rheumatoid arthritis (RA). Lack of quantitative information about the drug exposure-response relationship has resulted in empirical dosage regimens for use of NPX in RA. Few studies to date have included sex as a factor, although RA predominates in women. A pharmacokinetic, pharmacodynamic, and disease progression model described the anti-inflammatory effects of NPX in collagen-induced arthritic (CIA) male and female rats. Three groups of rats were included for each sex: healthy animals, CIA controls, and CIA rats given a single 50-mg/kg dose of NPX intraperitoneally. Paw volumes of healthy rats indicated natural growth, and disease status was measured by paw edema. An innovative minimal physiologically based pharmacokinetic (mPBPK) model incorporating nonlinear albumin binding of NPX in both plasma and interstitial fluid (ISF) was applied. Arthritic rats exhibited lower plasma and ISF albumin concentrations and reduced clearances of unbound drug to explain pharmacokinetic profiles. The unbound ISF NPX concentrations predicted by the mPBPK model were used as the driving force for pharmacological effects of NPX. A logistic growth function accounting for natural paw growth and an indirect response model for paw edema and drug effects (inhibition of kin) was applied. Female rats showed a higher incidence of CIA, earlier disease onset, and more severe symptoms. NPX had stronger effects in males, owing to higher unbound ISF NPX concentrations and lower IC50 values. The model described the pharmacokinetics, unbound NPX in ISF, time course of anti-inflammatory effects, and sex differences in CIA rats.
Collapse
Affiliation(s)
- Xiaonan Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China (X.L.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (X.L., D.C.D., R.R.A., W.J.J.); and Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York (D.C.D., R.R.A.)
| | - Debra C DuBois
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China (X.L.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (X.L., D.C.D., R.R.A., W.J.J.); and Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York (D.C.D., R.R.A.)
| | - Richard R Almon
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China (X.L.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (X.L., D.C.D., R.R.A., W.J.J.); and Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York (D.C.D., R.R.A.)
| | - William J Jusko
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China (X.L.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (X.L., D.C.D., R.R.A., W.J.J.); and Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York (D.C.D., R.R.A.)
| |
Collapse
|
37
|
Higashijima Y, Hirano S, Nangaku M, Nureki O. Applications of the CRISPR-Cas9 system in kidney research. Kidney Int 2017; 92:324-335. [PMID: 28433382 DOI: 10.1016/j.kint.2017.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 12/26/2022]
Abstract
The recently discovered clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) is an RNA-guided DNA nuclease, and has been harnessed for the development of simple, efficient, and relatively inexpensive technologies to precisely manipulate the genomic information in virtually all cell types and organisms. The CRIPSR-Cas9 systems have already been effectively used to disrupt multiple genes simultaneously, create conditional alleles, and generate reporter proteins, even in vivo. The ability of Cas9 to target a specific genomic region has also been exploited for various applications, such as transcriptional regulation, epigenetic control, and chromosome labeling. Here we first describe the molecular mechanism of the RNA-guided DNA targeting by the CRISPR-Cas9 system and then outline the current applications of this system as a genome-editing tool in mice and other species, to better model and study human diseases. We also discuss the practical and potential uses of the CRISPR-Cas9 system in kidney research and highlight the further applications of this technology beyond genome editing. Undoubtedly, the CRISPR-Cas9 system holds enormous potential for revolutionizing and accelerating kidney research and therapeutic applications in the future.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
38
|
