1
|
Taroc EZM, Amato E, Semon A, Dolphin N, Beck B, Belin S, Poitelon Y, Forni PE. Shared Lineage, Distinct Outcomes: Yap and Taz Loss Differentially Impact Schwann and Olfactory Ensheathing Cell Development Without Disrupting GnRH-1 Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638196. [PMID: 40027653 PMCID: PMC11870449 DOI: 10.1101/2025.02.13.638196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Olfactory Ensheathing Cells (OECs) are glial cells originating from the neural crest, critical for bundling olfactory axons to the brain. Their development is crucial for the migration of Gonadotropin-Releasing Hormone-1 (GnRH-1) neurons, which are essential for puberty and fertility. OECs have garnered interest as potential therapeutic targets for central nervous system lesions, although their development is not fully understood. Our single-cell RNA sequencing of mouse embryonic nasal tissues suggests that OECs and Schwann cells share a common origin from Schwann cell precursors yet exhibit significant genetic differences. The transcription factors Yap and Taz have previously been shown to play a crucial role in Schwann cell development. We used Sox10 -Cre mice to conditionally ablate Yap and Taz in migrating the neural crest and its derivatives. Our analyses showed reduced Sox10+ glial cells along nerves in the nasal region, altered gene expression of SCs, melanocytes, and OECs, and a significant reduction in olfactory sensory neurons and vascularization in the vomeronasal organ. However, despite these changes, GnRH-1 neuronal migration remained unaffected. Our findings highlight the importance of the Hippo pathway in OEC development and how changes in cranial neural crest derivatives indirectly impact the development of olfactory epithelia.
Collapse
|
2
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024; 190:24-49. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
3
|
Kim JW, Kim J, Mo H, Han H, Rim YA, Ju JH. Stepwise combined cell transplantation using mesenchymal stem cells and induced pluripotent stem cell-derived motor neuron progenitor cells in spinal cord injury. Stem Cell Res Ther 2024; 15:114. [PMID: 38650015 PMCID: PMC11036722 DOI: 10.1186/s13287-024-03714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is an intractable neurological disease in which functions cannot be permanently restored due to nerve damage. Stem cell therapy is a promising strategy for neuroregeneration after SCI. However, experimental evidence of its therapeutic effect in SCI is lacking. This study aimed to investigate the efficacy of transplanted cells using stepwise combined cell therapy with human mesenchymal stem cells (hMSC) and induced pluripotent stem cell (iPSC)-derived motor neuron progenitor cells (iMNP) in a rat model of SCI. METHODS A contusive SCI model was developed in Sprague-Dawley rats using multicenter animal spinal cord injury study (MASCIS) impactor. Three protocols were designed and conducted as follows: (Subtopic 1) chronic SCI + iMNP, (Subtopic 2) acute SCI + multiple hMSC injections, and (Main topic) chronic SCI + stepwise combined cell therapy using multiple preemptive hMSC and iMNP. Neurite outgrowth was induced by coculturing hMSC and iPSC-derived motor neuron (iMN) on both two-dimensional (2D) and three-dimensional (3D) spheroid platforms during mature iMN differentiation in vitro. RESULTS Stepwise combined cell therapy promoted mature motor neuron differentiation and axonal regeneration at the lesional site. In addition, stepwise combined cell therapy improved behavioral recovery and was more effective than single cell therapy alone. In vitro results showed that hMSC and iMN act synergistically and play a critical role in the induction of neurite outgrowth during iMN differentiation and maturation. CONCLUSIONS Our findings show that stepwise combined cell therapy can induce alterations in the microenvironment for effective cell therapy in SCI. The in vitro results suggest that co-culturing hMSC and iMN can synergistically promote induction of MN neurite outgrowth.
Collapse
Affiliation(s)
- Jang-Woon Kim
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
| | | | - Hyunkyung Mo
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
| | - Heeju Han
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
| | - Ji Hyeon Ju
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
- YiPSCELL, Inc, Seoul, South Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Liao JX, Zhu FQ, Liu YY, Liu SC, Liu ZX, Zhang WJ. The role of olfactory ensheathing cells in the repair of nerve injury. Eur J Pharmacol 2024; 966:176346. [PMID: 38246329 DOI: 10.1016/j.ejphar.2024.176346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Cell transplantation has brought about a breakthrough in the treatment of nerve injuries, and the efficacy of cell transplantation compared to drug and surgical therapies is very exciting. In terms of transplantation targets, the classic cells include neural stem cells (NSCs) and Schwann cells, while a class of cells that can exist and renew throughout the life of the nervous system - olfactory ensheathing cells (OECs) - has recently been discovered in the olfactory system. OECs not only encircle the olfactory nerves but also act as macrophages and play an innate immune role. OECs can also undergo reprogramming to transform into neurons and survive and mature after transplantation. Currently, many studies have confirmed the repairing effect of OECs after transplantation into injured nerves, and safe and effective results have been obtained in clinical trials. However, the specific repair mechanism of OECs among them is not quite clear. For this purpose, we focus here on the repair mechanisms of OECs, which are summarized as follows: neuroprotection, secretion of bioactive factors, limitation of inflammation and immune regulation, promotion of myelin and axonal regeneration, and promotion of vascular proliferation. In addition, integrating the aspects of harvesting, purification, and prognosis, we found that OECs may be more suitable for transplantation than NSCs and Schwann cells, but this does not completely discard the value of these classical cells. Overall, OECs are considered to be one of the most promising transplantation targets for the treatment of nerve injury disorders.
Collapse
Affiliation(s)
- Jun-Xiang Liao
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Zeng-Xu Liu
- School of Basic Medicine, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
5
|
Zou X, Dong Y, Alhaskawi A, Zhou H, Ezzi SHA, Kota VG, Abdulla MHAH, Abdalbary SA, Lu H, Wang C. Techniques and graft materials for repairing peripheral nerve defects. Front Neurol 2024; 14:1307883. [PMID: 38318237 PMCID: PMC10839026 DOI: 10.3389/fneur.2023.1307883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024] Open
Abstract
Peripheral nerve defects refer to damage or destruction occurring in the peripheral nervous system, typically affecting the limbs and face. The current primary approaches to address peripheral nerve defects involve the utilization of autologous nerve transplants or the transplantation of artificial material. Nevertheless, these methods possess certain limitations, such as inadequate availability of donor nerve or unsatisfactory regenerative outcomes post-transplantation. Biomaterials have been extensively studied as an alternative approach to promote the repair of peripheral neve defects. These biomaterials include both natural and synthetic materials. Natural materials consist of collagen, chitosan, and silk, while synthetic materials consist of polyurethane, polylactic acid, and polycaprolactone. Recently, several new neural repair technologies have also been developed, such as nerve regeneration bridging technology, electrical stimulation technology, and stem cell therapy technology. Overall, biomaterials and new neural repair technologies provide new methods and opportunities for repairing peripheral nerve defects. However, these methods still require further research and development to enhance their effectiveness and feasibility.
Collapse
Affiliation(s)
- Xiaodi Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Haiying Zhou
- Faculty of Medicine, The Chinese University of Hong Kong School of Biomedical Science, Shatin, China
| | | | | | | | - Sahar Ahmed Abdalbary
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
| | - Changxin Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
De Cannière G. The olfactory striae: A historical perspective on the inconsistent anatomy of the bulbar projections. J Anat 2024; 244:170-183. [PMID: 37712100 PMCID: PMC10734660 DOI: 10.1111/joa.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Central olfactory pathways (i.e., projection axons of the mitral and tufted cells), and especially olfactory striae, lack common terminology. This is due to their high degree of intra- and interindividual variability, which has been studied in detail over the past century by Beccari, Mutel, Klass, Erhart, and more recently, by Duque Parra et al. These variations led to some confusion about their number and anatomical arrangement. Recent advances in fiber tractography have enabled the precise in vivo visualization of human olfactory striae and the study of their projections. However, these studies require their algorithms to be set up according to the presumed anatomy of the analyzed fibers. A more precise definition of the olfactory striae is therefore needed, not only to allow a better analysis of the results but also to ensure the quality of the data obtained. By studying the various published works on the central olfactory pathways from the first systematic description by Soemmerring to the present, I have traced the different discussions on the olfactory tracts and summarized them here. This review adopts a systematic approach by addressing each stria individually and tracing the historical background of what was known about it in the past, compared to the current knowledge. The chronological and organized approach used provides a better understanding of the anatomy of these essential structures of the olfactory system.
Collapse
Affiliation(s)
- Gilles De Cannière
- Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Kheirollahi A, Sadeghi S, Orandi S, Moayedi K, Khajeh K, Khoobi M, Golestani A. Chondroitinase as a therapeutic enzyme: Prospects and challenges. Enzyme Microb Technol 2024; 172:110348. [PMID: 37898093 DOI: 10.1016/j.enzmictec.2023.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The chondroitinases (Chase) are bacterial lyases that specifically digest chondroitin sulfate and/or dermatan sulfate glycosaminoglycans via a β-elimination reaction and generate unsaturated disaccharides. In recent decades, these enzymes have attracted the attention of many researchers due to their potential applications in various aspects of medicine from the treatment of spinal cord injury to use as an analytical tool. In spite of this diverse spectrum, the application of Chase is faced with several limitations and challenges such as thermal instability and lack of a suitable delivery system. In the current review, we address potential therapeutic applications of Chase with emphasis on the challenges ahead. Then, we summarize the latest achievements to overcome the problems by considering the studies carried out in the field of enzyme engineering, drug delivery, and combination-based therapy.
