1
|
Long DW, Tong X. Copulatory mechanism and genital coupling of the longhorn beetle Moechotypadiphysis (Coleoptera, Cerambycidae). Zookeys 2025; 1234:275-290. [PMID: 40290423 PMCID: PMC12022670 DOI: 10.3897/zookeys.1234.140491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/27/2025] [Indexed: 04/30/2025] Open
Abstract
The function of insect external genitalia has played a significant role in exploring insect mating mechanisms and male fertilization strategies. However, due to the privacy of genital coupling, insect copulatory mechanisms have only been investigated in a few insect groups. In this study, we observed the mating behavior using freeze-fixated pairs in copula to reveal the copulatory mechanism of the longhorn beetle Moechotypadiphysis (Pascoe, 1871). At the beginning stage of mating, the male M.diphysis usually takes 30 min to control the female and then extends its median lobe and endophallus. Approximately 80% of males (19/24) of M.diphysis exhibit multiple expansions (the membranous endophallus expands and enters into the female genital tract), ranging from two to five times. There are two types of expansions: short ones lasting for 1.4 to 49 s and long ones ranging from 1.03 to 7.23 min. During copulation, male tarsi continuously grasped the female elytra, thorax, and abdomen to help the male to initiate and maintain copulation. Male genital structures are closely connected to female genital structures: the apical phallomere and flagellum on the male endophallus contacting the bursa copulatrix duct and the spermathecal duct of the female, and the abundant microstructures on the surface of the everted male endophallus directly anchoring the female genital tract. Finally, we discuss the possible reasons for the evolution of their complex mating-related structures. Our research will help to explore the evolutionary mechanisms of insect genital structures.
Collapse
Affiliation(s)
- Dan-Wen Long
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, ChinaGuangxi UniversityNanningChina
| | - Xin Tong
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, ChinaGuangxi UniversityNanningChina
| |
Collapse
|
2
|
Pruvôt C, Armisén D, Roux P, Arnqvist G, Rowe L, Husby A, Khila A. A shared developmental genetic basis for sexually antagonistic male and female adaptations in the toothed water strider. Evol Lett 2025; 9:13-23. [PMID: 39906577 PMCID: PMC11790218 DOI: 10.1093/evlett/qrae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 02/06/2025] Open
Abstract
Sexual conflict can drive the divergence of male and female phenotypes and cross-species comparative analyses have documented patterns of correlated evolution of sex-specific traits that promote the evolutionary interests of the sexes. However, male-female coevolution can be highly dynamic, particularly if the male and female traits share an underlying genetic program. Here, we use water striders, a well-studied model system for sexually antagonistic coevolution, and ask whether sex-specific phenotypic adaptations covary across populations and whether they share a common developmental genetic basis. Using comparative analyses both at the population and species levels, we document an association between a derived male mate-grasping trait and a putative female antigrasping counteradaptation in the toothed water strider Gerris odontogaster. Interestingly, in several populations where males have partly lost their derived grasping trait, females have also reduced their antigrasping adaptation. We used RNAi to show that these male and female traits are both linked to a common developmental genetic program involving Hox- and sex-determination genes, despite the fact that they are different structures on different abdominal segments. Our work illustrates the dynamic nature of sexually antagonistic coevolution and suggests that the pleiotropic nature of developmental genetic programs can blur the distinction between inter- and intralocus genetic conflict.
Collapse
Affiliation(s)
- Claudia Pruvôt
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, USC1370 Institut National de Recherche pour l’Agriculture, l’alimentation et l’Environnement, Lyon 69364, France
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, USC1370 Institut National de Recherche pour l’Agriculture, l’alimentation et l’Environnement, Lyon 69364, France
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Pascale Roux
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, USC1370 Institut National de Recherche pour l’Agriculture, l’alimentation et l’Environnement, Lyon 69364, France
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S3, Canada
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, USC1370 Institut National de Recherche pour l’Agriculture, l’alimentation et l’Environnement, Lyon 69364, France
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Verma T, Das S, Dhodi Lobo S, Mishra AK, Bhattacharyya S, Nandy B. Evolution of mate harm resistance in females from Drosophila melanogaster populations selected for faster development and early reproduction. J Evol Biol 2025; 38:111-121. [PMID: 39460733 DOI: 10.1093/jeb/voae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/22/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
Interlocus sexual conflict is predicted to result in sexually antagonistic coevolution between male competitive traits, which are also female-detrimental, and mate harm resistance (MHR) in females. Little is known about the connection between life history evolution and sexually antagonistic coevolution. Here, we investigated the evolution of MHR in a set of experimentally evolved populations, where mate-harming ability has been shown to have substantially reduced in males as a correlated response to the selection for faster development and early reproduction. We measured mortality and fecundity in females of these populations and those in their matched controls under different male exposure conditions. We observed that the evolved females were more susceptible to mate harm-suffering from significantly higher mortality under continuous exposure to control males within the 20-day assay period. Though these evolved females are known to have shorter lifespan substantially higher mortality was not observed under virgin and single-mating conditions. We used fecundity data to show that this higher mortality in the experimentally evolved females was not due to the cost of egg production and hence can only be attributed to reduced MHR. Further analysis indicated that this decreased MHR is unlikely to be due purely to the smaller size of these females. Instead, it is more likely to be an indirect experimentally evolved response attributable to the changed breeding ecology and/or male trait evolution. Our results underline the implications of changes in life history traits, including lifespan, for the evolution of MHR in females.