Furuta A, Hirobe Y, Fukuyama T, Ryu I, Manabe Y, Fukase K. Flow Dehydration and Hydrogenation of Allylic Alcohols: Application to the Waste-Free Synthesis of Pristane. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Akihiro Furuta
- Department of Chemistry; Graduate School of Science, Osaka; Osaka Prefecture University; 599-8531 Sakai, Osaka Japan
| | - Yuki Hirobe
- Department of Chemistry; Graduate School of Science, Osaka; Osaka Prefecture University; 599-8531 Sakai, Osaka Japan
| | - Takahide Fukuyama
- Department of Chemistry; Graduate School of Science, Osaka; Osaka Prefecture University; 599-8531 Sakai, Osaka Japan
| | - Ilhyong Ryu
- Department of Chemistry; Graduate School of Science, Osaka; Osaka Prefecture University; 599-8531 Sakai, Osaka Japan
- Department of Applied Chemistry; National Chiao Tung University; Hsinchu Taiwan
| | - Yoshiyuki Manabe
- Department of Chemistry; Graduate School of Science; Osaka University; 560-0043 Toyonaka, Osaka Japan
| | - Koichi Fukase
- Department of Chemistry; Graduate School of Science; Osaka University; 560-0043 Toyonaka, Osaka Japan
| |
Collapse
|
39
|
Abstract
Monoclonal antibodies (MAbs) have become a substantial part of many pharmaceutical company portfolios. However, the development process of MAbs for clinical use is quite different than for small-molecule drugs. MAb development programs require careful interdisciplinary evaluations to ensure the pharmacology of both the MAb and the target antigen are well-understood. Selection of appropriate preclinical species must be carefully considered and the potential development of anti-drug antibodies (ADA) during these early studies can limit the value and complicate the performance and possible duration of preclinical studies. In human studies, many of the typical pharmacology studies such as renal or hepatic impairment evaluations may not be needed but the pharmacokinetics and pharmacodynamics of these agents is complex, often necessitating more comprehensive evaluation of clinical data and more complex bioanalytical assays than might be used for small molecules. This paper outlines concerns and strategies for development of MAbs from the early in vitro assessments needed through preclinical and clinical development. This review focuses on how to develop, submit, and comply with regulatory requirements for MAb therapeutics.
Collapse
|
40
|
Guerreiro-Cacais AO, Norin U, Gyllenberg A, Berglund R, Beyeen AD, Petit-Teixeira E, Cornélis F, Saoudi A, Fournié GJ, Holmdahl R, Alfredsson L, Klareskog L, Jagodic M, Olsson T, Kockum I, Padyukov L. VAV1 regulates experimental autoimmune arthritis and is associated with anti-CCP negative rheumatoid arthritis. Genes Immun 2017; 18:48-56. [PMID: 28053322 DOI: 10.1038/gene.2016.49] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/19/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) patients can be stratified into two subgroups defined by the presence or absence of antibodies against citrullinated circular peptides (anti-CCP) with most of the genetic association found in anti-CCP positive RA. Here we addressed the role of VAV1, previously associated to multiple sclerosis (MS), in the pathogenesis of RA in experimental models and in a genetic association study. Experimental arthritis triggered by pristane or collagen type II was induced in DA rats and in the DA.BN-R25 congenic line that carries a polymorphism in Vav1. Difference in arthritis severity was observed only after immunization with pristane. In a case-control study, 34 SNPs from VAV1 locus were analyzed by Immunochip genotyping in 11475 RA patients (7573 anti-CCP positive and 3902 negative) and 15,870 controls in six cohorts of European Caucasians. A combination of the previous MS-associated haplotype and two additional SNPs was associated with anti-CCP negative RA (alleles G-G-A-A of rs682626-rs2546133-rs2617822-rs12979659, OR=1.13, P=1.27 × 10-5). The same markers also contributed to activity of RA at baseline with the strongest association in the anti-CCP negative group for the rs682626-rs12979659 G-A haplotype (β=-0.283, P=0.0048). Our study suggests a role for VAV1 and T-cell signaling in the pathology of anti-CCP-negative RA.
