1
|
Wei G, Shen FJ, Liu JL, Zhao JH, Yang FY, Feng RQ, Lu J, Zhang CY, Wang FW, Chen BD, Ding X, Yang JK. Uncoupling protein 1 deficiency leads to transcriptomic differences in livers of pregnancy female mice and aggravates hepatic steatosis. Arch Biochem Biophys 2025; 768:110395. [PMID: 40122441 DOI: 10.1016/j.abb.2025.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Pregnancy requires the coordination of metabolically active organs to support maternal nutrition and fetal growth. However, the metabolic cross-talk between adipose tissue and liver in females during pregnancy is still less clear. In this study, we evaluated the metabolic adaptations and phenotypes of liver in response to pregnancy-associated metabolic stress, particularly in the context of genetic ablation of Uncoupling protein 1 (Ucp1)-mediated catabolic circuit. Our results revealed that Ucp1 deficiency (UCP1 knockout, KO) mice during late pregnancy exhibited significantly deteriorated metabolic phenotypes, including hepatic steatosis and whole-body glucose and lipid homeostasis, as compared to Ucp1 deficiency or normal pregnancy mice. However, non-pregnant Ucp1 deficiency mice displayed nearly normal metabolic phenotypes and structure alterations similar to those of littermate controls. Moreover, transcriptomic analyses by RNA sequencing (RNA-seq) clearly revealed that Ucp1 deficiency led to a significant liver metabolic remodeling of differentially express genes (DEGs) before and especially during pregnancy. Consistently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses demonstrated the potential altered functions and signaling pathways, including metabolic dysfunctions in ribosome, oxidative phosphorylation, etc. Importantly, as derived from trend analyses of DEGs, our results further revealed the distinct expression pattern of each subcluster, which coincided with potential biological functions and relevant signaling pathways. The findings in the present study might provide valuable insights into the molecular mechanism of metabolic dysfunction-associated fatty liver disease (MAFLD) during pregnancy. Additionally, our data may provide a novel animal model of MAFLD, thus facilitating its potential therapies. NEW & NOTEWORTHY: Genetic ablation of Ucp1 during pregnancy increases hepatic steatosis and deteriorated whole-body glucose and lipid homeostasis. Moreover, changes in hepatic gene expression are closely associated with metabolic dysfunctions in ribosome and oxidative phosphorylation. This work highlights the therapeutic potential of targeting UCP1- mediated catabolic circuit between adipose and liver during pregnancy, and the utility of RNA-seq analysis to reveal valuable information for the distinct expression pattern of each subcluster that contribute to pregnancy-dependent MASLD progression.
Collapse
Affiliation(s)
- Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Feng-Jie Shen
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Jun-Li Liu
- Neurology in the First Affiliated Hospital of XinXiang Medical University, Henan Institute of Neurology, Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Weihui, 453100, Henan Province, China.
| | - Jian-Hua Zhao
- Neurology in the First Affiliated Hospital of XinXiang Medical University, Henan Institute of Neurology, Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Weihui, 453100, Henan Province, China.
| | - Fang-Yuan Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Ruo-Qi Feng
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Jing Lu
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Chen-Yang Zhang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Feng-Wei Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Bei-Dong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100005, China.
| | - Xin Ding
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100020, China.
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
2
|
Khalaf F, Barayan D, Saldanha S, Jeschke MG. Metabolaging: a new geroscience perspective linking aging pathologies and metabolic dysfunction. Metabolism 2025; 166:156158. [PMID: 39947519 DOI: 10.1016/j.metabol.2025.156158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/16/2025]
Abstract
With age, our metabolic systems undergo significant alterations, which can lead to a cascade of adverse effects that are implicated in both metabolic disorders, such as diabetes, and in the body's ability to respond to acute stress and trauma. To elucidate the metabolic imbalances arising from aging, we introduce the concept of "metabolaging." This framework encompasses the broad spectrum of metabolic disruptions associated with the hallmarks of aging, including the functional decline of key metabolically active organs, like the adipose tissue. By examining how these organs interact with essential nutrient-sensing pathways, "metabolaging" provides a more comprehensive view of the systemic metabolic imbalances that occur with age. This concept extends to understanding how age-related metabolic disturbances can influence the response to acute stressors, like burn injuries, highlighting the interplay between metabolic dysfunction and the ability to handle severe physiological challenges. Finally, we propose potential interventions that hold promise in mitigating the effects of metabolaging and its downstream consequences.
Collapse
Affiliation(s)
- Fadi Khalaf
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Dalia Barayan
- David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Sean Saldanha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Marc G Jeschke
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Sousa-Filho CPB, Petrovic N. No UCP1 in the kidney. Mol Metab 2025; 95:102127. [PMID: 40120980 PMCID: PMC11995138 DOI: 10.1016/j.molmet.2025.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/05/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVES Several recent studies have indicated the presence of UCP1 in the kidney, challenging the paradigm that UCP1 is only found in brown and beige adipocytes and broadening the (patho)physiological significance of UCP1. The kidney localization has been the direct result of immunohistochemical investigations and an inferred outcome from multiple lines of reporter mice. These findings require confirmation and further physiological characterization. METHODS We examined UCP1 expression in the kidney using immunohistochemistry and qPCR. Transversal sections through or near the kidney hilum, consistently including perirenal brown fat and adjacent kidney tissue, were analyzed with four UCP1 antibodies. RESULTS In addition to detecting UCP1 in perirenal adipose tissue, we observed distinct immunopositive structures in the kidney with our in-house UCP1-antibody, 'C10', in apparent agreement with earlier reports. To corroborate this, we tested the C10-antibody on kidney sections from UCP1-ablated mice but found equal reactivity in these UCP1-negative tissues. We then tested the widely used antibody ab10983, previously employed in kidney studies. Also here, the positive signal persisted in UCP1-ablated mice, clearly invalidating earlier findings. UCP1 qPCR studies also failed to detect UCP1 mRNA above background. Finally, two highly specific antibodies, E9Z2V and EPR20381, accurately detected UCP1 in perirenal adipose tissue but showed no signal in the kidney. CONCLUSIONS When appropriate controls are implemented, there is no evidence for the presence of UCP1 in the kidney. Consequently, this conclusion also implies that the results from UCP1 reporter mice, specifically regarding kidney expression of the UCP1 gene - though possibly applicable to other tissues - require reconfirmation before being accepted as evidence for the presence of UCP1 in non-adipose tissues.
Collapse
Affiliation(s)
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
4
|
Ahluwalia R, Luijten IHN, Sousa-Filho CPB, Braz GRF, Petrovic N, Shabalina IG, Cannon B, Nedergaard J. The choice of diet is determinative for the manifestation of UCP1-dependent diet-induced thermogenesis. Am J Physiol Endocrinol Metab 2025; 328:E653-E660. [PMID: 40094220 DOI: 10.1152/ajpendo.00038.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/03/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
The existence of the phenomenon of diet-induced thermogenesis-and its possible mediation by UCP1 in brown adipose tissue-has long been, and is presently, an important metabolic controversy. Particularly, several recent studies have failed to observe the hallmark of the phenomenon: augmentation of diet-induced obesity (i.e., fat mass) in UCP1-ablated mice, thus further casting doubt on the possible importance of this thermogenesis, for example in human metabolic control. However, scrutiny of the experimental details revealed important procedural differences between experiments that did not show or did show this augmentation of diet-induced obesity. Particularly, there were notable differences between the commercial diets used (Research Diets or Ssniff). We, therefore, tested to what degree these differences would suffice to explain the absence of a UCP1 effect. Wild-type mice fed Research Diets high-fat diet became obese, but UCP1-ablated mice became even more obese, as expected if UCP1-dependent diet-induced thermogenesis exists. Mice fed the Ssniff high-fat diet became less obese than those on the Research Diets food-and, importantly, no effect of UCP1 ablation was seen. The result with the Research Diets diet was fully due to differences in total fat mass and not explainable by differences in food intake. The two diets are different in carbohydrate (sucrose) and lipid (lard vs. palm oil) composition and in texture and taste. Probably some of these factors explain the difference, but the important conclusion is that when an appropriate diet was offered, the body weight manifestation of the phenomenon of UCP1-dependent diet-induced thermogenesis was a reproducible phenomenon, the existence of which may have significance also for human metabolic control.NEW & NOTEWORTHY A main reason for the present interest in brown adipose tissue in humans is the possibility that this tissue mediates diet-induced thermogenesis, i.e., the ability to combust some of the foods eaten, thus lessening the burden of obesity. However, several recent papers have queried the existence of diet-induced thermogenesis. We demonstrate that these negative observations are explainable by the types of diet offered, and diet-induced thermogenesis thus remains a potentially important contributor to metabolic equilibrium.
Collapse
Affiliation(s)
- Raman Ahluwalia
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ineke H N Luijten
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Celso P B Sousa-Filho
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - G Ruda F Braz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Danielak A, Magierowski M. Obesity and mitochondrial uncoupling - an opportunity for the carbon monoxide-based pharmacology of metabolic diseases. Pharmacol Res 2025; 215:107741. [PMID: 40252782 DOI: 10.1016/j.phrs.2025.107741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Obesity, a chronic and progressive disease with a complex etiology, remains a significant global health challenge. Despite advancements in lifestyle interventions, pharmacological therapies, and bariatric surgery, substantial barriers to effective and sustained obesity management persist. Resistance to weight loss and gradual weight regain are commonly reported, limiting the long-term success of both non-pharmacological and pharmacological strategies. A possible contributor is metabolic adaptation, a phenomenon characterized by reduced metabolic rate and energy expenditure following weight loss, which hinders therapeutic efficacy. To address these challenges, increasing attention has been directed toward strategies that counteract maladaptive mechanisms by modulating metabolic rate and enhancing energy expenditure. One promising approach involves mitochondrial uncoupling, where electron transport and oxygen consumption are disconnected from ATP synthesis, promoting energy dissipation. Preclinical studies have demonstrated the potential of various chemical compounds with uncoupling activity as anti-obesity agents. Additionally, carbon monoxide (CO) has emerged as a significant gaseous signaling molecule in human physiology, with anti-inflammatory, antioxidative, and cytoprotective properties. Advances in CO-based pharmacology have led to the development of controlled-release CO donors, enabling precise therapeutic application. Experimental studies suggest that CO modulates mitochondrial bioenergetics, induces mild mitochondrial uncoupling, and regulates mitochondrial biogenesis. By integrating these findings, this review uniquely connects scientific threads, offering a comprehensive synthesis of current knowledge while proposing innovative directions in mitochondrial, metabolic and CO-based pharmacological research. It highlights the potential of CO-based pharmacology to regulate metabolic rate, support weight loss, and address obesity-related dysfunctions, thus suggesting novel pathways for advancing obesity treatment.