Collapse
Affiliation(s)
- Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Orandi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Moayedi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
de Laorden EH, Simón D, Milla S, Portela-Lomba M, Mellén M, Sierra J, de la Villa P, Moreno-Flores MT, Iglesias M. Human placenta-derived mesenchymal stem cells stimulate neuronal regeneration by promoting axon growth and restoring neuronal activity. Front Cell Dev Biol 2023; 11:1328261. [PMID: 38188022 PMCID: PMC10766706 DOI: 10.3389/fcell.2023.1328261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
In the last decades, mesenchymal stem cells (MSCs) have become the cornerstone of cellular therapy due to their unique characteristics. Specifically human placenta-derived mesenchymal stem cells (hPMSCs) are highlighted for their unique features, including ease to isolate, non-invasive techniques for large scale cell production, significant immunomodulatory capacity, and a high ability to migrate to injuries. Researchers are exploring innovative techniques to overcome the low regenerative capacity of Central Nervous System (CNS) neurons, with one promising avenue being the development of tailored mesenchymal stem cell therapies capable of promoting neural repair and recovery. In this context, we have evaluated hPMSCs as candidates for CNS lesion regeneration using a skillful co-culture model system. Indeed, we have demonstrated the hPMSCs ability to stimulate damaged rat-retina neurons regeneration by promoting axon growth and restoring neuronal activity both under normoxia and hypoxia conditions. With our model we have obtained neuronal regeneration values of 10%-14% and axonal length per neuron rates of 19-26, μm/neuron. To assess whether the regenerative capabilities of hPMSCs are contact-dependent effects or it is mediated through paracrine mechanisms, we carried out transwell co-culture and conditioned medium experiments confirming the role of secreted factors in axonal regeneration. It was found that hPMSCs produce brain derived, neurotrophic factor (BDNF), nerve-growth factor (NGF) and Neurotrophin-3 (NT-3), involved in the process of neuronal regeneration and restoration of the physiological activity of neurons. In effect, we confirmed the success of our treatment using the patch clamp technique to study ionic currents in individual isolated living cells demonstrating that in our model the regenerated neurons are electrophysiologically active, firing action potentials. The outcomes of our neuronal regeneration studies, combined with the axon-regenerating capabilities exhibited by mesenchymal stem cells derived from the placenta, present a hopeful outlook for the potential therapeutic application of hPMSCs in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Elvira H. de Laorden
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Diana Simón
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Santiago Milla
- Departamento de Biología de Sistemas, Unidad de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - María Portela-Lomba
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Marian Mellén
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Javier Sierra
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Pedro de la Villa
- Departamento de Biología de Sistemas, Unidad de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - María Teresa Moreno-Flores
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maite Iglesias
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
9
|
Gao X, Li S, Yang Y, Yang S, Yu B, Zhu Z, Ma T, Zheng Y, Wei B, Hao Y, Wu H, Zhang Y, Guo L, Gao X, Wei Y, Xue B, Li J, Feng X, Lu L, Xia B, Huang J. A Novel Magnetic Responsive miR-26a@SPIONs-OECs for Spinal Cord Injury: Triggering Neural Regeneration Program and Orienting Axon Guidance in Inhibitory Astrocytic Environment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304487. [PMID: 37789583 PMCID: PMC10646239 DOI: 10.1002/advs.202304487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Addressing the challenge of promoting directional axonal regeneration in a hostile astrocytic scar, which often impedes recovery following spinal cord injury (SCI), remains a daunting task. Cell transplantation is a promising strategy to facilitate nerve restoration in SCI. In this research, a pro-regeneration system is developed, namely miR-26a@SPIONs-OECs, for olfactory ensheathing cells (OECs), a preferred choice for promoting nerve regeneration in SCI patients. These entities show high responsiveness to external magnetic fields (MF), leading to synergistic multimodal cues to enhance nerve regeneration. First, an MF stimulates miR-26a@SPIONs-OECs to release extracellular vesicles (EVs) rich in miR-26a. This encourages axon growth by inhibiting PTEN and GSK-3β signaling pathways in neurons. Second, miR-26a@SPIONs-OECs exhibit a tendency to migrate and orientate along the direction of the MF, thereby potentially facilitating neuronal reconnection through directional neurite elongation. Third, miR-26a-enriched EVs from miR-26a@SPIONs-OECs can interact with host astrocytes, thereby diminishing inhibitory cues for neurite growth. In a rat model of SCI, the miR-26a@SPIONs-OECs system led to significantly improved morphological and motor function recovery. In summary, the miR-26a@SPIONS-OECs pro-regeneration system offers innovative insights into engineering exogenous cells with multiple additional cues, augmenting their efficacy for stimulating and guiding nerve regeneration within a hostile astrocytic scar in SCI.
Collapse
Affiliation(s)
- Xue Gao
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Shengyou Li
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Yujie Yang
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Shijie Yang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710032P. R. China
| | - Beibei Yu
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710032P. R. China
| | - Zhijie Zhu
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Teng Ma
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Yi Zheng
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Bin Wei
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Yiming Hao
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Haining Wu
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Yongfeng Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710032P. R. China
| | - Lingli Guo
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Xueli Gao
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yitao Wei
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Borui Xue
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Jianzhong Li
- Department of Thoracic SurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710032P. R. China
| | - Xue Feng
- Department of Cell BiologySchool of MedicineNorthwest UniversityXi'an710032P. R. China
| | - Lei Lu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesDepartment of Oral Anatomy and Physiology and TMDSchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Bing Xia
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Jinghui Huang
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
10
|
Niknazar S, Abbaszadeh HA, Khoshsirat S, Mehrjerdi FZ, Peyvandi AA. Combined treatment of retinoic acid with olfactory ensheathing cells protect gentamicin-induced SGNs damage in the rat cochlea in vitro. Mol Cell Neurosci 2022; 121:103752. [PMID: 35781072 DOI: 10.1016/j.mcn.2022.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hearing is mainly dependent on the function of hair cells (HCs) and spiral ganglion neurons (SGNs) which damage or loss of them leads to irreversible hearing loss. Olfactory ensheathing cells (OECs) are specialized glia that forms the fascicles of the olfactory nerve by surrounding the olfactory sensory axons. The OECs, as a regenerating part of the nervous system, play a supporting function in axonal regeneration and express a wide range of growth factors. In addition, retinoic acid (RA) enhances the proliferation and differentiation of these cells into the nerve. In the present study, we co-cultured human OECs (hOECs) with cochlear SGNs in order to determine whether hOECs and RA co-treatment can protect the repair process in gentamycin-induced SGNs damage in vitro. For this purpose, cochlear cultures were prepared from P4 Wistar rats, which were randomly appointed to four groups: normal cultivated SGNs (Control), gentamicin-lesioned SGNs culture (Gent), gentamicin-lesioned SGNs culture treated with OECs (Gent + OECs) and gentamicin-lesioned SGNs culture co-treated with OECs and RA (Gent + OEC& RA). The expression of a specific protein in SGNs was examined using immunohistochemical and Western blotting technique. TUNEl staining was used to detect cell apoptosis. Here, we revealed that combined treatment of OECs and RA protect synapsin and Tuj-1 expression in the lesioned SGNs and attenuate cell apoptosis. These findings suggest that RA co-treatment can enhance efficiency of OECs in repair of SGNs damage induced by ototoxic drug.
Collapse
Affiliation(s)
- Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zare Mehrjerdi
- Neuroendocrine Research Center, Shahid Sadoughi University of MedicalSciences, Yazd, Iran
| | - Ali Asghar Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Tu YK, Hsueh YH, Huang HC. Human olfactory ensheathing cell-derived extracellular vesicles: miRNA profile and neuroprotective effect. Curr Neurovasc Res 2021; 18:395-408. [PMID: 34645375 DOI: 10.2174/1567202618666211012162111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extracellular vesicle (EV)-based therapy has been identified as a leading alternative approach in several disease models. EV derived from the olfactory ensheathing cell (OEC) has been documented for its strong neuro-regenerative capacity. However, no information on its cargo that may contribute to its therapeutic effect has been available. OBJECTIVE To report the first miRNA profile of human OEC (hOEC) -EV, and investigate the neuroprotective effects. METHODS hOEC-EV was isolated and sequenced. We established in vitro experiments to assess the therapeutic potential of hOEC-EVs with respect to insulted neural progenitor cells (NPCs), and the angiogenesis effect. Secondary post-injury insults were imitated using t-BHP-mediated oxidative stress. RESULTS We noted a strong abundance of hOEC-EV-miRNAs, including hsa-miR148a-3p, has-miR151a-3p and several members of let-7 family. The common targets of 15 miRNAs among the top 20 miRNAs were thrombospondin 1 and cyclin dependent kinase 6. We demonstrated that hOEC-EVs promote normal NPC proliferation and differentiation to neuron-like morphologies with prolonged axons. hOEC-EVs protect cells from t-BHP mediated apoptosis. We also found that the migration rate of either NPCs or endothelial cells significantly improved with hOEC-EVs. Furthermore, in vitro tube formation assays indicated that angiogenesis, an important process for tissue repair, was significantly enhanced in human umbilical vein endothelial cells exposed to hOEC-EVs. CONCLUSION Our results revealed that hOEC-EVs exert neuroprotective effects by protecting cells from apoptosis and promoting in vitro biological processes that are important to neural tissue repair, including neural cell proliferation, axonal growth, and cell migration, in addition to enhancing angiogenesis. </p>.