Collapse
Affiliation(s)
- A O Guerreiro-Cacais
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - U Norin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - A Gyllenberg
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - R Berglund
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - A D Beyeen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - E Petit-Teixeira
- GenHotel-EA3886, Evry-Val d'Essonne University, Evry-Genopole, France
| | - F Cornélis
- GenHotel-Auvergne, CHU de Clermont-Ferrand, Auvergne University, France
| | - A Saoudi
- Inserm, U1043, Toulouse, France.,CNRS, U5282, Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Toulouse, France
| | - G J Fournié
- Inserm, U1043, Toulouse, France.,CNRS, U5282, Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Toulouse, France
| | - R Holmdahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - L Alfredsson
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - L Klareskog
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - M Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - T Olsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - I Kockum
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - L Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
41
|
Zhu W, Xu J, Jiang C, Wang B, Geng M, Wu X, Hussain N, Gao N, Han Y, Li D, Lan X, Ning Q, Zhang F, Holmdahl R, Meng L, Lu S. Pristane induces autophagy in macrophages, promoting a STAT1-IRF1-TLR3 pathway and arthritis. Clin Immunol 2016; 175:56-68. [PMID: 27940139 DOI: 10.1016/j.clim.2016.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
Autophagy is involved in both innate and adaptive immune regulation. We propose that autophagy regulates activation of TLR3 in macrophages and is thereby essential for development of pristane-induced arthritis. We found that pristane treatment induced autophagy in macrophages in vitro and in vivo, in spleen cells from pristane injected rats. The induced autophagy was associated with STAT1 phosphorylation and expression of IRF1 and TLR3. Blocking the pristane activated autophagy by Wortmannin and Bafilomycin A1 or by RNAi of Becn1 led to a downregulation of the associated STAT1-IRF1-TLR3 pathway. Most importantly, the development of arthritis was alleviated by suppressing either autophagy or TLR3. We conclude that pristane enhanced autophagy, leading to a STAT1-IRF1 controlled upregulation of TLR3 expression in macrophages, is a pathogenic mechanism in the development of arthritis.
Collapse
Affiliation(s)
- Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China; Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Bo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Manman Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Xiaoying Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Nazim Hussain
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Ning Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Xi Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Qilan Ning
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China; Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
42
|
Eriksson K, Lönnblom E, Tour G, Kats A, Mydel P, Georgsson P, Hultgren C, Kharlamova N, Norin U, Jönsson J, Lundmark A, Hellvard A, Lundberg K, Jansson L, Holmdahl R, Yucel-Lindberg T. Effects by periodontitis on pristane-induced arthritis in rats. J Transl Med 2016; 14:311. [PMID: 27809921 PMCID: PMC5094068 DOI: 10.1186/s12967-016-1067-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/20/2016] [Indexed: 12/29/2022] Open
Abstract
Background An infection-immune association of periodontal disease with rheumatoid arthritis has been suggested. This study aimed to investigate the effect of pre-existing periodontitis on the development and the immune/inflammatory response of pristane-induced arthritis. Methods We investigated the effect of periodontitis induced by ligature placement and Porphyromonas gingivalis (P. gingivalis) infection, in combination with Fusobacterium nucleatum to promote its colonization, on the development of pristane-induced arthritis (PIA) in rats (Dark Agouti). Disease progression and severity of periodontitis and arthritis was monitored using clinical assessment, micro-computed tomography (micro-CT)/intraoral radiographs, antibody response, the inflammatory markers such as α-1-acid glycoprotein (α-1-AGP) and c-reactive protein (CRP) as well as cytokine multiplex profiling at different time intervals after induction. Results Experimentally induced periodontitis manifested clinically (P < 0.05) prior to pristane injection and progressed steadily until the end of experiments (15 weeks), as compared to the non-ligated arthritis group. Injection of pristane 8 weeks after periodontitis-induction led to severe arthritis in all rats demonstrating that the severity of arthritis was not affected by the pre-existence of periodontitis. Endpoint analysis showed that 89% of the periodontitis-affected animals were positive for antibodies against arginine gingipain B and furthermore, the plasma antibody levels to a citrullinated P. gingivalis peptidylarginine deiminase (PPAD) peptide (denoted CPP3) were significantly (P < 0.05) higher in periodontitis rats with PIA. Additionally, there was a trend towards increased pro-inflammatory and anti-inflammatory cytokine levels, and increased α-1-AGP levels in plasma from periodontitis-challenged PIA rats. Conclusions Pre-existence of periodontitis induced antibodies against citrullinated peptide derived from PPAD in rats with PIA. However, there were no differences in the development or severity of PIA between periodontitis challenged and periodontitis free rats. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1067-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaja Eriksson
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Box 4064, 141 04, Huddinge, Sweden.