Collapse
Affiliation(s)
- Aleksandra Danielak
- Center for Biomedicine and Interdisciplinary Sciences, Jagiellonian University - Medical College, Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University - Medical College, Krakow, Poland
| | - Marcin Magierowski
- Center for Biomedicine and Interdisciplinary Sciences, Jagiellonian University - Medical College, Krakow, Poland.
| |
Collapse
|
6
|
Bunk J, Hussain MF, Delgado-Martin M, Samborska B, Ersin M, Shaw A, Rahbani JF, Kazak L. The Futile Creatine Cycle powers UCP1-independent thermogenesis in classical BAT. Nat Commun 2025; 16:3221. [PMID: 40185737 PMCID: PMC11971250 DOI: 10.1038/s41467-025-58294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Classical brown adipose tissue (BAT) is traditionally viewed as relying exclusively on uncoupling protein 1 (UCP1) for thermogenesis via inducible proton leak. However, the physiological significance of UCP1-independent mechanisms linking substrate oxidation to ATP turnover in classical BAT has remained unclear. Here, we identify the Futile Creatine Cycle (FCC), a mitochondrial-localized energy-wasting pathway involving creatine phosphorylation by creatine kinase b (CKB) and phosphocreatine hydrolysis by tissue-nonspecific alkaline phosphatase (TNAP), as a key UCP1-independent thermogenic mechanism in classical BAT. Reintroducing mitochondrial-targeted CKB exclusively into interscapular brown adipocytes in vivo restores thermogenesis and cold tolerance in mice lacking native UCP1 and CKB, in a TNAP-dependent manner. Furthermore, mice with inducible adipocyte-specific co-deletion of TNAP and UCP1 exhibit severe cold-intolerance. These findings challenge the view that BAT thermogenesis depends solely on UCP1 because of insufficient ATP synthase activity and establishes the FCC as a physiologically relevant thermogenic pathway in classical BAT.
Collapse
Affiliation(s)
- Jakub Bunk
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Mohammed F Hussain
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Maria Delgado-Martin
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Bozena Samborska
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Mina Ersin
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Abhirup Shaw
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Janane F Rahbani
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Passini FS, Bornstein B, Rubin S, Kuperman Y, Krief S, Masschelein E, Mehlman T, Brandis A, Addadi Y, Shalom SHO, Richter EA, Yardeni T, Tirosh A, De Bock K, Zelzer E. Piezo2 in sensory neurons regulates systemic and adipose tissue metabolism. Cell Metab 2025; 37:987-1000.e6. [PMID: 39919739 DOI: 10.1016/j.cmet.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
Systemic metabolism ensures energy homeostasis through inter-organ crosstalk regulating thermogenic adipose tissue. Unlike the well-described inductive role of the sympathetic system, the inhibitory signal ensuring energy preservation remains poorly understood. Here, we show that, via the mechanosensor Piezo2, sensory neurons regulate morphological and physiological properties of brown and beige fat and prevent systemic hypermetabolism. Targeting runt-related transcription factor 3 (Runx3)/parvalbumin (PV) sensory neurons in independent genetic mouse models resulted in a systemic metabolic phenotype characterized by reduced body fat and increased insulin sensitivity and glucose tolerance. Deletion of Piezo2 in PV sensory neurons reproduced the phenotype, protected against high-fat-diet-induced obesity, and caused adipose tissue browning and beiging, likely driven by elevated norepinephrine levels. Finding that brown and beige fat are innervated by Runx3/PV sensory neurons expressing Piezo2 suggests a model in which mechanical signals, sensed by Piezo2 in sensory neurons, protect energy storage and prevent a systemic hypermetabolic phenotype.
Collapse
Affiliation(s)
- Fabian S Passini
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Bavat Bornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Evi Masschelein
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- MICC Cell Observatory, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Huri-Ohev Shalom
- Bert Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Erik A Richter
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Tal Yardeni
- Bert Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Institute of Endocrinology, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Katrien De Bock
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Ranea-Robles P, Lund C, Svendsen C, Gil C, Lund J, Kleinert M, Clemmensen C. Time-Resolved Effects of Short-term Overfeeding on Energy Balance in Mice. Diabetes 2025; 74:502-513. [PMID: 39787442 PMCID: PMC11926271 DOI: 10.2337/db24-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
ARTICLE HIGHLIGHTS Intragastric overfeeding reveals insights into the homeostatic recovery from experimental weight gain. Protection against short-term, overfeeding-induced weight gain primarily involves a profound reduction in food intake and possibly an adaptive increase in energy expenditure. UCP1-mediated thermogenesis is not essential for homeostatic protection against short-term, overfeeding-induced weight gain.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Granada, Spain
| | - Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Cláudia Gil
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Lu T, Liu A, Li C, Li Y, Yang B, Liu Q, Jiang H. Brown adipose tissue transplantation ameliorates hindlimb ischemic damage in diabetic mice. Sci Rep 2025; 15:8820. [PMID: 40087510 PMCID: PMC11909270 DOI: 10.1038/s41598-025-93261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Peripheral arterial disease (PAD) is a common complication associated with diabetes, which can lead to foot ischemia. The condition is often accompanied by infection and necrosis, ultimately leading to diabetic foot ulcers and the risk of amputation. Brown adipose tissue (BAT) and its secreted cytokines play an essential role in the regulation of glucose homeostasis, the modulation of inflammatory responses, and vascular endothelial cell proliferation. The transplantation of BAT into ischemic regions may offer therapeutic benefits in alleviating the symptoms associated with PAD. A diabetic mouse model was established via intraperitoneal administration of streptozocin. Subsequently, a diabetic lower limb ulcer model was constructed by transection of the femoral artery and ligation of the femoral vein. BAT harvested from the subscapular region of the mouse was employed as an adipose graft. The research utilized Laser Doppler monitoring, Western blot analysis, hematoxylin-eosin (HE) staining, immunofluorescence staining, and enzyme-linked immunosorbent assay (ELISA) to evaluate blood flow recovery in ischemic regions, histopathological changes, angiogenesis and tissue remodeling, inflammatory responses, and M1/M2 macrophage polarization. BAT transplantation significantly enhanced blood flow recovery in ischemic regions of diabetic lower limb ulcer mice while concurrently reducing necrotic tissue. Pathological analyses demonstrate that BAT transplantation mitigates ischemic tissue damage, stimulates angiogenesis, and supports tissue remodeling. Furthermore, the Western blotting, immunofluorescence, and ELISA results revealed that BAT transplantation significantly reduces inflammatory levels in ischemic tissues, increases the expression of angiogenic factors, and promotes the polarization of macrophages from the M1 to the M2 phenotype. The research has demonstrated that BAT transplantation can mitigate ischemic injury in diabetic lower limb ulcer mice, attenuate inflammatory responses, and facilitate the restoration of blood flow. These effects may be linked to alterations in macrophage polarization.
Collapse
Affiliation(s)
- Ting Lu
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Amin Liu
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Chunchun Li
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Yi Li
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Bin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, PR China
| | - Qian Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, PR China.
| | - Hua Jiang
- Department of Otolaryngology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China.
| |
Collapse
|
10
|
Cicuéndez B, Mora A, López JA, Curtabbi A, Pérez-García J, Porteiro B, Jimenez-Blasco D, Latorre-Muro P, Vo P, Jerome M, Gómez-Santos B, Romero-Becerra R, Leiva M, Rodríguez E, León M, Leiva-Vega L, Gómez-Lado N, Torres JL, Hernández-Cosido L, Aguiar P, Marcos M, Jastroch M, Daiber A, Aspichueta P, Bolaños JP, Spinelli JB, Puigserver P, Enriquez JA, Vázquez J, Folgueira C, Sabio G. Absence of MCJ/DnaJC15 promotes brown adipose tissue thermogenesis. Nat Commun 2025; 16:229. [PMID: 39805849 PMCID: PMC11730624 DOI: 10.1038/s41467-024-54353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples. MCJKO mice, even without UCP1, a fundamental thermogenic protein, exhibit elevated BAT thermogenesis. Electron microscopy unveils changes in mitochondrial morphology resembling BAT activation. Proteomic analysis confirms these findings and suggests involvement of the eIF2α mediated stress response. The pivotal role of eIF2α is scrutinized by in vivo CRISPR deletion of eIF2α in MCJKO mice, abrogating thermogenesis. These findings uncover the importance of MCJ as a regulator of BAT thermogenesis, presenting it as a promising target for obesity therapy.
Collapse
Grants
- K99 DK133502 NIDDK NIH HHS
- R01 DK136640 NIDDK NIH HHS
- This work has been supported by the following projects: PMP21/00057 funded by the Instituto de Salud Carlos III (ISCIII) - European Union (FEDER/FSE) "Una manera de hacer Europa"/ "El FSE invierte en tu futuro"/ Next Generation EU and cofunded by the European Union / Plan de Recuperación, Transformación y Resiliencia (PRTR); PID2022-138525OB-I00 de la Agencia Estatal de Investigación 10.13039/501100011033, financiado por MICIU/AEI/10.13039/501100011033 fondos FEDER and EU, PDC2021-121147-I00 and PID2019-104399RB-I00 funded by MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/Plan de Recuperación Transformación y Resiliencia -PRTR; Grant RED2022-134397-T funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe”, by the “European Union” or by the “European Union NextGenerationEU/PRTR”; Fundación Jesús Serra; EFSD/Lilly Dr Sabio; 2017 Leonardo Grant BBVA Foundation (Investigadores-BBVA-2017); Comunidad de Madrid IMMUNOTHERCAN-CM S2010/BMD-2326 and B2017/BMD-373; Fundación AECC PROYE19047SABI, PGC2018-097019-B-I00 and PT17/0019/0003- ISCIII-SGEFI /ERDF, ProteoRed. PreMed-Exp: PMP21/00057, PMP21/00113 Infraestructura de Medicina de Precisión asociada a la Ciencia y Tecnología IMPACT-2021 Instituto de Salud Carlos III (GS, JLT).. G.S is a Miembro Numerario of the RACVE. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation) and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033).
- A.C was supported by the European Union's Horizon 2020 research and 328 innovation program under the Marie Skłodowska-Curie grant agreement n. 713,673.
- J.P-G was supported by the fellowship from” la Caixa” Foundation (ID 100010434), the fellowship code is LCF/BQ/DR24/12080018.
- M.M is supported by Instituto de Salud Carlos III (ISCIII) and the European Union project PI20/00743.
- P.A is supported by MCIU/AEI/FEDER, UE (PID2021-124425OB-I00) and Basque Government, Department of Education (IT1476-22).
