1
|
Yuk CM, Hong S, Kim D, Kim M, Jeong HW, Park SJ, Min H, Kim W, Lim J, Kim HD, Kim SG, Seong RH, Kim S, Lee SH. Inositol polyphosphate multikinase regulates Th1 and Th17 cell differentiation by controlling Akt-mTOR signaling. Cell Rep 2025; 44:115281. [PMID: 39946233 DOI: 10.1016/j.celrep.2025.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/15/2024] [Accepted: 01/16/2025] [Indexed: 02/28/2025] Open
Abstract
Activated proinflammatory T helper (Th) cells, including Th1 and Th17 cells, drive immune responses against pathogens and contribute to autoimmune diseases. We show that the expression of inositol polyphosphate multikinase (IPMK), an enzyme essential for inositol phosphate metabolism, is highly induced in Th1 and Th17 subsets. Deletion of IPMK in CD4+ T cells leads to diminished Th1- and Th17-mediated responses, reducing resistance to Leishmania major and attenuating experimental autoimmune encephalomyelitis. IPMK-deficient CD4+ T cells show impaired activation and Th17 differentiation, linked to the decreased activation of Akt, mTOR, and STAT3. Mechanistically, IPMK functions as a phosphatidylinositol 3-kinase to regulate phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) production, promoting T cell activation and effector functions. In IPMK-deficient CD4+ T cells, T cell receptor-stimulated PtdIns(3,4,5)P3 generation is abolished by wortmannin, suggesting IPMK acts in a wortmannin-sensitive manner. These findings establish IPMK as a critical regulator of Th1 and Th17 differentiation, underscoring its role in maintaining immune homeostasis.
Collapse
Affiliation(s)
- Chae Min Yuk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Sehoon Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Dongeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; VA Palo Alto Health Care System, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Seung Ju Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Hyungyu Min
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Wooseob Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongbu Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Hyo Dam Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Rho Hyun Seong
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea.
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Zeng Y, Yang W, Wang X, Jiang J. Targeting CD8 + T cells with natural products for tumor therapy: Revealing insights into the mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155608. [PMID: 38642413 DOI: 10.1016/j.phymed.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xiuxuan Wang
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., Beijing, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Liu J, Jiao X, Ma D, Fang Y, Gao Q. CAR-T therapy and targeted treatments: Emerging combination strategies in solid tumors. MED 2024; 5:530-549. [PMID: 38547867 DOI: 10.1016/j.medj.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 06/17/2024]
Abstract
CAR-T cell therapies hold great potential in achieving long-term remission in patients suffering from malignancies. However, their efficacy in treating solid tumors is impeded by challenges such as limited infiltration, compromised cancer recognition, decreased cytotoxicity, heightened exhaustion, absence of memory phenotypes, and inevitable toxicity. To surmount these obstacles, researchers are exploring innovative strategies, including the integration of CAR-T cells with targeted inhibitors. The combination of CAR-T therapies with specific targeted drugs has shown promise in enhancing CAR-T cell infiltration into tumor sites, boosting their tumor recognition capabilities, strengthening their cytotoxicity, alleviating exhaustion, promoting the development of a memory phenotype, and reducing toxicity. By harnessing the synergistic potential, a wider range of patients with solid tumors may potentially experience favorable outcomes. To summarize the current combined strategies of CAR-T therapies and targeted therapies, outline the potential mechanisms, and provide insights for future studies, we conducted this review by collecting existing experimental and clinical evidence.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Jiao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Sadrolashrafi K, Guo L, Kikuchi R, Hao A, Yamamoto RK, Tolson HC, Bilimoria SN, Yee DK, Armstrong AW. An OX-Tra'Ordinary Tale: The Role of OX40 and OX40L in Atopic Dermatitis. Cells 2024; 13:587. [PMID: 38607026 PMCID: PMC11011471 DOI: 10.3390/cells13070587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The transmembrane glycoprotein OX40 receptor (OX40) and its ligand, OX40L, are instrumental modulators of the adaptive immune response in humans. OX40 functions as a costimulatory molecule that promotes T cell activation, differentiation, and survival through ligation with OX40L. T cells play an integral role in the pathogenesis of several inflammatory skin conditions, including atopic dermatitis (AD). In particular, T helper 2 (TH2) cells strongly contribute to AD pathogenesis via the production of cytokines associated with type 2 inflammation (e.g., IL-4, IL-5, IL-13, and IL-31) that lead to skin barrier dysfunction and pruritus. The OX40-OX40L interaction also promotes the activation and proliferation of other T helper cell populations (e.g., TH1, TH22, and TH17), and AD patients have demonstrated higher levels of OX40 expression on peripheral blood mononuclear cells than healthy controls. As such, the OX40-OX40L pathway is a potential target for AD treatment. Novel therapies targeting the OX40 pathway are currently in development, several of which have demonstrated promising safety and efficacy results in patients with moderate-to-severe AD. Herein, we review the function of OX40 and the OX40-OX40L signaling pathway, their role in AD pathogenesis, and emerging therapies targeting OX40-OX40L that may offer insights into the future of AD management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - April W. Armstrong
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Smirnov S, Mateikovich P, Samochernykh K, Shlyakhto E. Recent advances on CAR-T signaling pave the way for prolonged persistence and new modalities in clinic. Front Immunol 2024; 15:1335424. [PMID: 38455066 PMCID: PMC10918004 DOI: 10.3389/fimmu.2024.1335424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment of hematological malignancies. The importance of the receptor costimulatory domain for long-term CAR-T cell engraftment and therapeutic efficacy was demonstrated with second-generation CAR-T cells. Fifth generation CAR-T cells are currently in preclinical trials. At the same time, the processes that orchestrate the activation and differentiation of CAR-T cells into a specific phenotype that predisposes them to long-term persistence are not fully understood. This review highlights ongoing research aimed at elucidating the role of CAR domains and T-cell signaling molecules involved in these processes.
Collapse
Affiliation(s)
- Sergei Smirnov
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia
| | - Polina Mateikovich
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia
| | - Konstantin Samochernykh
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia
| | - Evgeny Shlyakhto
- Almazov National Medical Research Centre, Personalized Medicine Centre, Saint Petersburg, Russia
| |
Collapse
|
6
|
Wang Q, Li CL, Wu L, Hu JY, Yu Q, Zhang SX, He PF. Distinct molecular subtypes of systemic sclerosis and gene signature with diagnostic capability. Front Immunol 2023; 14:1257802. [PMID: 37849750 PMCID: PMC10577296 DOI: 10.3389/fimmu.2023.1257802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Background As Systemic Sclerosis (SSc) is a connective tissue ailment that impacts various bodily systems. The study aims to clarify the molecular subtypes of SSc, with the ultimate objective of establishing a diagnostic model that can inform clinical treatment decisions. Methods Five microarray datasets of SSc were retrieved from the GEO database. To eliminate batch effects, the combat algorithm was applied. Immune cell infiltration was evaluated using the xCell algorithm. The ConsensusClusterPlus algorithm was utilized to identify SSc subtypes. Limma was used to determine differential expression genes (DEGs). GSEA was used to determine pathway enrichment. A support vector machine (SVM), Random Forest(RF), Boruta and LASSO algorithm have been used to select the feature gene. Diagnostic models were developed using SVM, RF, and Logistic Regression (LR). A ROC curve was used to evaluate the performance of the model. The compound-gene relationship was obtained from the Comparative Toxicogenomics Database (CTD). Results The identification of three immune subtypes in SSc samples was based on the expression profiles of immune cells. The utilization of 19 key intersectional DEGs among subtypes facilitated the classification of SSc patients into three robust subtypes (gene_ClusterA-C). Gene_ClusterA exhibited significant enrichment of B cells, while gene_ClusterC showed significant enrichment of monocytes. Moderate activation of various immune cells was observed in gene_ClusterB. We identified 8 feature genes. The SVM model demonstrating superior diagnostic performance. Furthermore, correlation analysis revealed a robust association between the feature genes and immune cells. Eight pertinent compounds, namely methotrexate, resveratrol, paclitaxel, trichloroethylene, formaldehyde, silicon dioxide, benzene, and tetrachloroethylene, were identified from the CTD. Conclusion The present study has effectively devised an innovative molecular subtyping methodology for patients with SSc and a diagnostic model based on machine learning to aid in clinical treatment. The study has identified potential molecular targets for therapy, thereby offering novel perspectives for the treatment and investigation of SSc.
Collapse
Affiliation(s)
- Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Chen-Long Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology , Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Jing-Yi Hu
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Huo YJ, Zhao WL. Circulating tumor DNA in NK/T and peripheral T cell lymphoma. Semin Hematol 2023; 60:173-177. [PMID: 37563073 DOI: 10.1053/j.seminhematol.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
Natural killer (NK)/T-cell lymphomas (NK/TCL) and peripheral T-cell lymphomas (PTCL) are aggressive hematological malignancies. With the development of next-generation sequencing, circulating tumor DNA (ctDNA) can be detected by several techniques with clinical implications. So far, the effect of ctDNA in pretreatment prognosis prediction, longitudinal monitoring of treatment response and surveillance of long-term remission or relapse in NK/TCL and PTCL has been reported in several researches.