Collapse
Affiliation(s)
- Yuan-Kun Tu
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| | - Yu-Huan Hsueh
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| | - Hsien-Chang Huang
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| |
Collapse
|
12
|
Echternacht SR, Chacon MA, Leckenby JI. Central versus peripheral nervous system regeneration: is there an exception for cranial nerves? Regen Med 2021; 16:567-579. [PMID: 34075805 DOI: 10.2217/rme-2020-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There exists a dichotomy in regenerative capacity between the PNS and CNS, which poses the question - where do cranial nerves fall? Through the discussion of the various cells and processes involved in axonal regeneration, we will evaluate whether the assumption that cranial nerve regeneration is analogous to peripheral nerve regeneration is valid. It is evident from this review that much remains to be clarified regarding both PNS and CNS regeneration. Furthermore, it is not clear if cranial nerves follow the PNS model, CNS model or possess an alternative novel regenerative process altogether. Future research should continue to focus on elucidating how cranial nerves regenerate; and the various cellular interactions, molecules and pathways involved.
Collapse
Affiliation(s)
- Scott R Echternacht
- University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.,Division of Plastic Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 661, Rochester, NY 14642, USA
| | - Miranda A Chacon
- Division of Plastic Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 661, Rochester, NY 14642, USA.,Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 661, Rochester, NY 14642, USA
| | - Jonathan I Leckenby
- Division of Plastic Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 661, Rochester, NY 14642, USA
| |
Collapse
|
13
|
Campos FSO, Piña-Rodrigues FM, Reis A, Atella GC, Mermelstein CS, Allodi S, Cavalcante LA. Lipid Rafts from Olfactory Ensheathing Cells: Molecular Composition and Possible Roles. Cell Mol Neurobiol 2021; 41:525-536. [PMID: 32415577 PMCID: PMC11448638 DOI: 10.1007/s10571-020-00869-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023]
Abstract
Olfactory ensheathing cells (OECs) are specialized glial cells of the olfactory system, believed to play a role in the continuous production of olfactory neurons and ensheathment of their axons. Although OECs are used in therapeutic applications, little is known about the cellular mechanisms underlying their migratory behavior. Recently, we showed that OEC migration is sensitive to ganglioside blockage through A2B5 and Jones antibody in OEC culture. Gangliosides are common components of lipid rafts, where they participate in several cellular mechanisms, including cell migration. Here, we characterized OEC lipid rafts, analyzing the presence of specific proteins and gangliosides that are commonly expressed in motile neural cells, such as young neurons, oligodendrocyte progenitors, and glioma cells. Our results showed that lipid rafts isolated from OECs were enriched in cholesterol, sphingolipids, phosphatidylcholine, caveolin-1, flotillin-1, gangliosides GM1 and 9-O-acetyl GD3, A2B5-recognized gangliosides, CNPase, α-actinin, and β1-integrin. Analysis of the actin cytoskeleton of OECs revealed stress fibers, membrane spikes, ruffled membranes and lamellipodia during cell migration, as well as the distribution of α-actinin in membrane projections. This is the first description of α-actinin and flotillin-1 in lipid rafts isolated from OECs and suggests that, together with β1-integrin and gangliosides, membrane lipid rafts play a role during OEC migration. This study provides new information on the molecular composition of OEC membrane microdomains that can impact on our understanding of the role of OEC lipid rafts under physiological and pathological conditions of the nervous system, including inflammation, hypoxia, aging, neurodegenerative diseases, head trauma, brain tumor, and infection.
Collapse
Affiliation(s)
- Fernanda S O Campos
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe M Piña-Rodrigues
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alice Reis
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia S Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil.
| | - Leny A Cavalcante
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
14
|
Expression, Distribution and Role of Aquaporins in Various Rhinologic Conditions. Int J Mol Sci 2020; 21:ijms21165853. [PMID: 32824013 PMCID: PMC7461600 DOI: 10.3390/ijms21165853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are water-specific membrane channel proteins that regulate cellular and organismal water homeostasis. The nose, an organ with important respiratory and olfactory functions, is the first organ exposed to external stimuli. Nose-related topics such as allergic rhinitis (AR) and chronic rhinosinusitis (CRS) have been the subject of extensive research. These studies have reported that mechanisms that drive the development of multiple inflammatory diseases that occur in the nose and contribute to the process of olfactory recognition of compounds entering the nasal cavity involve the action of water channels such as AQPs. In this review, we provide a comprehensive overview of the relationship between AQPs and rhinologic conditions, focusing on the current state of knowledge and mechanisms that link AQPs and rhinologic conditions. Key conclusions include the following: (1) Various AQPs are expressed in both nasal mucosa and olfactory mucosa; (2) the expression of AQPs in these tissues is different in inflammatory diseases such as AR or CRS, as compared with that in normal tissues; (3) the expression of AQPs in CRS differs depending on the presence or absence of nasal polyps; and (4) the expression of AQPs in tissues associated with olfaction is different from that in the respiratory epithelium.
Collapse
|
15
|
Yue Y, Xue Q, Yang J, Li X, Mi Z, Zhao G, Zhang L. Wnt-activated olfactory ensheathing cells stimulate neural stem cell proliferation and neuronal differentiation. Brain Res 2020; 1735:146726. [DOI: 10.1016/j.brainres.2020.146726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/04/2019] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
|
16
|
Smith KE, Whitcroft K, Law S, Andrews P, Choi D, Jagger DJ. Olfactory ensheathing cells from the nasal mucosa and olfactory bulb have distinct membrane properties. J Neurosci Res 2019; 98:888-901. [PMID: 31797433 DOI: 10.1002/jnr.24566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Transplantation of olfactory ensheathing cells (OECs) is a potential therapy for the regeneration of damaged neurons. While they maintain tissue homeostasis in the olfactory mucosa (OM) and olfactory bulb (OB), their regenerative properties also support the normal sense of smell by enabling continual turnover and axonal regrowth of olfactory sensory neurons (OSNs). However, the molecular physiology of OECs is not fully understood, especially that of OECs from the mucosa. Here, we carried out whole-cell patch-clamp recordings from individual OECs cultured from the OM and OB of the adult rat, and from the human OM. A subset of OECs from the rat OM cultured 1-3 days in vitro had large weakly rectifying K+ currents, which were sensitive to Ba2+ and desipramine, blockers of Kir4-family channels. Kir4.1 immunofluorescence was detectable in cultured OM cells colabeled for the OEC marker S100, and in S100-labeled cells found adjacent to OSN axons in mucosal sections. OECs cultured from rat OB had distinct properties though, displaying strongly rectifying inward currents at hyperpolarized membrane potentials and strongly rectifying outward currents at depolarized potentials. Kir4.1 immunofluorescence was not evident in OECs adjacent to axons of OSNs in the OB. A subset of human OECs cultured from the OM of adults had membrane properties comparable to those of the rat OM that is dominated by Ba2+ -sensitive weak inwardly rectifying currents. The membrane properties of peripheral OECs are different to those of central OECs, suggesting they may play distinct roles during olfaction.
Collapse
Affiliation(s)
- Katie E Smith
- UCL Ear Institute, University College London, London, UK
| | - Katherine Whitcroft
- UCL Ear Institute, University College London, London, UK.,Royal National Throat Nose & Ear Hospital, London, UK
| | - Stuart Law
- Institute of Neurology, University College London, London, UK
| | - Peter Andrews
- UCL Ear Institute, University College London, London, UK.,Royal National Throat Nose & Ear Hospital, London, UK
| | - David Choi
- Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
17
|
Weng SJ, Chen CFF, Huang YS, Chiu CH, Wu SC, Lin CY, Chueh SH, Cheng CY, Ma KH. Olfactory ensheathing cells improve the survival of porcine neural xenografts in a Parkinsonian rat model. Xenotransplantation 2019; 27:e12569. [PMID: 31777103 DOI: 10.1111/xen.12569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) features the motor control deficits resulting from irreversible, progressive degeneration of dopaminergic (DA) neurons of the nigrostriatal pathway. Although intracerebral transplantation of human fetal ventral mesencephalon (hfVM) has been proven effective at reviving DA function in the PD patients, this treatment is clinically limited by availability of hfVM and the related ethical issues. Homologous tissues to hfVM, such as porcine fetal ventral mesencephalon (pfVM) thus present a strong clinical potential if immune response following xenotransplantation could be tamed. Olfactory ensheathing cells (OECs) are glial cells showing immunomodulatory properties. It is unclear but intriuging whether these properties can be applied to reducing immune response following neural xenotransplantation of PD. METHODS To determine whether OECs may benefit neural xenografts for PD, different compositions of grafting cells were transplanted into striatum of the PD model rats. We used apomorphine-induced rotational behavior to evaluate effectiveness of the neural grafts on reviving DA function. Immunohistochemistry was applied to investigate the effect of OECs on the survival of neuroxenografts and underlying mechanisms of this effect. RESULTS Four weeks following the xenotransplantation, we found that the PD rats receiving pfVM + OECs co-graft exhibited a better improvement in apomorphine-induced rotational behavior compared with those receiving only pfVM cells. This result can be explained by higher survival of DA neurons (tyrosine hydroxylase immunoreactivity) in grafted striatum of pfVM + OECs group. Furthermore, pfVM + OECs group has less immune response (CD3+ T cells and OX-6+ microglia) around the grafted area compared with pfVM only group. These results suggest that OECs may enhance the survival of the striatal xenografts via dampening the immune response at the grafted sites. CONCLUSIONS Using allogeneic OECs as a co-graft material for xenogeneic neural grafts could be a feasible therapeutic strategy to enhance results and applicability of the cell replacement therapy for PD.