- J.P.B is funded by AEI grants PID2019-105699RB-I00, PID2022-138813OB-I00 and PDC2021-121013-I00; HORIZON-MSCA-2021-DN-01grant 101072759; and La Caixa Research Health grant HR23-00793.
- C.F was funded with Sara Borrell (CD19/ 00078), NNF23SA0083952-EASO/Novo Nordisk New Investigator Award in Basic Sciences 2023, EFSD/Lilly Young Investigator Award 2022, Society for Endocrinology/Early Career Grant 2022, FSEEN/ Jóvenes endocrinólogos 2022, EFSD/Novo Nordisk Rising Star 2024, IBSA Foundation Fellowship Endocrinology 2023.
Collapse
Affiliation(s)
- Beatriz Cicuéndez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Curtabbi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Pérez-García
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Jimenez-Blasco
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Paula Vo
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Madison Jerome
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Beatriz Gómez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU. Leioa, Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Magdalena Leiva
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Noemi Gómez-Lado
- Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Nuclear Medicine Service, University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | | | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit. Department of General Surgery, University Hospital of Salamanca. Department of Surgery. University of Salamanca, Salamanca, Spain
| | - Pablo Aguiar
- Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Nuclear Medicine Service, University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain
- Department of Medicine. University of Salamanca, Salamanca, Spain
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andreas Daiber
- Department of Cardiology 1, University Medical Center Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU. Leioa, Biobizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red sobre enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pedro Bolaños
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Jessica B Spinelli
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
- UMass Chan Medical School Cancer Center, Worcester, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - José Antonio Enriquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain.
| |
Collapse
|
11
|
Su D, Jiang T, Song Y, Li D, Zhan S, Zhong T, Guo J, Li L, Zhang H, Wang L. Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat. Commun Biol 2025; 8:31. [PMID: 39789228 PMCID: PMC11718246 DOI: 10.1038/s42003-025-07468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT. Next, we identified four iBAT-specific active enhancers of Ucp1, and three of them were activated by cold stimulation. Transcriptional repression of the Ucp1-En4 or Ucp1-En6 region significantly downregulated Ucp1 and impaired mitochondrial function in brown adipocytes. Furthermore, depletion of the cohesin subunit RAD21 decreased the interaction intensity between Ucp1-En4 and the Ucp1 promoter and downregulated Ucp1. EBF2 cooperated with the acetyltransferase CBP to regulate Ucp1-En4 activity and increase Ucp1 transcriptional activity. In vivo, lentivirus-mediated repression of Ucp1-En4 was injected into iBAT, resulting in impacted iBAT thermogenic capacity and impaired iBAT mitochondrial function under cold acclimation conditions. Studying the functional enhancers regulating Ucp1 expression in iBAT will provide important insights into the regulatory mechanisms of BAT activity.
Collapse
Affiliation(s)
- Duo Su
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Tingting Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yulong Song
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Die Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Linjie Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
12
|
Cypess AM, Cannon B, Nedergaard J, Kazak L, Chang DC, Krakoff J, Tseng YH, Schéele C, Boucher J, Petrovic N, Blondin DP, Carpentier AC, Virtanen KA, Kooijman S, Rensen PCN, Cero C, Kajimura S. Emerging debates and resolutions in brown adipose tissue research. Cell Metab 2025; 37:12-33. [PMID: 39644896 PMCID: PMC11710994 DOI: 10.1016/j.cmet.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Until two decades ago, brown adipose tissue (BAT) was studied primarily as a thermogenic organ of small rodents in the context of cold adaptation. The discovery of functional human BAT has opened new opportunities to understand its physiological role in energy balance and therapeutic applications for metabolic disorders. Significantly, the role of BAT extends far beyond thermogenesis, including glucose and lipid homeostasis, by releasing mediators that communicate with other cells and organs. The field has made major advances by using new model systems, ranging from subcellular studies to clinical trials, which have also led to debates. In this perspective, we identify six fundamental issues that are currently controversial and comprise dichotomous models. Each side presents supporting evidence and, critically, the necessary methods and falsifiable experiments that would resolve the dispute. With this collaborative approach, the field will continue to productively advance the understanding of BAT physiology, appreciate the importance of thermogenic adipocytes as a central area of ongoing research, and realize the therapeutic potential.
Collapse
Affiliation(s)
- Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Douglas C Chang
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Camilla Schéele
- Novo Nordisk Foundation Center for Basic Metabolic Research, The Center of Inflammation and Metabolism and the Center for Physical Activity Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Cheryl Cero
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
13
|
Shabalina IG, Jiménez B, Sousa-Filho CPB, Cannon B, Nedergaard J. In isolated brown adipose tissue mitochondria, UCP1 is not essential for - nor involved in - the uncoupling effects of the classical uncouplers FCCP and DNP. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149516. [PMID: 39357779 DOI: 10.1016/j.bbabio.2024.149516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Recent patch-clamp studies of mitoplasts have challenged the traditional view that classical chemical uncoupling (by e.g. FCCP or DNP) is due to the protonophoric property of these substances themselves. These studies instead suggest that in brown-fat mitochondria, FCCP- and DNP-induced uncoupling is mediated through activation of UCP1 (and in other tissues by activation of the adenine nucleotide transporter). These studies thus advocate an entirely new paradigm for the interpretation of standard bioenergetic experiments. To examine whether these patch-clamp results obtained in brown-fat mitoplasts are directly transferable to classical isolated brown-fat mitochondria studies, we investigated the effects of FCCP and DNP in brown-fat mitochondria from wildtype and UCP1 KO mice, comparing the FCCP and DNP effects with those of a fatty acid (oleate), a bona fide activator of UCP1. Whereas the sensitivity of brown-fat mitochondria to oleate was much higher in UCP1-containing than in UCP1 KO mitochondria, there was no difference in sensitivity to FCCP and DNP between these mitochondria, neither in oxygen consumption rate nor in membrane potential studies. Correspondingly, the UCP1-dependent ability of GDP to competitively inhibit activation by oleate was not seen with FCCP and DNP. It would thus be premature to abandon the established bioenergetic interpretation of chemical uncoupler effects in classical isolated brown-fat mitochondria-and probably also generally in this type of mitochondrial study. Understanding the molecular and structural reasons for the different outcomes of mitoplast and mitochondrial studies is a challenging task.
Collapse
Affiliation(s)
- Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden
| | - Beatriz Jiménez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden
| | | | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden.
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden
| |
Collapse
|
14
|
Qiu J, Guo Y, Guo X, Liu Z, Li Z, Zhang J, Cao Y, Li J, Yu S, Xu S, Chen J, Wang D, Yu J, Guo M, Zhou W, Wang S, Wang Y, Ma X, Xie C, Xu L. Ucp1 Ablation Improves Skeletal Muscle Glycolytic Function in Aging Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411015. [PMID: 39569747 PMCID: PMC11727132 DOI: 10.1002/advs.202411015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Muscular atrophy is among the systematic decline in organ functions in aging, while defective thermogenic fat functionality precedes these anomalies. The potential crosstalk between adipose tissue and muscle during aging is poorly understood. In this study, it is showed that UCP1 knockout (KO) mice characterized deteriorated brown adipose tissue (BAT) function in aging, yet their glucose homeostasis is sustained and energy expenditure is increased, possibly compensated by improved inguinal adipose tissue (iWAT) and muscle functionality compared to age-matched WT mice. To understand the potential crosstalk, RNA-seq and metabolomic analysis were performed on adipose tissue and muscle in aging mice and revealed that creatine levels are increased both in iWAT and muscle of UCP1 KO mice. Interestingly, molecular analysis and metabolite tracing revealed that creatine biosynthesis is increased in iWAT while creatine uptake is increased in muscle in UCP1 KO mice, suggesting creatine transportation from iWAT to muscle. Importantly, creatine analog β-GPA abolished the differences in muscle functions between aging WT and UCP1 KO mice, while UCP1 inhibitor α-CD improved muscle glycolytic function and glucose metabolism in aging mice. Overall, these results suggested that iWAT and skeletal muscle compensate for declined BAT function during aging via creatine metabolism to sustain metabolic homeostasis.
Collapse
Affiliation(s)
- Jin Qiu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yuhan Guo
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Xiaozhen Guo
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ziqi Liu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Zixuan Li
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yutang Cao
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Jiaqi Li
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shuwu Yu
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Sainan Xu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Juntong Chen
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghai201499China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Wenhao Zhou
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Sainan Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yiwen Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
- Chongqing Key Laboratory of Precision OpticsChongqing Institute of East China Normal UniversityChongqing401120China
| | - Cen Xie
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| |
Collapse
|
15
|
Smith DM, Choi J, Wolfgang MJ. Tissue specific roles of fatty acid oxidation. Adv Biol Regul 2025; 95:101070. [PMID: 39672726 PMCID: PMC11832339 DOI: 10.1016/j.jbior.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Mitochondrial long chain fatty acid β-oxidation is a critical central carbon catabolic process. The importance of fatty acid oxidation is made evident by the life-threatening disease associated with diverse inborn errors in the pathway. While inborn errors show multisystemic requirements for fatty acid oxidation, it is not clear from the clinical presentation of these enzyme deficiencies what the tissue specific roles of the pathway are compared to secondary systemic effects. To understand the cell or tissue specific contributions of fatty acid oxidation to systemic physiology, conditional knockouts in mice have been employed to determine the requirements of fatty acid oxidation in disparate cell types. This has produced a host of surprising results that sometimes run counter to the canonical view of this metabolic pathway. The rigor of conditional knockouts has also provided clarity over previous research utilizing cell lines in vitro or small molecule inhibitors with dubious specificity. Here we will summarize current research using mouse models of Carnitine Palmitoyltransferases to determine the tissue specific roles and requirements of long chain mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
- Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Choi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Liao Y, Peng Z, Fu S, Hua Y, Luo W, Liu R, Chen Y, Gu W, Zhao P, Zhao J, Wang Y, Wang H. Elevated EBF2 in mouse but not pig drives the progressive brown fat lineage specification via chromatin activation. J Adv Res 2024:S2090-1232(24)00624-6. [PMID: 39736442 DOI: 10.1016/j.jare.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/01/2025] Open
Abstract
Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, but it is absent in some mammals, including pigs. During development, BAT progenitors are derived from paired box 7 (Pax7)-expressing somitic mesodermal stem cells, which also give rise to skeletal muscle. However, the intrinsic mechanisms underlying the fate decisions between brown fat and muscle progenitors remain elusive across species. In this study, we analyzed the dynamics of chromatin landscape during the segregation and specification of brown fat and muscle lineages from Pax7+ multipotent mesodermal stem cells, aiming to uncover epigenetic factors that drive de novo BAT formation. Notably, myogenic progenitors were specified at embryonic day (E) 12.5, exhibiting high levels of H3K4me3 and low H3K27me3 at muscle-related genes. In contrast, the specification of the BAT lineage occurred much later, with coordinated step-wise depositions of histone modifications at BAT-associated genes from E10.5 to E14.5. We identified the transcription factor early B-cell factor 2 (EBF2) as a key driver of the progressive specification of brown fat lineage and the simultaneous deviation away from the muscle lineage. Mechanistically, EBF2 interacts with transcriptional co-activators CREB binding protein/ E1A-binding protein p300 (CBP/P300) to induce H3K27ac deposition and chromatin activation at BAT-associated genes to promote brown adipogenesis. Both mouse and pig EBF2 could potently stimulate adipogenesis in unspecified multipotent mesodermal stem cells. However, in pigs, EBF2 expression was depleted during the critical lineage specification time window, thus preventing the embryonic formation and development of porcine BAT. Hence, the elevation of EBF2 in mice, but not in pigs, promote chromatin activation to drive the progressive specification of brown fat lineage.