Collapse
Affiliation(s)
- Yu-Jia Huo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
8
|
Wang Y, Zhao Y, Zhu Y, Xu H, Zhao W, Huang C, Wang B, Gao X, Zhang Q, Zheng J, Sun S. DHA attenuates CAR-T cell efficacy through aggravating exhaustion and inducing apoptosis. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Salles ÉL, Emami Naeini S, Bhandari B, Khodadadi H, Threlkeld E, Rezaee S, Meeks W, Meeks A, Awe A, El-Marakby A, Yu JC, Wang LP, Baban B. Sexual Dimorphism in the Polarization of Cardiac ILCs through Elabela. Curr Issues Mol Biol 2022; 45:223-232. [PMID: 36661503 PMCID: PMC9856941 DOI: 10.3390/cimb45010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Elabela is a component of the apelinergic system and may exert a cardioprotective role by regulating the innate immune responses. Innate lymphoid cells (ILCs) have a significant role in initiating and progressing immune-inflammatory responses. While ILCs have been intensively investigated during the last decade, little is known about their relationship with the apelinergic system and their cardiac diversity in a gender-based paradigm. In this study, we investigated the polarization of cardiac ILCs by Elabela in males versus females in a mouse model. Using flow cytometry and immunohistochemistry analyses, we showed a potential interplay between Elabela and cardiac ILCs and whether such interactions depend on sexual dimorphism. Our findings showed, for the first time, that Elabela is expressed by cardiac ILCs, and its expression is higher in females' ILC class 3 (ILC3s) compared to males. Females had higher frequencies of ILC1s, and Elabela was able to suppress T-cell activation and the expression of co-stimulatory CD28 in a mixed lymphocyte reaction assay (MLR). In conclusion, our results suggest, for the first time, a protective role for Elabela through its interplay with ILCs and that it can be used as an immunotherapeutic target in the treatment of cardiovascular disorders in a gender-based fashion.
Collapse
Affiliation(s)
- Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-(706)-721-3181
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Edie Threlkeld
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sholeh Rezaee
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William Meeks
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Avery Meeks
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Aderemi Awe
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ahmed El-Marakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jack C. Yu
- Department of Plastic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lei P. Wang
- Medicinal Cannabis of Georgia LLC, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
11
|
Zhang S, Fan S, Wang Z, Hou W, Liu T, Yoshida S, Yang S, Zheng H, Shen Z. Capecitabine Regulates HSP90AB1 Expression and Induces Apoptosis via Akt/SMARCC1/AP-1/ROS Axis in T Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1012509. [PMID: 35368874 PMCID: PMC8970866 DOI: 10.1155/2022/1012509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
Transplant oncology is a newly emerging discipline integrating oncology, transplant medicine, and surgery and has brought malignancy treatment into a new era via transplantation. In this context, obtaining a drug with both immunosuppressive and antitumor effects can take into account the dual needs of preventing both transplant rejection and tumor recurrence in liver transplantation patients with malignancies. Capecitabine (CAP), a classic antitumor drug, has been shown to induce reactive oxygen species (ROS) production and apoptosis in tumor cells. Meanwhile, we have demonstrated that CAP can induce ROS production and apoptosis in T cells to exert immunosuppressive effects, but its underlying molecular mechanism is still unclear. In this study, metronomic doses of CAP were administered to normal mice by gavage, and the spleen was selected for quantitative proteomic and phosphoproteomic analysis. The results showed that CAP significantly reduced the expression of HSP90AB1 and SMARCC1 in the spleen. It was subsequently confirmed that CAP also significantly reduced the expression of HSP90AB1 and SMARCC1 and increased ROS and apoptosis levels in T cells. The results of in vitro experiments showed that HSP90AB1 knockdown resulted in a significant decrease in p-Akt, SMARCC1, p-c-Fos, and p-c-Jun expression levels and a significant increase in ROS and apoptosis levels. HSP90AB1 overexpression significantly inhibited CAP-induced T cell apoptosis by increasing the p-Akt, SMARCC1, p-c-Fos, and p-c-Jun expression levels and reducing the ROS level. In conclusion, HSP90AB1 is a key target of CAP-induced T cell apoptosis via Akt/SMARCC1/AP-1/ROS axis, which provides a novel understanding of CAP-induced T cell apoptosis and lays the experimental foundation for further exploring CAP as an immunosuppressant with antitumor effects to optimize the medication regimen for transplantation patients.
Collapse
Affiliation(s)
- Sai Zhang
- School of Medicine, Nankai University, Tianjin, China
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Shunli Fan
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Zhenglu Wang
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin First Central Hospital, Tianjin, China
| | - Wen Hou
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin, China
| | - Tao Liu
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin, China
| | - Sei Yoshida
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
| | - Hong Zheng
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin First Central Hospital, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Zhongyang Shen
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin First Central Hospital, Tianjin, China
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| |
Collapse
|
12
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol 2022; 15:24. [PMID: 35279217 PMCID: PMC8917703 DOI: 10.1186/s13045-022-01242-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are promising anticancer targets, among which therapeutic antibodies targeting the PD-1/PD-L1 pathway have been widely applied to cancer treatment in clinical practice and have great potential. However, this treatment is greatly limited by its low response rates in certain cancers, lack of known biomarkers, immune-related toxicity, innate and acquired drug resistance, etc. Overcoming these limitations would significantly expand the anticancer applications of PD-1/PD-L1 blockade and improve the response rate and survival time of cancer patients. In the present review, we first illustrate the biological mechanisms of the PD-1/PD-L1 immune checkpoints and their role in the healthy immune system as well as in the tumor microenvironment (TME). The PD-1/PD-L1 pathway inhibits the anticancer effect of T cells in the TME, which in turn regulates the expression levels of PD-1 and PD-L1 through multiple mechanisms. Several strategies have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including combination therapy with other standard treatments, such as chemotherapy, radiotherapy, targeted therapy, anti-angiogenic therapy, other immunotherapies and even diet control. Downregulation of PD-L1 expression in the TME via pharmacological or gene regulation methods improves the efficacy of anti-PD-1/PD-L1 treatment. Surprisingly, recent preclinical studies have shown that upregulation of PD-L1 in the TME also improves the response and efficacy of immune checkpoint blockade. Immunotherapy is a promising anticancer strategy that provides novel insight into clinical applications. This review aims to guide the development of more effective and less toxic anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Xie
- Department of Obstetrics and Gynaecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China
| | - Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| |
Collapse
|
13
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
14
|
Cameron B, Zaheer SA, Dominguez-Villar M. Control of CD4+ T Cell Differentiation and Function by PI3K Isoforms. Curr Top Microbiol Immunol 2022; 436:197-216. [DOI: 10.1007/978-3-031-06566-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
16
|
LI HY, XU JN, SHUAI ZW. Cellular signaling pathways of T cells in giant cell arteritis. J Geriatr Cardiol 2021; 18:768-778. [PMID: 34659383 PMCID: PMC8501386 DOI: 10.11909/j.issn.1671-5411.2021.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Giant cell arteritis (GCA) is a commonly occurring large vacuities characterized by angiopathy of medium and large-sized vessels. GCA granulomatous formation plays an important role in the pathogenesis of GCA. Analysis of T cell lineages and signaling pathways in GCA have revealed the essential role of T cells in the pathology of GCA. T cells are the dominant population present in GCA lesions. CD4+ T cell subtypes that are present include Th1, Th2, Th9, Th17, follicular helper T (Tfh) cells, and regulatory T (Treg) cells. CD8 T cells can primarily differentiate into cytotoxic CD8+ T lymphocytes and Treg cells. The instrumental part of GCA is the interplay between dendritic cells, macrophages and endothelial cells, which can result in the vascular injury and the characteristics granulomatous infiltrates formation. During the inflammatory loop of GCA, several signaling pathways have been reported to play an essential role in recruiting, activating and differentiating T cells, including T-cell receptor (TCR) signaling, vascular endothelial growth factor (VEGF)-Jagged-Notch signaling and the Janus kinase and signal transducer and activator of transcription (STAT) pathway (JAK-STAT) pathway. In this review, we have focused on the role of T cells and their potential signaling mechanism (s) that are involved in the pathogenesis of GCA. A better understanding of the role of T cells mediated complicated orchestration during the homeostasis and the changes could possibly favor developments of novel treatment strategies against immunological disorders associated with GCA.
Collapse
Affiliation(s)
- Hai-Yan LI
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun-Nan XU
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zong-Wen SHUAI
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Lü BB, Wu GG, Sun Y, Zhang LS, Wu X, Jiang W, Li P, Huang YN, Wang JB, Zhao YC, Liu H, Song LL, Mo Q, Pan AH, Yang Y, Long XQ, Cui WD, Zhang C, Wang X, Tang XM. Comparative Transcriptome and Endophytic Bacterial Community Analysis of Morchella conica SH. Front Microbiol 2021; 12:682356. [PMID: 34354681 PMCID: PMC8329594 DOI: 10.3389/fmicb.2021.682356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
The precious rare edible fungus Morchella conica is popular worldwide for its rich nutrition, savory flavor, and varieties of bioactive components. Due to its high commercial, nutritional, and medicinal value, it has always been a hot spot. However, the molecular mechanism and endophytic bacterial communities in M. conica were poorly understood. In this study, we sequenced, assembled, and analyzed the genome of M. conica SH. Transcriptome analysis reveals significant differences between the mycelia and fruiting body. As shown in this study, 1,329 and 2,796 genes were specifically expressed in the mycelia and fruiting body, respectively. The Gene Ontology (GO) enrichment showed that RNA polymerase II transcription activity-related genes were enriched in the mycelium-specific gene cluster, and nucleotide binding-related genes were enriched in the fruiting body-specific gene cluster. Further analysis of differentially expressed genes in different development stages resulted in finding two groups with distinct expression patterns. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment displays that glycan degradation and ABC transporters were enriched in the group 1 with low expressed level in the mycelia, while taurine and hypotaurine metabolismand tyrosine metabolism-related genes were significantly enriched in the group 2 with high expressed level in mycelia. Moreover, a dynamic shift of bacterial communities in the developing fruiting body was detected by 16S rRNA sequencing, and co-expression analysis suggested that bacterial communities might play an important role in regulating gene expression. Taken together, our study provided a better understanding of the molecular biology of M. conica SH and direction for future research on artificial cultivation.