Collapse
Affiliation(s)
- Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Fu F Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shinn-Chih Wu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Ying Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Huei Chueh
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
18
|
Santiago-Toledo G, Georgiou M, Dos Reis J, Roberton VH, Valinhas A, Wood RC, Phillips JB, Mason C, Li D, Li Y, Sinden JD, Choi D, Jat PS, Wall IB. Generation of c-MycER TAM-transduced human late-adherent olfactory mucosa cells for potential regenerative applications. Sci Rep 2019; 9:13190. [PMID: 31519924 PMCID: PMC6744411 DOI: 10.1038/s41598-019-49315-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
Human olfactory mucosa cells (hOMCs) have been transplanted to the damaged spinal cord both pre-clinically and clinically. To date mainly autologous cells have been tested. However, inter-patient variability in cell recovery and quality, and the fact that the neuroprotective olfactory ensheathing cell (OEC) subset is difficult to isolate, means an allogeneic hOMC therapy would be an attractive "off-the-shelf" alternative. The aim of this study was to generate a candidate cell line from late-adherent hOMCs, thought to contain the OEC subset. Primary late-adherent hOMCs were transduced with a c-MycERTAM gene that enables cell proliferation in the presence of 4-hydroxytamoxifen (4-OHT). Two c-MycERTAM-derived polyclonal populations, PA5 and PA7, were generated and expanded. PA5 cells had a normal human karyotype (46, XY) and exhibited faster growth kinetics than PA7, and were therefore selected for further characterisation. PA5 hOMCs express glial markers (p75NTR, S100ß, GFAP and oligodendrocyte marker O4), neuronal markers (nestin and ß-III-tubulin) and fibroblast-associated markers (CD90/Thy1 and fibronectin). Co-culture of PA5 cells with a neuronal cell line (NG108-15) and with primary dorsal root ganglion (DRG) neurons resulted in significant neurite outgrowth after 5 days. Therefore, c-MycERTAM-derived PA5 hOMCs have potential as a regenerative therapy for neural cells.
Collapse
Affiliation(s)
| | - Melanie Georgiou
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Joana Dos Reis
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Victoria H Roberton
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Ana Valinhas
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Rachael C Wood
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - James B Phillips
- Department of Pharmacology, UCL School of Pharmacy, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
| | - Chris Mason
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
- AVROBIO Inc, Cambridge, MA 02139, USA
| | - Daqing Li
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - Ying Li
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - John D Sinden
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
- ReNeuron Limited, Pencoed, Bridgend, CF35 5HY, UK
| | - David Choi
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - Parmjit S Jat
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, W1W 7FF, UK
| | - Ivan B Wall
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK.
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK.
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
19
|
Bettini S, Lazzari M, Franceschini V. Molecular Markers in the Study of Non-model Vertebrates: Their Significant Contributions to the Current Knowledge of Tetrapod Glial Cells and Fish Olfactory Neurons. Results Probl Cell Differ 2019; 68:355-377. [PMID: 31598864 DOI: 10.1007/978-3-030-23459-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The knowledge of the morphological and functional aspects of mammalian glial cells has greatly increased in the last few decades. Glial cells represent the most diffused cell type in the central nervous system, and they play a critical role in the development and function of the brain. Glial cell dysfunction has recently been shown to contribute to various neurological disorders, such as autism, schizophrenia, pain, and neurodegeneration. For this reason, glia constitutes an interesting area of research because of its clinical, diagnostic, and pharmacological relapses. In this chapter, we present and discuss the cytoarchitecture of glial cells in tetrapods from an evolutive perspective. GFAP and vimentin are main components of the intermediate filaments of glial cells and are used as cytoskeletal molecular markers because of their high degree of conservation in the various vertebrate groups. In the anamniotic tetrapods and their progenitors, Rhipidistia (Dipnoi are the only extant rhipidistian fish), the cytoskeletal markers show a model based exclusively on radial glial cells. In the transition from primitive vertebrates to successively evolved forms, the emergence of a new model has been observed which is believed to support the most complex functional aspects of the nervous system in the vertebrates. In reptiles, radial glial cells are prevalent, but star-shaped astrocytes begin to appear in the midbrain. In endothermic amniotes (birds and mammals), star-shaped astrocytes are predominant. In glial cells, vimentin is indicative of immature cells, while GFAP indicates mature ones.Olfactory receptor neurons undergo continuous turnover, so they are an easy model for neurogenesis studies. Moreover, they are useful in neurotoxicity studies because of the exposed position of their apical pole to the external environment. Among vertebrates, fish represent a valid biological model in this field. In particular, zebrafish, already used in laboratories for embryological, neurobiological, genetic, and pathophysiological studies, is the reference organism in olfactory system research. Smell plays an important role in the reproductive behavior of fish, with direct influences also on the numerical consistency of their populations. Taking into account that a lot of species have considerable economic importance, it is necessary to verify if the model of zebrafish olfactory organ is also directly applicable to other fish. In this chapter, we focus on crypt cells, a morphological type of olfactory cells specific of fish. We describe hypothetical function (probably related with social behavior) and evolutive position of these cells (prior to the appearance of the vomeronasal organ in tetrapods). We also offer the first comparison of the molecular characteristics of these receptors between zebrafish and the guppy. Interestingly, the immunohistochemical expression patterns of known crypt cell markers are not overlapping in the two species.
Collapse
Affiliation(s)
- Simone Bettini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Li Y, Huo S, Fang Y, Zou T, Gu X, Tao Q, Xu H. ROCK Inhibitor Y27632 Induced Morphological Shift and Enhanced Neurite Outgrowth-Promoting Property of Olfactory Ensheathing Cells via YAP-Dependent Up-Regulation of L1-CAM. Front Cell Neurosci 2018; 12:489. [PMID: 30618636 PMCID: PMC6297255 DOI: 10.3389/fncel.2018.00489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 01/14/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are heterogeneous in morphology, antigenic profiles and functions, and these OEC subpopulations have shown different outcomes following OEC transplantation for central nervous system (CNS) injuries. Morphologically, OECs are divided into two subpopulations, process-bearing (Schwann cells-like) and flattened (astrocytes-like) OECs, which could switch between each other and are affected by extracellular and intracellular factors. However, neither the relationship between the morphology and function of OECs nor their molecular mechanisms have been clarified. In the present study, we first investigated morphological and functional differences of OECs under different cytokine exposure conditions. It demonstrated that OECs mainly displayed a process-bearing shape under pro-inflammatory conditions (lipopolysaccharide, LPS), while they displayed a flattened shape under anti-inflammatory conditions [interleukin-4 (IL-4) and transforming growth factor-β1 (TGF-β1)]. The morphological changes were partially reversible and the Rho-associated coiled-coil-containing protein kinase (ROCK)/F-actin pathway was involved. Functionally, process-bearing OECs under pro-inflammatory conditions showed increased cellular metabolic activity and a higher migratory rate when compared with flattened OECs under anti-inflammatory conditions and significantly promoted neurite outgrowth and extension. Remarkably, the morphological shift towards process-bearing OECs induced by ROCK inhibitor Y27632 enhanced the neurite outgrowth-promoting property of OECs. Furthermore, as the downstream of the ROCK pathway, transcriptional co-activator Yes-associated protein (YAP) mediated morphological shift and enhanced the neurite outgrowth-promoting property of OECs through upregulating the expression of the neural adhesion molecule L1-CAM. Our data provided evidence that OECs with specific shapes correspond to specific functional phenotypes and opened new insights into the potential combination of OECs and small-molecule ROCK inhibitors for the regeneration of CNS injuries.