Collapse
Affiliation(s)
- Yinlong Liao
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; Yazhouwan National Laboratory, Sanya, China
| | - Zhelun Peng
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Fu
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China
| | - Yao Hua
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China
| | - Wenzhe Luo
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China
| | - Ruige Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingjin Chen
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Gu
- Shandong Provincial Key Laboratory of Animal Microecologics and Efficient Breeding of Livestock and Poultry, Shandong Baolai-Leelai Bio-Tech Co., Ltd, Taian, China
| | - Pengxiang Zhao
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China
| | - Jianguo Zhao
- Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Yanfang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Heng Wang
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
17
|
Dos Santos BG, Brisnovali NF, Goedeke L. Biochemical basis and therapeutic potential of mitochondrial uncoupling in cardiometabolic syndrome. Biochem J 2024; 481:1831-1854. [PMID: 39630236 DOI: 10.1042/bcj20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria, allowing for adjustments in cellular energy metabolism to maintain metabolic homeostasis. Small molecule uncouplers have been extensively studied for their potential to increase metabolic rate, and recent research has focused on developing safe and effective mitochondrial uncoupling agents for the treatment of obesity and cardiometabolic syndrome (CMS). Here, we provide a brief overview of CMS and cover the recent mechanisms by which chemical uncouplers regulate CMS-associated risk-factors and comorbidities, including dyslipidemia, insulin resistance, steatotic liver disease, type 2 diabetes, and atherosclerosis. Additionally, we review the current landscape of uncoupling agents, focusing on repurposed FDA-approved drugs and compounds in advanced preclinical or early-stage clinical development. Lastly, we discuss recent molecular insights by which chemical uncouplers enhance cellular energy expenditure, highlighting their potential as a new addition to the current CMS drug landscape, and outline several limitations that need to be addressed before these agents can successfully be introduced into clinical practice.
Collapse
Affiliation(s)
- Bernardo Gindri Dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Niki F Brisnovali
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| |
Collapse
|
18
|
Ge X, Wang Z, Song Y, Meng H. Effect of bariatric surgery on mitochondrial remodeling in human skeletal muscle: a narrative review. Front Endocrinol (Lausanne) 2024; 15:1488715. [PMID: 39655345 PMCID: PMC11625573 DOI: 10.3389/fendo.2024.1488715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
In the context of obesity epidemic as a major global public health challenge, bariatric surgery stands out for its significant and long-lasting effectiveness in addressing severe obesity and its associated comorbidities. Skeletal muscle mitochondrial function, which is crucial for maintaining metabolic health, tends to deteriorate with obesity. This review summarized current evidence on the effects of bariatric surgery on skeletal muscle mitochondrial function, with a focus on mitochondrial content, mitochondrial dynamics, mitochondrial respiration and mitochondrial markers in glucolipid metabolism. In conclusion, bariatric surgery impacts skeletal muscle through pathways related to mitochondrial function and induces mitochondrial remodeling in skeletal muscle in various aspects. Future studies should focus on standardized methodologies, larger sample sizes, and better control of confounding factors to further clarify the role of mitochondrial remodeling in the therapeutic benefits of bariatric surgery.
Collapse
Affiliation(s)
- Xiaochuan Ge
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China
| | - Zhe Wang
- Department of General Surgery & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Yafeng Song
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China
| | - Hua Meng
- Department of General Surgery & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
19
|
Xu S, Deng Y, Li C, Hu Y, Zhang Q, Zhuang B, Mosongo I, Jiang J, Yang J, Hu K. Metabolomics and molecular docking-directed anti-obesity study of the ethanol extract from Gynostemma pentaphyllum (Thunb.) Makino. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118577. [PMID: 39019414 DOI: 10.1016/j.jep.2024.118577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is an oriental herb documented to treat many diseases, including obesity, hyperlipidemia, metabolic syndromes and aging. However, the anti-obesity mechanism of G. pentaphyllum remains poorly understood. AIM OF THE STUDY To reveal the anti-obesity mechanism of G. pentaphyllum Extract (GPE) in High-Fat Diet (HFD)-induced obese mice through untargeted metabolomics, Real-Time Quantitative PCR (RT-qPCR), and immunohistochemical experiments. Additionally, to tentatively identify the active constituents through LC-MS/MS and molecular docking approaches. MATERIALS AND METHODS GPE was prepared using ethanol reflux and purified by HP-20 macroporous resins. The components of GPE were identified by Liquid Chromatography- Mass Spectrometry (LC-MS) system. Forty-two C57BL/6 J mice were randomly and evenly divided into six groups, with seven mice in each group: the control group, obese model group, Beinaglutide group (positive control), and GPE low, medium, and high-dose groups (50 mg/kg, 100 mg/kg, and 200 mg/kg of 80% ethanol extract). Body weight, liver weight, blood glucose, blood lipids, and liver histopathological changes were assessed. Untargeted metabolomics was employed to characterize metabolic changes in obese mice after GPE treatment. The expression of genes related to differential metabolites was verified using Real-Time Quantitative PCR (RT-qPCR) and immunohistochemical experiments. The constituents with anti-obesity effects from GPE were tentatively identified through molecular docking approaches. RESULTS A total of 17 compounds were identified in GPE. GPE significantly lowered body weight, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in obese mice and reduced liver weight and hepatic steatosis. Serum metabolomics identified 20 potential biomarkers associated with GPE treatment in obese mice, primarily related to tryptophan metabolism. GPE treatment downregulated the expression of Slc6a19 and Tph1 and upregulated Ucp1 expression. Molecular docking illustrated that compounds such as 20(R)-ginsenoside Rg3, Araliasaponin I, Damulin B, Gypenoside L, Oleifolioside B, and Tricin7-neohesperidoside identified in GPE exhibited favorable interaction with Tph1. CONCLUSION The extract of G. pentaphyllum can inhibit the absorption of tryptophan and its conversion to 5-HT through the Slc6a19/Tph1 pathway, upregulating the expression of Ucp1, thereby promoting thermogenesis in brown adipose tissue, facilitating weight loss, and mitigating symptoms of fatty liver. Triterpenoids such as Araliasaponin I, identified in GPE, could be the potential inhibitor of Tph1 and responsible for the anti-obesity activities.
Collapse
Affiliation(s)
- Suyun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Yaling Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Caihong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Youfan Hu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qi Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Baojun Zhuang
- Yunnan Province Hospital of Traditional Chinese Medicine, Kunming, Yunnan, 650021, China
| | - Isidore Mosongo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiaming Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
20
|
Shin YC, Latorre-Muro P, Djurabekova A, Zdorevskyi O, Bennett CF, Burger N, Song K, Xu C, Paulo JA, Gygi SP, Sharma V, Liao M, Puigserver P. Structural basis of respiratory complex adaptation to cold temperatures. Cell 2024; 187:6584-6598.e17. [PMID: 39395414 PMCID: PMC11601890 DOI: 10.1016/j.cell.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain. Yet, the structural basis of respiratory complex adaptation upon cold exposure remains elusive. Herein, we combined thermoregulatory physiology and cryoelectron microscopy (cryo-EM) to study endogenous respiratory supercomplexes from mice exposed to different temperatures. A cold-induced conformation of CI:III2 (termed type 2) supercomplex was identified with a ∼25° rotation of CIII2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting catalytic states that favor electron transfer. Large-scale supercomplex simulations in mitochondrial membranes reveal how lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations, and biochemical analyses unveil the thermoregulatory mechanisms and dynamics of increased respiratory capacity in brown fat at the structural and energetic level.
Collapse
Affiliation(s)
- Young-Cheul Shin
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Amina Djurabekova
- Department of Physics, University of Helsinki, Helsinki 00014, Finland
| | | | - Christopher F Bennett
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nils Burger
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kangkang Song
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki 00014, Finland; HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Maofu Liao
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
21
|
Mori Y, Ohta A, Kuhara A. Molecular, neural, and tissue circuits underlying physiological temperature responses in Caenorhabditis elegans. Neurosci Res 2024:S0168-0102(24)00134-2. [PMID: 39547476 DOI: 10.1016/j.neures.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 11/17/2024]
Abstract
Temperature is a constant environmental factor on Earth, acting as a continuous stimulus that organisms must constantly perceive to survive. Organisms possess neural systems that receive various types of environmental information, including temperature, and mechanisms for adapting to their surroundings. This paper provides insights into the neural circuits and intertissue networks involved in physiological temperature responses, specifically the mechanisms of "cold tolerance" and "temperature acclimation," based on an analysis of the nematode Caenorhabditis elegans as an experimental system for neural and intertissue information processing.