Collapse
Affiliation(s)
- Bei B Lü
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guo G Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liang S Zhang
- Institute of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Jiang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Peng Li
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan N Huang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin B Wang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong C Zhao
- Institute of Edible Fungi, Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Hua Liu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li L Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qin Mo
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ai H Pan
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xuan Q Long
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Wei D Cui
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Xue M Tang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
18
|
Jin P, Li J, Meng Y, Wu L, Bai M, Yu J, Meng X. PET/CT metabolic patterns in systemic immune activation: A new perspective on the assessment of immunotherapy response and efficacy. Cancer Lett 2021; 520:91-99. [PMID: 34237407 DOI: 10.1016/j.canlet.2021.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Despite advances in immunotherapy, extensive challenges remain in its clinical application. Positron emission tomography (PET)/computed tomography (CT) is widely used in the diagnosis and follow-up of malignant tumors and in the prediction of treatment outcomes. Successful cancer immunotherapy requires systemic immune activation. In addition to local immune responses, a systemic antitumor response involving primary and secondary lymphoid organs is required for tumor eradication. Immune-related adverse events (IRAEs) are considered to be a manifestation of excessive immune activation. PET/CT can monitor the metabolic changes in peripheral lymphoid organs and related organs. Thus, it can identify patients with effective immune activation and predict the efficacy and outcomes of immunotherapy. This review aimed to investigate the theoretical basis and feasibility of applying PET/CT for monitoring the immune activation status of peripheral lymphoid organs after immunotherapy and predict its effectiveness. Towards this goal, we reviewed the cellular components and structural composition of peripheral lymphoid organs, as well as their functions in the systemic immune response. We analyzed the theoretical basis and feasibility of applying PET/CT to monitor the immune activation status of peripheral lymphoid organs after immunotherapy to predict the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Peng Jin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jianing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yingtao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leilei Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, School of Medicine, Shandong University, Jinan, China
| | - Menglin Bai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, School of Medicine, Shandong University, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
19
|
Liu H, Liu Y, Zhang X, Wang X. Current Study of RhoA and Associated Signaling Pathways in Gastric Cancer. Curr Stem Cell Res Ther 2021; 15:607-613. [PMID: 32223738 DOI: 10.2174/1574888x15666200330143958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 01/08/2023]
Abstract
Gastric cancer (GC) is the fourth-most common cancer in the world, with an estimated 1.034 million new cases in 2015, and the third-highest cause of cancer deaths, estimated at 785,558, in 2014. Early diagnosis and treatment greatly affect the survival rate in patients with GC: the 5-year survival rate of early GC reaches 90%-95%, while the mortality rate significantly increases if GC develops to the late stage. Recently, studies for the role of RhoA in the diseases have become a hot topic, especially in the development of tumors. A study found that RhoA can regulate actin polymerization, cell adhesion, motor-myosin, cell transformation, and the ability to participate in the activities of cell movement, proliferation, migration, which are closely related to the invasion and metastasis of tumor cells. However, the specific role of RhoA in tumor cells remains to be studied. Therefore, our current study aimed to briefly review the role of RhoA in GC, especially for its associated signaling pathways involved in the GC progression.
Collapse
Affiliation(s)
- Haiping Liu
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Yiqian Liu
- Department of pathology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Xiaochuan Zhang
- Department of pathology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Xiaodong Wang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Rana J, Perry DJ, Kumar SRP, Muñoz-Melero M, Saboungi R, Brusko TM, Biswas M. CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol Ther 2021; 29:2660-2676. [PMID: 33940160 PMCID: PMC8417451 DOI: 10.1016/j.ymthe.2021.04.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) control immune responses in autoimmune disease, transplantation, and enable antigen-specific tolerance induction in protein-replacement therapies. Tregs can exert a broad array of suppressive functions through their T cell receptor (TCR) in a tissue-directed and antigen-specific manner. This capacity can now be harnessed for tolerance induction by "redirecting" polyclonal Tregs to overcome low inherent precursor frequencies and simultaneously augment suppressive functions. With the use of hemophilia A as a model, we sought to engineer antigen-specific Tregs to suppress antibody formation against the soluble therapeutic protein factor (F)VIII in a major histocompatibility complex (MHC)-independent fashion. Surprisingly, high-affinity chimeric antigen receptor (CAR)-Treg engagement induced a robust effector phenotype that was distinct from the activation signature observed for endogenous thymic Tregs, which resulted in the loss of suppressive activity. Targeted mutations in the CD3ζ or CD28 signaling motifs or interleukin (IL)-10 overexpression were not sufficient to restore tolerance. In contrast, complexing TCR-based signaling with single-chain variable fragment (scFv) recognition to generate TCR fusion construct (TRuC)-Tregs delivered controlled antigen-specific signaling via engagement of the entire TCR complex, thereby directing functional suppression of the FVIII-specific antibody response. These data suggest that cellular therapies employing engineered receptor Tregs will require regulation of activation thresholds to maintain optimal suppressive function.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sandeep R P Kumar
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Rania Saboungi
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
21
|
Ahmed LA, Mohamed AF, Abd El-Haleim EA, El-Tanbouly DM. Boosting Akt Pathway by Rupatadine Modulates Th17/Tregs Balance for Attenuation of Isoproterenol-Induced Heart Failure in Rats. Front Pharmacol 2021; 12:651150. [PMID: 33995066 PMCID: PMC8121023 DOI: 10.3389/fphar.2021.651150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/11/2021] [Indexed: 01/11/2023] Open
Abstract
Disruption of Th17/Tregs homeostasis plays a crucial role in governing the immune response during myocardial fibrosis and its progression to heart failure. The present study aimed to assess for the first time the possible protection afforded by rupatadine against isoproterenol-induced heart failure in rats. It also explored the role of PI3k/Akt as a possible mechanistic pathway, through which rupatadine could modulate Th17/Tregs balance to display its effect. Isoproterenol (85 and 170 mg/kg/day) was injected subcutaneously for 2 successive days, respectively and rupatadine (4 mg/kg/day) was then given orally for 14 days with or without wortmannin (PI3K/Akt inhibitor). Rupatadine succeeded to completely ameliorate isoproterenol-induced cardiac dysfunction as demonstrated by improvements of electrocardiographic and echocardiographic measurements. Moreover, rupatadine prevented the marked elevation of PAF and oxidative stress in addition to Th17 promoting cytokines (IL-6, IL-23, and TGF-β). Accordingly, rupatadine prevented Th17 stimulation or expansion as indicated by increased Foxp3/RORγt ratio and decreased production of its pro-inflammatory cytokine (IL-17). Rupatadine treatment mitigated isoproterenol-induced activation of STAT-3 signaling and the imbalance in p-Akt/total Akt ratio affording marked decrease in atrogin-1 and apoptotic biomarkers. Finally, this therapy was effective in averting cardiac troponin loss and reverting the histological alterations as assessed by myocardial fibrosis and hypertrophy grading. Contrariwise, co-administration of wortmannin mostly attenuated the protective effects of rupatadine affording more or less similar results to that of isoproterenol-untreated rats. In conclusion, rupatadine could be an effective therapy against the development of isoproterenol-induced heart failure where PI3K/Akt pathway seems to play a crucial role in its protective effect.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
22
|
Hombach AA, Heiders J, Foppe M, Chmielewski M, Abken H. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4(+) T cells. Oncoimmunology 2021; 1:458-466. [PMID: 22754764 PMCID: PMC3382912 DOI: 10.4161/onci.19855] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adoptive therapy with chimeric antigen receptor (CAR) redirected T cells recently showed remarkable anti-tumor efficacy in early phase clinical trials; self-repression of the immune response by T-cell secreted cytokines, however, is still an issue raising interest to abrogate the secretion of repressive cytokines while preserving the panel of CAR induced pro-inflammatory cytokines. We here revealed that T-cell activation by a CD28-ζ signaling CAR induced IL-10 secretion, which compromises T cell based immunity, along with the release of pro-inflammatory IFN-γ and IL-2. T cells stimulated by a ζ CAR without costimulation did not secrete IL-2 or IL-10; the latter, however, could be induced by supplementation with IL-2. Abrogation of CD28-ζ CAR induced IL-2 release by CD28 mutation did not reduce IL-10 secretion indicating that IL-10 can be induced by both a CD28 and an IL-2 mediated pathway. In contrast to the CD28-ζ CAR, a CAR with OX40 (CD134) costimulation did not induce IL-10. OX40 cosignaling by a 3rd generation CD28-ζ-OX40 CAR repressed CD28 induced IL-10 secretion but did not affect the secretion of pro-inflammatory cytokines, T-cell amplification or T-cell mediated cytolysis. IL-2 induced IL-10 was also repressed by OX40 co-signaling. OX40 moreover repressed IL-10 secretion by regulatory T cells which are strong IL-10 producers upon activation. Taken together OX40 cosignaling in CAR redirected T cell activation effectively represses IL-10 secretion which contributes to counteract self-repression and provides a rationale to explore OX40 co-signaling CARs in order to prolong a redirected T cell response.