| | - Erik Lönnblom
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Gregory Tour
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Box 4064, 141 04, Huddinge, Sweden.,Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Alfred Nobels Allé 8, 141 83, Huddinge, Sweden
| | - Anna Kats
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Box 4064, 141 04, Huddinge, Sweden
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, The Laboratory Building, 5th Floor, 5021, Bergen, Norway
| | - Pierre Georgsson
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Box 4064, 141 04, Huddinge, Sweden
| | - Catharina Hultgren
- Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Alfred Nobels Allé 8, 141 83, Huddinge, Sweden
| | - Nastya Kharlamova
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Solna, Rheumatology Clinic D2:01, 171 76, Stockholm, Sweden
| | - Ulrika Norin
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jörgen Jönsson
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Box 4064, 141 04, Huddinge, Sweden
| | - Anna Lundmark
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Box 4064, 141 04, Huddinge, Sweden
| | - Annelie Hellvard
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, The Laboratory Building, 5th Floor, 5021, Bergen, Norway.,Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Kraków, Poland
| | - Karin Lundberg
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Solna, Rheumatology Clinic D2:01, 171 76, Stockholm, Sweden
| | - Leif Jansson
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Box 4064, 141 04, Huddinge, Sweden.,Department of Periodontology at Eastmaninstitutet, Stockholm County Council, Dalagatan 11, 113 24, Stockholm, Sweden
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.,Center for Medical Immunopharmacology Research, Southern Medical University, Guangzhou, China
| | - Tülay Yucel-Lindberg
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Box 4064, 141 04, Huddinge, Sweden.
| |
Collapse
|
43
|
Liu X, Jiao Y, Cao Y, Deng N, Ma Y, Hasty KA, Kang A, Chen H, Stuart JM, Gu W. Decreased expression levels of Ifi genes is associated to the increased resistance to spontaneous arthritis disease in mice deficiency of IL-1RA. BMC Immunol 2016; 17:25. [PMID: 27480124 PMCID: PMC4970213 DOI: 10.1186/s12865-016-0163-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 01/21/2023] Open
Abstract
Background The mouse strain BALB/c deficient in IL-1 receptor antagonist protein (Il-1ra) develops spontaneous arthritis disease (SAD) while the strain DBA/1 IL1rn-/- with the same deficiency does not. Previously, we mapped a QTL on chromosome 1 for SAD and then developed a congenic mouse strain BALB.D1-1-/- that contains the QTL genomic fragment associated with resistance from DBA/1-/- on a BALB/c-/- background. The congenic strain was relatively resistant to spontaneous arthritis and had delayed onset and reduced severity of disease. We obtained whole genome expression profiles from the spleen of the congenic strain BALB.D1-1-/- and four other strains, the wild type BALB/c, DBA/1 and the deficient DBA/1 IL1rn-/- and the BALB/c IL1rn-/-. We then compared the similarities and differences between the congenic strain and the four parental strains. Here we report the selected potential causal genes based on differential expression levels as well as function of genes. Results There is a considerable number of genes that are differentially expressed between the congenic strain and the three parental strains, BALB/c, DBA/1, and DBA/1-/-. However there only a few differentially expressed genes were identified by comparing the congenic strain and the BALB/c-/-strain. These differentially expressed genes are mainly from T-cell receptor beta chain (Tcrb) and interferon-activatable protein (Ifi) genes. These genes are also differentially expressed between congenic strain and BALB/c strains. However, their expression levels in the congenic strain are similar to that in DBA/1 and DBA/1-/-. The expression level of Tcrb-j gene is positively associated with two genes of Ifi gene 200 cluster. Conclusions Decreased expression levels of Ifi genes is associated to the increased resistance to spontaneous arthritis disease and with down regulation of expressions of Tcrb genes in the mouse congenic strain. Ifi genes may play an important role in the susceptibility to SAD in mice. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0163-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Mudanjiang Medical College, Mudanjiang, HeilongJiang, 157001, People's Republic of China.,Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Yan Jiao
- Mudanjiang Medical College, Mudanjiang, HeilongJiang, 157001, People's Republic of China. .,Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA.