Collapse
Affiliation(s)
- Yukina Mori
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
22
|
Lu WH, Chen HF, King PC, Peng C, Huang YS. CPEB2-activated Prdm16 translation promotes brown adipocyte function and prevents obesity. Mol Metab 2024; 89:102034. [PMID: 39305947 PMCID: PMC11462068 DOI: 10.1016/j.molmet.2024.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) plays an important role in mammalian thermogenesis through the expression of uncoupling protein 1 (UCP1). Our previous study identified cytoplasmic polyadenylation element binding protein 2 (CPEB2) as a key regulator that activates the translation of Ucp1 with a long 3'-untranslated region (Ucp1L) in response to adrenergic signaling. Mice lacking CPEB2 or Ucp1L exhibited reduced UCP1 expression and impaired thermogenesis; however, only CPEB2-null mice displayed obesogenic phenotypes. Hence, this study aims to investigate how CPEB2-controlled translation impacts body weight. METHODS Body weight measurements were conducted on mice with global knockout (KO) of CPEB2, UCP1 or Ucp1L, as well as those with conditional knockout of CPEB2 in neurons or adipose tissues. RNA sequencing coupled with bioinformatics analysis was used to identify dysregulated gene expression in CPEB2-deficient BAT. The role of CPEB2 in regulating PRD1-BF1-RIZ1 homologous-domain containing 16 (PRDM16) expression was subsequently confirmed by RT-qPCR, Western blotting, polysomal profiling and luciferase reporter assays. Adeno-associated viruses (AAV) expressing CPEB2 or PRDM16 were delivered into BAT to assess their efficacy in mitigating weight gain in CPEB2-KO mice. RESULTS We validated that defective BAT function contributed to the increased weight gain in CPEB2-KO mice. Transcriptomic profiling revealed upregulated expression of genes associated with muscle development in CPEB2-KO BAT. Given that both brown adipocytes and myocytes stem from myogenic factor 5-expressing precursors, with their cell-fate differentiation regulated by PRDM16, we identified that Prdm16 was translationally upregulated by CPEB2. Ectopic expression of PRDM16 in CPEB2-deprived BAT restored gene expression profiles and decreased weight gain in CPEB2-KO mice. CONCLUSIONS In addition to Ucp1L, activation of Prdm16 translation by CPEB2 is critical for sustaining brown adipocyte function. These findings unveil a new layer of post-transcriptional regulation governed by CPEB2, fine-tuning thermogenic and metabolic activities of brown adipocytes to control body weight.
Collapse
Affiliation(s)
- Wen-Hsin Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Feng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Chih King
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chi Peng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
23
|
Guarnieri AR, Anthony SR, Acharya P, Wen BY, Lanzillotta L, Gavin R, Tranter M. HuR-dependent expression of RyR2 contributes to calcium-mediated thermogenesis in brown adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619637. [PMID: 39484459 PMCID: PMC11527003 DOI: 10.1101/2024.10.22.619637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Several uncoupling protein 1 (UCP1)-independent thermogenic pathways have been described in thermogenic adipose tissue, including calcium-mediated thermogenesis in beige adipocytes via sarco/endoplasmic reticulum ATPase (SERCA). We have previously shown that adipocyte-specific deletion of the RNA binding protein human antigen R (HuR) results in thermogenic dysfunction independent of UCP1 expression. RNA sequencing revealed the downregulation of several genes involved in calcium ion transport upon HuR deletion. The goal of this work was to define the HuR-dependent mechanisms of calcium driven thermogenesis in brown adipocytes. We generated (BAT)-specific HuR-deletion (BAT-HuR -/- ) mice and show that their body weight, glucose tolerance, brown and white adipose tissue weights, and total lipid droplet size were not significantly different compared to wild-type. Similar to our initial findings in Adipo-HuR -/- mice, mice with BAT-specific HuR deletion are cold intolerant following acute thermal challenge at 4°C, demonstrating specificity of acute HuR-dependent thermogenesis to BAT. We also found decreased expression of ryanodine receptor 2 (RyR2), but no changes in RyR2, SERCA1, SERCA2, or UCP1 expression, in BAT from BAT-HuR -/- mice. Next, we used Fluo-4 calcium indicator dye to show that genetic deletion or pharmacological inhibition of HuR blunts the increase in cytosolic calcium concentration in SVF-derived primary brown adipocytes. Moreover, we saw a similar blunting in β-adrenergic-mediated heat generation, as assessed by ERtherm AC fluorescence, in SVF-derived brown adipocytes following HuR inhibition or deletion. Mechanistically, we show that HuR directly binds and reduces the decay rate of RyR2 mRNA in brown adipocytes, and stabilization of RyR2 via S107 rescues β-adrenergic-mediated cytosolic calcium increase and heat generation in HuR deficient brown adipocytes. In conclusion, our results suggest that HuR-dependent control of RyR2 expression plays a significant role in the thermogenic function of brown adipose tissue through modulation of SR calcium cycling.
Collapse
|
24
|
Wang T, Sharma AK, Wu C, Maushart CI, Ghosh A, Yang W, Stefanicka P, Kovanicova Z, Ukropec J, Zhang J, Arnold M, Klug M, De Bock K, Schneider U, Popescu C, Zheng B, Ding L, Long F, Dewal RS, Moser C, Sun W, Dong H, Takes M, Suelberg D, Mameghani A, Nocito A, Zech CJ, Chirindel A, Wild D, Burger IA, Schön MR, Dietrich A, Gao M, Heine M, Sun Y, Vargas-Castillo A, Søberg S, Scheele C, Balaz M, Blüher M, Betz MJ, Spiegelman BM, Wolfrum C. Single-nucleus transcriptomics identifies separate classes of UCP1 and futile cycle adipocytes. Cell Metab 2024; 36:2130-2145.e7. [PMID: 39084216 DOI: 10.1016/j.cmet.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Adipose tissue can recruit catabolic adipocytes that utilize chemical energy to dissipate heat. This process occurs either by uncoupled respiration through uncoupling protein 1 (UCP1) or by utilizing ATP-dependent futile cycles (FCs). However, it remains unclear how these pathways coexist since both processes rely on the mitochondrial membrane potential. Utilizing single-nucleus RNA sequencing to deconvolute the heterogeneity of subcutaneous adipose tissue in mice and humans, we identify at least 2 distinct subpopulations of beige adipocytes: FC-adipocytes and UCP1-beige adipocytes. Importantly, we demonstrate that the FC-adipocyte subpopulation is highly metabolically active and utilizes FCs to dissipate energy, thus contributing to thermogenesis independent of Ucp1. Furthermore, FC-adipocytes are important drivers of systemic energy homeostasis and linked to glucose metabolism and obesity resistance in humans. Taken together, our findings identify a noncanonical thermogenic adipocyte subpopulation, which could be an important regulator of energy homeostasis in mammals.
Collapse
Affiliation(s)
- Tongtong Wang
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Chunyan Wu
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Claudia Irene Maushart
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Adhideb Ghosh
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Patrik Stefanicka
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Kovanicova
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jing Zhang
- Laboratory of Exercise and Health, Health Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Myrtha Arnold
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Manuel Klug
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Health Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Ulrich Schneider
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Cristina Popescu
- Department of Nuclear Medicine, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Bo Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lianggong Ding
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Fen Long
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Revati Sumukh Dewal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Caroline Moser
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Wenfei Sun
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Hua Dong
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Martin Takes
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Dominique Suelberg
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Alexander Mameghani
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Antonio Nocito
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Christoph Johannes Zech
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Alin Chirindel
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Damian Wild
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland; Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Michael R Schön
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe, Germany
| | - Arne Dietrich
- Clinic for Visceral, Transplant and Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Min Gao
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ariana Vargas-Castillo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Susanna Søberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Miroslav Balaz
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia; Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany & Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany.
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland.
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
25
|
Undrakhbayar E, Zhang XY, Wang CZ, Wang DH. The function of brown adipose tissue at different sites of the body in Brandt's voles during cold acclimation. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111655. [PMID: 38723743 DOI: 10.1016/j.cbpa.2024.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Ambient temperatures have great impacts on thermoregulation of small mammals. Brown adipose tissue (BAT), an obligative thermogenic tissue for small mammals, is localized not only in the interscapular depot (iBAT), but also in supraclavicular, infra/subscapular, cervical, paravertebral, and periaortic depots. The iBAT is known for its cold-induced thermogenesis, however, less has been paid attention to the function of BAT at other sites. Here, we investigated the function of BAT at different sites of the body during cold acclimation in a small rodent species. As expected, Brandt's voles (Lasiopodomys brandtii) consumed more food and reduced the body mass gain when they were exposed to cold. The voles increased resting metabolic rate and maintained a relatively lower body temperature in the cold (36.5 ± 0.27 °C) compared to those in the warm condition (37.1 ± 0.36 °C). During cold acclimation, the uncoupling protein 1 (UCP1) increased in aBAT (axillary), cBAT (anterior cervical), iBAT (interscapular), nBAT (supraclavicular), and sBAT (suprascapular). The levels of proliferating cell nuclear antigen (PCNA), a marker for cell proliferation, were higher in cBAT and iBAT in the cold than in the warm group. The pAMPK/AMPK and pCREB/CREB were increased in cBAT and iBAT during cold acclimation, respectively. These data indicate that these different sites of BAT play the cold-induced thermogenic function for small mammals.
Collapse
Affiliation(s)
- Enkhbat Undrakhbayar
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
26
|
Bardova K, Janovska P, Vavrova A, Kopecky J, Zouhar P. Adaptive Induction of Nonshivering Thermogenesis in Muscle Rather Than Brown Fat Could Counteract Obesity. Physiol Res 2024; 73:S279-S294. [PMID: 38752772 PMCID: PMC11412341 DOI: 10.33549/physiolres.935361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Warm-blooded animals such as birds and mammals are able to protect stable body temperature due to various thermogenic mechanisms. These processes can be facultative (occurring only under specific conditions, such as acute cold) and adaptive (adjusting their capacity according to long-term needs). They can represent a substantial part of overall energy expenditure and, therefore, affect energy balance. Classical mechanisms of facultative thermogenesis include shivering of skeletal muscles and (in mammals) non-shivering thermogenesis (NST) in brown adipose tissue (BAT), which depends on uncoupling protein 1 (UCP1). Existence of several alternative thermogenic mechanisms has been suggested. However, their relative contribution to overall heat production and the extent to which they are adaptive and facultative still needs to be better defined. Here we focus on comparison of NST in BAT with thermogenesis in skeletal muscles, including shivering and NST. We present indications that muscle NST may be adaptive but not facultative, unlike UCP1-dependent NST. Due to its slow regulation and low energy efficiency, reflecting in part the anatomical location, induction of muscle NST may counteract development of obesity more effectively than UCP1-dependent thermogenesis in BAT.