Collapse
Affiliation(s)
- Tanya Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Susnato Das
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
- Department of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Saunri Dhodi Lobo
- Department of Biology, Indian Institute of Science Education and Research Pune, Maharashtra, India
| | - Ashish Kumar Mishra
- Department in School of Biiological Sciences, National Institute of Science Education and Research, Odisha, India
| | - Soumi Bhattacharyya
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bodhisatta Nandy
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| |
Collapse
|
4
|
Burns-Dunn S, Mortys T, House CM, Mitchell C, Duffield KR, Foquet B, Sadd BM, Sakaluk SK, Hunt J. Sexually antagonistic coevolution of the male nuptial gift and female feeding behaviour in decorated crickets. Proc Biol Sci 2024; 291:20240804. [PMID: 38955230 DOI: 10.1098/rspb.2024.0804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The evolution of nuptial gifts has traditionally been considered a harmonious affair, providing benefits to both mating partners. There is growing evidence, however, that receiving a nuptial gift can be actively detrimental to the female. In decorated crickets (Gryllodes sigillatus), males produce a gelatinous spermatophylax that enhances sperm transfer but provides little nutritional benefit and hinders female post-copulatory mate choice. Here, we examine the sexually antagonistic coevolution of the spermatophylax and the female feeding response to this gift in G. sigillatus maintained in experimental populations with either a male-biased or female-biased adult sex ratio. After 25 generations, males evolving in male-biased populations produced heavier spermatophylaxes with a more manipulative combination of free amino acids than those evolving in female-biased populations. Moreover, when the spermatophylax originated from the same selection regime, females evolving in male-biased populations always had shorter feeding durations than those evolving in female-biased populations, indicating the evolution of greater resistance. Across populations, female feeding duration increased with the mass and manipulative combination of free amino acids in the spermatophylax, suggesting sexually antagonistic coevolution. Collectively, our work demonstrates a key role for interlocus sexual conflict and sexually antagonistic coevolution in the mating system of G. sigillatus.
Collapse
Affiliation(s)
- Samuel Burns-Dunn
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Tassie Mortys
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Christopher Mitchell
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Kristin R Duffield
- Crop BioProtection Research Unit, Agricultural Research Services, United States Department of Agriculture, National Centre for Agricultural Utilization Research, Peoria, IL, USA
| | - Bert Foquet
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Scott K Sakaluk
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| |
Collapse
|
5
|
Fu Y, Cai C, Chen P, Xuan Q, Myint TA, Huang D. Group mating in Cretaceous water striders. Proc Biol Sci 2024; 291:20232546. [PMID: 38565153 PMCID: PMC10987238 DOI: 10.1098/rspb.2023.2546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Fossilized mating insects are irreplaceable material for comprehending the evolution of the mating behaviours and life-history traits in the deep-time record of insects as well as the potential sexual conflict. However, cases of mating pairs are particularly rare in fossil insects, especially aquatic or semi-aquatic species. Here, we report the first fossil record of a group of water striders in copulation (including three pairs and a single adult male) based on fossils from the mid-Cretaceous of northern Myanmar. The new taxon, Burmogerris gen. nov., likely represents one of the oldest cases of insects related to the marine environment, such as billabongs formed by the tides. It exhibits conspicuous dimorphism associated with sexual conflict: the male is equipped with a specialized protibial comb as a grasping apparatus, likely representing an adaptation to overcome female resistance during struggles. The paired Burmogerris show smaller males riding on the backs of the females, seemingly recording a scene of copulatory struggles between the sexes. Our discovery reveals a mating system dominated by males and sheds light on the potential sexual conflicts of Burmogerris in the Cretaceous. It indicates the mating behaviour remained stable over long-term geological time in these water-walking insects.
Collapse
Affiliation(s)
- Yanzhe Fu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- Department of Biology II, Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Pingping Chen
- Section Entomology, Naturalis Biodiversity Centre, 2300 RA Leiden, The Netherlands
| | - Qiang Xuan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Tin Aung Myint
- Department of Geology, University of Mandalay, Mandalay, Myanmar
| | - Diying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| |
Collapse
|
6
|
Baur J, Zwoinska M, Koppik M, Snook RR, Berger D. Heat stress reveals a fertility debt owing to postcopulatory sexual selection. Evol Lett 2024; 8:101-113. [PMID: 38370539 PMCID: PMC10872150 DOI: 10.1093/evlett/qrad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 02/20/2024] Open
Abstract
Climates are changing rapidly, demanding equally rapid adaptation of natural populations. Whether sexual selection can aid such adaptation is under debate; while sexual selection should promote adaptation when individuals with high mating success are also best adapted to their local surroundings, the expression of sexually selected traits can incur costs. Here we asked what the demographic consequences of such costs may be once climates change to become harsher and the strength of natural selection increases. We first adopted a classic life history theory framework, incorporating a trade-off between reproduction and maintenance, and applied it to the male germline to generate formalized predictions for how an evolutionary history of strong postcopulatory sexual selection (sperm competition) may affect male fertility under acute adult heat stress. We then tested these predictions by assessing the thermal sensitivity of fertility (TSF) in replicated lineages of seed beetles maintained for 68 generations under three alternative mating regimes manipulating the opportunity for sexual and natural selection. In line with the theoretical predictions, we find that males evolving under strong sexual selection suffer from increased TSF. Interestingly, females from the regime under strong sexual selection, who experienced relaxed selection on their own reproductive effort, had high fertility in benign settings but suffered increased TSF, like their brothers. This implies that female fertility and TSF evolved through genetic correlation with reproductive traits sexually selected in males. Paternal but not maternal heat stress reduced offspring fertility with no evidence for adaptive transgenerational plasticity among heat-exposed offspring, indicating that the observed effects may compound over generations. Our results suggest that trade-offs between fertility and traits increasing success in postcopulatory sexual selection can be revealed in harsh environments. This can put polyandrous species under immediate risk during extreme heat waves expected under future climate change.
