1
|
Amir M, Wahiduzzaman, Dar MA, Haque MA, Islam A, Ahmad F, Hassan MI. Purification and characterization of Ras related protein, Rab5a from Tinospora cordifolia. Int J Biol Macromol 2016; 82:471-9. [DOI: 10.1016/j.ijbiomac.2015.10.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 11/27/2022]
|
2
|
Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther 2014; 142:416-35. [PMID: 24486828 DOI: 10.1016/j.pharmthera.2014.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, France
| |
Collapse
|
3
|
Lorentz A, Baumann A, Vitte J, Blank U. The SNARE Machinery in Mast Cell Secretion. Front Immunol 2012; 3:143. [PMID: 22679448 PMCID: PMC3367400 DOI: 10.3389/fimmu.2012.00143] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/17/2012] [Indexed: 11/13/2022] Open
Abstract
Mast cells are known as inflammatory cells which exert their functions in allergic and anaphylactic reactions by secretion of numerous inflammatory mediators. During an allergic response, the high-affinity IgE receptor, FcεRI, becomes cross-linked by receptor-bound IgE and antigen resulting in immediate release of pre-synthesized mediators – stored in granules – as well as in de novo synthesis of various mediators like cytokines and chemokines. Soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptors (SNARE) proteins were found to play a central role in regulating membrane fusion events during exocytosis. In addition, several accessory regulators like Munc13, Munc18, Rab GTPases, secretory carrier membrane proteins, complexins, or synaptotagmins were found to be involved in membrane fusion. In this review we summarize our current knowledge about the SNARE machinery and its mechanism of action in mast cell secretion.
Collapse
Affiliation(s)
- Axel Lorentz
- Department of Nutritional Medicine, University of Hohenheim Stuttgart, Germany
| | | | | | | |
Collapse
|
4
|
Cabeza JM, Acosta J, Alés E. Dynamics and regulation of endocytotic fission pores: role of calcium and dynamin. Traffic 2010; 11:1579-90. [PMID: 20840456 DOI: 10.1111/j.1600-0854.2010.01120.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although endocytosis involves the fission pore, a transient structure that produces the scission between vesicle and plasma membranes, the dimensions and dynamics of fission pores remain unclear. Here we report that the pore resistance changes proceed in three distinct phases: an initial phase where the resistance increases at 31.7 ± 2.9 GΩ/second, a slower linear phase with an overall slope of 11.7 ± 1.9 GΩ/second and a final increase in resistance more steeply (1189 ± 136 GΩ/second). The kinetics of these changes was calcium dependent. These sequential stages of the fission pore may be interpreted in terms of pore geometry as changes, first in pore diameter and then in pore length, according to which, before fission, the pore diameter consistently decreased to a value near 4 nm, whereas the pore length ranged between 20 and 300 nm. Dynamin, a mechanochemical GTPase, plays an important role in accelerating the fission event, preferentially in endocytotic vesicles of regular size, by increasing the rates of pore closure during the first and second phases of the fission pore, but hardly affected larger and longer-lived endocytotic events. These results suggest that fission pores are dynamic structures that form thin and long membrane necks regulated by intracellular calcium. Between calcium mediators, dynamin functions as a catalyst to increase the speed of single vesicle endocytosis.
Collapse
Affiliation(s)
- José María Cabeza
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009 Sevilla, Spain
| | | | | |
Collapse
|
5
|
Coleman WL, Bykhovskaia M. Cooperative regulation of neurotransmitter release by Rab3a and synapsin II. Mol Cell Neurosci 2010; 44:190-200. [PMID: 20338242 PMCID: PMC4522281 DOI: 10.1016/j.mcn.2010.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 03/09/2010] [Accepted: 03/12/2010] [Indexed: 11/16/2022] Open
Abstract
To understand how the presynaptic proteins synapsin and Rab3a may interact in the regulation of the synaptic vesicle cycle and the release process, we derived a double knockout (DKO) mouse lacking both synapsin II and Rab3a. We found that Rab3a deletion rescued epileptic-like seizures typical for synapsin II gene deleted animals (Syn II(-)). Furthermore, action potential evoked release was drastically reduced in DKO synapses, although spontaneous release remained normal. At low Ca2+ conditions, quantal content was equally reduced in Rab3a(-) and DKO synapses, but as Ca2+ concentration increased, the increase in quantal content was more prominent in Rab3a(-). Electron microscopy analysis revealed that DKO synapses have a combined phenotype, with docked vesicles being reduced similar to Rab3a(-), and intraterminal vesicles being depleted similar to Syn II(-). Consistently, both Syn II(-) and DKO terminals had increased synaptic depression and incomplete recovery. Taken together, our results suggest that synapsin II and Rab3a have separate roles in maintaining the total store of synaptic vesicles and cooperate in promoting the latest steps of neuronal secretion.
Collapse
Affiliation(s)
| | - Maria Bykhovskaia
- Neuroscience Department, Universidad Central del Caribe, Bayamon, PR
- Department of Biological Sciences, Lehigh University, Bethlehem, PA
| |
Collapse
|
6
|
Misler S. Unifying concepts in stimulus-secretion coupling in endocrine cells and some implications for therapeutics. ADVANCES IN PHYSIOLOGY EDUCATION 2009; 33:175-186. [PMID: 19745043 PMCID: PMC3747786 DOI: 10.1152/advan.90213.2008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 06/16/2009] [Indexed: 05/28/2023]
Abstract
Stimulus-secretion coupling (SSC) in endocrine cells remains underappreciated as a subject for the study/teaching of general physiology. In the present article, we review key new electrophysiological, electrochemical, and fluorescence optical techniques for the study of exocytosis in single cells that have made this a fertile area for recent research. Based on findings using these techniques, we developed a model of SSC for adrenal chromaffin cells that blends features of Ca(2+) entry-dependent SSC (characteristic of neurons) with G protein receptor-coupled, Ca(2+) release-dependent, and second messenger-dependent SSC (characteristic of epithelial exocrine cells and nucleated blood cells). This model requires two distinct pools of secretory graunules with differing Ca(2+) sensitivities. We extended this model to account for SSC in a wide variety of peripheral and hypothalamic/pituitary-based endocrine cells. These include osmosensitive magnocellular neurosecretory cells releasing antidiuretic hormone, stretch-sensitive atrial myocytes secreting atrial natriuretic peptide, K(+)-sensitive adrenal glomerulosa cells secreting aldosterone, Ca(2+)-sensitive parathyroid chief cells secreting parathyroid hormone, and glucose-sensitive beta- and alpha-cells of pancreatic islets secreting insulin and glucagon, respectively. We conclude this article with implications of this approach for pathophysiology and therapeutics, including defects in chief cell Ca(2+) sensitivity, resulting in the hyperparathyroidism of renal disease, and defects in biphasic insulin secretion, resulting in diabetes mellitus.