Collapse
Affiliation(s)
- Andreas A Hombach
- Center for Molecular Medicine Cologne (CMMC) and Tumor Genetics; Department I Internal Medicine; University of Cologne; Cologne, Germany
| | | | | | | | | |
Collapse
|
23
|
Abstract
Akt kinases translate various external cues into intracellular signals that control cell survival, proliferation, metabolism and differentiation. This review discusses the requirement for Akt and its targets in determining the fate and function of T cells. We discuss the importance of Akt at various stages of T cell development including β-selection during which Akt fulfills the energy requirements of highly proliferative DN3 cells. Akt also plays an integral role in CD8 T cell biology where its regulation of Foxo transcription factors and mTORC1 metabolic activity controls effector versus memory CD8 T cell differentiation. Finally, Akt promotes the differentiation of naïve CD4 T cells into Th1, Th17 and Tfh cells but inhibits the development of Treg cells. We also highlight how modulating Akt in T cells is a promising avenue for enhancing cell-based cancer immunotherapy.
Collapse
|
24
|
Friesen L, Gu B, Kim C. A ligand-independent fast function of RARα promotes exit from metabolic quiescence upon T cell activation and controls T cell differentiation. Mucosal Immunol 2021; 14:100-112. [PMID: 32518366 PMCID: PMC7725911 DOI: 10.1038/s41385-020-0311-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/22/2020] [Accepted: 05/20/2020] [Indexed: 02/04/2023]
Abstract
Vitamin A metabolites play important roles in T cell activation and differentiation. A conventional model of RARα function relies upon retinoic acid (RA)-liganded RARα binding to specific DNA motifs to regulate gene expression in the nucleus. However, this genomic function fails to explain many of the biological responses of the RA-RARα axis on T cells. We generated a mouse line where RARα is over-expressed in T cells to probe RARα function with unprecedented sensitivity. Using this model together with mice specifically lacking RARα in T cells, we found that RARα is required for prompt exit from metabolic quiescence in resting T cells upon T cell activation. The positive effect of RARα on metabolism is mediated through PI3K and subsequent activation of the Akt and mTOR signaling pathway. This largely non-genomic function of RARα is surprisingly ligand-independent and controls the differentiation of effector and regulatory T cell subsets.
Collapse
Affiliation(s)
- L.R. Friesen
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109,Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - B. Gu
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47906
| | - C.H. Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109,Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109,Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
25
|
Lith SC, van Os BW, Seijkens TTP, de Vries CJM. 'Nur'turing tumor T cell tolerance and exhaustion: novel function for Nuclear Receptor Nur77 in immunity. Eur J Immunol 2020; 50:1643-1652. [PMID: 33063848 PMCID: PMC7702156 DOI: 10.1002/eji.202048869] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The nuclear receptor Nur77 is expressed in a multitude of tissues, regulating cell differentiation and homeostasis. Dysregulation of Nur77 signaling is associated with cancer, cardiovascular disease, and disorders of the CNS. The role of Nur77 in T cells has been studied for almost 30 years now. There is a clear appreciation that Nur77 is crucial for apoptosis of self‐reactive T cells. However, the regulation and function of Nur77 in mature T cells remains largely unclear. In an exciting development, Nur77 has been recently demonstrated to impinge on cancer immunotherapy involving chimeric antigen receptor (CAR) T cells and tumor infiltrating lymphocytes (TILs). These studies indicated that Nur77 deficiency reduced T cell tolerance and exhaustion, thus raising the effectiveness of immune therapy in mice. Based on these novel insights, it may be proposed that regulation of Nur77 activity holds promise for innovative drug development in the field of cellular immunotherapy in cancer. In this review, we therefore summarize the role of Nur77 in T cell selection and maturation; and further develop the idea of targeting its activity in these cells as a potential strategy to augment current cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Sanne C Lith
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Bram W van Os
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department of Internal Medicine, Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Abstract
Virtually all aspects of T and B lymphocyte development, homeostasis, activation, and effector function are impacted by the interaction of their clonally distributed antigen receptors with antigens encountered in their respective environments. Antigen receptors mediate their effects by modulating intracellular signaling pathways that ultimately impinge on the cytoskeleton, bioenergetic pathways, transcription, and translation. Although these signaling pathways are rather well described at this point, especially those steps that are most receptor-proximal, how such pathways contribute to more quantitative aspects of lymphocyte function is still being elucidated. One of the signaling pathways that appears to be involved in this “tuning” process is controlled by the lipid kinase PI3K. Here we review recent key findings regarding both the triggering/enhancement of PI3K signals (via BCAP and ICOS) as well as their regulation (via PIK3IP1 and PHLPP) and how these signals integrate and determine cellular processes. Lymphocytes display tremendous functional plasticity, adjusting their metabolism and gene expression programs to specific conditions depending on their tissue of residence and the nature of the infectious threat to which they are responding. We give an overview of recent findings that have contributed to this model, with a focus on T cells, including what has been learned from patients with gain-of-function mutations in PI3K as well as lessons from cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Benjamin Murter
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
27
|
Watanabe R, Berry GJ, Liang DH, Goronzy JJ, Weyand CM. Cellular Signaling Pathways in Medium and Large Vessel Vasculitis. Front Immunol 2020; 11:587089. [PMID: 33072134 PMCID: PMC7544845 DOI: 10.3389/fimmu.2020.587089] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Autoimmune and autoinflammatory diseases of the medium and large arteries, including the aorta, cause life-threatening complications due to vessel wall destruction but also by wall remodeling, such as the formation of wall-penetrating microvessels and lumen-stenosing neointima. The two most frequent large vessel vasculitides, giant cell arteritis (GCA) and Takayasu arteritis (TAK), are HLA-associated diseases, strongly suggestive for a critical role of T cells and antigen recognition in disease pathogenesis. Recent studies have revealed a growing spectrum of effector functions through which T cells participate in the immunopathology of GCA and TAK; causing the disease-specific patterning of pathology and clinical outcome. Core pathogenic features of disease-relevant T cells rely on the interaction with endothelial cells, dendritic cells and macrophages and lead to vessel wall invasion, formation of tissue-damaging granulomatous infiltrates and induction of the name-giving multinucleated giant cells. Besides antigen, pathogenic T cells encounter danger signals in their immediate microenvironment that they translate into disease-relevant effector functions. Decisive signaling pathways, such as the AKT pathway, the NOTCH pathway, and the JAK/STAT pathway modify antigen-induced T cell activation and emerge as promising therapeutic targets to halt disease progression and, eventually, reset the immune system to reestablish the immune privilege of the arterial wall.
Collapse
Affiliation(s)
- Ryu Watanabe
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - David H Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
28
|
Hossain MA, Liu G, Dai B, Si Y, Yang Q, Wazir J, Birnbaumer L, Yang Y. Reinvigorating exhausted CD8 + cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Med Res Rev 2020; 41:156-201. [PMID: 32844499 DOI: 10.1002/med.21727] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has revolutionized the treatment of cancer in recent years and achieved overall success and long-term clinical benefit in patients with a wide variety of cancer types. However, there is still a large proportion of patients exhibiting limited or no responses to immunotherapeutic strategy, some of which were even observed with hyperprogressive disease. One major obstacle restricting the efficacy is that tumor-reactive CD8+ T cells, which are central for tumor control, undergo exhaustion, and lose their ability to eliminate cancer cells after infiltrating into the strongly immunosuppressive tumor microenvironment. Thus, as a potential therapeutic rationale in the development of cancer immunotherapy, targeting or reinvigorating exhausted CD8+ T cells has been attracting much interest. Hitherto, both intrinsic and extrinsic mechanisms that govern CD8+ T-cell exhaustion have been explored. Specifically, the transcriptional and epigenetic landscapes have been depicted utilizing single-cell RNA sequencing or mass cytometry (CyTOF). In addition, cellular metabolism dictating the tumor-infiltrating CD8+ T-cell fate is currently under investigation. A series of clinical trials are being carried out to further establish the current strategies targeting CD8+ T-cell exhaustion. Taken together, despite the proven benefit of immunotherapy in cancer patients, additional efforts are still needed to fully circumvent limitations of exhausted T cells in the treatment. In this review, we will focus on the current cellular and molecular understanding of metabolic changes, epigenetic remodeling, and transcriptional regulation in CD8+ T-cell exhaustion and describe hypothetical treatment approaches based on immunotherapy aiming at reinvigorating exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Md Amir Hossain
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guilai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Beiying Dai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yaxuan Si
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qitao Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA.,Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Qu J, Wang L, Jiang M, Zhao D, Wang Y, Zhang F, Li J, Zhang X. A Review About Pembrolizumab in First-Line Treatment of Advanced NSCLC: Focus on KEYNOTE Studies. Cancer Manag Res 2020; 12:6493-6509. [PMID: 32801888 PMCID: PMC7395702 DOI: 10.2147/cmar.s257188] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is currently the malignant tumor with the highest incidence and mortality in the world, while non-small cell lung cancer (NSCLC) is the most common pathological type of lung caner. In the past few decades, the only treatment options available for advanced NSCLC patients have been targeted therapy or chemotherapy, but these therapies are inevitably tolerated by tumors. The discovery of immune checkpints that mediate the immune escape of tumor cells have been promoting a series of immune checkpoint inhibitors to be used in cancer treatment and achieved great results. Among them, pembrolizumab is currently the only PD-1 inhibitor approved for first-line treatment of NSCLC, whether it is monotherapy or combination therapy, for creditable performance in KEYNOTE studies. In this review, we systematically integrate the latest series of clinical trial results, pharmacological mechanisms, adverse events (AEs) and predictive biomarkers in the first-line treatment of NSCLC. We hope pembrolizumab could become a better choice for more clinicians and benefit more patients with advanced NSCLC.