Collapse
Affiliation(s)
- K Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic. or
| | | | | | | | | |
Collapse
|
27
|
Baskaran P, Gustafson N, Chavez N. TRPV1 Activation Antagonizes High-Fat Diet-Induced Obesity at Thermoneutrality and Enhances UCP-1 Transcription via PRDM-16. Pharmaceuticals (Basel) 2024; 17:1098. [PMID: 39204203 PMCID: PMC11359803 DOI: 10.3390/ph17081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Body weight is a balance between energy intake and energy expenditure. Energy expenditure is mainly governed by physical activity and adaptive thermogenesis. Adaptive dietary thermogenesis in brown and beige adipose tissue occurs through mitochondrial uncoupling protein (UCP-1). Laboratory mice, when housed at an ambient temperature of 22-24 °C, maintain their body temperature by dietary thermogenesis, eating more food compared to thermoneutrality. Humans remain in the thermoneutral zone (TNZ) without expending extra energy to maintain normal body temperature. TRPV1 activation by capsaicin (CAP) inhibited weight gain in mice housed at ambient temperature by activating UCP-1-dependent adaptive thermogenesis. Hence, we evaluated the effect of CAP feeding on WT and UCP-1-/- mice maintained under thermoneutral conditions. Our research presents novel findings that TRPV1 activation by CAP at thermoneutrality counters obesity in WT mice and promotes PRDM-16-dependent UCP-1 transcription. CAP fails to inhibit weight gain in UCP-1-/- mice housed at thermoneutrality and in adipose tissue-specific PRDM-16-/- mice. In vitro, capsaicin treatment increases UCP-1 transcription in PRDM-16 overexpressing cells. Our data indicate for the first time that TRPV1 activation counters obesity at thermoneutrality permissive for UCP-1 and the enhancement of PRDM-16 is not beneficial in the absence of UCP-1.
Collapse
Affiliation(s)
| | - Noah Gustafson
- School of Pharmacy, University of Wyoming, Wyoming, Laramie, WY 82071, USA; (N.G.); (N.C.)
| | - Nicolas Chavez
- School of Pharmacy, University of Wyoming, Wyoming, Laramie, WY 82071, USA; (N.G.); (N.C.)
| |
Collapse
|
28
|
Inoue SI, Emmett MJ, Lim HW, Midha M, Richter HJ, Celwyn IJ, Mehmood R, Chondronikola M, Klein S, Hauck AK, Lazar MA. Short-term cold exposure induces persistent epigenomic memory in brown fat. Cell Metab 2024; 36:1764-1778.e9. [PMID: 38889724 PMCID: PMC11305953 DOI: 10.1016/j.cmet.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 h) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1α along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1α prevented the protective effect of STEMCT. Remarkably, this protection lasted for up to 7 days. Transcriptional activator C/EBPβ was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Adeno-associated virus-mediated knockdown of BAT C/EBPβ in HDAC3 BAT KO mice erased the persistent memory of STEMCT, revealing the existence of a C/EBPβ-dependent and HDAC3-independent cold-adaptive epigenomic memory.
Collapse
Affiliation(s)
- Shin-Ichi Inoue
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew J Emmett
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hee-Woong Lim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Mohit Midha
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah J Richter
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Isaac J Celwyn
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rashid Mehmood
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Maria Chondronikola
- Institute of Metabolic Science-Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Samuel Klein
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy K Hauck
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Cheng Y, Liang S, Zhang S, Hui X. Thermogenic Fat as a New Obesity Management Tool: From Pharmaceutical Reagents to Cell Therapies. Biomedicines 2024; 12:1474. [PMID: 39062047 PMCID: PMC11275133 DOI: 10.3390/biomedicines12071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is a complex medical condition caused by a positive imbalance between calorie intake and calorie consumption. Brown adipose tissue (BAT), along with the newly discovered "brown-like" adipocytes (called beige cells), functions as a promising therapeutic tool to ameliorate obesity and metabolic disorders by burning out extra nutrients in the form of heat. Many studies in animal models and humans have proved the feasibility of this concept. In this review, we aim to summarize the endeavors over the last decade to achieve a higher number/activity of these heat-generating adipocytes. In particular, pharmacological compounds, especially agonists to the β3 adrenergic receptor (β3-AR), are reviewed in terms of their feasibility and efficacy in elevating BAT function and improving metabolic parameters in human subjects. Alternatively, allograft transplantation of BAT and the transplantation of functional brown or beige adipocytes from mesenchymal stromal cells or human induced pluripotent stem cells (hiPSCs) make it possible to increase the number of these beneficial adipocytes in patients. However, practical and ethical issues still need to be considered before the therapy can eventually be applied in the clinical setting. This review provides insights and guidance on brown- and beige-cell-based strategies for the management of obesity and its associated metabolic comorbidities.
Collapse
Affiliation(s)
- Ying Cheng
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China;
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Shiqing Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Shuhan Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| |
Collapse
|
30
|
Chu DT, Thi HV, Bui NL, Le NH. The effects of a diet with high fat content from lard on the health and adipose-markers' mRNA expression in mice. Sci Prog 2024; 107:368504241269431. [PMID: 39090965 PMCID: PMC11297511 DOI: 10.1177/00368504241269431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Pork is one type of the most frequently consumed meat with about 30% globally. Thus, the questions regarding to the health effects of diet with high fat content from lard are raised. Here, we developed a model of mice fed with high fat (HF) from lard to investigate and have more insights on the effects of long-time feeding with HF on health. The results showed that 66 days on HF induced a significant gain in the body weight of mice, and this weight gain was associated to the deposits in the white fat, but not brown fat. The glucose tolerance, not insulin resistance, in mice was decreased by the HF diet, and this was accompanied with significantly higher blood levels of total cholesterol and triglycerides. Furthermore, the weight gains in mice fed with HF seemed to link to increased mRNA levels of adipose biomarkers in lipogenesis, including Acly and Acaca genes, in white fat tissues. Thus, our study shows that a diet with high fat from lard induced the increase in body weight, white fat depots' expansion, disruption of glucose tolerance, blood dyslipidemia, and seemed to start affecting the mRNA expression of some adipose biomarkers in a murine model.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Ngoc-Hoan Le
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| |
Collapse
|
31
|
Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab 2024; 36:1184-1203. [PMID: 38565147 DOI: 10.1016/j.cmet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Futile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles. A few established functions of futile cycles are to control metabolic sensitivity, modulate energy homeostasis, and drive adaptive thermogenesis. Yet, the physiological regulation, implication, and pathological relevance of most futile cycles remain poorly studied. In this review, we highlight the abundance and versatility of futile cycles and propose a classification scheme. We further discuss the energetic implications of various futile cycles and their impact on basal metabolic rate, their bona fide and tentative pathophysiological implications, and putative drug interactions.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
32
|
Caggiano EG, Taniguchi CM. UCP2 and pancreatic cancer: conscious uncoupling for therapeutic effect. Cancer Metastasis Rev 2024; 43:777-794. [PMID: 38194152 PMCID: PMC11156755 DOI: 10.1007/s10555-023-10157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Emily G Caggiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Nikolic I, Ruiz-Garrido I, Crespo M, Romero-Becerra R, Leiva-Vega L, Mora A, León M, Rodríguez E, Leiva M, Plata-Gómez AB, Alvarez Flores MB, Torres JL, Hernández-Cosido L, López JA, Vázquez J, Efeyan A, Martin P, Marcos M, Sabio G. Lack of p38 activation in T cells increases IL-35 and protects against obesity by promoting thermogenesis. EMBO Rep 2024; 25:2635-2661. [PMID: 38730210 PMCID: PMC11169359 DOI: 10.1038/s44319-024-00149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Obesity is characterized by low-grade inflammation, energy imbalance and impaired thermogenesis. The role of regulatory T cells (Treg) in inflammation-mediated maladaptive thermogenesis is not well established. Here, we find that the p38 pathway is a key regulator of T cell-mediated adipose tissue (AT) inflammation and browning. Mice with T cells specifically lacking the p38 activators MKK3/6 are protected against diet-induced obesity, leading to an improved metabolic profile, increased browning, and enhanced thermogenesis. We identify IL-35 as a driver of adipocyte thermogenic program through the ATF2/UCP1/FGF21 pathway. IL-35 limits CD8+ T cell infiltration and inflammation in AT. Interestingly, we find that IL-35 levels are reduced in visceral fat from obese patients. Mechanistically, we demonstrate that p38 controls the expression of IL-35 in human and mouse Treg cells through mTOR pathway activation. Our findings highlight p38 signaling as a molecular orchestrator of AT T cell accumulation and function.
Collapse
Affiliation(s)
- Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
| | - Irene Ruiz-Garrido
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - María Crespo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | | | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Ana Belén Plata-Gómez
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | | | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, 37007, Spain
- Complejo Asistencial de Zamora, Zamora, 49022, Spain
| | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit, Department of General Surgery, University Hospital of Salamanca, Department of Surgery, University of Salamanca, Salamanca, 37007, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Alejo Efeyan
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, 37007, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain.
| |
Collapse
|
34
|
Škop V, Liu N, Xiao C, Stinson E, Chen KY, Hall KD, Piaggi P, Gavrilova O, Reitman ML. Beyond day and night: The importance of ultradian rhythms in mouse physiology. Mol Metab 2024; 84:101946. [PMID: 38657735 PMCID: PMC11070603 DOI: 10.1016/j.molmet.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Emma Stinson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin D Hall
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Hu D, Zhang H, Liu Z, Ibáñez CF, Tie C, Xie M. Sphingomyelin is involved in regulating UCP1-mediated nonshivering thermogenesis. J Lipid Res 2024; 65:100559. [PMID: 38729351 PMCID: PMC11166878 DOI: 10.1016/j.jlr.2024.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Adipogenesis is one of the major mechanisms for adipose tissue expansion, during which spindle-shaped mesenchymal stem cells commit to the fate of adipocyte precursors and differentiate into round-shaped fat-laden adipocytes. Here, we investigated the lipidomic profile dynamics of ex vivo-differentiated brown and white adipocytes derived from the stromal vascular fractions of interscapular brown (iBAT) and inguinal white adipose tissues. We showed that sphingomyelin was specifically enriched in terminally differentiated brown adipocytes, but not white adipocytes. In line with this, freshly isolated adipocytes of iBAT showed higher sphingomyelin content than those of inguinal white adipose tissue. Upon cold exposure, sphingomyelin abundance in iBAT gradually decreased in parallel with reduced sphingomyelin synthase 1 protein levels. Cold-exposed animals treated with an inhibitor of sphingomyelin hydrolases failed to maintain core body temperature and showed reduced oxygen consumption and iBAT UCP1 levels. Conversely, blockade of sphingomyelin synthetic enzymes resulted in enhanced nonshivering thermogenesis, reflected by elevated body temperature and UCP1 levels. Taken together, our results uncovered a relation between sphingomyelin abundance and fine-tuning of UCP1-mediated nonshivering thermogenesis.