Collapse
Affiliation(s)
- Stanley Misler
- Department of Internal Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
7
|
Rab3a-mediated vesicle recruitment regulates short-term plasticity at the mouse diaphragm synapse. Mol Cell Neurosci 2009; 41:286-96. [DOI: 10.1016/j.mcn.2009.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 03/04/2009] [Accepted: 03/24/2009] [Indexed: 11/24/2022] Open
|
8
|
Abstract
Calcium signals mediate diverse cellular functions in immunological cells. Early studies with mast cells, then a preeminent model for studying Ca2+-dependent exocytosis, revealed several basic features of calcium signaling in non-electrically excitable cells. Subsequent studies in these and other cells further defined the basic processes such as inositol 1,4,5-trisphosphate-mediated release of Ca2+ from Ca2+ stores in the endoplasmic reticulum (ER); coupling of ER store depletion to influx of external Ca2+ through a calcium-release activated calcium (CRAC) channel now attributed to the interaction of the ER Ca2+ sensor, stromal interacting molecule-1 (STIM1), with a unique Ca2+-channel protein, Orai1/CRACM1, and subsequent uptake of excess Ca2+ into ER and mitochondria through ATP-dependent Ca2+ pumps. In addition, transient receptor potential channels and ion exchangers also contribute to the generation of calcium signals that may be global or have dynamic (e.g., waves and oscillations) and spatial resolution for specific functional readouts. This review discusses past and recent developments in this field of research, the pharmacologic agents that have assisted in these endeavors, and the mast cell as an exemplar for sorting out how calcium signals may regulate multiple outputs in a single cell.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Rios EJ, Piliponsky AM, Ra C, Kalesnikoff J, Galli SJ. Rabaptin-5 regulates receptor expression and functional activation in mast cells. Blood 2008; 112:4148-57. [PMID: 18698003 PMCID: PMC2582003 DOI: 10.1182/blood-2008-04-152660] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/21/2008] [Indexed: 12/29/2022] Open
Abstract
Rab5 is a small GTPase that regulates early endocytic events and is activated by RabGEF1/Rabex-5. Rabaptin-5, a Rab5 interacting protein, was identified as a protein critical for potentiating RabGEF1/Rabex-5's activation of Rab5. Using Rabaptin-5 shRNA knockdown, we show that Rabaptin-5 is dispensable for Rab5-dependent processes in intact mast cells, including high affinity IgE receptor (FcepsilonRI) internalization and endosome fusion. However, Rabaptin-5 deficiency markedly diminished expression of FcepsilonRI and beta1 integrin on the mast cell surface by diminishing receptor surface stability. This in turn reduced the ability of mast cells to bind IgE and significantly diminished both mast cell sensitivity to antigen (Ag)-induced mediator release and Ag-induced mast cell adhesion and migration. These findings show that, although dispensable for canonical Rab5 processes in mast cells, Rabaptin-5 importantly contributes to mast cell IgE-dependent immunologic function by enhancing mast cell receptor surface stability.
Collapse
Affiliation(s)
- Eon J Rios
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | | | | | | | | |
Collapse
|
10
|
Mitchell T, Lo A, Logan M, Lacy P, Eitzen G. Primary granule exocytosis in human neutrophils is regulated by Rac-dependent actin remodeling. Am J Physiol Cell Physiol 2008; 295:C1354-65. [PMID: 18799653 PMCID: PMC2878813 DOI: 10.1152/ajpcell.00239.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. In this report, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (< or = 10 microM) of the actin-depolymerizing drugs latrunculin B (Lat B) or cytochalasin B (CB) enhanced both formyl peptide receptor- and Ca(2+) ionophore-stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP), inhibited primary granule exocytosis measured as myeloperoxidase release but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly before primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin, which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodeling was highly polarized when cells were primed with CB; however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis were blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor NSC23766 also inhibited actin remodeling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not by Ca(2+) ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.
Collapse
Affiliation(s)
- Troy Mitchell
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7
| | - Andrea Lo
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton Alberta, T6G 2S2
| | - Mike Logan
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7
| | - Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton Alberta, T6G 2S2
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7
| |
Collapse
|
11
|
Coleman WL, Bill CA, Bykhovskaia M. Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse. Neuroscience 2007; 148:1-6. [PMID: 17640821 DOI: 10.1016/j.neuroscience.2007.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 06/04/2007] [Accepted: 06/10/2007] [Indexed: 11/25/2022]
Abstract
Rab3a is a small GTP binding protein associated with presynaptic vesicles that is thought to regulate vesicle targeting to active zones. Although this rab3a function implies that vesicle docking and action potential-evoked release might be inhibited in rab3a gene-deleted synapses, such inhibition has never been demonstrated. To investigate vesicle docking at the neuromuscular junction of rab3a gene-deleted (rab3a(-)) mice, we performed electron microscopy analysis of the diaphragm slow-fatigue (type I) synapses. We found a significant (26%) reduction in the number of vesicles docked to the presynaptic membrane in rab3a(-) terminals, although intraterminal vesicles were not affected. Aiming to detect possible changes in quantal release due to rab3a gene deletion, we minimized the variability between preparations employing focal recordings of synaptic responses from visualized type I endplates. We found a significant decrease in both evoked (27% reduction in quantal content) and spontaneous (28% reduction in mini frequency) quantal release. The decrease in the evoked release produced by rab3a deletion was most pronounced at reduced extracellular Ca(2+) concentrations (over 50% decrease at 0.5 and 0.2 mM Ca(2+)). By manipulating extracellular calcium, we demonstrated that calcium cooperativity is not altered in rab3a(-) synapses, however calcium sensitivity of quantal release is affected. Thus, we demonstrated that rab3a positively regulates docking and basal quantal release at the mouse neuromuscular junction. This result is consistent with the proposed role of rab3a in trafficking and targeting vesicles to the active zones.
Collapse
Affiliation(s)
- W L Coleman
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | |
Collapse
|
12
|
Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 2006; 103:11821-7. [PMID: 16882731 PMCID: PMC1567661 DOI: 10.1073/pnas.0601617103] [Citation(s) in RCA: 797] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rab proteins constitute the largest branch of the Ras GTPase superfamily. Rabs use the guanine nucleotide-dependent switch mechanism common to the superfamily to regulate each of the four major steps in membrane traffic: vesicle budding, vesicle delivery, vesicle tethering, and fusion of the vesicle membrane with that of the target compartment. These different tasks are carried out by a diverse collection of effector molecules that bind to specific Rabs in their GTP-bound state. Recent advances have not only greatly extended the number of known Rab effectors, but have also begun to define the mechanisms underlying their distinct functions. By binding to the guanine nucleotide exchange proteins that activate the Rabs certain effectors act to establish positive feedback loops that help to define and maintain tightly localized domains of activated Rab proteins, which then serve to recruit other effector molecules. Additionally, Rab cascades and Rab conversions appear to confer directionality to membrane traffic and couple each stage of traffic with the next along the pathway.
Collapse
Affiliation(s)
- Bianka L. Grosshans
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Darinel Ortiz
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Peter Novick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Turner JE, Sedej S, Rupnik M. Cytosolic Cl- ions in the regulation of secretory and endocytotic activity in melanotrophs from mouse pituitary tissue slices. J Physiol 2005; 566:443-53. [PMID: 15890700 PMCID: PMC1464753 DOI: 10.1113/jphysiol.2005.088997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cl- ions are known regulators of Ca2+ -dependent secretory activity in many endocrine cells. The suggested mechanisms of Cl- action involve the modulation of GTP-binding proteins, voltage-activated calcium channels or maturation of secretory vesicles. We examined the role of cytosolic Cl- ([Cl-]i) and Cl- currents in the regulation of secretory activity in mouse melanotrophs from fresh pituitary tissue slices by using the whole-cell patch-clamp. We confirmed that elevated [Cl-]i augments Ca2- -dependent exocytosis and showed that Cl- acts on secretory vesicle maturation. The latter process was abolished by a V-type H- -ATPase blocker (bafilomycin), intracellular 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS), a Cl- channel blocker, and tolbutamide, a sulphonylurea implicated in secretory vesicle maturation. In a small subset of cells, block of plasmalemmal Cl- current by DIDS reversibly enhanced endocytosis. The direct activation of G-proteins by GTP-gamma-S, a non-hydrolysable GTP analogue, did not restore the impaired secretion observed in low [Cl-]i conditions. The amplitude of voltage-activated calcium currents was unaffected by the [Cl-]i. Furthermore, two Cl- -permeable channels, calcium-activated Cl- channels and GABAA receptors, appeared as major regulators of intracellular Cl- homeostasis. In conclusion, the predominant underlying mechanism of Cl- action is mediated by intracellular Cl- fluxes during vesicle maturation, rather than activation of G-proteins or modulation of voltage-activated Ca2+channels.
Collapse
Affiliation(s)
- Jan-Eric Turner
- European Neuroscience Institute-Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | | | | |
Collapse
|
14
|
Liu D, Xu L, Yang F, Li D, Gong F, Xu T. Rapid biogenesis and sensitization of secretory lysosomes in NK cells mediated by target-cell recognition. Proc Natl Acad Sci U S A 2004; 102:123-7. [PMID: 15618404 PMCID: PMC544047 DOI: 10.1073/pnas.0405737102] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells play important roles in defense against tumor, viral infection, and cell-mediated xenograft rejection through secretion of secretory lysosomes. In this study, we used high time-resolution membrane capacitance measurement and fluorescence-imaging techniques to study the biogenesis and exocytosis of secretory lysosomes in a human NK cell line. We demonstrated a high-affinity Ca(2+)-dependent exocytosis of secretory lysosomes, which is sensitized further after target-cell stimulation. Our data also suggest an unusual rapid and dramatic de novo formation of secretory lysosomes after target-cell recognition. The rapid biogenesis of secretory lysosomes was blocked by specific protein kinase C inhibitor but not by brefeldin A. We propose that target-cell recognition triggers rapid biogenesis and sensitization of secretory lysosomes in NK cells through activation of PKC.