Collapse
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Martyna Zwoinska
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Berger
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Dixit T. A synthesis of coevolution across levels of biological organization. Evolution 2024; 78:211-220. [PMID: 38085659 DOI: 10.1093/evolut/qpad082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 02/03/2024]
Abstract
In evolutionary ecology, coevolution is typically defined as reciprocal evolution of interacting species. However, outside the context of interacting species, the term "coevolution" is also used at levels of biological organization within species (e.g., between males and females, between cells, and between genes or proteins). Furthermore, although evolution is typically defined as "genetic change over time", coevolution need not involve genetic changes in the interacting parties, since cultures can also evolve. In this review, I propose that coevolution be defined more broadly as "reciprocal adaptive evolution at any level of biological organisation". The classification of reciprocal evolution at all levels of biological organization as coevolution would maintain consistency in terminology. More importantly, the broader definition should facilitate greater integration of coevolution research across disciplines. For example, principles usually discussed only in the context of coevolution between species or coevolution between genes (e.g., tight and diffuse coevolution, and compensatory coevolution, respectively) could be more readily applied to new fields. The application of coevolutionary principles to new contexts could also provide benefits to society, for instance in deducing the dynamics of coevolution between cancer cells and cells of the human immune system.
Collapse
Affiliation(s)
- Tanmay Dixit
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- DST-NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
8
|
Hopkins BR, Angus-Henry A, Kim BY, Carlisle JA, Thompson A, Kopp A. Decoupled evolution of the Sex Peptide gene family and Sex Peptide Receptor in Drosophilidae. Proc Natl Acad Sci U S A 2024; 121:e2312380120. [PMID: 38215185 PMCID: PMC10801855 DOI: 10.1073/pnas.2312380120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has since followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appears to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, Sex Peptide Receptor, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Aidan Angus-Henry
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, CA94305
| | - Jolie A. Carlisle
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Ammon Thompson
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
9
|
Yamanouchi HM, Tanaka R, Kamikouchi A. Piezo-mediated mechanosensation contributes to stabilizing copulation posture and reproductive success in Drosophila males. iScience 2023; 26:106617. [PMID: 37250311 PMCID: PMC10214400 DOI: 10.1016/j.isci.2023.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 05/31/2023] Open
Abstract
In internal fertilization animals, reproductive success depends on maintaining copulation until gametes are transported from male to female. In Drosophila melanogaster, mechanosensation in males likely contributes to copulation maintenance, but its molecular underpinning remains to be identified. Here we show that the mechanosensory gene piezo and its' expressing neurons are responsible for copulation maintenance. An RNA-seq database search and subsequent mutant analysis revealed the importance of piezo for maintaining male copulation posture. piezo-GAL4-positive signals were found in the sensory neurons of male genitalia bristles, and optogenetic inhibition of piezo-expressing neurons in the posterior side of the male body during copulation destabilized posture and terminated copulation. Our findings suggest that the mechanosensory system of male genitalia through Piezo channels plays a key role in copulation maintenance and indicate that Piezo may increase male fitness during copulation in flies.
Collapse
Affiliation(s)
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
10
|
Maroni PJ, Bryant KA, Tatarnic NJ. Female genital concealment and a corresponding male clasping apparatus in Australian ripple bugs (Hemiptera: Veliidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 74:101254. [PMID: 37003094 DOI: 10.1016/j.asd.2023.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/02/2023]
Abstract
Conflicts of interest over reproduction between males and females are widespread in sexually reproducing species. This is exemplified in water striders (Gerridae), where females vigorously resist costly mating attempts, and males and females often exhibit elaborate grasping and anti-grasping morphological traits. Like water striders, their sister-group, the ripple bugs (Veliidae), share similar life histories and are expected to face similar conflicts over mating. Veliids in the genus Nesidovelia exhibit elaborate sexual dimorphism, which is predicted to function in intersexual antagonistic struggles. This includes concealed genitalia in females, and elaborate pregenital abdominal modifications in males. By documenting mating behaviour in Nesidovelia peramoena and freezing pairs in copula, we show that males and females struggle prior to mating, and male abdominal modifications function to gain access to the female's concealed genitalia. This is consistent with, though not limited to, sexual conflict.