Collapse
Affiliation(s)
- Yijian Li
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Shujia Huo
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yajie Fang
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Ting Zou
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xianliang Gu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Qin Tao
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
21
|
Dalrymple AN, Everaert DG, Hu DS, Mushahwar VK. A speed-adaptive intraspinal microstimulation controller to restore weight-bearing stepping in a spinal cord hemisection model. J Neural Eng 2018; 15:056023. [PMID: 30084388 DOI: 10.1088/1741-2552/aad872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The goal of this study was to develop control strategies to produce alternating, weight-bearing stepping in a cat model of hemisection spinal cord injury (SCI) using intraspinal microstimulation (ISMS). APPROACH Six cats were anesthetized and the functional consequences of a hemisection SCI were simulated by manually moving one hind-limb through the gait cycle over a moving treadmill belt. ISMS activated the muscles in the other leg by stimulating motor networks in the lumbosacral enlargement using low levels of current (<110 µA). The control strategy used signals from ground reaction forces and angular velocity from the manually-moved limb to anticipate states of the gait cycle, and controlled ISMS to move the other hind-limb into the opposite state. Adaptive control strategies were developed to ensure weight-bearing at different stepping speeds. The step period was predicted using generalizations obtained through four supervised machine learning algorithms and used to adapt the control strategy for faster steps. MAIN RESULTS At a single speed, 100% of the steps had sufficient weight-bearing; at faster speeds without adaptation, 97.6% of steps were weight-bearing (significantly less than that for single speed; p = 0.002). By adapting the control strategy for faster steps using the predicted step period, weight-bearing was achieved in more than 99% of the steps in three of four methods (significantly more than without adaptation p < 0.04). Overall, a multivariate model tree increased the number of weight-bearing steps, restored step symmetry, and maintained alternation at faster stepping speeds. SIGNIFICANCE Through the adaptive control strategies guided by supervised machine learning, we were able to restore weight-bearing and maintain alternation and step symmetry at varying stepping speeds.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
22
|
Gómez-Pinedo U, Sanchez-Rojas L, Vidueira S, Sancho FJ, Martínez-Ramos C, Lebourg M, Monleón Pradas M, Barcia JA. Bridges of biomaterials promote nigrostriatal pathway regeneration. J Biomed Mater Res B Appl Biomater 2018; 107:190-196. [PMID: 29573127 DOI: 10.1002/jbm.b.34110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 12/21/2022]
Abstract
Repair of central nervous system (CNS) lesions is difficulted by the lack of ability of central axons to regrow, and the blocking by the brain astrocytes to axonal entry. We hypothesized that by using bridges made of porous biomaterial and permissive olfactory ensheathing glia (OEG), we could provide a scaffold to permit restoration of white matter tracts. We implanted porous polycaprolactone (PCL) bridges between the substantia nigra and the striatum in rats, both with and without OEG. We compared the number of tyrosine-hydroxylase positive (TH+) fibers crossing the striatal-graft interface, and the astrocytic and microglial reaction around the grafts, between animals grafted with and without OEG. Although TH+ fibers were found inside the grafts made of PCL alone, there was a greater fiber density inside the graft and at the striatal-graft interface when OEG was cografted. Also, there was less astrocytic and microglial reaction in those animals. These results show that these PCL grafts are able to promote axonal growth along the nigrostriatal pathway, and that cografting of OEG markedly enhances axonal entry inside the grafts, growth within them, and re-entry of axons into the CNS. These results may have implications in the treatment of diseases such as Parkinson's and others associated with lesions of central white matter tracts. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 190-196, 2019.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Servicio de Neurocirugía. Instituto de Neurociencias. IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Leyre Sanchez-Rojas
- Servicio de Neurocirugía. Instituto de Neurociencias. IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Cristina Martínez-Ramos
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Myriam Lebourg
- Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Manuel Monleón Pradas
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Juan A Barcia
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Servicio de Neurocirugía. Instituto de Neurociencias. IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Gómez RM, Sánchez MY, Portela-Lomba M, Ghotme K, Barreto GE, Sierra J, Moreno-Flores MT. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia 2018; 66:1267-1301. [PMID: 29330870 DOI: 10.1002/glia.23282] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
The prospects of achieving regeneration in the central nervous system (CNS) have changed, as most recent findings indicate that several species, including humans, can produce neurons in adulthood. Studies targeting this property may be considered as potential therapeutic strategies to respond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma may interrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, as seen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs are due to the immediate and significant disruption of the ascending and descending spinal pathways, which result in varying degrees of motor and sensory impairment. Recent therapeutic studies for SCI have focused on cell transplantation in animal models, using cells capable of inducing axon regeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactory ensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based therapeutic strategies, there is still little information regarding the mechanisms underlying the success of transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable to achieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulate angiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion. Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both from animal models and clinical studies performed on SCI patients, providing promising results for future treatments.
Collapse
Affiliation(s)
- Rosa M Gómez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia
| | - Magdy Y Sánchez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia.,Maestría en Neurociencias, Universidad Nacional de Colombia, Bogota D.C, Colombia
| | - Maria Portela-Lomba
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Kemel Ghotme
- Facultad de Medicina, Universidad de la Sabana, Chía, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Javier Sierra
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
24
|
Dammalli M, Dey G, Kumar M, Madugundu AK, Gopalakrishnan L, Gowrishankar BS, Mahadevan A, Shankar SK, Prasad TSK. Proteomics of the Human Olfactory Tract. ACTA ACUST UNITED AC 2018; 22:77-87. [DOI: 10.1089/omi.2017.0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Manjunath Dammalli
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya University, Mangalore, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anil K. Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya University, Mangalore, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya University, Mangalore, India
- NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
25
|
Pellitteri R, Cova L, Zaccheo D, Silani V, Bossolasco P. Phenotypic Modulation and Neuroprotective Effects of Olfactory Ensheathing Cells: a Promising Tool for Cell Therapy. Stem Cell Rev Rep 2017; 12:224-34. [PMID: 26553037 DOI: 10.1007/s12015-015-9635-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Olfactory Ensheathing Cells (OECs), exhibiting phenotypic characteristics of both astrocytes and Schwann Cells, show peculiar plasticity. In vitro, OECs promote axonal growth, while in vivo they promote remyelination of damaged axons. We decided to further investigate OEC potential for regeneration and functional recovery of the damaged Central Nervous System (CNS). To study OEC antigen modulation, OECs prepared from postnatal mouse olfactory bulbs were grown in different culture conditions: standard or serum-free media with/without Growth Factors (GFs) and analyzed for different neural specific markers. OEC functional characterizations were also achieved. Resistance of OECs to the neurotoxin 6-hydroxydopamine (6-OHDA) was analyzed by evaluating apoptosis and death. OEC neuroprotective properties were investigated by in vitro co-cultures or by addition of OEC conditioned medium to the neuroblastoma SH-SY5Y cells exposed to 6-OHDA. We observed: 1) modification of OEC morphology, reduced cell survival and marker expression in serum-free medium; 2) GF addition to serum-free medium condition influenced positively survival and restored basal marker expression; 3) no OEC apoptosis after a prolonged exposition to 6-OHDA; 4) a clear OEC neuroprotective tendency, albeit non statistically significant, on 6-OHDA treated SH-SY5Y cells. These peculiar properties of OECs might render them potential clinical agents able to support injured CNS.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, CNR, Section of Catania, via Paolo Gaifami 18, 95126, Catania, Italy.
| | - Lidia Cova
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| | - Damiano Zaccheo
- Department of Experimental Medicine, Section of Human Anatomy, University of Genoa, via De Toni 14, 16132, Genoa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy.,Department of Pathophysiology and Transplantation - "Dino Ferrari" Center, Università degli Studi di Milano, via Francesco Sforza 35, 20122, Milan, Italy
| | - Patrizia Bossolasco
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| |
Collapse
|
26
|
Vicario N, Calabrese G, Zappalà A, Parenti C, Forte S, Graziano ACE, Vanella L, Pellitteri R, Cardile V, Parenti R. Inhibition of Cx43 mediates protective effects on hypoxic/reoxygenated human neuroblastoma cells. J Cell Mol Med 2017; 21:2563-2572. [PMID: 28488330 PMCID: PMC5618696 DOI: 10.1111/jcmm.13177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
Olfactory ensheathing cells (OECs), a special population of glial cells, are able to synthesise several trophic factors exerting a neuroprotective action and promoting growth and functional recovery in both in vitro and in vivo models. In the present work, we investigated the neuroprotective effects of OEC-conditioned medium (OEC-CM) on two different human neuron-like cell lines, SH-SY5Y and SK-N-SH (neuroblastoma cell lines), under normoxic and hypoxic conditions. In addition, we also focused our attention on the role of connexins (Cxs) in the neuroprotective processes. Our results confirmed OEC-CM mediated neuroprotection as shown by cell adherence, proliferation and cellular viability analyses. Reduced connexin 43 (Cx43) levels in OEC-CM compared to unconditioned cells in hypoxic conditions prompted us to investigate the role of Cx43-Gap junctions (GJs) and Cx43-hemichannels (HCs) in hypoxic/reoxygenation injury using carbenoxolone (non-selective GJ inhibitor), ioxynil octanoato (selective Cx43-GJ inhibitor) and Gap19 (selective Cx43-HC inhibitor). We found that Cx43-GJ and Cx43-HC inhibitors are able to protect SH-SY5Y and allow to these cultures to overcome the injury. Our findings support the hypothesis that both OEC-CM and the inhibition of Cx43-GJs and Cx43-HCs offer a neuroprotective effect by reducing Cx43-mediated cell-to-cell and cell-to-extracellular environment communications.
Collapse
Affiliation(s)
- Nunzio Vicario
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Giovanna Calabrese
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Agata Zappalà
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Carmela Parenti
- Department of Drug SciencesUniversity of CataniaCataniaItaly
| | | | | | - Luca Vanella
- Department of Drug SciencesUniversity of CataniaCataniaItaly
| | | | - Venera Cardile
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| |
Collapse
|
27
|
Marycz K, Kornicka K, Grzesiak J, Tomaszewski KA, Szarek D, Kopacz P. The Impact of Oxidative Stress Factors on the Viability, Senescence, and Methylation Status of Olfactory Bulb-Derived Glial Cells Isolated from Human Cadaver Donors. Cells Tissues Organs 2017; 204:105-118. [PMID: 28700993 DOI: 10.1159/000472707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 11/19/2022] Open
Abstract
The olfactory bulb (OB) is a unique structure in the central nervous system that retains the ability to create new neuronal connections. Glial cells isolated from the OB have been recently considered as a novel and promising tool to establish an effective therapy for central nervous system injuries. Due to the hindered access to autologous tissue for cell isolation, an allogeneic source of tissues obtained postmortem has been proposed. In this study, we focused on the morphological and molecular characteristics of human OB-derived glial cells isolated postmortem, at different time points after a donor's death. We evaluated the proliferative activity of the isolated cells, and investigated the ultrastructure of the mitochondria, the accumulation of intracellular reactive oxygen species, and the activity of superoxide dismutase. The data obtained clearly indicate that the duration of ischemia is crucial for the viability/senescence rate of OB-derived glial cells. The OB can be isolated during autopsy and still stand as a source of viable glial cells, but ischemia duration is a major factor limiting its potential usefulness in therapies.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
28
|
Cell transplantation therapy for spinal cord injury. Nat Neurosci 2017; 20:637-647. [DOI: 10.1038/nn.4541] [Citation(s) in RCA: 435] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
|
29
|
Dunnett SB, Björklund A. Mechanisms and use of neural transplants for brain repair. PROGRESS IN BRAIN RESEARCH 2017; 230:1-51. [PMID: 28552225 DOI: 10.1016/bs.pbr.2016.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Under appropriate conditions, neural tissues transplanted into the adult mammalian brain can survive, integrate, and function so as to influence the behavior of the host, opening the prospect of repairing neuronal damage, and alleviating symptoms associated with neuronal injury or neurodegenerative disease. Alternative mechanisms of action have been postulated: nonspecific effects of surgery; neurotrophic and neuroprotective influences on disease progression and host plasticity; diffuse or locally regulated pharmacological delivery of deficient neurochemicals, neurotransmitters, or neurohormones; restitution of the neuronal and glial environment necessary for proper host neuronal support and processing; promoting local and long-distance host and graft axon growth; formation of reciprocal connections and reconstruction of local circuits within the host brain; and up to full integration and reconstruction of fully functional host neuronal networks. Analysis of neural transplants in a broad range of anatomical systems and disease models, on simple and complex classes of behavioral function and information processing, have indicated that all of these alternative mechanisms are likely to contribute in different circumstances. Thus, there is not a single or typical mode of graft function; rather grafts can and do function in multiple ways, specific to each particular context. Consequently, to develop an effective cell-based therapy, multiple dimensions must be considered: the target disease pathogenesis; the neurodegenerative basis of each type of physiological dysfunction or behavioral symptom; the nature of the repair required to alleviate or remediate the functional impairments of particular clinical relevance; and identification of a suitable cell source or delivery system, along with the site and method of implantation, that can achieve the sought for repair and recovery.