Collapse
Affiliation(s)
- Dongfang Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Neurotransmitter release is mediated by exocytosis of synaptic vesicles at the presynaptic active zone of nerve terminals. To support rapid and repeated rounds of release, synaptic vesicles undergo a trafficking cycle. The focal point of the vesicle cycle is Ca2+-triggered exocytosis that is followed by different routes of endocytosis and recycling. Recycling then leads to the docking and priming of the vesicles for another round of exo- and endocytosis. Recent studies have led to a better definition than previously available of how Ca2+ triggers exocytosis and how vesicles recycle. In particular, insight into how Munc18-1 collaborates with SNARE proteins in fusion, how the vesicular Ca2+ sensor synaptotagmin 1 triggers fast release, and how the vesicular Rab3 protein regulates release by binding to the active zone proteins RIM1 alpha and RIM2 alpha has advanced our understanding of neurotransmitter release. The present review attempts to relate these molecular data with physiological results in an emerging view of nerve terminals as macromolecular machines.
Collapse
Affiliation(s)
- Thomas C Sudhof
- Center for Basic Neuroscience, Department of Molecular Genetics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA.Thomas.
| |
Collapse
|
16
|
Abstract
Many secretory cells utilize a GTP-dependent pathway, in addition to the well characterized Ca2+-dependent pathway, to trigger exocytotic secretion. However, little is currently known about the mechanism by which this may occur. Here we show the key signaling pathway that mediates GTP-dependent exocytosis. Incubation of permeabilized PC12 cells with soluble RalA GTPase, but not RhoA or Rab3A GTPases, strongly inhibited GTP-dependent exocytosis. A Ral-binding fragment from Sec5, a component of the exocyst complex, showed a similar inhibition. Point mutations in both RalA (RalA(E38R)) and the Sec5 (Sec5(T11A)) fragment, which abolish RalA-Sec5 interaction also abolished the inhibition of GTP-dependent exocytosis. Moreover, transfection with wild-type RalA, but not RalA(E38R), enhanced GTP-dependent exocytosis. In contrast the RalA and the Sec5 fragment showed no inhibition of Ca2+-dependent exocytosis, but cleavage of a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein by Botulinum neurotoxin blocked both GTP- and Ca2+-dependent exocytosis. Our results indicate that the interaction between RalA and the exocyst complex (containing Sec5) is essential for GTP-dependent exocytosis. Furthermore, GTP- and Ca2+-dependent exocytosis use different sensors and effectors for triggering exocytosis whereas their final fusion steps are both SNARE-dependent.
Collapse
Affiliation(s)
- Li Wang
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network, Department of Physiology, University of Toronto, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | | | | |
Collapse
|
17
|
Howl J, Jones S, Farquhar M. Intracellular Delivery of Bioactive Peptides to RBL-2H3 Cells Induces β-Hexosaminidase Secretion and Phospholipase D Activation. Chembiochem 2003; 4:1312-6. [PMID: 14661273 DOI: 10.1002/cbic.200300694] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This investigation compared the secretory efficacies of a series of peptides delivered to the cytoplasm of RBL-2H3 mast cells. Mimetic peptides, designed to target intracellular proteins that regulate cell signalling and membrane fusion, were synthesised as transportan 10 (TP10) chimeras for efficient plasma membrane translocation. Exocytosis of beta-hexosaminidase, a secretory lysosomal marker, indicated that peptides presenting sequences derived from protein kinase C (PKC; C1 H-CRRLSVEIWDWDL-NH(2)) and the CB(1) cannabinoid receptor (C3 H-RSKDLRHAFRSMFPSCE-NH(2)) induced beta-hexosaminidase secretion. Other peptide cargoes, including a Rab3A-derived sequence and a homologue of C3, were inactive in similar assays. Translocated C1 also activated phospholipase D (PLD), an enzyme intimately involved in the regulated secretory response of RBL-2H3 cells, but C1-induced secretion was not dependent upon phosphatidate synthesis. Neither down-regulation of Ca(2+)-sensitive isoforms of PKC nor the application of a selective PKC inhibitor attenuated the secretory efficacy of C1. These observations indicate that the molecular target of C1 is a protein involved in the regulated secretory pathway that is upstream of PLD but is not a PKC isoform. This study also confirmed that TP10 is a relatively inert cell-penetrating vector and is, therefore, widely suitable for studies in cells that are sensitive to peptidyl secretagogues.
Collapse
Affiliation(s)
- John Howl
- Molecular Pharmacology Group, School of Applied Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1SB, UK.
| | | | | |
Collapse
|
18
|
Logan MR, Odemuyiwa SO, Moqbel R. Understanding exocytosis in immune and inflammatory cells: The molecular basis of mediator secretion. J Allergy Clin Immunol 2003. [DOI: 10.1016/s0091-6749(03)80114-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Guo Z, Liu L, Cafiso D, Castle D. Perturbation of a very late step of regulated exocytosis by a secretory carrier membrane protein (SCAMP2)-derived peptide. J Biol Chem 2002; 277:35357-63. [PMID: 12124380 DOI: 10.1074/jbc.m202259200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretory carrier membrane proteins (SCAMPs) are conserved four transmembrane-spanning proteins associated with recycling vesicular carriers. In mast cells, as in other cell types, SCAMPs 1 and 2 are present in secretory granule membranes and other intracellular membranes. We now demonstrate a population of these SCAMPs in plasma membranes. Although small, this population partially colocalizes with SNARE proteins SNAP-23 and syntaxin 4. A fraction of SCAMPs 1 and 2 also coimmunoprecipitates with SNAP-23. An oligopeptide, E peptide, within the cytoplasmic segment linking the second and third transmembrane spans, particularly of SCAMP2, potently inhibits exocytosis in streptolysin O-permeabilized mast cells. The E peptide is unique to SCAMPs and highly conserved among SCAMP isoforms, and minor changes in its sequence abrogate inhibition. It blocks fusion beyond the putative docking step where granules contact the cell surface and each other during compound exocytosis. Blockade is also beyond Ca(2+)/ATP-dependent relocation of SNAP-23, which regulates compound exocytosis, and beyond ATP-dependent priming of fusion. Kinetic ordering of exocytotic inhibitors has shown that E peptide acts later than other perturbants at a stage closely associated with membrane fusion. These findings identify a new reagent for analyzing the final stage of exocytosis and point to the likely action of SCAMP2 in this process.