Collapse
Affiliation(s)
- Jialin Qu
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, People's Republic of China
| | - Li Wang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, People's Republic of China
| | - Man Jiang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, People's Republic of China
| | - Deze Zhao
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, People's Republic of China
| | - Yuyang Wang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, People's Republic of China
| | - Feng Zhang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, People's Republic of China
| | - Jing Li
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, People's Republic of China
| | - Xiaochun Zhang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, People's Republic of China
| |
Collapse
|
30
|
Fiore D, Cappelli LV, Broccoli A, Zinzani PL, Chan WC, Inghirami G. Peripheral T cell lymphomas: from the bench to the clinic. Nat Rev Cancer 2020; 20:323-342. [PMID: 32249838 DOI: 10.1038/s41568-020-0247-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Peripheral T cell lymphomas (PTCLs) are a heterogeneous group of orphan neoplasms. Despite the introduction of anthracycline-based chemotherapy protocols, with or without autologous haematopoietic transplantation and a plethora of new agents, the progression-free survival of patients with PTCLs needs to be improved. The rarity of these neoplasms, the limited knowledge of their driving defects and the lack of experimental models have impaired clinical successes. This scenario is now rapidly changing with the discovery of a spectrum of genomic defects that hijack essential signalling pathways and foster T cell transformation. This knowledge has led to new genomic-based stratifications, which are being used to establish objective diagnostic criteria, more effective risk assessment and target-based interventions. The integration of genomic and functional data has provided the basis for targeted therapies and immunological approaches that underlie individual tumour vulnerabilities. Fortunately, novel therapeutic strategies can now be rapidly tested in preclinical models and effectively translated to the clinic by means of well-designed clinical trials. We believe that by combining new targeted agents with immune regulators and chimeric antigen receptor-expressing natural killer and T cells, the overall survival of patients with PTCLs will dramatically increase.
Collapse
MESH Headings
- Epigenesis, Genetic/genetics
- Epigenesis, Genetic/physiology
- Humans
- Immunotherapy
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/immunology
- Lymphoma, T-Cell, Peripheral/metabolism
- Molecular Targeted Therapy
- Mutation
- Signal Transduction/genetics
- Signal Transduction/physiology
- T-Lymphocytes/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Danilo Fiore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alessandro Broccoli
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy.
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA.
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Saravia J, Raynor JL, Chapman NM, Lim SA, Chi H. Signaling networks in immunometabolism. Cell Res 2020; 30:328-342. [PMID: 32203134 PMCID: PMC7118125 DOI: 10.1038/s41422-020-0301-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Adaptive immunity is essential for pathogen and tumor eradication, but may also trigger uncontrolled or pathological inflammation. T cell receptor, co-stimulatory and cytokine signals coordinately dictate specific signaling networks that trigger the activation and functional programming of T cells. In addition, cellular metabolism promotes T cell responses and is dynamically regulated through the interplay of serine/threonine kinases, immunological cues and nutrient signaling networks. In this review, we summarize the upstream regulators and signaling effectors of key serine/threonine kinase-mediated signaling networks, including PI3K–AGC kinases, mTOR and LKB1–AMPK pathways that regulate metabolism, especially in T cells. We also provide our perspectives about the pending questions and clinical applicability of immunometabolic signaling. Understanding the regulators and effectors of immunometabolic signaling networks may uncover therapeutic targets to modulate metabolic programming and T cell responses in human disease.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
32
|
Kerstholt M, Netea MG, Joosten LAB. Borrelia burgdorferi hijacks cellular metabolism of immune cells: Consequences for host defense. Ticks Tick Borne Dis 2020; 11:101386. [PMID: 32035898 DOI: 10.1016/j.ttbdis.2020.101386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Changes in cellular metabolism have proven to be important factors in driving cell behavior. It has been shown that cellular metabolism of immune cells changes when exposed to or infected by several pathogens: while this is often an adaptation of the host cells to the infection, sometimes it represents a mechanism through which the pathogens evade immune activation. Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is a pathogen that highly depends on the host to survive, as the bacterium lacks many central metabolic pathways to generate its own nutrients. It is therefore quite likely that the bacterium interacts with host cells to obtain these metabolites and thereby affects metabolism in the host. Previously, several studies have assessed metabolic pathways in B. burgdorferi s.l. and how it adapts to its different host species. However, few studies have looked into how the interaction with the bacterium might affect the host cell metabolism. In this review we present the major metabolic pathways activated during Lyme borreliosis, viewed from both bacterium and host metabolism, and we discuss how these pathways interact with each other, and how they influence pathogenesis of Lyme borreliosis.
Collapse
Affiliation(s)
- Mariska Kerstholt
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
33
|
Wakeley ME, Gray CC, Monaghan SF, Heffernan DS, Ayala A. Check Point Inhibitors and Their Role in Immunosuppression in Sepsis. Crit Care Clin 2020; 36:69-88. [PMID: 31733683 PMCID: PMC6863093 DOI: 10.1016/j.ccc.2019.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Checkpoint regulators are a group of membrane-bound receptors or ligands expressed on immune cells to regulate the immune cell response to antigen presentation and other immune stimuli, such as cytokines, chemokines, and complement. In the context of profound immune activation, such as sepsis, the immune system can be rendered anergic by these receptors to prevent excessive inflammation and tissue damage. If this septic immunosuppression is prolonged, the host is unable to mount the appropriate immune response to a secondary insult or infection. This article describes the manner in which major regulators in the B7-CD28 family and their ligands mediate immunosuppression in sepsis.
Collapse
Affiliation(s)
- Michelle E Wakeley
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Room 242 Aldrich Building, 593 Eddy Street, Providence, RI 02903, USA
| | - Chyna C Gray
- Molecular Biology, Cell Biology and Biochemistry Department, Brown University, Rhode Island Hospital, Room 244 Aldrich Building, 593 Eddy Street, Providence, RI 02903, USA
| | - Sean F Monaghan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Room 211 Middle House, 593 Eddy Street, Providence, RI 02903, USA; Division of Trauma and Surgical Critical Care, Department of Surgery, Brown University, Rhode Island Hospital, Room 211 Middle House, 593 Eddy Street, Providence, RI 02903, USA
| | - Daithi S Heffernan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Room 205 Middle House, 593 Eddy Street, Providence, RI 02903, USA; Division of Trauma and Surgical Critical Care, Department of Surgery, Brown University, Rhode Island Hospital, Room 205 Middle House, 593 Eddy Street, Providence, RI 02903, USA
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Room 227 Aldrich Building, 593 Eddy Street, Providence, RI 02903, USA.
| |
Collapse
|
34
|
Dagenais-Lussier X, Loucif H, Cadorel H, Blumberger J, Isnard S, Bego MG, Cohen ÉA, Routy JP, van Grevenynghe J. USP18 is a significant driver of memory CD4 T-cell reduced viability caused by type I IFN signaling during primary HIV-1 infection. PLoS Pathog 2019; 15:e1008060. [PMID: 31658294 PMCID: PMC6837632 DOI: 10.1371/journal.ppat.1008060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/07/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
The loss of Memory CD4 T-cells (Mem) is a major hallmark of HIV-1 immuno-pathogenesis and occurs early during the first months of primary infection. A lot of effort has been put into understanding the molecular mechanisms behind this loss, yet they still have not been fully identified. In this study, we unveil the unreported role of USP18 in the deleterious effects of sustained type I IFN signaling on Mem, including HIV-1-specific CD4 T-cells. We find that interfering with IFN-I signaling pathway in infected patients, notably by targeting the interferon-stimulated gene USP18, resulted in reduced PTEN expression similar to those observed in uninfected control donors. We show that AKT activation in response to cytokine treatment, T-cell receptor (TcR) triggering, as well as HIV-1 Gag stimulation was significantly improved in infected patients when PTEN or USP18 were inhibited. Finally, our data demonstrate that higher USP18 in Mem from infected patients prevent proper cell survival and long-lasting maintenance in an AKT-dependent manner. Altogether, we establish a direct role for type I IFN/USP18 signaling in the maintenance of total and virus-specific Mem and provide a new mechanism for the reduced survival of these populations during primary HIV-1 infection. In this study, we expend our knowledge of how type I interferons (IFN-I) leads to memory CD4 T-cell defective survival by unveiling the molecular mechanism behind such impairments, placing USP18 at its center. Our data further deciphers the specific USP18-related mechanism that is responsible for such impairments by implicating AKT inhibition in a PTEN-dependent manner. Our findings also point to a potential use of neutralizing anti-interferon α/β receptor antibodies to rescue the defective memory CD4 T-cell survival during HIV-1 infection, even in HIV-1 specific CD4 T-cell. To conclude, our findings provide the characterization of the molecular pathway leading to disturbances caused by sustained IFN-I signaling which occurs early during primary HIV-1 infection, complementing current knowledge which placed sustained IFN-I signaling as detrimental to the host during this infection.