| | - Yanhong Cao
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA.,Institute of Kaschin-beck Disease, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China.,Key Laboratory of Etiologic Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618104), Harbin, 150081, China
| | - Nan Deng
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yonghui Ma
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Karen A Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA.,Research Service, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA
| | - Andrew Kang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hong Chen
- Center of integrative research, The first Hospital of Qiqihaer City, 30 Gongyuan Road, Longsha District, Qiqihaer, Heilongjiang, 161005, People's Republic of China
| | - John M Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Research Service, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA
| | - Weikuan Gu
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA. .,Research Service, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA.
| |
Collapse
|
44
|
Leichsenring A, Bäcker I, Furtmüller PG, Obinger C, Lange F, Flemmig J. Long-Term Effects of (-)-Epigallocatechin Gallate (EGCG) on Pristane-Induced Arthritis (PIA) in Female Dark Agouti Rats. PLoS One 2016; 11:e0152518. [PMID: 27023113 PMCID: PMC4811407 DOI: 10.1371/journal.pone.0152518] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA)--a widespread chronic inflammatory disease in industrialized countries--is characterized by a persistent and progressive joint destruction. The chronic pro-inflammatory state results from a mutual activation of the innate and the adaptive immune system, while the exact pathogenesis mechanism is still under discussion. New data suggest a role of the innate immune system and especially polymorphonuclear granulocytes (PMNs, neutrophils) not only during onset and the destructive phase of RA but also at the chronification of the disease. Thereby the enzymatic activity of myeloperoxidase (MPO), a peroxidase strongly abundant in neutrophils, may be important: While its peroxidase activity is known to contribute to cartilage destruction at later stages of RA the almost MPO-specific oxidant hypochlorous acid (HOCl) is also discussed for certain anti-inflammatory effects. In this study we used pristane-induced arthritis (PIA) in Dark Agouti rats as a model for the chronic course of RA in man. We were able to shown that a specific detection of the HOCl-producing MPO activity provides a sensitive new marker to evaluate the actual systemic inflammatory status which is only partially detectable by the evaluation of clinical symptoms (joint swelling and redness measurements). Moreover, we evaluated the long-term pharmacological effect of the well-known anti-inflammatory flavonoid epigallocatechin gallate (EGCG). Thereby only upon early and continuous oral application of this polyphenol the arthritic symptoms were considerably diminished both in the acute and in the chronic phase of the disease. The obtained results were comparable to the treatment control (application of methotrexate, MTX). As revealed by stopped-flow kinetic measurements, EGCG may regenerate the HOCl-production of MPO which is known to be impaired at chronic inflammatory diseases like RA. It can be speculated that this MPO activity-promoting effect of EGCG may contribute to the pharmacological mode of action of this polyphenol.