Collapse
Affiliation(s)
- Zhenheng Guo
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
20
|
Kajio H, Olszewski S, Rosner PJ, Donelan MJ, Geoghegan KF, Rhodes CJ. A low-affinity Ca2+-dependent association of calmodulin with the Rab3A effector domain inversely correlates with insulin exocytosis. Diabetes 2001; 50:2029-39. [PMID: 11522668 DOI: 10.2337/diabetes.50.9.2029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The stimulus-response coupling pathway for glucose-regulated insulin secretion has implicated a rise in cytosolic [Ca2+]i as a key factor to induce insulin exocytosis. However, it is unclear how elevated [Ca2+]i communicates with the pancreatic beta-cell's exocytotic apparatus. As Rab3A is a model protein involved in regulated exocytosis, we have focused on its role in regulating insulin exocytosis. By using a photoactivatable cross-linking synthetic peptide that mimics the effector domain of Rab3A and microsequence analysis, we found calmodulin to be a major Rab3A target effector protein in pancreatic beta-cells. Coimmunoprecipitation analysis from pancreatic islets confirmed a Rab3A-calmodulin interaction in vivo, and that it inversely correlated with insulin exocytosis. Calmodulin affected neither GTPase nor guanine nucleotide exchange activity of Rab3A. The calmodulin-Rab3A interaction was pH- and Ca2+-dependent, and it was preferential for GTP-bound Rab3A. However, Rab3A affinity for calmodulin was relatively low (Kd = 18-22 micromol/l at 10(-5) mol/l [Ca2+]) and competed by other calmodulin-binding proteins that had higher affinity (e.g., Ca2+/calmodulin-dependent protein kinase-2 [CaMK-2] [Kd = 300-400 nmol/l at 10(-5) mol/l [Ca2+]]). Moreover, the Ca2+ dependence of the calmodulin-Rab3A interaction (K0.5 = 15-18 micromol/l [Ca2+], maximal at 100 micromol/l [Ca2+]) was significantly lower compared with that of the calmodulin-CaMK-2 association (K0.5 = 40 micromol/l [Ca2+], maximal at 1 mmol/l [Ca2+]). The data suggested that a transient Rab3A-calmodulin interaction might represent a means of directing calmodulin to the cytoplasmic face of a beta-granule, where it can be subsequently transferred for activation of other beta-granule-associated calmodulin-binding proteins as local [Ca2+]i rises to promote insulin exocytosis.
Collapse
Affiliation(s)
- H Kajio
- Pacific Northwest Research Institute and Department of Pharmacology, University of Washington, Seattle, Washington 98122, USA
| | | | | | | | | | | |
Collapse
|
21
|
Luo HR, Saiardi A, Nagata E, Ye K, Yu H, Jung TS, Luo X, Jain S, Sawa A, Snyder SH. GRAB: a physiologic guanine nucleotide exchange factor for Rab3A, which interacts with inositol hexakisphosphate kinase. Neuron 2001; 31:439-51. [PMID: 11516400 DOI: 10.1016/s0896-6273(01)00384-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diphosphoinositol-pentakisphosphate (InsP7) and bis-diphosphoinositol tetrakisphosphate (InsP8) possess pyrophosphate bonds. InsP7 is formed from inositol hexakisphosphate (InsP6) by recently identified InsP6 kinases designated InsP6K1 and InsP6K2. We now report the identification, cloning, and characterization of a novel protein, GRAB (guanine nucleotide exchange factor for Rab3A), which interacts with both InsP6K1 and Rab3A, a Ras-like GTPase that regulates synaptic vesicle exocytosis. GRAB is a physiologic GEF (guanine nucleotide exchange factor) for Rab3A. Consistent with a role of Rab3A in synaptic vesicle exocytosis, GRAB regulates depolarization-induced release of dopamine from PC12 cells and nicotinic agonist-induced hGH release from bovine adrenal chromaffin cells. The association of InsP6K1 with GRAB fits with a role for InsP7 in vesicle exocytosis.
Collapse
Affiliation(s)
- H R Luo
- Department of Neuroscience, School of Medicine, Johns Hopkins University, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Carroll K, Ray K, Helm B, Carey E. Differential expression of Rab3 isoforms in high- and low-secreting mast cell lines. Eur J Cell Biol 2001; 80:295-302. [PMID: 11370744 DOI: 10.1078/0171-9335-00161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of several isoforms of the small-molecular-weight Rab3 GTP-binding proteins is a characteristic feature of all cell types undergoing regulated exocytosis, in which Rab3 proteins are considered to regulate the assembly/disassembly of a fusion complex between granule and plasma membrane in a positive and negative manner through interaction with effector proteins. The pattern of Rab3 protein expression may, therefore, provide a subtle means of regulating exocytosis. To investigate the relationship between Rab3 expression and secretory activity, we assessed the differential expression of individual Rab3 proteins in high- and low-secreting clones of the rat basophilic (RBL) cell line. mRNAs for Rab3 isoforms (a-d) were analyzed by constructing cDNA libraries of high- and low-secreting RBL clones. The relative abundance of mRNAs for Rab3 isoforms was initially determined from the clonal frequency of corresponding cDNA clones. RT-PCR using isoform-specific primers was successfully applied to the quantitation of Rab3a mRNA. The presence of individual Rab3 proteins was revealed by SDS-PAGE and immunoblotting, and also by in situ immunofluorescence confocal microscopy. We present evidence that Rab3a and Rab3c are expressed at high levels in the low-secreting variant, while Rab3d is predominant in the high secretor. Levels of the Rab3 effector proteins, Rabphilin and Noc2, are similar in both RBL cell lines. Subcellular fractionation of unstimulated high and low secretor RBL clones revealed that in both cell types Rab3a has a cytoplasmic location while Rab3d is present in a membrane/organelle fraction containing secretory vesicles. Differences in the pattern of expression of Rab3 isoforms in the two RBL cell lines and their localisation may influence the secretory potential. Furthermore, the presence of Rab3 and effector proteins indicates that the mechanism for regulated exocytosis in cells of mast cells/basophil lineage appears similar to that in pre-synaptic vesicles and pancreatic beta-cells.
Collapse
Affiliation(s)
- K Carroll
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, UK.
| | | | | | | |
Collapse
|
23
|
Abstract
Guanosine triphosphate (GTP) has been implicated in the regulation of Ca(2+)-mediated secretion from neutrophils. We further examined the role of GTP in neutrophil secretion using streptolysin O permeabilized cells. We found that, in the presence of GTP, 1.0 microM free Ca(2+) causes maximum secretion-equivalent to that achieved with 100 microM free Ca(2+)-whereas GTPgammaS inhibits Ca(2+)-stimulated secretion. Interestingly, GTP by itself stimulates secretion. These results indicate the existence of a GTP-regulated mechanism of secretion in neutrophils that requires GTP hydrolysis to stimulate secretion in the presence and absence of Ca(2+). The stimulatory effect of GTP is only observed when GTP is present during permeabilization. Addition of GTP after permeabilization, when the cytosolic contents have leaked out from cells, gives no stimulatory response, implying that the GTP-dependent secretory apparatus requires at least one cytosolic protein. GTP-dependent secretion can be reconstituted with crude HL-60 and bovine liver cytosol. The reconstituting activity binds to GTP-agarose, suggesting that the cytosolic factor is a GTP-binding protein or forms a complex with a GTP-binding protein. However, it is not a member of the rho or rac families of GTPases. By gel filtration chromatography, the secretion-reconstituting activity eluted at 870 and 200 kDa, but in the presence of GTP, eluted at 120 kDa, indicating that it is part of a high-molecular-weight complex that dissociates in the presence of GTP. Retention of adenosine diphosphate-ribosylation factor (ARF) in permeabilized cells and insensitivity of the cytosolic reconstituting activity to brefeldin A led to our speculation that ARF6 may be the GTPase involved in GTP-dependent secretion, and that activity from a BFA-insensitive ARF6 guanine nucleotide exchange factor reconstitutes secretion.
Collapse
Affiliation(s)
- J L Rosales
- Department of Medicine, Division of Infectious Diseases, San Francisco General Hospital, San Francisco, California 94143, USA.
| | | |
Collapse
|
24
|
Kits KS, Mansvelder HD. Regulation of exocytosis in neuroendocrine cells: spatial organization of channels and vesicles, stimulus-secretion coupling, calcium buffers and modulation. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:78-94. [PMID: 10967354 DOI: 10.1016/s0165-0173(00)00023-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuroendocrine cells display a similar calcium dependence of release as synapses but a strongly different organization of channels and vesicles. Biophysical and biochemical properties of large dense core vesicle release in neuroendocrine cells suggest that vesicles and channels are dissociated by a distance of 100-300 nm. This distinctive organization relates to the sensitivity of the release process to mobile calcium buffers, the resulting relationship between calcium influx and release and the modulatory mechanisms regulating the efficiency of excitation-release coupling. At distances of 100-300 nm, calcium buffers determine the calcium concentration close to the vesicle. Notably, the concentration and diffusion rate of mobile buffers affect the efficacy of release, but local saturation of buffers, possibly enhanced by diffusion barriers, may limit their effects. Buffer conditions may result in a linear relationship between calcium influx and exocytosis, in spite of the third or fourth power relation between intracellular calcium concentration and release. Modulation of excitation-secretion coupling not only concerns the calcium channels, but also the secretory process. Transmitter regulation mediated by cAMP and PKA, as well as use-dependent regulation involving calcium, primarily stimulates filling of the releasable pool. In addition, direct effects of cAMP on the probability of release have been reported. One mechanism to achieve increased release probability is to decrease the distance between channels and vesicles. GTP may stimulate release independently from calcium. Thus, while in most cases primary inputs triggering these pathways await identification, it is evident that large dense core vesicle release is a highly controlled and flexible process.