Collapse
|
30
|
Bahmad H, Hadadeh O, Chamaa F, Cheaito K, Darwish B, Makkawi AK, Abou-Kheir W. Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma. Front Mol Neurosci 2017; 10:50. [PMID: 28293168 PMCID: PMC5329035 DOI: 10.3389/fnmol.2017.00050] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
With the help of several inducing factors, somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) lines. The success is in obtaining iPSCs almost identical to embryonic stem cells (ESCs), therefore various approaches have been tested and ultimately several ones have succeeded. The importance of these cells is in how they serve as models to unveil the molecular pathways and mechanisms underlying several human diseases, and also in its potential roles in the development of regenerative medicine. They further aid in the development of regenerative medicine, autologous cell therapy and drug or toxicity screening. Here, we provide a comprehensive overview of the recent development in the field of iPSCs research, specifically for modeling human neurological and neurodegenerative diseases, and its applications in neurotrauma. These are mainly characterized by progressive functional or structural neuronal loss rendering them extremely challenging to manage. Many of these diseases, including Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) have been explored in vitro. The main purpose is to generate patient-specific iPS cell lines from the somatic cells that carry mutations or genetic instabilities for the aim of studying their differentiation potential and behavior. This new technology will pave the way for future development in the field of stem cell research anticipating its use in clinical settings and in regenerative medicine in order to treat various human diseases, including neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
31
|
Kelly M, Shah S. Axonal Sprouting and Neuronal Connectivity following Central Nervous System Insult: Implications for Occupational Therapy. Br J Occup Ther 2016. [DOI: 10.1177/030802260206501006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Based on selected contemporary research, this paper presents a critical analysis of central nervous system (CNS) reorganisation following insult and the need for therapists better to understand the processes that constitute reorganisation and their possible contribution to the development of spasticity. In the treatment of the sequelae of CNS lesions, the synaptic reorganisation as a result of losses caused by injury - in the form of axonal sprouting - is illustrated, focusing on neuronal reconnectivity. Critical analysis of laboratory, electron microscopy and other animal and human studies is also conducted to integrate the controversies identified and to highlight the concepts that become relevant for occupational therapists, in order to optimise therapeutic intervention for maximising restitution in patients with CNS insult. The paper further discusses the capacity of the CNS to compensate and the need to utilise occupational therapy interventions, such as imagining, mental rehearsals, constraint-induced therapy, virtual reality, biofeedback and the traditional repetitive tasks, which leads to ensuring and facilitating the emergence of new synapses to perform motor tasks and manual skills and to prevent secondary changes. These external stimulations provided by the therapists are likely to stimulate both the damaged hemisphere cross-innervation and/or collateral sprouting. These scientifically based treatment strategies and neurological rehabilitation programmes would, in turn, contribute to improving the quality of life of people with CNS insult.
Collapse
|
32
|
Joseph A, DeLuca GC. Back on the scent: the olfactory system in CNS demyelinating diseases. J Neurol Neurosurg Psychiatry 2016; 87:1146-54. [PMID: 27003274 DOI: 10.1136/jnnp-2015-312600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/08/2016] [Indexed: 01/12/2023]
Abstract
Olfactory dysfunction is recognised across an ever broadening spectrum of neuropsychiatric conditions including central nervous system (CNS) demyelinating diseases such as multiple sclerosis (MS) and neuromyelitis optica (NMO). In this review, we unravel the striking evidence highlighting how olfactory loss is a common clinical feature in MS and NMO. We provide an overview of the supportive psychophysical, electrophysiological, radiological and pathological data that point to the anatomical substrate of olfactory deficits in these diseases. The pattern of underlying pathology affecting the olfactory system is shown to be complex, involving multiple structures that are affected in different ways throughout the course of the disease. This review is the first to synthesise the expanding body of literature on the topic, provides novel insight into the way in which the olfactory system is affected in CNS demyelinating diseases, and raises intriguing questions about the role of this system in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Albert Joseph
- Foundation School Offices, St Mary's Hospital, London, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
33
|
Linckosides enhance proliferation and induce morphological changes in human olfactory ensheathing cells. Mol Cell Neurosci 2016; 75:1-13. [DOI: 10.1016/j.mcn.2016.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/22/2016] [Accepted: 06/21/2016] [Indexed: 11/15/2022] Open
|
34
|
Huilgol D, Tole S. Cell migration in the developing rodent olfactory system. Cell Mol Life Sci 2016; 73:2467-90. [PMID: 26994098 PMCID: PMC4894936 DOI: 10.1007/s00018-016-2172-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
35
|
Doulames VM, Plant GW. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury. Int J Mol Sci 2016; 17:530. [PMID: 27070598 PMCID: PMC4848986 DOI: 10.3390/ijms17040530] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury.
Collapse
Affiliation(s)
- Vanessa M Doulames
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| | - Giles W Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| |
Collapse
|
36
|
Duan D, Lu M. Olfactory mucosa: a rich source of cell therapy for central nervous system repair. Rev Neurosci 2015; 26:281-93. [PMID: 25781675 DOI: 10.1515/revneuro-2014-0065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/26/2015] [Indexed: 11/15/2022]
Abstract
Damage to the brain and spinal cord leads to permanent functional disability because of the very limited capacity of the central nervous system (CNS) for repair. Cell therapy is thought to be a promising strategy for CNS repair. The proper cell type of transplantation for CNS repair has not been identified until now, but autologous transplantation would be advantageous. The olfactory mucosa (OM), from the olfactory system, in which the neurosensory cells are replaced throughout adult life, is thought to be a rich source of cell therapy for CNS repair. The OM is a heterogeneous tissue composed of a variety of cells supporting both normal function and regenerative capacity, in which many studies focused on four major types of cells, including horizontal basal cells (HBCs), globose basal cells (GBC), mesenchymal stem cells (MSCs), and olfactory ensheathing cells (OECs). Here, we review the four major types of cells in the OM and shed light on the potential of the OM for CNS repair.
Collapse
|
37
|
Gladwin K, Choi D. Olfactory Ensheathing Cells: Part I—Current Concepts and Experimental Laboratory Models. World Neurosurg 2015; 83:114-9. [DOI: 10.1016/j.wneu.2013.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/22/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
38
|
Lazzari M, Bettini S, Franceschini V. Immunocytochemical characterisation of ensheathing glia in the olfactory and vomeronasal systems of Ambystoma mexicanum (Caudata: Ambystomatidae). Brain Struct Funct 2014; 221:955-67. [PMID: 25433448 DOI: 10.1007/s00429-014-0949-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 11/22/2014] [Indexed: 01/18/2023]
Abstract
The olfactory and vomeronasal systems of vertebrates are characterised by neurogenesis occurring throughout life. The regenerative ability of olfactory receptor neurons relies on specific glial cells, the olfactory and vomeronasal axon-surrounding cells. Numerous studies have examined mammalian olfactory ensheathing cells which are considered potential candidates for spinal cord injury repair using cell-based therapy. With regard to non-mammalian vertebrates, limited information is available on these glial cells in fish, and there is no information on them in terrestrial anamniotes, the amphibians. In the present research, we studied the immunocytochemical characteristics of axon-surrounding cells in Ambystoma mexicanum. Urodeles have relatively simple olfactory and vomeronasal systems, and represent a good model for studying ensheathing cells in extant representatives of basal tetrapods. Sections from the decalcified heads of A. mexicanum were immunocytochemically processed for the detection of proteins used in research on mammalian olfactory-ensheathing cells. S100, GFAP and NCAM were clearly observed. p75NTR, Gal-1 and PSA-NCAM showed weak staining. No vimentin immunopositivity was observed. The corresponding areas of the olfactory and vomeronasal pathways displayed the same staining characteristics, with the exception of Gal-1, p75NTR and PSA-NCAM in the mucosae. The degree of marker expression was not uniform throughout the sensory pathways. In contrast to fish, both olfactory and vomeronasal nerves displayed uniform staining intensity. This study showed that some markers for mammalian and fish-ensheathing glia are also applicable in urodeles. The olfactory systems of vertebrates show similarities, and also clear dissimilarities. Further investigations are required to ascertain the functional significance of these regional and interspecific differences.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy.