Collapse
Affiliation(s)
- Paige J Maroni
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Western Australia, 6009, Australia; Collections & Research, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia, 6106, Australia; Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Kate A Bryant
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Nikolai J Tatarnic
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Western Australia, 6009, Australia; Collections & Research, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia, 6106, Australia.
| |
Collapse
|
11
|
Romero-Haro AÁ, Pérez-Rodríguez L, Tschirren B. Increased male-induced harm in response to female-limited selection: interactive effects between intra- and interlocus sexual conflict? Proc Biol Sci 2023; 290:20230140. [PMID: 37122249 PMCID: PMC10130724 DOI: 10.1098/rspb.2023.0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Interlocus sexual conflict (IRSC) occurs because of shared interactions that have opposite effects on male and female fitness. Typically, it is assumed that loci involved in IRSC have sex-limited expression and are thus not directly affected by selective pressures acting on the other sex. However, if loci involved in IRSC have pleiotropic effects in the other sex, intersexual selection can shape the evolutionary dynamics of conflict escalation and resolution, as well as the evolution of reproductive traits linked to IRSC loci, and vice versa. Here we used an artificial selection approach in Japanese quail (Coturnix japonica) to test if female-limited selection on reproductive investment affects the amount of harm caused by males during mating. We found that males originating from lines selected for high female reproductive investment caused more oxidative damage in the female reproductive tract than males originating from lines selected for low female reproductive investment. This male-induced damage was specific to the oviduct and not found in other female tissues, suggesting that it was ejaculate-mediated. Our results suggest that intersexual selection shapes the evolution of IRSC and that male-induced harm may contribute to the maintenance of variation in female reproductive investment.
Collapse
Affiliation(s)
- Ana Ángela Romero-Haro
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Lorenzo Pérez-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
12
|
Bacon R, Washington D, Johnson MK, Burns M. The Geography of Sexual Conflict: A Synthetic Review. Am Nat 2023; 201:429-441. [PMID: 36848514 DOI: 10.1086/722797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSexual conflict is a mechanism of selection driven by the divergent fitness interests between females and males. This disagreement can be great enough to promote antagonistic/defensive traits and behaviors. Although the existence of sexual conflict has been identified in many species, less research has explored the conditions that initially promote sexual conflict in animal mating systems. In previous work in Opiliones, we observed that morphological traits associated with sexual conflict occurred only in species from northern localities. We hypothesized that by shortening and compartmentalizing time periods optimal for reproduction, seasonality represents a geographic condition sufficient to promote sexual conflict. We conducted a systematic review of the literature on reproductive traits and behaviors. Using standardized criteria, we reviewed publications to identify whether subjects occurred in a temperate (high-seasonality) or tropical (low-seasonality) biome. After identifying and adjusting for a publication bias toward temperate research, we identified no significant difference in the strength of sexual conflict between temperate and tropical study systems. A comparison between the distribution of taxa studied in sexual conflict articles and articles focused on general biodiversity indicates that species with conflict-based mating systems more accurately represent the distribution of terrestrial animal species. These findings contribute to ongoing efforts to characterize the origins of sexual conflict as well as life history traits that covary with sexual conflict.
Collapse
|
13
|
Novikov A, Sharafutdinova D, Chertoprud E. Two new species of Bryocamptus (Copepoda, Harpacticoida, Canthocamptidae) from the Russian Arctic and comparison with Bryocamptusminutus (Claus, 1863). Zookeys 2023; 1138:89-141. [PMID: 36760768 PMCID: PMC9837622 DOI: 10.3897/zookeys.1138.90580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Two new species of Bryocamptus Chappuis, 1929 from the Russian Arctic from the Bryocamptusminutus species group are described: Bryocamptusputoranus sp. nov. and Bryocamptusabramovae sp. nov. A complete morphological comparison of the new species with the type species Bryocamptusminutus (Claus, 1863) was carried out. Significant interspecific differences were shown at the level of microcharacters, such as integumental sensillae and pores, ornamentation of segments of mouthparts and swimming legs, and pores on swimming legs. A significant correlation has also been shown in the shape of the caudal rami of the females and the antennules of the males, which is likely caused by an evolutionary sexual arms race. Bryocamptusputoranus sp. nov. and B.minutus have a similar structure of caudal rami, but completely different male antennules, which may indicate a convergent origin of modifications and highlights the importance of depicting male antennules in the species descriptions.
Collapse
Affiliation(s)
- Aleksandr Novikov
- Kazan Federal University, Kremlyovskaya St. 18, 420008 Kazan, RussiaKazan Federal UniversityKazanRussia
| | - Dayana Sharafutdinova
- Kazan Federal University, Kremlyovskaya St. 18, 420008 Kazan, RussiaKazan Federal UniversityKazanRussia
| | - Elena Chertoprud
- Department of Hydrobiology, Biological Faculty, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, RussiaM.V. Lomonosov Moscow State UniversityMoscowRussia,A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect, 33, Moscow 119071, RussiaA.N. Severtsov Institute of Ecology and EvolutionMoscowRussia
| |
Collapse
|
14
|
Sifoglu D, Alcedo J. Homme fatal: how males cause demise. NATURE AGING 2022; 2:773-774. [PMID: 37118501 DOI: 10.1038/s43587-022-00274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Deniz Sifoglu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
15
|
Jandausch K, Michels J, Kovalev A, Gorb SN, van de Kamp T, Beutel RG, Niehuis O, Pohl H. Have female twisted-wing parasites (Insecta: Strepsiptera) evolved tolerance traits as response to traumatic penetration? PeerJ 2022; 10:e13655. [PMID: 35990910 PMCID: PMC9390352 DOI: 10.7717/peerj.13655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Traumatic insemination describes an unusual form of mating during which a male penetrates the body wall of its female partner to inject sperm. Females unable to prevent traumatic insemination have been predicted to develop either traits of tolerance or of resistance, both reducing the fitness costs associated with the male-inflicted injury. The evolution of tolerance traits has previously been suggested for the bed bug. Here we present data suggesting that tolerance traits also evolved in females of the twisted-wing parasite species Stylops ovinae and Xenos vesparum. Using micro-indentation experiments and confocal laser scanning microscopy, we found that females of both investigated species possess a uniform resilin-rich integument that is notably thicker at penetration sites than at control sites. As the thickened cuticle does not seem to hamper penetration by males, we hypothesise that thickening of the cuticle resulted in reduced penetration damage and loss of haemolymph and in improved wound sealing. To evaluate the evolutionary relevance of the Stylops-specific paragenital organ and penis shape variation in the context of inter- and intraspecific competition, we conducted attraction and interspecific mating experiments, as well as a geometric-morphometric analysis of S. ovinae and X. vesparum penises. We found that S. ovinae females indeed attract sympatrically distributed congeneric males. However, only conspecific males were able to mate. In contrast, we did not observe any heterospecific male attraction by Xenos females. We therefore hypothesise that the paragenital organ in the genus Stylops represents a prezygotic mating barrier that prevents heterospecific matings.