Collapse
Affiliation(s)
- K S Kits
- Department of Neurophysiology, Research Institute for Neurosciences, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | | |
Collapse
|
25
|
Affiliation(s)
- Sean D. Conner
- Department of Molecular and Cellular Biology and BiochemistryBrown UniversityProvidenceRhode Island02912USA
| | - Gary M. Wessel
- Department of Molecular and Cellular Biology and BiochemistryBrown UniversityProvidenceRhode Island02912USA
| |
Collapse
|
26
|
Tse FW, Tse A. Stimulation of Ca(2+)-independent exocytosis in rat pituitary gonadotrophs by G-protein. J Physiol 2000; 526 Pt 1:99-108. [PMID: 10878103 PMCID: PMC2269986 DOI: 10.1111/j.1469-7793.2000.00099.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We employed the whole-cell recording technique in conjunction with fluorometry to measure cytosolic Ca(2+) concentration ([Ca(2+)](i)) and exocytosis (capacitance measurement) in single, identified rat gonadotrophs. Direct activation of G-protein (via intracellular dialysis of non-hydrolysable analogues of GTP, but not of GDP) triggered a slow rise in capacitance even in the presence of a fast intracellular Ca(2+) chelator. The broad-spectrum kinase inhibitors H7 and staurosporine did not prevent this Ca(2+)-independent exocytosis, ruling out the involvement of the cAMP and PKC pathways. AlF(4)(-), a potent stimulator of heterotrimeric G-proteins, failed to stimulate any exocytosis when the intracellular Ca(2+) store was depleted, implicating the involvement of AlF(4)(-)-insensitive G-protein(s). Maximal stimulation of Ca(2+)-independent exocytosis by GTP analogues did not reduce the number of readily releasable granules that were available subsequently for Ca(2+)-dependent release. The last finding raises the possibility that the G-protein-stimulated Ca(2+)-independent exocytosis may regulate a pool of granules that is distinct from the Ca(2+)-dependent pool.
Collapse
Affiliation(s)
- F W Tse
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | | |
Collapse
|
27
|
Watson EL. GTP-binding proteins and regulated exocytosis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:284-306. [PMID: 10759410 DOI: 10.1177/10454411990100030301] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Regulated exocytosis, which occurs in response to stimuli, is a two-step process involving the docking of secretory granules (SGs) at specific sites on the plasma membrane (PM), with subsequent fusion and release of granule contents. This process plays a crucial role in a number of tissues, including exocrine glands, chromaffin cells, platelets, and mast cells. Over the years, our understanding of the proteins involved in vesicular trafficking has increased dramatically. Evidence from genetic, biochemical, immunological, and functional assays supports a role for ras-like monomeric GTP-binding proteins (smgs) as well as heterotrimeric GTP-binding protein (G-protein) subunits in various steps of the vesicular trafficking pathway, including the transport of secretory vesicles to the PM. Data suggest that the function of GTP-binding proteins is likely related to their localization to specific cellular compartments. The presence of both G-proteins and smgs on secretory vesicles/granules implicates a role for these proteins in the final stages of exocytosis. Molecular mechanisms of exocytosis have been postulated, with the identification of a number of proteins that modify, regulate, and interact with GTP-binding proteins, and with the advent of approaches that assess the functional importance of GTP-binding proteins in downstream, exocytotic events. Further, insight into vesicle targeting and fusion has come from the characterization of a SNAP receptor (SNARE) complex composed of vesicle, PM, and soluble membrane trafficking components, and identification of a functional linkage between GTP-binding and SNARES.
Collapse
Affiliation(s)
- E L Watson
- Department of Oral Biology, University of Washington, Health Sciences Center, Seattle 98195-7132, USA
| |
Collapse
|
28
|
Hong-Geller E, Cerione RA. Cdc42 and Rac stimulate exocytosis of secretory granules by activating the IP(3)/calcium pathway in RBL-2H3 mast cells. J Cell Biol 2000; 148:481-94. [PMID: 10662774 PMCID: PMC2174803 DOI: 10.1083/jcb.148.3.481] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1999] [Accepted: 12/21/1999] [Indexed: 12/02/2022] Open
Abstract
We have expressed dominant-active and dominant-negative forms of the Rho GTPases, Cdc42 and Rac, using vaccinia virus to evaluate the effects of these mutants on the signaling pathway leading to the degranulation of secretory granules in RBL-2H3 cells. Dominant-active Cdc42 and Rac enhance antigen-stimulated secretion by about twofold, whereas the dominant-negative mutants significantly inhibit secretion. Interestingly, treatment with the calcium ionophore, A23187, and the PKC activator, PMA, rescues the inhibited levels of secretion in cells expressing the dominant-negative mutants, implying that Cdc42 and Rac act upstream of the calcium influx pathway. Furthermore, cells expressing the dominant-active mutants exhibit elevated levels of antigen-stimulated IP(3) production, an amplified antigen-stimulated calcium response consisting of both calcium release from internal stores and influx from the extracellular medium, and an increase in aggregate formation of the IP(3) receptor. In contrast, cells expressing the dominant-negative mutants display the opposite phenotypes. Finally, we are able to detect an in vitro interaction between Cdc42 and PLCgamma1, the enzyme immediately upstream of IP(3) formation. Taken together, these findings implicate Cdc42 and Rac in regulating the exocytosis of secretory granules by stimulation of IP(3) formation and calcium mobilization upon antigen stimulation.
Collapse
Affiliation(s)
| | - Richard A. Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
29
|
Abstract
LIM kinase 1 (LIMK1) is a cytoplasmic protein kinase that is highly expressed in neurons. In transfected cells, LIMK1 binds to the cytoplasmic tail of neuregulins and regulates the breakdown of actin filaments. To identify potential functions of LIMK1 in vivo, we have determined the subcellular distribution of LIMK1 protein within neurons of the rat by using immunomicroscopy. At neuromuscular synapses in the adult hindlimb, LIMK1 was concentrated in the presynaptic terminal. However, little LIMK1 immunoreactivity was detected at neuromuscular synapses before the 2nd week after birth, and most motoneuron terminals were not strongly LIMK1 immunoreactive until the 3rd week after birth. Thus, LIMK1 accumulation at neuromuscular synapses coincided with their maturation. In contrast, SV2, like many other presynaptic terminal proteins, can be readily detected at neuromuscular synapses in the embryo. Similar to its late accumulation at developing synapses, LIMK1 accumulation at regenerating neuromuscular synapses occurred long after these synapses first formed. In the adult ventral spinal cord, LIMK1 was concentrated in a subset of presynaptic terminals. LIMK1 gradually accumulated at spinal cord synapses postnatally, reaching adult levels only after P14. This study is the first to implicate LIMK1 in the function of presynaptic terminals. The concentration of LIMK1 in adult, but not nascent, presynaptic terminals suggests a role for this kinase in regulating the structural or functional characteristics of mature synapses.