Collapse
Affiliation(s)
- Detian Hu
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhen Liu
- Yuanpei College, Peking University, Beijing, China
| | - Carlos F Ibáñez
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, China; School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Cai Tie
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Beijing, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Meng Xie
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China; School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China; Department of Biosciences and Nutrition, Karolinska Institute, Flemingsberg, Sweden.
| |
Collapse
|
36
|
Tanimoto H, Umekawa Y, Takahashi H, Goto K, Ito K. Gene expression and metabolite levels converge in the thermogenic spadix of skunk cabbage. PLANT PHYSIOLOGY 2024; 195:1561-1585. [PMID: 38318875 PMCID: PMC11142342 DOI: 10.1093/plphys/kiae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
The inflorescence (spadix) of skunk cabbage (Symplocarpus renifolius) is strongly thermogenic and can regulate its temperature at around 23 °C even when the ambient temperature drops below freezing. To elucidate the mechanisms underlying developmentally controlled thermogenesis and thermoregulation in skunk cabbage, we conducted a comprehensive transcriptome and metabolome analysis across 3 developmental stages of spadix development. Our RNA-seq analysis revealed distinct groups of expressed genes, with selenium-binding protein 1/methanethiol oxidase (SBP1/MTO) exhibiting the highest levels in thermogenic florets. Notably, the expression of alternative oxidase (AOX) was consistently high from the prethermogenic stage through the thermogenic stage in the florets. Metabolome analysis showed that alterations in nucleotide levels correspond with the developmentally controlled and tissue-specific thermogenesis of skunk cabbage, evident by a substantial increase in AMP levels in thermogenic florets. Our study also reveals that hydrogen sulfide, a product of SBP1/MTO, inhibits cytochrome c oxidase (COX)-mediated mitochondrial respiration, while AOX-mediated respiration remains relatively unaffected. Specifically, at lower temperatures, the inhibitory effect of hydrogen sulfide on COX-mediated respiration increases, promoting a shift toward the dominance of AOX-mediated respiration. Finally, despite the differential regulation of genes and metabolites throughout spadix development, we observed a convergence of gene expression and metabolite accumulation patterns during thermogenesis. This synchrony may play a key role in developmentally regulated thermogenesis. Moreover, such convergence during the thermogenic stage in the spadix may provide a solid molecular basis for thermoregulation in skunk cabbage.
Collapse
Affiliation(s)
- Haruka Tanimoto
- United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Yui Umekawa
- Department of Planning and General Affairs, Akita Research Institute of Food and Brewing, Araya-machi, Akita 010-1623, Japan
| | - Hideyuki Takahashi
- Department of Agriculture, School of Agriculture, Tokai University, Kumamoto 862-8652, Japan
| | - Kota Goto
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Kikukatsu Ito
- United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate 020-8550, Japan
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
37
|
Chand S, Tripathi AS, Dewani AP, Sheikh NWA. Molecular targets for management of diabetes: Remodelling of white adipose to brown adipose tissue. Life Sci 2024; 345:122607. [PMID: 38583857 DOI: 10.1016/j.lfs.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.
Collapse
Affiliation(s)
- Shushmita Chand
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, ERA College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India.
| | - Anil P Dewani
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | | |
Collapse
|
38
|
Sharma AK, Khandelwal R, Wolfrum C. Futile lipid cycling: from biochemistry to physiology. Nat Metab 2024; 6:808-824. [PMID: 38459186 DOI: 10.1038/s42255-024-01003-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
In the healthy state, the fat stored in our body isn't just inert. Rather, it is dynamically mobilized to maintain an adequate concentration of fatty acids (FAs) in our bloodstream. Our body tends to produce excess FAs to ensure that the FA availability is not limiting. The surplus FAs are actively re-esterified into glycerides, initiating a cycle of breakdown and resynthesis of glycerides. This cycle consumes energy without generating a new product and is commonly referred to as the 'futile lipid cycle' or the glyceride/FA cycle. Contrary to the notion that it's a wasteful process, it turns out this cycle is crucial for systemic metabolic homeostasis. It acts as a control point in intra-adipocyte and inter-organ cross-talk, a metabolic rheostat, an energy sensor and a lipid diversifying mechanism. In this Review, we discuss the metabolic regulation and physiological implications of the glyceride/FA cycle and its mechanistic underpinnings.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
39
|
Liu Y, Qian SW, Tang Y, Tang QQ. The secretory function of adipose tissues in metabolic regulation. LIFE METABOLISM 2024; 3:loae003. [PMID: 39872218 PMCID: PMC11748999 DOI: 10.1093/lifemeta/loae003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2025]
Abstract
In addition to their pivotal roles in energy storage and expenditure, adipose tissues play a crucial part in the secretion of bioactive molecules, including peptides, lipids, metabolites, and extracellular vesicles, in response to physiological stimulation and metabolic stress. These secretory factors, through autocrine and paracrine mechanisms, regulate various processes within adipose tissues. These processes include adipogenesis, glucose and lipid metabolism, inflammation, and adaptive thermogenesis, all of which are essential for the maintenance of the balance and functionality of the adipose tissue micro-environment. A subset of these adipose-derived secretory factors can enter the circulation and target the distant tissues to regulate appetite, cognitive function, energy expenditure, insulin secretion and sensitivity, gluconeogenesis, cardiovascular remodeling, and exercise capacity. In this review, we highlight the role of adipose-derived secretory factors and their signaling pathways in modulating metabolic homeostasis. Furthermore, we delve into the alterations in both the content and secretion processes of these factors under various physiological and pathological conditions, shedding light on potential pharmacological treatment strategies for related diseases.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
40
|
Dong M, Cheng Z, Jin W. UCP1 and CKB are parallel players in BAT. Cell Metab 2024; 36:459-460. [PMID: 38447527 DOI: 10.1016/j.cmet.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
It is generally believed that the contributions of the UCP1-independent thermogenic pathways are secondary to UCP1-mediated thermogenesis in BAT. Now, Rahbani et al. demonstrate in vivo that adaptive thermogenesis in brown adipose tissue is regulated by UCP1 and CKB in parallel.
Collapse
Affiliation(s)
- Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Road No. 5, Chaoyang District, Beijing 100101, China
| | - Ziyu Cheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Road No. 5, Chaoyang District, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Road No. 5, Chaoyang District, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Rahbani JF, Bunk J, Lagarde D, Samborska B, Roesler A, Xiao H, Shaw A, Kaiser Z, Braun JL, Geromella MS, Fajardo VA, Koza RA, Kazak L. Parallel control of cold-triggered adipocyte thermogenesis by UCP1 and CKB. Cell Metab 2024; 36:526-540.e7. [PMID: 38272036 DOI: 10.1016/j.cmet.2024.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1-/-). However, germline Ucp1-/- mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption. We find that, although germline Ucp1-/- mice succumb to cold-induced hypothermia with complete penetrance, most mice with the inducible deletion of Ucp1 maintain homeothermy in the cold. However, inducible adipocyte-selective co-deletion of Ucp1 and creatine kinase b (Ckb, an effector of UCP1-independent thermogenesis) exacerbates cold intolerance. Following UCP1 deletion or UCP1/CKB co-deletion from mature adipocytes, moderate cold exposure triggers the regeneration of mature brown adipocytes that coordinately restore UCP1 and CKB expression. Our findings suggest that thermogenic adipocytes utilize non-paralogous protein redundancy-through UCP1 and CKB-to promote cold-induced energy dissipation.
Collapse
Affiliation(s)
- Janane F Rahbani
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jakub Bunk
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Damien Lagarde
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Bozena Samborska
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Anna Roesler
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Abhirup Shaw
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Zafir Kaiser
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Mia S Geromella
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Robert A Koza
- MaineHealth Institute for Research, Scarborough, ME 04074, USA
| | - Lawrence Kazak
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
42
|
Stanic S, Bardova K, Janovska P, Rossmeisl M, Kopecky J, Zouhar P. Prolonged FGF21 treatment increases energy expenditure and induces weight loss in obese mice independently of UCP1 and adrenergic signaling. Biochem Pharmacol 2024; 221:116042. [PMID: 38325495 DOI: 10.1016/j.bcp.2024.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Fibroblast growth factor 21 (FGF21) reduces body weight, which was attributed to induced energy expenditure (EE). Conflicting data have been published on the role of uncoupling protein 1 (UCP1) in this effect. Therefore, we aimed to revisit the thermoregulatory effects of FGF21 and their implications for body weight regulation. We found that an 8-day treatment with FGF21 lowers body weight to similar extent in both wildtype (WT) and UCP1-deficient (KO) mice fed high-fat diet. In WT mice, this effect is solely due to increased EE, associated with a strong activation of UCP1 and with excess heat dissipated through the tail. This thermogenesis takes place in the interscapular region and can be attenuated by a β-adrenergic inhibitor propranolol. In KO mice, FGF21-induced weight loss correlates with a modest increase in EE, which is independent of adrenergic signaling, and with a reduced energy intake. Interestingly, the gene expression profile of interscapular brown adipose tissue (but not subcutaneous white adipose tissue) of KO mice is massively affected by FGF21, as shown by increased expression of genes encoding triacylglycerol/free fatty acid cycle enzymes. Thus, FGF21 elicits central thermogenic and pyretic effects followed by a concomitant increase in EE and body temperature, respectively. The associated weight loss is strongly dependent on UCP1-based thermogenesis. However, in the absence of UCP1, alternative mechanisms of energy dissipation may contribute, possibly based on futile triacylglycerol/free fatty acid cycling in brown adipose tissue and reduced food intake.
Collapse
Affiliation(s)
- Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Faculty of Science, Charles University in Prague, Vinicna 7, Prague 128 44, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| |
Collapse
|
43
|
Winn NC, Schleh MW, Garcia JN, Lantier L, McGuinness OP, Blair JA, Hasty AH, Wasserman DH. Insulin at the intersection of thermoregulation and glucose homeostasis. Mol Metab 2024; 81:101901. [PMID: 38354854 PMCID: PMC10877958 DOI: 10.1016/j.molmet.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
Mammals are protected from changes in environmental temperature by altering energetic processes that modify heat production. Insulin is the dominant stimulus of glucose uptake and metabolism, which are fundamental for thermogenic processes. The purpose of this work was to determine the interaction of ambient temperature induced changes in energy expenditure (EE) on the insulin sensitivity of glucose fluxes. Short-term and adaptive responses to thermoneutral temperature (TN, ∼28 °C) and room (laboratory) temperature (RT, ∼22 °C) were studied in mice. This range of temperature does not cause detectable changes in circulating catecholamines or shivering and postabsorptive glucose homeostasis is maintained. We tested the hypothesis that a decrease in EE that occurs with TN causes insulin resistance and that this reduction in insulin action and EE is reversed upon short term (<12h) transition to RT. Insulin-stimulated glucose disposal (Rd) and tissue-specific glucose metabolic index were assessed combining isotopic tracers with hyperinsulinemic-euglycemic clamps. EE and insulin-stimulated Rd are both decreased (∼50%) in TN-adapted vs RT-adapted mice. When RT-adapted mice are switched to TN, EE rapidly decreases and Rd is reduced by ∼50%. TN-adapted mice switched to RT exhibit a rapid increase in EE, but whole-body insulin-stimulated Rd remains at the low rates of TN-adapted mice. In contrast, whole body glycolytic flux rose with EE. This higher EE occurs without increasing glucose uptake from the blood, but rather by diverting glucose from glucose storage to glycolysis. In addition to adaptations in insulin action, 'insulin-independent' glucose uptake in brown fat is exquisitely sensitive to thermoregulation. These results show that insulin action adjusts to non-stressful changes in ambient temperature to contribute to the support of body temperature homeostasis without compromising glucose homeostasis.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jamie N Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Joslin A Blair
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| |
Collapse
|
44
|
Naren Q, Lindsund E, Bokhari MH, Pang W, Petrovic N. Differential responses to UCP1 ablation in classical brown versus beige fat, despite a parallel increase in sympathetic innervation. J Biol Chem 2024; 300:105760. [PMID: 38367663 PMCID: PMC10944106 DOI: 10.1016/j.jbc.2024.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.