Collapse
Affiliation(s)
- Xavier Dagenais-Lussier
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hamza Loucif
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hugo Cadorel
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Juliette Blumberger
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Stéphane Isnard
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Mariana Gé Bego
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Éric A. Cohen
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Julien van Grevenynghe
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
- * E-mail:
| | | |
Collapse
|
35
|
Chung JK, Nocka LM, Decker A, Wang Q, Kadlecek TA, Weiss A, Kuriyan J, Groves JT. Switch-like activation of Bruton's tyrosine kinase by membrane-mediated dimerization. Proc Natl Acad Sci U S A 2019; 116:10798-10803. [PMID: 31076553 PMCID: PMC6561188 DOI: 10.1073/pnas.1819309116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transformation of molecular binding events into cellular decisions is the basis of most biological signal transduction. A fundamental challenge faced by these systems is that reliance on protein-ligand chemical affinities alone generally results in poor sensitivity to ligand concentration, endangering the system to error. Here, we examine the lipid-binding pleckstrin homology and Tec homology (PH-TH) module of Bruton's tyrosine kinase (Btk). Using fluorescence correlation spectroscopy (FCS) and membrane-binding kinetic measurements, we identify a phosphatidylinositol (3-5)-trisphosphate (PIP3) sensing mechanism that achieves switch-like sensitivity to PIP3 levels, surpassing the intrinsic affinity discrimination of PIP3:PH binding. This mechanism employs multiple PIP3 binding as well as dimerization of Btk on the membrane surface. Studies in live cells confirm that mutations at the dimer interface and peripheral site produce effects comparable to that of the kinase-dead Btk in vivo. These results demonstrate how a single protein module can institute an allosteric counting mechanism to achieve high-precision discrimination of ligand concentration. Furthermore, this activation mechanism distinguishes Btk from other Tec family member kinases, Tec and Itk, which we show are not capable of dimerization through their PH-TH modules. This suggests that Btk plays a critical role in the stringency of the B cell response, whereas T cells rely on other mechanisms to achieve stringency.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Laura M Nocka
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Aubrianna Decker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Qi Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Theresa A Kadlecek
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Arthur Weiss
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143
- The Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
| | - John Kuriyan
- Department of Chemistry, University of California, Berkeley, CA 94720;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720;
| |
Collapse
|
36
|
Liu Y, Liu YE, Tong CC, Cong PF, Shi XY, Shi L, Jin XH, Wang Q. CD28 deficiency attenuates primary blast-induced renal injury in mice via the PI3K/Akt signalling pathway. BMJ Mil Health 2019; 166:e66-e69. [PMID: 31129646 DOI: 10.1136/jramc-2019-001181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Primary blast affects the kidneys due to direct shock wave damage and the production of proinflammatory cytokines without effective treatment. CD28 has been reported to be involved in regulating T cell activation and secretion of inflammatory cytokines. The aim of this study was to investigate the influence of primary blast on the kidney and the effect of CD28 in mice. METHODS A mouse model of primary blast-induced kidney injury was established using a custom-made explosive device. The severity of kidney injury was investigated by H&E staining. ELISA was applied to study serum inflammation factors' expression. Western blot assays were used to analyse the primary blast-induced inflammatory factors' expression in the kidney. Immunofluorescence analysis was used to examine the PI3K/Akt signalling pathway. RESULTS Histological examination demonstrated that compared with the primary blast group, CD28 deficiency caused a significant decrease in the severity of the primary blast-induced renal injury. Moreover, ELISA and western blotting revealed that CD28 deficiency significantly reduced the levels of interleukin (IL)-1β, IL-4 and IL-6, and increased the IL-10 level (p<0.05). Finally, immunofluorescence analysis indicated that PI3K/Akt expression also changed. CONCLUSIONS CD28 deficiency had protective effects on primary blast-induced kidney injury via the PI3K/Akt signalling pathway. These findings improve the knowledge on primary blast injury and provide theoretical basis for primary blast injury treatment.
Collapse
Affiliation(s)
- Ying Liu
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - Y E Liu
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - C C Tong
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - P F Cong
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - X Y Shi
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - L Shi
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - X H Jin
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - Q Wang
- Nuclear Medicine Department of General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
37
|
Kunkl M, Mastrogiovanni M, Porciello N, Caristi S, Monteleone E, Arcieri S, Tuosto L. CD28 Individual Signaling Up-regulates Human IL-17A Expression by Promoting the Recruitment of RelA/NF-κB and STAT3 Transcription Factors on the Proximal Promoter. Front Immunol 2019; 10:864. [PMID: 31068940 PMCID: PMC6491678 DOI: 10.3389/fimmu.2019.00864] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/04/2019] [Indexed: 01/22/2023] Open
Abstract
CD28 is an important co-stimulatory receptor for T lymphocytes that, in humans, delivers TCR-independent signal leading to the up-regulation of pro-inflammatory cytokines. We have recently reported that CD28 autonomous signaling induces the expression of IL-17A in peripheral CD4+ T lymphocytes from healthy donors, multiple sclerosis, and type 1 diabetes patients. Due to the relevance of IL-17A in the pathophysiology of several inflammatory and autoimmune diseases, we characterized the mechanisms and signaling mediators responsible for CD28-induced IL-17A expression. Here we show that CD28-mediated up-regulation of IL-17A gene expression depends on RelA/NF-κB and IL-6-associated STAT3 transcriptions factors. In particular, we found that CD28-activated RelA/NF-κB induces the expression of IL-6 that, in a positive feedback loop, mediates the activation and nuclear translocation of tyrosine phosphorylated STAT3 (pSTAT3). pSTAT3 in turn cooperates with RelA/NF-κB by binding specific sequences within the proximal promoter of human IL-17A gene, thus inducing its expression. Finally, by using specific inhibitory drugs, we also identified class 1A phosphatidylinositol 3-kinase (PI3K) as a critical upstream regulator of CD28-mediated RelA/NF-κB and STAT3 recruitments and trans-activation of IL-17A promoter. Our findings reveal a novel mechanism by which human CD28 may amplify IL-17A expression in human T lymphocytes and provide biological bases for immunotherapeutic approaches targeting CD28-associated class 1A PI3K to dampen IL-17A-mediated inflammatory response in autoimmune/inflammatory disorders.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Marta Mastrogiovanni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Pasteur Institute, Paris, France
| | - Nicla Porciello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Silvana Caristi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Emanuele Monteleone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Stefano Arcieri
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| |
Collapse
|
38
|
Klug YA, Schwarzer R, Rotem E, Charni M, Nudelman A, Gramatica A, Zarmi B, Rotter V, Shai Y. The HIV gp41 Fusion Protein Inhibits T-Cell Activation through the Lentiviral Lytic Peptide 2 Motif. Biochemistry 2019; 58:818-832. [PMID: 30602116 DOI: 10.1021/acs.biochem.8b01175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human immunodeficiency virus enters its host cells by membrane fusion, initiated by the gp41 subunit of its envelope protein. gp41 has also been shown to bind T-cell receptor (TCR) complex components, interfering with TCR signaling leading to reduced T-cell activation. This immunoinhibitory activity is suggested to occur during the membrane fusion process and is attributed to various membranotropic regions of the gp41 ectodomain and to the transmembrane domain. Although extensively studied, the cytosolic region of gp41, termed the cytoplasmic tail (CT), has not been examined in the context of immune suppression. Here we investigated whether the CT inhibits T-cell activation in different T-cell models by utilizing gp41-derived peptides and expressed full gp41 proteins. We found that a conserved region of the CT, termed lentiviral lytic peptide 2 (LLP2), specifically inhibits the activation of mouse, Jurkat, and human primary T-cells. This inhibition resulted in reduced T-cell proliferation, gene expression, cytokine secretion, and cell surface expression of CD69. Differential activation of the TCR signaling cascade revealed that CT-based immune suppression occurs downstream of the TCR complex. Moreover, LLP2 peptide treatment of Jurkat and primary human T-cells impaired Akt but not NFκB and ERK1/2 activation, suggesting that immune suppression occurs through the Akt pathway. These findings identify a novel gp41 T-cell suppressive element with a unique inhibitory mechanism that can take place post-membrane fusion.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Roland Schwarzer
- Gladstone Institute for Virology and Immunology , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Etai Rotem
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Meital Charni
- Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Alon Nudelman
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Andrea Gramatica
- Gladstone Institute for Virology and Immunology , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Batya Zarmi
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Varda Rotter
- Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| |
Collapse
|
39
|
Ouyang S, Zeng Q, Tang N, Guo H, Tang R, Yin W, Wang A, Tang H, Zhou J, Xie H, Langdon WY, Yang H, Zhang J. Akt-1 and Akt-2 Differentially Regulate the Development of Experimental Autoimmune Encephalomyelitis by Controlling Proliferation of Thymus-Derived Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:1441-1452. [PMID: 30692211 DOI: 10.4049/jimmunol.1701204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/28/2018] [Indexed: 11/19/2022]
Abstract
Akt isoforms play key roles in multiple cellular processes; however, the roles of Akt-1 and Akt-2 isoforms in the development of T cell-mediated autoimmunity are poorly defined. In this study, we showed that Akt1-/- mice develop ameliorated experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, whereas Akt2-/- mice develop exacerbated EAE, compared with wild-type mice. At the cellular level, Akt-1 appears to inhibit proliferation of thymus-derived regulatory T cells (tTregs), which facilitates Ag-specific Th1/Th17 responses. In a sharp contrast to Akt-1, Akt-2 potentiates tTreg proliferation in vitro and in vivo and suppresses Ag-specific Th1/Th17 responses. Furthermore, treating mice with established EAE with a specific Akt-1 inhibitor suppressed disease progression. Our data demonstrate that Akt-1 and Akt-2 differentially regulate the susceptibility of mice to EAE by controlling tTreg proliferation. Our data also indicate that targeting Akt-1 is a potential therapeutic approach for multiple sclerosis in humans.