Collapse
Affiliation(s)
- J Y Wang
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Exocytosis of the sperm acrosome is an obligate precursor to successful egg penetration and subsequent fertilization. In most mammals, acrosomal exocytosis occurs at a precise time, after sperm binding to the zona pellucida of the egg, and is induced by a specific component of the zona pellucida. It may be considered an example of regulated secretion with the acrosome of the sperm analogous to a single secretory vesicle. Monomeric G proteins of the rab3 subfamily, specifically rab3a, have been shown to be important regulators of exocytosis in secretory cells, and we hypothesized that these proteins may regulate acrosomal exocytosis. Using alpha[32P] GTP binding to Immobilon blotted mouse sperm proteins, the presence of three or more monomeric GTP binding proteins was identified with Mr = 22, 24, and 26 x 10(3). Alpha[32P] GTP binding could be competed by GTP and GDP, but not GMP, ATP, or ADP. Anti-peptide antibodies specific for rab3a were used to identify the 24 kDa G protein as rab3a. Using immunocytochemistry, rab3a was localized to the head of acrosome-intact sperm and was lost during acrosomal exocytosis. It was identified in membrane and cytosolic fractions of sperm with the predominant form being membrane-bound, and its membrane association did not change upon capacitation. Immunogold labeling and electron microscopy demonstrated a subcellular localization in clusters to the periacrosomal membranes and cytoplasm. These data identify the presence of rab3a in acrosomal membranes of mouse sperm and suggest that rab3a plays a role in the regulation of zona pellucida -induced acrosomal exocytosis.
Collapse
Affiliation(s)
- C R Ward
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6010, USA.
| | | | | |
Collapse
|
31
|
|
32
|
Iida H, Yoshinaga Y, Tanaka S, Toshimori K, Mori T. Identification of Rab3A GTPase as an acrosome-associated small GTP-binding protein in rat sperm. Dev Biol 1999; 211:144-55. [PMID: 10373312 DOI: 10.1006/dbio.1999.9302] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The acrosome reaction is a membrane fusion event that is prerequisite for sperm penetration through the zona pellucida. To elucidate the molecular mechanisms involved in membrane fusion, the expression and localization of Rab proteins, a subfamily of small GTPases that have been shown to play key roles in regulation of intracellular membrane traffic and exocytosis, were examined in rat testis and sperm. Reverse transcription polymerase chain reaction, immunoblot analysis, and immunofluorescence microscopy revealed that Rab3A protein, which is thought to be involved in regulation of exocytosis in neurons and endocrine cells, is associated with the sperm acrosome. The protein was undetectable in acrosome-free heads prepared by sucrose density gradient centrifugation. Immunogold electron microscopy performed on ultrathin cryosections provided further evidence that Rab3A protein is associated with the acrosomal membrane. Acrosome reaction assays revealed that synthetic peptide of the Rab3 effector domain inhibited acrosomal exocytosis triggered by calcium ionophore A23187 in a concentration-dependent fashion, suggesting that Rab3A acts as an inhibitory regulator in the acrosome reaction. In view of the putative role of Rab3A protein in membrane fusion systems, these results suggest that Rab3A could be involved in regulating the mammalian acrosome reaction by controlling the membrane fusion system in sperm.
Collapse
Affiliation(s)
- H Iida
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, 812-8581, Japan.
| | | | | | | | | |
Collapse
|
33
|
Altman A, Deckert M. The function of small GTPases in signaling by immune recognition and other leukocyte receptors. Adv Immunol 1999; 72:1-101. [PMID: 10361572 DOI: 10.1016/s0065-2776(08)60017-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- A Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | |
Collapse
|
34
|
Dumas JJ, Zhu Z, Connolly JL, Lambright DG. Structural basis of activation and GTP hydrolysis in Rab proteins. Structure 1999; 7:413-23. [PMID: 10196122 DOI: 10.1016/s0969-2126(99)80054-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rab proteins comprise a large family of GTPases that regulate vesicle trafficking. Despite conservation of critical residues involved in nucleotide binding and hydrolysis, Rab proteins exhibit low sequence identity with other GTPases, and the structural basis for Rab function remains poorly characterized. RESULTS The 2. 0 A crystal structure of GppNHp-bound Rab3A reveals the structural determinants that stabilize the active conformation and regulate GTPase activity. The active conformation is stabilized by extensive hydrophobic contacts between the switch I and switch II regions. Serine residues in the phosphate-binding loop (P loop) and switch I region mediate unexpected interactions with the gamma phosphate of GTP that have not been observed in previous GTPase structures. Residues implicated in the interaction with effectors and regulatory factors map to a common face of the protein. The electrostatic potential at the surface of Rab3A indicates a non-uniform distribution of charged and nonpolar residues. CONCLUSIONS The major structural determinants of the active conformation involve residues that are conserved throughout the Rab family, indicating a common mode of activation. Novel interactions with the gamma phosphate impose stereochemical constraints on the mechanism of GTP hydrolysis and provide a structural explanation for the large variation of GTPase activity within the Rab family. An asymmetric distribution of charged and nonpolar residues suggests a plausible orientation with respect to vesicle membranes, positioning predominantly hydrophobic surfaces for interaction with membrane-associated effectors and regulatory factors. Thus, the structure of Rab3A establishes a framework for understanding the molecular mechanisms underlying the function of Rab GTPases.
Collapse
Affiliation(s)
- J J Dumas
- Program in Molecular Medicine, University of Massachusetts Medical Center, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
35
|
Al-Matubsi HY, Breed W, Jenkin G, Fairclough RJ. Co-localization of Rab3B and oxytocin to electron dense granules of the sheep corpus luteum during the estrous cycle. Anat Rec (Hoboken) 1999; 254:214-21. [PMID: 9972806 DOI: 10.1002/(sici)1097-0185(19990201)254:2<214::aid-ar7>3.0.co;2-f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxytocin and its carrier protein, neurophysin, are both associated with luteal secretory granules which migrate from the paranuclear region to the cell membrane where exocytosis takes place. Rab3 proteins are thought to be associated with membrane vesicles or granules undergoing exocytotic fusion with the plasma membrane. The objective of this study was to determine whether Rab3B is co-localized with oxytocin within the same secretory granules of large luteal cells obtained from corpora lutea of 16 Merino cross ewes at day 3, 7, 12 or 15 of the estrous cycle using immunocytochemistry. The mean granule density (granules/microm3) was not significantly different (P > 0.05) between the days examined. Electron microscopic immunocytochemistry showed that oxytocin and Rab3B were co-localized to the secretory granules on all days evaluated. Rab3B immunostaining was primarily located within secretory granules scattered throughout the cytoplasm. The mean intensity of labelling (number of gold particles) for oxytocin per microm2 cytoplasmic luteal tissue was significantly decreased on day 15 compared to those observed on days 3, 7 and 12 of estrous cycle. No significant changes were observed in the mean intensity of the Rab3B label at the different times of the cycle. The present study provides evidence that a member of the subfamily of Rab proteins, Rab3B, is present and co-localized with oxytocin in the same secretory granules of the ovine corpus luteum. These results implicate Rab3B protein directly or indirectly in the hormone secretory pathway of ovarian tissue.
Collapse
Affiliation(s)
- H Y Al-Matubsi
- Centre for Bioprocessing and Food Technology, Victoria University of Technology, Melbourne, Australia.
| | | | | | | |
Collapse
|
36
|
Tuvim MJ, Adachi R, Chocano JF, Moore RH, Lampert RM, Zera E, Romero E, Knoll BJ, Dickey BF. Rab3D, a small GTPase, is localized on mast cell secretory granules and translocates to the plasma membrane upon exocytosis. Am J Respir Cell Mol Biol 1999; 20:79-89. [PMID: 9870920 DOI: 10.1165/ajrcmb.20.1.3279] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although mast cell secretion has been intensively studied because of its pivotal role in allergic reactions and its advantages as a physiologic model, the molecular composition of the secretory machine is virtually unknown. In view of the guanine-nucleotide dependency of mast cell exocytosis and the participation of Rab3 proteins in synaptic vesicle release, we hypothesized that a Rab3 isoform regulates mast cell secretion. Fragments of Rab3A, 3B, and 3D were cloned from RBL-2H3 mast cells by reverse transcription- polymerase chain reaction (RT-PCR). Northern blot analysis revealed Rab3D transcripts to be relatively abundant, Rab3B substantially less so, and Rab3A and 3C undetectable. By ribonuclease (RNase) protection assay, Rab3D transcripts were at least 10-fold more abundant than those of other isoforms, and by immunoblot analysis, Rab3D protein was at least 60-fold more abundant than that of Rab3B. Rab3D was more abundant in RBL cells than in brain, but the total mass of Rab3 proteins in RBL cells was 10-fold less than in brain. Rab3D only partly colocalized with secretory granules in RBL cells, but fully colocalized in mature peritoneal mast cells. There was a descending concentration gradient of Rab3D from peripheral to central granules, and no cytoplasmic pool was detectable in resting mast cells. Following exocytotic degranulation, Rab3D translocated to the plasma membrane and remained there for at least 15 min. These studies suggest that Rab3D is a component of the regulated exocytotic machine of mast cells, and identify differences between mast cells and neurons in Rab3 expression and trafficking.