Collapse
Affiliation(s)
- Kenny Jandausch
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Thuringia, Germany,Department of Evolutionary Biology and Ecology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Jan Michels
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Alexander Kovalev
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany,Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Rolf Georg Beutel
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Thuringia, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Hans Pohl
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Thuringia, Germany
| |
Collapse
|
16
|
Evolution of reduced mate harming tendency of males in Drosophila melanogaster populations selected for faster life history. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03187-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Conflict and the evolution of viviparity in vertebrates. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Kiyokawa R, Ikeda H. Intraspecific evolution of sexually dimorphic characters in a female diving beetle can be promoted by demographic history and temperature. Evolution 2022; 76:1003-1015. [PMID: 35267191 DOI: 10.1111/evo.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 01/21/2023]
Abstract
Previous studies have predicted that antagonistic intraspecific evolution of sexually dimorphic characters causing rapid speciation can be driven by demographic history and environmental variations. However, researchers have rarely examined this issue in the wild. Here, we examined intraspecific evolution of sexually dimorphic characters and its driving force by using a diving beetle, Acilius japonicus, which has very marked sexually dimorphic characters. Males with wider big suction cups could copulate with females with a higher success rate, whereas the mating durations of females with more hairs on their pronota were shorter. Females in a region with greater interpopulation genetic differentiation had more pronotal hairs. Considering that a previous study showed that less continuity among populations leads to a higher female cost of mating, this result suggests a greater female cost of mating in this region. Females at warmer sites also had more pronotal hairs. In light of the increase in O2 consumption in warmer water, our result suggests that more pronotal hairs in females at warmer sites have been maintained to prevent prolonged underwater mating at higher O2 demand. These findings suggest that demographic history and temperature can direct the evolution of sexually dimorphic characters related to sexual conflict in females.
Collapse
Affiliation(s)
- Ryo Kiyokawa
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan.,Shiriuchi 54-1, Shiriuchimachi, Hachinohe-shi, Aomori, 039-1101, Japan
| | - Hiroshi Ikeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| |
Collapse
|
19
|
Armisén D, Khila A. Genomics of the semi-aquatic bugs (Heteroptera; Gerromorpha): recent advances toward establishing a model lineage for the study of phenotypic evolution. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100870. [PMID: 34990871 DOI: 10.1016/j.cois.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Gerromorpha, also known as semi-aquatic bugs, present the striking capability to walk on water surface, which has long attracted the interest of many scientists. Yet our understanding of the mechanisms associated with their adaptation and diversification within this new habitat remain largely unknown. In this review we discuss how new transcriptomic and genomic resources have contributed to establish the Gerromorpha as an important lineage to study phenotypic evolution. In particular we outline the impact of recent comparative transcriptomic analyses and first published genomes to advance our understanding of genomic basis of adaptations to water surface locomotion and sexual dimorphism.
Collapse
Affiliation(s)
- David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France.
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
20
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
21
|
De Lisle SP, Bolnick DI, Brodie ED, Moore AJ, McGlothlin JW. Interacting phenotypes and the coevolutionary process: Interspecific indirect genetic effects alter coevolutionary dynamics. Evolution 2022; 76:429-444. [PMID: 34997942 PMCID: PMC9385155 DOI: 10.1111/evo.14427] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Coevolution occurs when species interact to influence one another's fitness, resulting in reciprocal evolutionary change. In many coevolving lineages, trait expression in one species is modified by the genotypes and phenotypes of the other, forming feedback loops reminiscent of models of intraspecific social evolution. Here, we adapt the theory of within-species social evolution, characterized by indirect genetic effects and social selection imposed by interacting individuals, to the case of interspecific interactions. In a trait-based model, we derive general expressions for multivariate evolutionary change in two species and the expected between-species covariance in evolutionary change when selection varies across space. We show that reciprocal interspecific indirect genetic effects can dominate the coevolutionary process and drive patterns of correlated evolution beyond what is expected from direct selection alone. In extreme cases, interspecific indirect genetic effects can lead to coevolution when selection does not covary between species or even when one species lacks genetic variance. Moreover, our model indicates that interspecific indirect genetic effects may interact in complex ways with cross-species selection to determine the course of coevolution. Importantly, our model makes empirically testable predictions for how different forms of reciprocal interactions contribute to the coevolutionary process.