| | - Simone Bettini
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
| | - Valeria Franceschini
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
39
|
Liu W, Zheng Q, Wang Y, Han X, Yuan L, Zhao M. Transplantation of olfactory ensheathing cells attenuates acute carbon monoxide poisoning-induced brain damages in rats. Neurochem Res 2014; 40:70-80. [PMID: 25370793 DOI: 10.1007/s11064-014-1467-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 02/02/2023]
Abstract
In this study, the therapeutic effect of olfactory ensheathing cells (OEC) transplantation on brain damage was evaluated on acute carbon monoxide (CO) poisoning rat model. Two weeks after primary culture, OECs were microinjected into hippocampus of CO poisoning rats. Survival of OECs in the host was observed and quantified. OECs survived at 2 weeks, but surviving cell number was found sharply decreased at 6 weeks and reduced to less than 10(3) at 8 weeks after transplantation. At 2 weeks after transplantation, motor function test and cerebral edema assay were performed and followed by pathological examination including hematoxylin and eosin and immunohistochemistry staining to observe the neuron injury and synapsin I and growth associated protein-43 (GAP-43) expression. Furthermore, biomarkers of oxidative stress and apoptosis related proteins in the hippocampus were detected. The results showed that CO exposure led to neurological dysfunction and cerebral edema in rats. After OEC transplantation, neurological function was significantly improved and the cerebral edema was alleviated. In addition, the numbers of neurons and Nissl bodies were increased and synapsin I and GAP-43 protein expressions were upregulated in the hippocampus. Compared with CO poisoned rats, superoxide dismutase activity and glutathione content were both increased and methane dicarboxylic aldehyde level was decreased in the hippocampus of OEC transplanted rats. Moreover, OEC transplantation reduced apoptosis induced by CO exposure. The Bcl-2 expression was significantly upregulated and Bax expression was significantly downregulated. The activity of caspase-3 and the cleaved-poly ADP-ribose polymerase expression were decreased. Taken together, our data suggest that OEC attenuates brain damages induced by acute CO poisoning within 2 weeks after transplantation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Chen CR, Kachramanoglou C, Li D, Andrews P, Choi D. Anatomy and cellular constituents of the human olfactory mucosa: a review. J Neurol Surg B Skull Base 2014; 75:293-300. [PMID: 25302141 DOI: 10.1055/s-0033-1361837] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/07/2013] [Indexed: 02/02/2023] Open
Abstract
Studies using animal models have recently suggested that the olfactory mucosa may be a source of cells capable of stimulating and contributing to complex neurologic regeneration. Several groups have already transplanted cell derivatives from the olfactory mucosa into injury models, and the results so far have been promising. To fully appreciate the meaning of these experiments, a better understanding of the cellular biology and physiology of the olfactory system is necessary. It is therefore of utmost importance for us to first identify and understand its constituents.
Collapse
Affiliation(s)
- C Russell Chen
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Carolina Kachramanoglou
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Daqing Li
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Peter Andrews
- Department of ENT, Royal National Throat Nose and Ear Hospital, London, United Kingdom
| | - David Choi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| |
Collapse
|
41
|
Electrospun polyhydroxybutyrate and poly(L-lactide-co-ε-caprolactone) composites as nanofibrous scaffolds. BIOMED RESEARCH INTERNATIONAL 2014; 2014:741408. [PMID: 24900983 PMCID: PMC4034502 DOI: 10.1155/2014/741408] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/05/2014] [Accepted: 02/25/2014] [Indexed: 11/17/2022]
Abstract
Electrospinning can produce nanofibrous scaffolds that mimic the architecture of the extracellular matrix and support cell attachment for tissue engineering applications. In this study, fibrous membranes of polyhydroxybutyrate (PHB) with various loadings of poly(L-lactide-co-ε-caprolactone) (PLCL) were successfully prepared by electrospinning. In comparison to PLCL scaffolds, PLCL blends with PHB exhibited more irregular fibre diameter distributions and higher average fibre diameters but there were no significant differences in pore size. PLCL/PHB scaffolds were more hydrophilic (<120°) with significantly reduced tensile strength (ca. 1 MPa) compared to PLCL scaffolds (150.9 ± 2.8° and 5.8 ± 0.5 MPa). Increasing PLCL loading in PHB/PLCL scaffolds significantly increased the extension at break, (4-6-fold). PLCL/PHB scaffolds supported greater adhesion and proliferation of olfactory ensheathing cells (OECs) than those exhibiting asynchronous growth on culture plates. Mitochondrial activity of cells cultivated on the electrospun blended membranes was enhanced compared to those grown on PLCL and PHB scaffolds (212, 179, and 153%, resp.). Analysis showed that PLCL/PHB nanofibrous membranes promoted cell cycle progression and reduced the onset of necrosis. Thus, electrospun PLCL/PHB composites promoted adhesion and proliferation of OECs when compared to their individual PLCL and PHB components suggesting potential in the repair and engineering of nerve tissue.
Collapse
|
42
|
Lazzari M, Bettini S, Franceschini V. Immunocytochemical characterisation of olfactory ensheathing cells of zebrafish. J Anat 2014; 224:192-206. [PMID: 24164558 PMCID: PMC3969062 DOI: 10.1111/joa.12129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 01/01/2023] Open
Abstract
Continuous lifelong neurogenesis is typical of the vertebrate olfactory system. The regenerative ability of olfactory receptor neurons is dependent on the glial cell type specific to the olfactory pathway, designated 'olfactory ensheathing cells'. Several studies to date have focused on mammalian olfactory ensheathing cells, owing to their potential roles in cell-based therapy for spinal cord injury repair. However, limited information is available regarding this glial cell type in non-mammalian vertebrates, particularly anamniotes. In the current immunocytochemical study, we analysed the features of olfactory ensheathing cells in the zebrafish, Danio rerio. Fish provide a good model for studying glial cells associated with the olfactory pathway of non-mammalian vertebrates. In particular, zebrafish has numerous valuable features that enable its use as a prime model organism for genetic, neurobiological and developmental studies, as well as toxicology and genomics research. Paraffin sections from decalcified heads of zebrafish were processed immunocytochemically to detect proteins used in the research on mammalian olfactory ensheathing cells, including glial fibrillary acid protein (GFAP), S100, neural cell adhesion molecule (NCAM), polysialylated NCAM (PSA-NCAM), vimentin (VIM), p75NTR and galactin (Gal)-1. Notably, GFAP, S100, NCAM and Gal-1 were clearly observed, whereas no vimentin staining was detected. Weak immunostaining for PSA-NCAM and p75NTR was evident. Moreover the degree of marker expression was not uniform in various tracts of the zebrafish olfactory pathway. The immunostaining patterns of the zebrafish olfactory system are distinct from those of other fish to some extent, suggesting interspecific differences. We also showed that the olfactory pathway of zebrafish expresses markers of mammalian olfactory ensheathing cells. The olfactory systems of vertebrates have similarities but there are also marked variations between them. The issue of whether regional and interspecific differences in immunostaining patterns of olfactory pathway markers have functional significance requires further investigation.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
43
|
Daranarong D, Thapsukhon B, Wanandy NS, Molloy R, Punyodom W, Foster LJR. Application of low loading of collagen in electrospun poly[(l
-lactide)-co
-(ε
-caprolactone)] nanofibrous scaffolds to promote cellular biocompatibility. POLYM INT 2013. [DOI: 10.1002/pi.4631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Donraporn Daranarong
- Biomedical Polymers Technology Unit, Department of Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
| | - Boontharika Thapsukhon
- Biomedical Polymers Technology Unit, Department of Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
| | - Nico S Wanandy
- Bio/Polymer Research Group, School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney NSW2052 Australia
| | - Robert Molloy
- Biomedical Polymers Technology Unit, Department of Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
- Materials Science Research Center, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
| | - Winita Punyodom
- Biomedical Polymers Technology Unit, Department of Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
- Materials Science Research Center, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
| | - L John R Foster
- Bio/Polymer Research Group, School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney NSW2052 Australia
| |
Collapse
|
44
|
Blumenthal J, Cohen-Matsliah SI, Levenberg S. Olfactory Bulb-Derived Cells Seeded on 3D Scaffolds Exhibit Neurotrophic Factor Expression and Pro-Angiogenic Properties. Tissue Eng Part A 2013; 19:2284-91. [DOI: 10.1089/ten.tea.2012.0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jacob Blumenthal
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
45
|
Rawji KS, Zhang SX, Tsai YY, Smithson LJ, Kawaja MD. Olfactory ensheathing cells of hamsters, rabbits, monkeys, and mice express α-smooth muscle actin. Brain Res 2013; 1521:31-50. [PMID: 23665391 DOI: 10.1016/j.brainres.2013.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Olfactory ensheathing cells (OECs) are the chief glial population of the mammalian olfactory nervous system, residing in the olfactory mucosa and at the surface of the olfactory bulb. We investigated the neurochemical features of OECs in a variety of mammalian species (including adult hamsters, rabbits, monkeys, and mice, as well as fetal pigs) using three biomarkers: α-smooth muscle actin (αSMA), S100β, and glial fibrillary acidic protein (GFAP). Mucosal and bulbar OECs from all five mammalian species express S100β. Both mucosal and bulbar OECs of monkeys express αSMA, yet only bulbar OECs of hamsters and only mucosal OECs of rabbits express αSMA as well. Mucosal OECs, but not bulbar OECs, also express GFAP in hamsters and monkeys; mice, by comparison, have only a sparse population of OECs expressing GFAP. Though αSMA immunostaining is not detected in OECs of adult mice, GFAP-expressing mucosal OECs isolated from adult mice do coexpress αSMA in vitro. Moreover, mucosal OECs from adult mutant mice lacking αSMA expression display perturbed cellular morphology (i.e., fewer cytoplasmic processes extending among the hundreds of olfactory axons in the olfactory nerve fascicles and nuclei having degenerative features). In sum, these findings highlight the efficacy of αSMA and S100β as biomarkers of OECs from a variety of mammalian species. These observations provide definitive evidence that mammalian OECs express the structural protein αSMA (at various levels of detection), which appears to play a pivotal role in their ensheathment of olfactory axons.