Collapse
Affiliation(s)
- M J Tuvim
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lledo P, Zorec R, Rupnik M, Mason WT. Mediation of Secretory Cell Function by G Protein—Coupled Receptors. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Abstract
Egg activation at fertilization in the sea urchin results in the exocytosis of approximately 15,000 cortical granules that are docked at the plasma membrane. Previously, we reported that several integral membrane proteins modeled in the SNARE hypothesis, synaptotagmin, VAMP, and syntaxin, in addition to a small GTPase of the ras superfamily, rab3, were present on cortical granules (Conner, S., Leaf, D., and Wessel, G., Mol. Reprod. Dev. 48, 1-13, 1997). Here we report that rab3 is associated with cortical granules throughout oogenesis, during cortical granule translocation, and while docked at the egg plasma membrane. Following cortical granule exocytosis, however, rab3 reassociates with a different population of vesicles, at least some of which are of endocytic origin. Because of its selective association with cortical granules in eggs and oocytes, we hypothesize that rab3 functions in cortical granule exocytosis. To test this hypothesis, we used a strategy of interfering with rab3 function by peptide competition with its effector domain, a conserved region within specific rab types. We first identified the effector domain sequence in Lytechinus variegatus eggs and find the sequence 94% identical to the effector domain of rab3 in Stronglocentrotus purpuratus. Then, with synthetic peptides to different regions of the rab3 protein, we find that cortical granule exocytosis is inhibited in eggs injected with effector domain peptides, but not with peptides from the hypervariable region or with a scrambled effector peptide. Additionally, effector-peptide-injected eggs injected with IP3 are blocked in their ability to exocytose cortical granules, suggesting that the inhibition is directly on the membrane fusion event and not the result of interference with the signal transduction mechanism leading to calcium release. We interpret these results to mean that rab3 functions in the regulation of cortical granule exocytosis following vesicle docking.
Collapse
Affiliation(s)
- S Conner
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, Rhode Island, 02912, USA
| | | |
Collapse
|
39
|
Lorenz D, Wiesner B, Zipper J, Winkler A, Krause E, Beyermann M, Lindau M, Bienert M. Mechanism of peptide-induced mast cell degranulation. Translocation and patch-clamp studies. J Gen Physiol 1998; 112:577-91. [PMID: 9806967 PMCID: PMC2229441 DOI: 10.1085/jgp.112.5.577] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Substance P and other polycationic peptides are thought to stimulate mast cell degranulation via direct activation of G proteins. We investigated the ability of extracellularly applied substance P to translocate into mast cells and the ability of intracellularly applied substance P to stimulate degranulation. In addition, we studied by reverse transcription--PCR whether substance P-specific receptors are present in the mast cell membrane. To study translocation, a biologically active and enzymatically stable fluorescent analogue of substance P was synthesized. A rapid, substance P receptor- and energy-independent uptake of this peptide into pertussis toxin-treated and -untreated mast cells was demonstrated using confocal laser scanning microscopy. The peptide was shown to localize preferentially on or inside the mast cell granules using electron microscopic autoradiography with 125I-labeled all-D substance P and 3H-labeled substance P. Cell membrane capacitance measurements using the patch-clamp technique demonstrated that intracellularly applied substance P induced calcium transients and activated mast cell exocytosis with a time delay that depended on peptide concentration (delay of 100-500 s at concentrations of substance P from 50 to 5 microM). Degranulation in response to intracellularly applied substance P was inhibited by GDPbetaS and pertussis toxin, suggesting that substance P acts via G protein activation. These results support the recently proposed model of a receptor-independent mechanism of peptide-induced mast cell degranulation, which assumes a direct interaction of peptides with G protein alpha subunits subsequent to their translocation across the plasma membrane.
Collapse
Affiliation(s)
- D Lorenz
- Institute of Molecular Pharmacology, 10315 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Guo Z, Turner C, Castle D. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell 1998; 94:537-48. [PMID: 9727496 DOI: 10.1016/s0092-8674(00)81594-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
For regulated secretion, mast cells and several other cell types utilize compound exocytosis, a combination of granule-plasma membrane and granule-granule fusions. The molecular machinery that controls this massive export process has not been identified. We report that SNAP-23, a t-SNARE related to SNAP-25, relocates in response to stimulation from plasma membrane lamellipodia-like projections to granule membranes in permeabilized mast cells. While relocation is a prerequisite for secretion, it can occur without membrane fusion and will expedite a subsequent secretory response. After relocation, SNAP-23 is required for exocytosis, implying a crucial role in promoting membrane fusion. Thus, relocation of this SNARE regulates compound exocytosis and links granule-plasma membrane and granule-granule fusions.
Collapse
Affiliation(s)
- Z Guo
- Department of Cell Biology, University of Virgina Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
41
|
Fayos BE, Wattenberg BW. Regulated exocytosis in vascular endothelial cells can be triggered by intracellular guanine nucleotides and requires a hydrophobic, thiol-sensitive component. Studies of regulated von Willebrand factor secretion from digitonin permeabilized endothelial cells. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1998; 5:339-50. [PMID: 9588825 DOI: 10.3109/10623329709052598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To study the intracellular events leading to regulated exocytosis in human umbilical vein endothelial cells (HUVEC) the plasma membrane of HUVEC was selectively permeabilized with digitonin while retaining secretory function. Fusion of Weibel-Palade bodies, the secretory organelle of HUVEC, with the plasma membrane was detected by assaying the media for von Willebrand factor (vWF). The secretion from permeabilized cells faithfully reflects that in intact cells by a number of criteria. First, in the presence of calcium, permeabilized HUVEC secreted vWF with the same kinetics and to the same extent as intact cells stimulated with secretagogue. In addition, the vWF secreted by permeabilized cells after stimulus was exclusively the processed mature form found in Weibel-Palade bodies. Release required micromolar levels of calcium. In addition, GTPgammaS could also stimulate release by a parallel pathway. Both calcium- and GTPgammaS-stimulated secretion required a thiol-sensitive component. The hydrophobic thiol alkylating agent U73122 inhibited calcium-dependent and GTPgammaS-stimulated secretion. Surprisingly, N-ethylmaleimide, a hydrophilic alkylating agent, did not inhibit secretion. The N-ethylmaleimide-sensitive fusion protein (NSF), a protein implicated in a variety of vesicle fusion events, did not appear to be the target of U73122. These data strongly suggests the participation of a non-NSF, membrane-associated protein in regulated secretion in endothelial cells. Further, there appear to be two parallel pathways leading to secretion in HUVEC, one stimulated by elevated levels of calcium and the other mediated by a GTP-binding protein.
Collapse
Affiliation(s)
- B E Fayos
- Cell Biology and Inflammation Research Unit, The Upjohn Company, Kalamazoo, MI 49001, USA
| | | |
Collapse
|
42
|
|
43
|
|
44
|
Brown AM, O'Sullivan AJ, Gomperts BD. Induction of exocytosis from permeabilized mast cells by the guanosine triphosphatases Rac and Cdc42. Mol Biol Cell 1998; 9:1053-63. [PMID: 9571239 PMCID: PMC25329 DOI: 10.1091/mbc.9.5.1053] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
We applied recombinant forms of the Rho-related small guanosine triphosphatases (GTPases) Rac2 and Cdc42/G25K to permeabilized mast cells to test their ability to regulate exocytotic secretion. Mast cells permeabilized with streptolysin-O leak soluble (cytosol) proteins over a period of 5 min and become refractory to stimulation by Ca2+ and guanosine triphosphate (GTP)gammaS over about 20-30 min. This loss of sensitivity is likely to be due to loss of key regulatory proteins that are normally tethered at intracellular locations. Exogenous proteins that retard this loss of sensitivity to stimulation may be similar, if not identical, to those secretory regulators that are lost. Recombinant Rac and Cdc42/G25K, preactivated by binding GTPgammaS, retard the loss of sensitivity (run-down) and, more importantly, enable secretion to be stimulated by Ca2+ alone. Investigation of the concentration dependence of each of these two GTPases applied individually to the permeabilized cells, and of Cdc42/G25K applied in the presence of an optimal concentration of Rac2, has provided evidence for a shared effector pathway and also a second effector pathway activated by Cdc42/G25K alone. Dominant negative mutant (N17) forms of Rac2 and Cdc42/G25K inhibit secretion induced by Ca2+ and GTPgammaS. Our data suggest that Rac2 and Cdc42 should be considered as candidates for GE, GTPases that mediate exocytosis in cells of hematopoeitic origin.