Collapse
Affiliation(s)
- Qimuge Naren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Erik Lindsund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Muhammad Hamza Bokhari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
45
|
Anderson JM, Arnold WD, Huang W, Ray A, Owendoff G, Cao L. Long-term effects of a fat-directed FGF21 gene therapy in aged female mice. Gene Ther 2024; 31:95-104. [PMID: 37699965 DOI: 10.1038/s41434-023-00422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Fibroblast growth factor 21 (FGF21) has been developed as a potential therapeutic agent for metabolic syndromes. Moreover, FGF21 is considered a pro-longevity hormone because transgenic mice overexpressing FGF21 display extended lifespan, raising the possibility of using FGF21 to promote healthy aging. We recently showed that visceral fat directed FGF21 gene therapy improves metabolic and immune health in insulin resistant BTBR mice. Here, we used a fat directed rAAV-FGF21 vector in 17-month-old female mice to investigate whether long-term FGF21 gene transfer could mitigate aging-related functional decline. Animals with FGF21 treatment displayed a steady, significant lower body weight over 7-month of the study compared to age-matched control mice. FGF21 treatment reduced adiposity and increased relative lean mass and energy expenditure associated with almost 100 folds higher serum level of FGF21. However, those changes were not translated into benefits on muscle function and did not affect metabolic function of liver. Overall, we have demonstrated that a single dose of fat-directed AAV-FGF21 treatment can provide a sustainable, high serum level of FGF21 over long period of time, and mostly influences adipose tissue homeostasis and energy expenditure. High levels of FGF21 alone in aged mice is not sufficient to improve liver or muscle functions.
Collapse
Affiliation(s)
- Jacqueline M Anderson
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - Wei Huang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alissa Ray
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Gregory Owendoff
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
46
|
Dewal RS, Yang FT, Baer LA, Vidal P, Hernandez-Saavedra D, Seculov NP, Ghosh A, Noé F, Togliatti O, Hughes L, DeBari MK, West MD, Soroko R, Sternberg H, Malik NN, Puchulu-Campanella E, Wang H, Yan P, Wolfrum C, Abbott RD, Stanford KI. Transplantation of committed pre-adipocytes from brown adipose tissue improves whole-body glucose homeostasis. iScience 2024; 27:108927. [PMID: 38327776 PMCID: PMC10847743 DOI: 10.1016/j.isci.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Obesity and its co-morbidities including type 2 diabetes are increasing at epidemic rates in the U.S. and worldwide. Brown adipose tissue (BAT) is a potential therapeutic to combat obesity and type 2 diabetes. Increasing BAT mass by transplantation improves metabolic health in rodents, but its clinical translation remains a challenge. Here, we investigated if transplantation of 2-4 million differentiated brown pre-adipocytes from mouse BAT stromal fraction (SVF) or human pluripotent stem cells (hPSCs) could improve metabolic health. Transplantation of differentiated brown pre-adipocytes, termed "committed pre-adipocytes" from BAT SVF from mice or derived from hPSCs improves glucose homeostasis and insulin sensitivity in recipient mice under conditions of diet-induced obesity, and this improvement is mediated through the collaborative actions of the liver transcriptome, tissue AKT signaling, and FGF21. These data demonstrate that transplantation of a small number of brown adipocytes has significant long-term translational and therapeutic potential to improve glucose metabolism.
Collapse
Affiliation(s)
- Revati S. Dewal
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Felix T. Yang
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lisa A. Baer
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pablo Vidal
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Diego Hernandez-Saavedra
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nickolai P. Seculov
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Adhideb Ghosh
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Falko Noé
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Olivia Togliatti
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lexis Hughes
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Megan K. DeBari
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael D. West
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Richard Soroko
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Hal Sternberg
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Nafees N. Malik
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Estella Puchulu-Campanella
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Huabao Wang
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kristin I. Stanford
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
47
|
Shin YC, Latorre-Muro P, Djurabekova A, Zdorevskyi O, Bennett CF, Burger N, Song K, Xu C, Sharma V, Liao M, Puigserver P. Structural basis of respiratory complexes adaptation to cold temperatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575914. [PMID: 38293190 PMCID: PMC10827213 DOI: 10.1101/2024.01.16.575914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain (1, 2). Yet, the structural basis of respiratory complex adaptation to cold remains elusive. Herein we combined thermoregulatory physiology and cryo-EM to study endogenous respiratory supercomplexes exposed to different temperatures. A cold-induced conformation of CI:III 2 (termed type 2) was identified with a ∼25° rotation of CIII 2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting different catalytic states which favor electron transfer. Large-scale supercomplex simulations in lipid membrane reveal how unique lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations and biochemical analyses unveil the mechanisms and dynamics of respiratory adaptation at the structural and energetic level.
Collapse
|
48
|
Okabe K, Sotoma S, Harada Y. Cellular Thermal Biology Using Fluorescent Nanothermometers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:97-108. [PMID: 39289276 DOI: 10.1007/978-981-97-4584-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
It has been known that cells have mechanisms to sense and respond to environmental noxiousness and mild temperature changes, such as heat shock response and thermosensitive TRP channels. Meanwhile, new methods of measuring temperature at the cellular level has recently been developed using fluorescent nanothermometers. Among these thermometers, fluorescent polymeric thermometers and fluorescent nanodiamonds excel in the properties required for intracellular thermometry. By using these novel methods to measure the temperature of single cells in cultures and tissues, it was revealed that spontaneous spatiotemporal temperature fluctuations occur within cells. Furthermore, the temperature fluctuations were related to organelles such as mitochondria and cellular and physiological functions, revealing a close relationship between intracellular temperature and cellular functions.
Collapse
Affiliation(s)
- Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- JST, PRESTO, Saitama, Japan.
| | - Shingo Sotoma
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan.
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, Osaka, Japan
- Center for Quantum Information and Quantum Biology, Osaka, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan
| |
Collapse
|
49
|
Allebrandt Neto EW, Rondon E Silva J, Santos SF, de França Lemes SA, Kawashita NH, Peron Pereira M. The futile creatine cycle and the synthesis of fatty acids in inguinal white adipose tissue from growing rats, submitted to a hypoprotein-hyperglycidic diet for 15 days. Lipids 2024; 59:3-12. [PMID: 38223990 DOI: 10.1002/lipd.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The low-protein, high-carbohydrate (LPHC) diet administered to growing rats soon after weaning, for 15 days, promoted an increase in energy expenditure by uncoupling protein 1 (UCP1) in interscapular brown adipose tissue, and also due to the occurrence of the browning process in the perirenal white adipose tissue (periWAT). However, we believe that inguinal white adipose tissue (ingWAT) may also contribute to energy expenditure through other mechanisms. Therefore, the aim of this work is to investigate the presence of the futile creatine cycle, and the origin of lipids in ingWAT, since that tissue showed an increase in the lipids content in rats submitted to the LPHC diet for 15 days. We observed increases in creatine kinase and alkaline phosphatase activity in ingWAT, of the LPHC animals. The mitochondrial Nicotinamide adenine dinucleotide reduced/nicotinamide adenine dinucleotide oxidized ratio is lower in ingWAT of LPHC animals. In the LPHC animals treated with β-guanidinopropionic acid, the extracellular uptake of creatine in ingWAT was lower, as was the rectal temperature. Regarding lipid metabolism, we observed that in ingWAT, lipolysis in vitro when stimulated with noradrenaline is lower, and there were no changes in baseline levels. In addition, increases in the activity of enzymes were also observed: malic, glucose-6-phosphate dehydrogenase, and ATP-citrate lyase, in addition to an increase in the PPARγ content. The results show the occurrence of the futile creatine cycle in ingWAT, and that the increase in the relative mass may be due to an increase in de novo fatty acid synthesis.
Collapse
Affiliation(s)
| | | | | | | | - Nair Honda Kawashita
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Mayara Peron Pereira
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|
50
|
Yamashita Y, Takeuchi T, Endo Y, Goto A, Uno M, Sakaki S, Yamaguchi Y, Takenaka H, Yamashita H. The effect of Dunaliella tertiolecta supplementation on diet-induced obesity in UCP1-deficient mice. Biosci Biotechnol Biochem 2023; 88:16-25. [PMID: 37777845 DOI: 10.1093/bbb/zbad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
We previously demonstrated that dietary supplementation with Dunaliella tertiolecta (DT) increases uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) and improves diet-induced obesity (DIO) in C57BL/6 J mice at thermoneutrality (30 °C). Here, we investigated whether DT improves DIO in a thermoneutral UCP1-deficient (KO) animal. KO mice were fed a high-fat diet supplemented with DT for 12 weeks. Compared to control group without DT, body weight was significantly reduced in DT group with no difference in food intake. Dunaliella tertiolecta-supplemented mice exhibited lower adiposity and well-maintained multilocular morphology in BAT, in which a significant increase in gene expression of PR domain containing 16 was detected in DT group compared to control group. Moreover, increase in UCP2 level and/or decrease in ribosomal protein S6 phosphorylation were detected in adipose tissues of DT group relative to control group. These results suggest that DT supplementation improves DIO by stimulating UCP1-independent energy dissipation at thermoneutrality.
Collapse
Affiliation(s)
- Yukari Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Tamaki Takeuchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Yuki Endo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Ayumi Goto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Misa Uno
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Setsuko Sakaki
- MAC Gifu Research Institute, MicroAlgae Corporation , Gifu, Japan
| | - Yuji Yamaguchi
- MAC Gifu Research Institute, MicroAlgae Corporation , Gifu, Japan
| | | | - Hitoshi Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|