Collapse
Affiliation(s)
- Anna Leichsenring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig, Perlickstraße 1, 04103 Leipzig, Germany
| | - Ingo Bäcker
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig, Perlickstraße 1, 04103 Leipzig, Germany
| | - Paul G. Furtmüller
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig, Perlickstraße 1, 04103 Leipzig, Germany
| | - Jörg Flemmig
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM) Leipzig, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| |
Collapse
|
45
|
Vieira-Sousa E, van Duivenvoorde LM, Fonseca JE, Lories RJ, Baeten DL. Review: animal models as a tool to dissect pivotal pathways driving spondyloarthritis. Arthritis Rheumatol 2016. [PMID: 26215401 DOI: 10.1002/art.39282] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Elsa Vieira-Sousa
- University of Lisbon, Hospital de Santa Maria, and Lisbon Academic Medical Center, Lisbon, Portugal
| | - Leonie M van Duivenvoorde
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center, and University of Amsterdam, Amsterdam, The Netherlands
| | - João E Fonseca
- University of Lisbon, Hospital de Santa Maria, and Lisbon Academic Medical Center, Lisbon, Portugal
| | - Rik J Lories
- KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Dominique L Baeten
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center, and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Kimber I, Carrillo JC. Oral exposure to mineral oils: Is there an association with immune perturbation and autoimmunity? Toxicology 2016; 344-346:19-25. [DOI: 10.1016/j.tox.2016.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/19/2016] [Accepted: 01/22/2016] [Indexed: 12/18/2022]
|
47
|
Sardar S, Andersson Å. Old and new therapeutics for Rheumatoid Arthritis: in vivo models and drug development. Immunopharmacol Immunotoxicol 2016; 38:2-13. [PMID: 26769136 DOI: 10.3109/08923973.2015.1125917] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Development of novel drugs for treatment of chronic inflammatory diseases is to a large extent dependent on the availability of good experimental in vivo models in order to perform preclinical tests of new drugs and for the identification of novel drug targets. Here, we review a number of existing rodent models for Rheumatoid Arthritis in the context of how these models have been utilized for developing established therapy in Rheumatoid Arthritis and, furthermore, the present use of animal models for studies of novel drug candidates. We have studied the literature in the field for the use of in vivo models during development of anti-rheumatic drugs; from Methotrexate to various antibody treatments, to novel drugs that are, or have recently been, in clinical trials. For novel drugs, we have explored websites for clinical trials. Although a single Rheumatoid Arthritis in vivo model cannot mirror the complexity of disease development, there exist a number of good animal models for Rheumatoid Arthritis, each defining some parts in disease development, which are useful for studies of drug response. We find that many of the established drugs were not tested in in vivo models before being used in the clinic, but rather animal models have been subsequently used to find mechanisms for efficacy. Finally, we report a number of novel drugs, tested in preclinical in vivo models, presently in clinical trials.
Collapse
Affiliation(s)
- Samra Sardar
- a Department Of Drug Design and Pharmacology , Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Åsa Andersson
- a Department Of Drug Design and Pharmacology , Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
48
|
Yao FR, Wang HS, Guo Y, Zhao Y. The local effect of octreotide on mechanical pain sensitivity is more sensitive in DA rats than DA.1U rats. Clin Exp Pharmacol Physiol 2015; 43:213-20. [PMID: 26606866 DOI: 10.1111/1440-1681.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/14/2015] [Accepted: 11/19/2015] [Indexed: 11/29/2022]
Abstract
A recent study by the authors indicated that major histocompatibility complex (MHC) genes are associated with the differences in basal pain sensitivity and in formalin model between Dark-Agouti (DA) and novel congenic DA.1U rats, which have the same genetic background as DA rats except for the u alleles of MHC. The objective of the present study is to investigate whether there is a difference in the pristane-induced arthritis (PIA) model and local analgesic effect of octreotide (OCT) between DA and DA.1U rats. The hindpaw mechanical withdrawal threshold (MWT) and heat withdrawal latency (HWL) were observed. The C unit firings of the tibial nerve evoked by non-noxious and noxious toe movements were recorded by electrophysiological methods in normal and PIA models in DA and DA.1U rats before and after local OCT administration. The expression of somatostatin receptor 2A (SSTR2A) was observed by immunohistochemistry. The results demonstrate that DA rats have a higher mechanical sensitivity than DA.1U rats after PIA. Local OCT administration significantly elevated MWT in DA rats under normal and PIA sate, but not in DA.1U rats. The electrophysiological experiments showed OCT significantly attenuated the firings of C units evoked by non-noxious and noxious stimulation in DA rats more than those in DA.1U rats both in normal and PIA states. In addition, the expression of SSTR2A in the dorsal horn of the spinal cord was significantly higher in DA than in DA.1U rats. All of the findings suggest a higher local analgesic effect of OCT in DA rats than DA.1U rats, which might be associated with the MHC genes.