Collapse
Affiliation(s)
- A M Brown
- Department of Physiology, University College, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
45
|
Aunis D. Exocytosis in chromaffin cells of the adrenal medulla. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 181:213-320. [PMID: 9522458 DOI: 10.1016/s0074-7696(08)60419-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The chromaffin cell has been used as a model to characterize releasable components present in secretory granules and to understand the cellular mechanisms involved in catecholamine release. Recent physiological and biochemical developments have revealed that molecular mechanisms implicated in granule trafficking are conserved in all eukaryotic species: a rise in intracellular calcium triggers regulated exocytosis, and highly conserved proteins are essential elements which interact with each other to form a molecular scaffolding, ensuring the docking of granules at the plasma membrane, and perhaps membrane fusion. However, the mechanisms regulating secretion are multiple and cell specific. They operate at different steps along the life of a granule, from the time of granule biosynthesis up to the last step of exocytosis. With regard to cell specificity, noradrenaline and adrenaline chromaffin cells display different receptor and signaling characteristics that may be important to exocytosis. Characterization of regulated exocytosis in chromaffin cells provides not only fundamental knowledge of neurosecretion but is of additional importance as these cells are used for therapeutic purposes.
Collapse
Affiliation(s)
- D Aunis
- Biologie de la Communication Cellulaire, Unité INSERM U-338, Strasbourg, France
| |
Collapse
|
46
|
Affiliation(s)
- R B Lobell
- Merck Research Laboratories, Department of Cancer Research, Merck and Company, Inc., West Point, Pennsylvania 19486, USA
| |
Collapse
|
47
|
Komatsu M, Noda M, Sharp GW. Nutrient augmentation of Ca2+-dependent and Ca2+-independent pathways in stimulus-coupling to insulin secretion can be distinguished by their guanosine triphosphate requirements: studies on rat pancreatic islets. Endocrinology 1998; 139:1172-83. [PMID: 9492052 DOI: 10.1210/endo.139.3.5859] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To delineate the underlying mechanisms by which glucose augments both Ca2+-dependent and Ca2+-independent insulin release, the latter induced by the simultaneous activation of protein kinases A and C, we examined the effects of GTP depletion by mycophenolic acid (MPA), an inhibitor of GTP synthesis, on the augmentation of insulin release from rat pancreatic islets. MPA treatment reduced GTP content by 30-40% and completely abolished glucose-induced augmentation of Ca2+-independent insulin release. Thus, this pathway is extremely sensitive to a decrease in cellular GTP content. Complete inhibition was also observed in islets treated with MPA plus adenine, to maintain ATP levels, under which conditions GTP is selectively depleted. Provision of guanine, which increases the activity of a salvage pathway for GTP synthesis and normalizes GTP content, completely reversed the inhibitory effect of MPA. Neither glucose utilization nor glucose oxidation was affected by MPA. The augmentation of Ca2+-independent insulin release by several other metabolizable nutrients including alpha-ketoisocaproic acid (KIC) was also inhibited by MPA. In sharp contrast, augmentation of Ca2+-dependent insulin release by KIC was resistant to GTP depletion, indicating that nutrient-induced augmentation of the Ca2+-dependent- and Ca2+-independent secretory pathways can be differentiated by GTP dependency. We interpret these data in accord with current knowledge concerning the two known stimuli for exocytosis, Ca2+ and GTP (independently of Ca2+). We propose that both Ca2+-dependent and Ca2+-independent augmentation occurs via one metabolic pathway acting upon Ca2+- and upon GTP-stimulated exocytosis. Activation of PKA and PKC stimulates the GTP-sensitive exocytosis.
Collapse
Affiliation(s)
- M Komatsu
- Department of Pharmacology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853-6401, USA
| | | | | |
Collapse
|
48
|
Abstract
We have inflated patch-clamped mast cells by 3.8 +/- 1.6 times their volume by applying a hydrostatic pressure of 5-15 cm H2O to the interior of the patch pipette. Inflation did not cause changes in the cell membrane conductance and caused only a small reversible change in the cell membrane capacitance (36 +/- 5 fF/cm H2O). The specific cell membrane capacitance of inflated cells was found to be 0.5 microF/cm2. High-resolution capacitance recordings showed that inflation reduced the frequency of exocytotic fusion events by approximately 70-fold, with the remaining fusion events showing an unusual time course. Shortly after the pressure was returned to 0 cm H2O, mast cells regained their normal size and appearance and degranulated completely, even after remaining inflated for up to 60 min. We interpret these observations as an indication that inflated mast cells reversibly disassemble the structures that regulate exocytotic fusion. Upon returning to its normal size, the cell cytosol reassembles the fusion pore scaffolds and allows exocytosis to proceed, suggesting that exocytotic fusion does not require soluble proteins. Reassembly of the fusion pore can be prevented by inflating the cells with solutions containing the protease pronase, which completely blocked exocytosis. We also interpret these results as evidence that the activity of the fusion pore is sensitive to the tension of the plasma membrane.
Collapse
Affiliation(s)
- C Solsona
- Department of Cell Biology, Medical School, University of Barcelona, Spain
| | | | | |
Collapse
|
49
|
Baldini G, Wang G, Weber M, Zweyer M, Bareggi R, Witkin JW, Martelli AM. Expression of Rab3D N135I inhibits regulated secretion of ACTH in AtT-20 cells. J Cell Biol 1998; 140:305-13. [PMID: 9442106 PMCID: PMC2132581 DOI: 10.1083/jcb.140.2.305] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1996] [Revised: 11/18/1997] [Indexed: 02/05/2023] Open
Abstract
Rab proteins are small molecular weight GTPases that control vesicular traffic in eucaryotic cells. A subset of Rab proteins, the Rab3 proteins are thought to play an important role in regulated exocytosis of vesicles. In transfected AtT-20 cells expressing wild-type Rab3D, we find that a fraction of the protein is associated with dense core granules. In the same cells, expression of a mutated isoform of Rab3D, Rab3D N135I, inhibits positioning of dense core granules near the plasma membrane, blocks regulated secretion of mature ACTH, and impairs association of Rab3A to membranes. Expression of Rab3D N135I does not change the levels of ACTH precursor or the efficiency with which the precursor is processed into ACTH hormone and packaged into dense core granules. We also find that cells expressing mutated Rab3D differentiate to the same extent as untransfected AtT-20 cells. We conclude that expression of Rab3D N135I specifically impairs late membrane trafficking events necessary for ACTH hormone secretion.
Collapse
Affiliation(s)
- G Baldini
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Small GTPases of the Rab subfamily have been known to be key regulators of intracellular membrane traffic since the late 1980s. Today this protein group amounts to more than 40 members in mammalian cells which localize to distinct membrane compartments and exert functions in different trafficking steps on the biosynthetic and endocytic pathways. Recent studies indicate that cycles of GTP binding and hydrolysis by the Rab proteins are linked to the recruitment of specific effector molecules on cellular membranes, which in turn impact on membrane docking/fusion processes. Different Rabs may, nevertheless, have slightly different principles of action. Studies performed in yeast suggest that connections between the Rabs and the SNARE machinery play a central role in membrane docking/fusion. Further elucidation of this linkage is required in order to fully understand the functional mechanisms of Rab GTPases in membrane traffic.
Collapse
Affiliation(s)
- V M Olkkonen
- National Public Health Institute, Helsinki, Finland
| | | |
Collapse
|