Collapse
Affiliation(s)
- Stephen P. De Lisle
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Storrs, Connecticut, USA 06269
- Present address: Evolutionary Ecology Unit, Department of Biology, Lund University, Solvegatan 37, Lund, Sweden
| | - Daniel I. Bolnick
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Storrs, Connecticut, USA 06269
| | - Edmund D. Brodie
- Department of Biology and Mountain Lake Biological Station, University of Virginia, 485 McCormick Road, Charlottesville, VA 22904 USA
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602 USA
| | - Joel W. McGlothlin
- Department of Biological Sciences, Virginia Tech, 2125 Derring Hall, 926 West Campus Drive, Blacksburg, Virginia, USA 24060
| |
Collapse
|
22
|
Bucciarelli GM, Alsalek F, Kats LB, Green DB, Shaffer HB. Toxic Relationships and Arms-Race Coevolution Revisited. Annu Rev Anim Biosci 2022; 10:63-80. [PMID: 35167315 DOI: 10.1146/annurev-animal-013120-024716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Toxin evolution in animals is one of the most fascinating and complex subjects of scientific inquiry today. Gaining an understanding of toxins poses a multifaceted challenge given the diverse modes of acquisition, evolutionary adaptations, and abiotic components that affect toxin phenotypes. Here, we highlight some of the main genetic and ecological factors that influence toxin evolution and discuss the role of antagonistic interactions and coevolutionary dynamics in shaping the direction and extent of toxicity and resistance in animals. We focus on toxic Pacific newts (family Salamandridae, genus Taricha) as a system to investigate and better evaluate the widely distributed toxin they possess, tetrodotoxin (TTX), and the hypothesized model of arms-race coevolution with snake predators that is used to explain phenotypic patterns of newt toxicity. Finally, we propose an alternative coevolutionary model that incorporates TTX-producing bacteria and draws from an elicitor-receptor concept to explain TTX evolution and ecology.
Collapse
Affiliation(s)
- G M Bucciarelli
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,La Kretz Center for California Conservation Science, University of California, Los Angeles, California, USA
| | - Farid Alsalek
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - L B Kats
- Natural Science Division, Pepperdine University, Malibu, California, USA; ,
| | - D B Green
- Natural Science Division, Pepperdine University, Malibu, California, USA; ,
| | - H B Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,La Kretz Center for California Conservation Science, University of California, Los Angeles, California, USA
| |
Collapse
|
23
|
Brand JN, Harmon LJ, Schärer L. Frequent origins of traumatic insemination involve convergent shifts in sperm and genital morphology. Evol Lett 2022; 6:63-82. [PMID: 35127138 PMCID: PMC8802240 DOI: 10.1002/evl3.268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Traumatic insemination is a mating behavior during which the (sperm) donor uses a traumatic intromittent organ to inject an ejaculate through the epidermis of the (sperm) recipient, thereby frequently circumventing the female genitalia. Traumatic insemination occurs widely across animals, but the frequency of its evolution, the intermediate stages via which it originates, and the morphological changes that such shifts involve remain poorly understood. Based on observations in 145 species of the free-living flatworm genus Macrostomum, we identify at least nine independent evolutionary origins of traumatic insemination from reciprocal copulation, but no clear indication of reversals. These origins involve convergent shifts in multivariate morphospace of male and female reproductive traits, suggesting that traumatic insemination has a canalizing effect on morphology. We also observed sperm in both the sperm receiving organ and within the body tissue of two species. These species had intermediate trait values indicating that traumatic insemination evolves through initial internal wounding during copulation. Finally, signatures of male-female coevolution of genitalia across the genus indicate that sexual selection and sexual conflict drive the evolution of traumatic insemination, because it allows donors to bypass postcopulatory control mechanisms of recipients.
Collapse
Affiliation(s)
- Jeremias N. Brand
- Department of Environmental Sciences, Zoological InstituteUniversity of BaselBaselCH‐4051Switzerland
- Department of Tissue Dynamics and RegenerationMax Planck Institute for Biophysical ChemistryGöttingenDE‐37077Germany
| | - Luke J. Harmon
- Department of Biological SciencesUniversity of IdahoMoscowIdaho83843
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological InstituteUniversity of BaselBaselCH‐4051Switzerland
| |
Collapse
|
24
|
Calabrese A, Weeks SC. Testing a behavioral model for the maintenance of androdioecy as a result of sexual conflict in the clam shrimp
Eulimnadia dahli. Ethology 2022. [DOI: 10.1111/eth.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Density-dependent mating behaviors reduce male mating harassment in locusts. Proc Natl Acad Sci U S A 2021; 118:2104673118. [PMID: 34635592 PMCID: PMC8594575 DOI: 10.1073/pnas.2104673118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Male mating harassment may occur when females and males do not have the same mating objectives. Communal animals need to manage the costs of male mating harassment. Here, we demonstrate how desert locusts in dense populations reduce such conflicts through behaviors. In transient populations (of solitarious morphology but gregarious behavior), we found that nongravid females occupied separate sites far from males and were not mating, whereas males aggregated on open ground (leks), waiting for gravid females to enter the lekking sites. Once a male mounted a gravid female, no other males attacked the pair; mating pairs were thereby protected during the vulnerable time of oviposition. In comparison, solitarious locusts displayed a balanced sex ratio in low-density populations, and females mated irrespective of their ovarian state. Our results indicate that the mating behaviors of desert locusts are density dependent and that sex-biased behavioral group separation may minimize the costs of male mating harassment and competition.