Collapse
Affiliation(s)
- Fan-Rong Yao
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Hui-Sheng Wang
- Department of Physiology and Pathophysiology, School of Basal Medical Science, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basal Medical Science, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yan Zhao
- Department of Physiology and Pathophysiology, School of Basal Medical Science, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| |
Collapse
|
49
|
Miller AT, Dahlberg C, Sandberg ML, Wen BG, Beisner DR, Hoerter JAH, Parker A, Schmedt C, Stinson M, Avis J, Cienfuegos C, McPate M, Tranter P, Gosling M, Groot-Kormelink PJ, Dawson J, Pan S, Tian SS, Seidel HM, Cooke MP. Inhibition of the Inositol Kinase Itpkb Augments Calcium Signaling in Lymphocytes and Reveals a Novel Strategy to Treat Autoimmune Disease. PLoS One 2015; 10:e0131071. [PMID: 26121493 PMCID: PMC4488288 DOI: 10.1371/journal.pone.0131071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/28/2015] [Indexed: 02/02/2023] Open
Abstract
Emerging approaches to treat immune disorders target positive regulatory kinases downstream of antigen receptors with small molecule inhibitors. Here we provide evidence for an alternative approach in which inhibition of the negative regulatory inositol kinase Itpkb in mature T lymphocytes results in enhanced intracellular calcium levels following antigen receptor activation leading to T cell death. Using Itpkb conditional knockout mice and LMW Itpkb inhibitors these studies reveal that Itpkb through its product IP4 inhibits the Orai1/Stim1 calcium channel on lymphocytes. Pharmacological inhibition or genetic deletion of Itpkb results in elevated intracellular Ca2+ and induction of FasL and Bim resulting in T cell apoptosis. Deletion of Itpkb or treatment with Itpkb inhibitors blocks T-cell dependent antibody responses in vivo and prevents T cell driven arthritis in rats. These data identify Itpkb as an essential mediator of T cell activation and suggest Itpkb inhibition as a novel approach to treat autoimmune disease.
Collapse
Affiliation(s)
- Andrew T. Miller
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
- * E-mail:
| | - Carol Dahlberg
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Mark L. Sandberg
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Ben G. Wen
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Daniel R. Beisner
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - John A. H. Hoerter
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Albert Parker
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Christian Schmedt
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Monique Stinson
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Jacqueline Avis
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Cynthia Cienfuegos
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Mark McPate
- Novartis Pharmaceuticals UK Limited, Respiratory Disease Area, Horsham, West Sussex, United Kingdom
| | - Pamela Tranter
- Novartis Pharmaceuticals UK Limited, Respiratory Disease Area, Horsham, West Sussex, United Kingdom
| | - Martin Gosling
- Novartis Pharmaceuticals UK Limited, Respiratory Disease Area, Horsham, West Sussex, United Kingdom
| | - Paul J. Groot-Kormelink
- Novartis Institutes for Biomedical Research, Musculoskeletal Disease Area, Basel, Switzerland
| | - Janet Dawson
- Novartis Pharma AG, Novartis Institutes for Biomed. Research, Basel, Switzerland
| | - Shifeng Pan
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Shin-Shay Tian
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - H. Martin Seidel
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| | - Michael P. Cooke
- The Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California, United States of America
| |
Collapse
|
50
|
Rosenthal KS, Mikecz K, Steiner HL, Glant TT, Finnegan A, Carambula RE, Zimmerman DH. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis. Expert Rev Vaccines 2015; 14:891-908. [PMID: 25787143 DOI: 10.1586/14760584.2015.1026330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions.
Collapse
|