Collapse
Affiliation(s)
- Song Ouyang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Qiuming Zeng
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Na Tang
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Hui Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Rong Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Weifan Yin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Aimin Wang
- Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Hongyu Tang
- Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Jiru Zhou
- Department of Cardiothoracic Surgery, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China; and
| | - Hong Xie
- Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Wallace Y Langdon
- School of Biomedical Science, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China;
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; .,Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
40
|
Silva-Vilches C, Ring S, Schrader J, Clausen BE, Probst HC, Melchior F, Schild H, Enk A, Mahnke K. Production of Extracellular Adenosine by CD73 + Dendritic Cells Is Crucial for Induction of Tolerance in Contact Hypersensitivity Reactions. J Invest Dermatol 2018; 139:541-551. [PMID: 30393085 DOI: 10.1016/j.jid.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 02/02/2023]
Abstract
Dendritic cells (DCs) express the ecto-5'-nucleotidase CD73 that generates immunosuppressive adenosine (Ado) by dephosphorylation of extracellular Ado monophosphate and diphosphate. To investigate whether CD73-derived Ado has immune-suppressive activity, 2,4-dinitrothiocyanobenzene (DNTB) was applied to skin of wild-type (WT) or CD73-deficient (CD73-/-) mice, followed by sensitization and challenge with 2,4-dinitrofluorobenzene. In this model, we show the induction of tolerance by DNTB against 2,4-dinitrofluorobenzene only in WT but not in CD73-/- mice. Analysis of skin DCs showed increased expression of CD73 after application of DNTB in WT mice. That was accompanied by elevated concentrations of extracellular Ado in the lymph node. Moreover, T cells expressed markers for anergy, namely EGR2 and NDRG1 in DNTB-treated WT mice and they exhibited impaired proliferation upon ex vivo re-stimulation. Similarly, in vitro we observed that Ado-producing WT DCs, but not CD73-/- DCs, rendered transgenic T cells from OTII mice (OTII T cells) hyporeactive, decreased their T-cell costimulatory signaling, and induced up-regulation of EGR2 and NDRG1. Thus, these data show that expression of CD73 by DCs, which triggers elevated levels of extracellular Ado, is a crucial mechanism for the induction of anergic T cells and tolerance.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Sabine Ring
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Jürgen Schrader
- Institute for Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans-Christian Probst
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Felix Melchior
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Enk
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
41
|
Gaber T, Chen Y, Krauß PL, Buttgereit F. Metabolism of T Lymphocytes in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:95-148. [PMID: 30635095 DOI: 10.1016/bs.ircmb.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adaptive immune responses that occur in infection, cancer, and autoimmune as well as allergic diseases involve the participation of T cells. T cells travel throughout the body searching for antigens, which are recognized via the major histocompatibility complexes. In the healthy organism, these T cells maintain metabolic quiescence until they encounter a potentially cognate antigen. Once activated, e.g., during an infection or tissue damage, T cells switch their metabolic program to gain energy and building blocks to maintain cellular homeostasis and to fulfill their specific immune functions involving clonal expansion and/or differentiation into effector and memory T cells to ultimately ensure host survival. Thus, differences in metabolism in healthy and pathogenic T cells provide an explanation for dysfunctionality of T-cell responses in metabolic disorders, autoimmunity, and cancer. Here, we summarize current knowledge on T-cell metabolism during the maintenance of homeostasis, activation, and differentiation as well as over the course of time that memory is generated in health and in diseased states such as autoimmunity and cancer.
Collapse
Affiliation(s)
- Timo Gaber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Yuling Chen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Pierre-Louis Krauß
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Frank Buttgereit
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| |
Collapse
|
42
|
Morel PA. Differential T-cell receptor signals for T helper cell programming. Immunology 2018; 155:63-71. [PMID: 29722021 DOI: 10.1111/imm.12945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/29/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
Abstract
Upon encounter with their cognate antigen, naive CD4 T cells become activated and are induced to differentiate into several possible T helper (Th) cell subsets. This differentiation depends on a number of factors including antigen-presenting cells, cytokines and co-stimulatory molecules. The strength of the T-cell receptor (TCR) signal, related to the affinity of TCR for antigen and antigen dose, has emerged as a dominant factor in determining Th cell fate. Recent studies have revealed that TCR signals of high or low strength do not simply induce quantitatively different signals in the T cells, but rather qualitatively distinct pathways can be induced based on TCR signal strength. This review examines the recent literature in this area and highlights important new developments in our understanding of Th cell differentiation and TCR signal strength.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Liu Z, Li M, Jiang Z, Wang X. A Comprehensive Immunologic Portrait of Triple-Negative Breast Cancer. Transl Oncol 2018; 11:311-329. [PMID: 29413765 PMCID: PMC5884188 DOI: 10.1016/j.tranon.2018.01.011] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a high-risk malignancy due to its high capacity for invasion and lack of targeted therapy. Immunotherapy continues to demonstrate efficacy in a variety of cancers, and thus may be a promising strategy for TNBC given the limited therapeutic options currently available for TNBC. In this study, we performed an exhaustive analysis of immunogenic signatures in TNBC based on 2 large-scale breast cancer (BC) genomic data. We compared enrichment levels of 26 immune cell activities and pathways among TNBC, non-TNBC, and normal tissue, and within TNBCs of different genotypic or phenotypic features. We found that almost all analyzed immune activities and pathways had significantly higher enrichment levels in TNBC than non-TNBC. Elevated enrichment of these immune activities and pathways was likely to be associated with better survival prognosis in TNBC. This study demonstrated that TNBC likely exhibits the strongest immunogenicity among BC subtypes, and thus warrants the immunotherapeutic option for TNBC.
Collapse
Affiliation(s)
- Zhixian Liu
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengyuan Li
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Zehang Jiang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
44
|
Li Z, Liu X, Cheng J, He Y, Wang X, Wang Z, Qi J, Yu H, Zhang Q. Transcriptome profiling provides gene resources for understanding gill immune responses in Japanese flounder (Paralichthys olivaceus) challenged with Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2018; 72:593-603. [PMID: 29175442 DOI: 10.1016/j.fsi.2017.11.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Marine organisms are commonly under threats from various pathogens. Edwardsiella tarda is one of the fish pathogens that seriously infect cultured and wild fish species. Bacteremia caused by E. tarda can be a fatal disease in humans. Fish gill is a mucosa-associated lymphoid tissue that directly contacted with sea water. Generating gill transcriptomic resources that challenged by E. tarda is crucial for understanding the molecular mechanisms underlying gill immune responses. In this study, we performed transcriptome profiling of gene expression in Japanese flounder gills (Paralichthys olivaceus) challenged by E. tarda with different stress duration. An average of 40 million clean reads per library were obtained, of which approximately 83.2% were successfully mapped to the reference genome. 456 and 1037 differential expressed genes (DEGs) were identified at 8 h and 48 h post-injection, respectively. Gene annotation analysis and protein-protein interaction networks were conducted to obtain the key interaction relationships of immune-related DEGs during pathogens infection. 24 hub genes with multiple protein-protein interaction relationships or involved in multiple KEGG signaling pathways were discovered and validated by qRT-PCR. These hub genes mainly participated in Leukocyte transendothelial migration signaling pathway, B cell receptor signaling pathway, Wnt signaling pathway and Apoptosis signaling pathway. This study represents the first gill transcriptomic analysis based on protein-protein interaction networks in fish and provides valuable gene resources for understanding the fish gill immunity, which can pave the way to understand the molecular mechanisms of immune responses with E. tarda infection.
Collapse
Affiliation(s)
- Zan Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China
| |
Collapse
|
45
|
Li Z, Liu X, Liu J, Zhang K, Yu H, He Y, Wang X, Qi J, Wang Z, Zhang Q. Transcriptome profiling based on protein-protein interaction networks provides a core set of genes for understanding blood immune response mechanisms against Edwardsiella tarda infection in Japanese flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:100-113. [PMID: 28923591 DOI: 10.1016/j.dci.2017.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Marine organisms are commonly under threat from various pathogens. Edwardsiella tarda is one of the fish pathogens that can infect both cultured and wild fish species. E. tarda can also infect other vertebrates, including amphibians, reptiles, and mammals. Bacteremia caused by E. tarda can be a fatal disease in humans. Blood acts as a pipeline for the fish immune system. Generating blood transcriptomic resources from fish challenged by E. tarda is crucial for understanding molecular mechanisms underlying blood immune response process. In this study, we performed transcriptome-wide gene expression profiling of Japanese flounder (Paralichthys olivaceus) challenged by 8 and 48 h E. tarda stress. An average of 37 million clean reads per library was obtained, and approximately 85.6% of these reads were successfully mapped to the reference genome. In addition, 808 and 1265 differential expression genes (DEGs) were found at 8 and 48 h post-injection, respectively. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to search immune-related DEGs. A protein-protein interaction network was constructed to obtain the interaction relationship of immune genes during pathogens stress. Based on KEGG and protein association networks analysis, 30 hub genes were discovered and validated by quantitative RT-PCR. This study represents the first transcriptome analysis based on protein-protein interaction networks in fish and provides us with valuable gene resources for the research of fish blood immunity, which can significantly assist us to further understand the molecular mechanisms of humans and other vertebrates against E. tarda.