Collapse
|
26
|
Plesnar‐Bielak A, Łukasiewicz A. Sexual conflict in a changing environment. Biol Rev Camb Philos Soc 2021; 96:1854-1867. [PMID: 33960630 PMCID: PMC8518779 DOI: 10.1111/brv.12728] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Sexual conflict has extremely important consequences for various evolutionary processes including its effect on local adaptation and extinction probability during environmental change. The awareness that the intensity and dynamics of sexual conflict is highly dependent on the ecological setting of a population has grown in recent years, but much work is yet to be done. Here, we review progress in our understanding of the ecology of sexual conflict and how the environmental sensitivity of such conflict feeds back into population adaptivity and demography, which, in turn, determine a population's chances of surviving a sudden environmental change. We link two possible forms of sexual conflict - intralocus and interlocus sexual conflict - in an environmental context and identify major gaps in our knowledge. These include sexual conflict responses to fluctuating and oscillating environmental changes and its influence on the interplay between interlocus and intralocus sexual conflict, among others. We also highlight the need to move our investigations into more natural settings and to investigate sexual conflict dynamics in wild populations.
Collapse
Affiliation(s)
- Agata Plesnar‐Bielak
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian Universityul. Gronostajowa 730‐387KrakówPoland
| | - Aleksandra Łukasiewicz
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandPO Box 11180101JoensuuFinland
- Evolutionary Biology Group, Faculty of BiologyAdam Mickiewicz Universityul. Uniwersytetu Poznańskiego 661‐614PoznańPoland
| |
Collapse
|
27
|
Cómbita-Heredia O, Gulbronson CJ, Ochoa R, Quintero-Gutiérrez EJ, Bauchan G, Klompen H. Size, shape, and direction matters: Matching secondary genital structures in male and female mites using multiple microscopy techniques and 3D modeling. PLoS One 2021; 16:e0254974. [PMID: 34407082 PMCID: PMC8372888 DOI: 10.1371/journal.pone.0254974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/07/2021] [Indexed: 11/28/2022] Open
Abstract
Studies of female genital structures have generally lagged behind comparable studies of male genitalia, in part because of an assumption of a lower level of variability, but also because internal genitalia are much more difficult to study. Using multiple microscopy techniques, including video stereomicroscopy, fluorescence microscopy, low-temperature scanning electron microscopy (LT-SEM), and confocal laser scanning microscopy (CLSM) we examined whether the complex sperm transfer structures in males of Megalolaelaps colossus (Acari: Mesostigmata) are matched by similarly complex internal structures in the female. While both LT-SEM and CLSM are well suited for obtaining high-quality surface images, CLSM also proved to be a valuable technique for observing internal anatomical structures. The long and coiled sperm transfer organ on the chelicera of the males (spermatodactyl) largely matches an equally complex, but internal, spiral structure in the females in shape, size, and direction. This result strongly suggests some form of genital coevolution. A hypothesis of sexual conflict appears to provide the best fit for all available data (morphology and life history).
Collapse
Affiliation(s)
- Orlando Cómbita-Heredia
- Acarology Laboratory, Ecology Evolution and Organismal Biology EEOB, Ohio State University, Columbus, Ohio, United States of America
- Centro de Investigación en Acarología, Bogotá, Colombia
| | - Connor J. Gulbronson
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Floral and Nursery Plant Research Unit, United States Department of Agriculture, Agricultural Research Service, U.S. National Arboretum, Beltsville, Maryland, United States of America
| | - Ronald Ochoa
- Agricultural Research Service, Systematic Entomology Laboratory, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | | | - Gary Bauchan
- Agricultural Research Service, Systematic Entomology Laboratory, United States Department of Agriculture, Beltsville, Maryland, United States of America
- Agricultural Research Service, Soybean Genomics and Enhancement Laboratory, Electron and Confocal Microscopy Unit, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Hans Klompen
- Acarology Laboratory, Ecology Evolution and Organismal Biology EEOB, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
28
|
Rodriguez‐Exposito E, Garcia‐Gonzalez F. Metapopulation structure modulates sexual antagonism. Evol Lett 2021; 5:344-358. [PMID: 34367660 PMCID: PMC8327942 DOI: 10.1002/evl3.244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023] Open
Abstract
Despite the far-reaching evolutionary implications of sexual conflict, the effects of metapopulation structure, when populations are subdivided into several demes connected to some degree by migration, on sexual conflict dynamics are unknown. Here, we used experimental evolution in an insect model system, the seed beetle Callosobruchus maculatus, to assess the independent and interacting effects of selection histories associated with mating system (monogamy vs. polygamy) and population subdivision on sexual conflict evolution. We confirm traditional predictions from sexual conflict theory by revealing increased resistance to male harm in females from populations with a history of intense sexual selection (polygamous populations) compared to females from populations with a history of relaxed sexual selection (monogamous populations). However, selection arising from metapopulation structure reversed the classic pattern of sexually antagonistic coevolution and led to reduced resistance in females from polygamous populations. These results underscore that population spatial structure moderates sexual selection and sexual conflict, and more broadly, that the evolution of sexual conflict is contingent on ecological context. The findings also have implications for population dynamics, conservation biology, and biological control.