Collapse
Affiliation(s)
- Khalil S Rawji
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
46
|
Differential sulfation remodelling of heparan sulfate by extracellular 6-O-sulfatases regulates fibroblast growth factor-induced boundary formation by glial cells: implications for glial cell transplantation. J Neurosci 2013; 32:15902-12. [PMID: 23136428 DOI: 10.1523/jneurosci.6340-11.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previously, it has been shown that rat Schwann cells (SCs), but not olfactory ensheathing cells (OECs), form a boundary with astrocytes, due to a SC-specific secreted factor. Here, we identify highly sulfated heparan sulfates (HSs) and fibroblast growth factors (FGFs) 1 and 9 as possible determinants of boundary formation induced by rat SCs. Disaccharide analysis of HS in SC-conditioned and rat OEC-conditioned media showed that SCs secrete more highly sulfated HS than OECs. The dependence of the boundary-forming activity on high levels of sulfation was confirmed using a panel of semisynthetic modified heparins with variable levels of sulfation. Furthermore, extracellular HS 6-O-endosulfatase enzymes, Sulf 1 and Sulf 2, were expressed at a significantly lower level by SCs compared with OECs, and siRNA reduction of Sulfs in OECs was, in itself, sufficient to induce boundary formation. This demonstrates a key role for remodelling (reduction) of HS 6-O-sulfation by OECs, compared with SCs, to suppress boundary formation. Furthermore, specific anti-FGF1 and anti-FGF9 antibodies disrupted SC-astrocyte boundary formation, supporting a role for an HS sulfation-dependent FGF signaling mechanism via FGF receptors on astrocytes. We propose a model in which FGF1 and FGF9 signaling is differentially modulated by patterns of glial cell HS sulfation, dependent on Sulf 1 and Sulf 2 expression, to control FGF receptor 3-IIIb-mediated astrocytic responses. Moreover, these data suggest manipulation of HS sulfation after CNS injury as a potential novel approach for therapeutic intervention in CNS repair.
Collapse
|
47
|
Su Z, Chen J, Qiu Y, Yuan Y, Zhu F, Zhu Y, Liu X, Pu Y, He C. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia 2013; 61:490-503. [PMID: 23339073 DOI: 10.1002/glia.22450] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 11/09/2012] [Indexed: 11/11/2022]
Abstract
The olfactory system is an unusual tissue in which olfactory receptor neurons (ORNs) are continuously replaced throughout the life of mammals. Clearance of the apoptotic ORNs corpses is a fundamental process serving important functions in the regulation of olfactory nerve turnover and regeneration. However, little is known about the underlying mechanisms. Olfactory ensheathing cells (OECs) are a unique type of glial cells that wrap olfactory axons and support their continual regeneration from the olfactory epithelium to the bulb. In the present study, OECs were identified to exist in two different states, resting and reactive, in which resting OECs could be activated by LPS stimulation and functioned as phagocytes for cleaning apoptotic ORNs corpses. Confocal analysis revealed that dead ORNs debris were engulfed by OECs and co-localized with lysosome associated membrane protein 1. Moreover, phosphatidylserine (PS) receptor was identified to express on OECs, which allowed OECs to recognize apoptotic ORNs by binding to PS. Importantly, engulfment of olfactory nerve debris by OECs was found in olfactory mucosa under normal turnover and was significantly increased in the animal model of olfactory bulbectomy, while little phagocytosis by Iba-1-positive microglia/macrophages was observed. Together, these results implicate OEC as a primary innate immunocyte in the olfactory pathway, and suggest a cellular and molecular mechanism by which ORNs corpses are removed during olfactory nerve turnover and regeneration.
Collapse
Affiliation(s)
- Zhida Su
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:786475. [PMID: 23484157 PMCID: PMC3581246 DOI: 10.1155/2013/786475] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/16/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023]
Abstract
Cell transplantation, as a therapeutic intervention for spinal cord injury (SCI), has been extensively studied by researchers in recent years. A number of different kinds of stem cells, neural progenitors, and glial cells have been tested in basic research, and most have been excluded from clinical studies because of a variety of reasons, including safety and efficacy. The signaling pathways, protein interactions, cellular behavior, and the differentiated fates of experimental cells have been studied in vitro in detail. Furthermore, the survival, proliferation, differentiation, and effects on promoting functional recovery of transplanted cells have also been examined in different animal SCI models. However, despite significant progress, a "bench to bedside" gap still exists. In this paper, we comprehensively cover publications in the field from the last years. The most commonly utilized cell lineages were covered in this paper and specific areas covered include survival of grafted cells, axonal regeneration and remyelination, sensory and motor functional recovery, and electrophysiological improvements. Finally we also review the literature on the in vivo tracking techniques for transplanted cells.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Department of Spine Surgery, The Affiliated Hospital of Luzhou Medical College, 646000 Luzhou, China
| | - Guilherme Lepski
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Division of Neurosurgery, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, Avnida Dr. Enéas de Carvalho Aguiar 255, 05403-000 São Paulo, SP, Brazil
| |
Collapse
|
49
|
Xie ST, Lu F, Zhang XJ, Shen Q, He Z, Gao WQ, Hu DH, Yang H. Retinoic acid and human olfactory ensheathing cells cooperate to promote neural induction from human bone marrow stromal stem cells. Neuromolecular Med 2013; 15:252-64. [PMID: 23288654 DOI: 10.1007/s12017-012-8215-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 12/13/2012] [Indexed: 12/25/2022]
Abstract
The generation of induced neuronal cells from human bone marrow stromal stem cells (hBMSCs) provides new avenues for basic research and potential transplantation therapies for nerve injury and neurological disorders. However, clinical application must seriously consider the risk of tumor formation by hBMSCs, neural differentiation efficiency and biofunctions resembling neurons. Here, we co-cultured hBMSCs exposed to retinoic acid (RA) with human olfactory ensheathing cells (hOECs) to stimulate its differentiation into neural cells, and found that hBMSCs following 1 and 2 weeks of stimulation promptly lost their immunophenotypical profiles, and gradually acquired neural cell characteristics, as shown by a remarkable up-regulation of expression of neural-specific markers (Tuj-1, GFAP and Galc) and down-regulation of typical hBMSCs markers (CD44 and CD90), as well as a rapid morphological change. Concomitantly, in addition to a drastic decrease in the number of BrdU incorporated cells, there was a more elevated synapse formation (a hallmark for functional neurons) in the differentiated hBMSCs. Compared with OECs alone, this specific combination of RA and hOECs was significantly potentiated neuronal differentiation of hBMSCs. The results suggest that RA can enhance and orchestrate hOECs to neural differentiation of hBMSCs. Therefore, these findings may provide an alternative strategy for the repair of traumatic nerve injury and neurological diseases with application of the optimal combination of RA and OECs for neuronal differentiation of hBMSCs.
Collapse
Affiliation(s)
- Song-Tao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lindsay SL, Johnstone SA, Mountford JC, Sheikh S, Allan DB, Clark L, Barnett SC. Human mesenchymal stem cells isolated from olfactory biopsies but not bone enhance CNS myelination in vitro. Glia 2012; 61:368-82. [PMID: 23281012 DOI: 10.1002/glia.22440] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 10/11/2012] [Indexed: 01/09/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition with limited capacity for repair. Cell transplantation is a potential strategy to promote SCI repair with cells from the olfactory system being promising candidates. Although transplants of human olfactory mucosa (OM) are already ongoing in clinical trials, the repair potential of this tissue remains unclear. Previously, we identified mesenchymal-like stem cells that reside in the lamina propria (LP-MSCs) of rat and human OM. Little is known about these cells or their interactions with glia such as olfactory ensheathing cells (OECs), which would be co-transplanted with MSCs from the OM, or endogenous CNS glia such as oligodendrocytes. We have characterized, purified, and assessed the repair potential of human LP-MSCs by investigating their effect on glial cell biology with specific emphasis on CNS myelination in vitro. Purified LP-MSCs expressed typical bone marrow MSC (BM-MSC) markers, formed spheres, were clonogenic and differentiated into bone and fat. LP-MSC conditioned medium (CM) promoted oligodendrocyte precursor cell (OPC) and OEC proliferation and induced a highly branched morphology. LP-MSC-CM treatment caused OEC process extension. Both LP and BM-MSCs promoted OPC proliferation and differentiation, but only myelinating cultures treated with CM from LP and not BM-MSCs had a significant increase in myelination. Comparison with fibroblasts and contaminating OM fibroblast like-cells showed the promyelination effect was LP-MSC specific. Thus LP-MSCs harvested from human OM biopsies may be an important candidate for cell transplantation by contributing to the repair of SCI.
Collapse
Affiliation(s)
- Susan L Lindsay
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, United Kingdom
| | | | | | | | | | | | | |
Collapse
|