Collapse
Affiliation(s)
- Zan Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Kai Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China.
| |
Collapse
|
46
|
Early growth response 2 and Egr3 are unique regulators in immune system. Cent Eur J Immunol 2017; 42:205-209. [PMID: 28860938 PMCID: PMC5573894 DOI: 10.5114/ceji.2017.69363] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
The immune system is evolved to defend the body against pathogens and is composed of thousands of complicated and intertwined pathways, which are highly controlled by processes such as transcription and repression of cellular genes. Sometimes the immune system malfunctions and a break down in self-tolerance occurs. This lead to the inability to distinguish between self and non-self and cause attacks on host tissues, a condition also known as autoimmunity, which can result in chronic debilitating diseases. Early growth response genes are family of transcription factors comprising of four members, Egr1, Egr2, Egr3 and Egr4. All of which contain three cyc2-His2 zinc fingers. Initially, Egr2 function was identified in the regulation of peripheral nerve myelination, hindbrain segmentation. Egr3, on the other hand, is highly expressed in muscle spindle development. Egr2 and Egr3 are induced due to the antigen stimulation and this signaling is implemented through the B and T cell receptors in the adaptive immunity. T cell receptor signaling plays a key role in Egr 2 and 3 expressions via their interaction with NFAT molecules. Egr 2 and 3 play a crucial role in regulation of the immune system and their involvement in B and T cell activation, anergy induction and preventing the autoimmune disease has been investigated. The deficiency of these transcription factors has been associated to deficient Cbl-b expression, a resistant to anergy phenotype, and expression of effector and activated T cells.
Collapse
|
47
|
Liu X, Li Z, Wu W, Liu Y, Liu J, He Y, Wang X, Wang Z, Qi J, Yu H, Zhang Q. Sequencing-based network analysis provides a core set of gene resource for understanding kidney immune response against Edwardsiella tarda infection in Japanese flounder. FISH & SHELLFISH IMMUNOLOGY 2017; 67:643-654. [PMID: 28651821 DOI: 10.1016/j.fsi.2017.06.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/13/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Marine organisms are under a frequent threat from various pathogens. Edwardsiella tarda is one of the major fish pathogens infecting both cultured and wild fish species. It can also infect a variety of other vertebrates, including amphibians, reptiles, and mammals, and bacteremia caused by E. tarda can be fatal in humans. The kidney is the largest lymphoid organ in fish, and generating kidney transcriptomic information under different stresses is crucial for understanding molecular mechanisms underlying the immune responses in the kidneys. In this study, we performed transcriptome-wide gene expression profiling of the Japanese flounder (Paralichthys olivaceus) challenged by 8 and 48 h of E. tarda infection. An average of 40 million clean reads per library was obtained, and approximately 81.6% of these reads were successfully mapped to the reference genome. In addition, 1319 and 4439 differentially expressed genes (DEGs) were found at 8 and 48 h post-injection, respectively. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to search immune-related DEGs. A protein-protein interaction network was constructed to ascertain the relationship between interacting immune genes during pathogen-induced stress. Based on the KEGG and protein association networks analysis, 24 hub genes were discovered and validated by qRT-PCR. To our knowledge, this study is the first to represent the kidney transcriptome analysis based on protein-protein interaction networks in fish. Our results provide valuable gene resources for further research on kidney immune response in fish, which can significantly improve our understanding of the molecular mechanisms underlying the immune response to E. tarda in humans and other vertebrates.
Collapse
Affiliation(s)
- Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zan Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Wenzhao Wu
- Department of Information Management, Peking University, Beijing 100871, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China
| |
Collapse
|
48
|
Abstract
The blockade of inhibitory receptors such as CTLA-4 (CD152) is being used as immune-checkpoint therapy, offering a powerful strategy to restore effective immune responses against tumors. To determine signal components that are induced under the control of CTLA-4 we analyzed activated murine CD8+ T cells by quantitative proteomics. Accurate mass spectrometry revealed that CTLA-4 engagement led to central changes in the phosphorylation of proteins involved in T-cell differentiation. Beside other targets, we discovered a CTLA-4-mediated induction of the translational inhibitor programmed cell death-4 (PDCD4) as a result of FoxO1 nuclear re-localization. PDCD4 further bound a distinct set of mRNAs including Glutaminase, which points out a critical role for CTLA-4 in CD8+ T-cell metabolism. Consequently, PDCD4-deficient cytotoxic T-lymphocytes (CTLs) expressed increased amounts of otherwise repressed effector molecules and ultimately led to superior control of tumor growth in vivo. These findings reveal a novel CTLA-4-mediated pathway to attenuate CTLs and indicate the importance of post-transcriptional mechanisms in the regulation of anti-tumor immune responses.
Collapse
|
49
|
Abu Eid R, Ahmad S, Lin Y, Webb M, Berrong Z, Shrimali R, Kumai T, Ananth S, Rodriguez PC, Celis E, Janik J, Mkrtichyan M, Khleif SN. Enhanced Therapeutic Efficacy and Memory of Tumor-Specific CD8 T Cells by Ex Vivo PI3K-δ Inhibition. Cancer Res 2017; 77:4135-4145. [PMID: 28615225 DOI: 10.1158/0008-5472.can-16-1925] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/10/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
Inhibition of specific Akt isoforms in CD8+ T cells promotes favored differentiation into memory versus effector cells, the former of which are superior in mediating antitumor immunity. In this study, we investigated the role of upstream PI3K isoforms in CD8+ T-cell differentiation and assessed the potential use of PI3K isoform-specific inhibitors to favorably condition CD8+ T cells for adoptive cell therapy. The phenotype and proliferative ability of tumor antigen-specific CD8+ T cells was assessed in the presence of PI3K-α, -β, or -δ inhibitors. Inhibition of PI3K-δ, but not PI3K-α or PI3K-β, delayed terminal differentiation of CD8+ T cells and maintained the memory phenotype, thus enhancing their proliferative ability and survival while maintaining their cytokine and granzyme B production ability. This effect was preserved in vivo after ex vivo PI3K-δ inhibition in CD8+ T cells destined for adoptive transfer, enhancing their survival and also the antitumor therapeutic activity of a tumor-specific peptide vaccine. Our results outline a mechanism by which inhibitions of a single PI3K isoform can enhance the proliferative potential, function, and survival of CD8+ T cells, with potential clinical implications for adoptive cell transfer and vaccine-based immunotherapies. Cancer Res; 77(15); 4135-45. ©2017 AACR.
Collapse
Affiliation(s)
- Rasha Abu Eid
- The University of Aberdeen Dental School and Hospital, The Institute of Medicine, Medical Sciences and Nutrition, Aberdeen, Scotland, United Kingdom.,Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia
| | - Shamim Ahmad
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia
| | - Yuan Lin
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia.,La Jolla Institute for Allergy and Immunology, Athena Circle, La Jolla, California
| | - Mason Webb
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia
| | - Zuzana Berrong
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia
| | - Rajeev Shrimali
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia.,Peloton Therapeutics, Dallas, Texas
| | - Takumi Kumai
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia
| | - Sudha Ananth
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia
| | - Paulo C Rodriguez
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia
| | - Esteban Celis
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia
| | - John Janik
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia
| | - Mikayel Mkrtichyan
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia.,Five Prime Therapeutics, San Francisco, California
| | - Samir N Khleif
- Georgia Cancer Center, Augusta University (previously Georgia Regents University), Augusta, Georgia.
| |
Collapse
|
50
|
Kunkl M, Porciello N, Mastrogiovanni M, Capuano C, Lucantoni F, Moretti C, Persson JL, Galandrini R, Buzzetti R, Tuosto L. ISA-2011B, a Phosphatidylinositol 4-Phosphate 5-Kinase α Inhibitor, Impairs CD28-Dependent Costimulatory and Pro-inflammatory Signals in Human T Lymphocytes. Front Immunol 2017; 8:502. [PMID: 28491063 PMCID: PMC5405084 DOI: 10.3389/fimmu.2017.00502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
Phosphatidylinositol 4,5-biphosphate (PIP2) is a membrane phospholipid that controls the activity of several proteins regulating cytoskeleton reorganization, cytokine gene expression, T cell survival, proliferation, and differentiation. Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) are the main enzymes involved in PIP2 biosynthesis by phosphorylating phosphatidylinositol 4-monophosphate (PI4P) at the D5 position of the inositol ring. In human T lymphocytes, we recently found that CD28 costimulatory molecule is pivotal for PIP2 turnover by recruiting and activating PIP5Kα. We also found that PIP5Kα is the main regulator of both CD28 costimulatory signals integrating those delivered by TCR as well as CD28 autonomous signals regulating the expression of pro-inflammatory genes. Given emerging studies linking alterations of PIP2 metabolism to immune-based diseases, PIP5Kα may represent a promising target to modulate immunity and inflammation. Herewith, we characterized a recently discovered inhibitor of PIP5Kα, ISA-2011B, for its inhibitory effects on T lymphocyte functions. We found that the inhibition of PIP5Kα lipid-kinase activity by ISA-2011B significantly impaired CD28 costimulatory signals necessary for TCR-mediated Ca2+ influx, NF-AT transcriptional activity, and IL-2 gene expression as well as CD28 autonomous signals regulating the activation of NF-κB and the transcription of pro-inflammatory cytokine and chemokine genes. Moreover, our data on the inhibitory effects of ISA-2011B on CD28-mediated upregulation of inflammatory cytokines related to Th17 cell phenotype in type 1 diabetes patients suggest ISA-2011B as a promising anti-inflammatory drug.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Nicla Porciello
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marta Mastrogiovanni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Chiara Moretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Jenny L Persson
- Division of Experimental Cancer Research, Department of Laboratory Medicine, Clinical Research Center, Lund University, Malmö, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|