Collapse
Affiliation(s)
- E. Rodriguez‐Exposito
- Doñana Biological Station (EBD‐CSIC)Isla de la CartujaSevillaSpain
- Current address: Institute of Natural Products and Agrobiology (IPNA‐CSIC)Santa Cruz de TenerifeSpain
| | - F. Garcia‐Gonzalez
- Doñana Biological Station (EBD‐CSIC)Isla de la CartujaSevillaSpain
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
29
|
Wyber BW, Dougherty LR, McNamara K, Mehnert A, Shaw J, Tomkins JL, Simmons LW. Quantifying variation in female internal genitalia: no evidence for plasticity in response to sexual conflict risk in a seed beetle. Proc Biol Sci 2021; 288:20210746. [PMID: 34229488 PMCID: PMC8261201 DOI: 10.1098/rspb.2021.0746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 11/12/2022] Open
Abstract
Sexually antagonistic coevolution can drive the evolution of male traits that harm females, and female resistance to those traits. While males have been found to vary their harmfulness to females in response to social cues, plasticity in female resistance traits remains to be examined. Here, we ask whether female seed beetles Callosobruchus maculatus are capable of adjusting their resistance to male harm in response to the social environment. Among seed beetles, male genital spines harm females during copulation and females might resist male harm via thickening of the reproductive tract walls. We develop a novel micro computed tomography imaging technique to quantify female reproductive tract thickness in three-dimensional space, and compared the reproductive tracts of females from populations that had evolved under high and low levels of sexual conflict, and for females reared under a social environment that predicted either high or low levels of sexual conflict. We find little evidence to suggest that females can adjust the thickness of their reproductive tracts in response to the social environment. Neither did evolutionary history affect reproductive tract thickness. Nevertheless, our novel methodology was capable of quantifying fine-scale differences in the internal reproductive tracts of individual females, and will allow future investigations into the internal organs of insects and other animals.
Collapse
Affiliation(s)
- Blake W. Wyber
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Liam R. Dougherty
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7RB, UK
| | - Kathryn McNamara
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew Mehnert
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia
- National Imaging Facility, Brisbane, Queensland, Australia
| | - Jeremy Shaw
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia
- National Imaging Facility, Brisbane, Queensland, Australia
| | - Joseph L. Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
30
|
Bagchi B, Corbel Q, Khan I, Payne E, Banerji D, Liljestrand-Rönn J, Martinossi-Allibert I, Baur J, Sayadi A, Immonen E, Arnqvist G, Söderhäll I, Berger D. Sexual conflict drives micro- and macroevolution of sexual dimorphism in immunity. BMC Biol 2021; 19:114. [PMID: 34078377 PMCID: PMC8170964 DOI: 10.1186/s12915-021-01049-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sexual dimorphism in immunity is believed to reflect sex differences in reproductive strategies and trade-offs between competing life history demands. Sexual selection can have major effects on mating rates and sex-specific costs of mating and may thereby influence sex differences in immunity as well as associated host-pathogen dynamics. Yet, experimental evidence linking the mating system to evolved sexual dimorphism in immunity are scarce and the direct effects of mating rate on immunity are not well established. Here, we use transcriptomic analyses, experimental evolution and phylogenetic comparative methods to study the association between the mating system and sexual dimorphism in immunity in seed beetles, where mating causes internal injuries in females. RESULTS We demonstrate that female phenoloxidase (PO) activity, involved in wound healing and defence against parasitic infections, is elevated relative to males. This difference is accompanied by concomitant sex differences in the expression of genes in the prophenoloxidase activating cascade. We document substantial phenotypic plasticity in female PO activity in response to mating and show that experimental evolution under enforced monogamy (resulting in low remating rates and reduced sexual conflict relative to natural polygamy) rapidly decreases female (but not male) PO activity. Moreover, monogamous females had evolved increased tolerance to bacterial infection unrelated to mating, implying that female responses to costly mating may trade off with other aspects of immune defence, an hypothesis which broadly accords with the documented sex differences in gene expression. Finally, female (but not male) PO activity shows correlated evolution with the perceived harmfulness of male genitalia across 12 species of seed beetles, suggesting that sexual conflict has a significant influence on sexual dimorphisms in immunity in this group of insects. CONCLUSIONS Our study provides insights into the links between sexual conflict and sexual dimorphism in immunity and suggests that selection pressures moulded by mating interactions can lead to a sex-specific mosaic of immune responses with important implications for host-pathogen dynamics in sexually reproducing organisms.
Collapse
Affiliation(s)
- Basabi Bagchi
- Department of Biology, Ashoka University, Sonipat, India
| | - Quentin Corbel
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Imroze Khan
- Department of Biology, Ashoka University, Sonipat, India
| | - Ellen Payne
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Johanna Liljestrand-Rönn
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Ivain Martinossi-Allibert
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Julian Baur
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Ahmed Sayadi
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Chemistry, Biochemistry, Uppsala University, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics, Program of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Irene Söderhäll
- Department of Organismal Biology, Program of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
31
|
Reznick DN, Travis J, Pollux BJA, Furness AI. Reproductive Mode and Conflict Shape the Evolution of Male Attributes and Rate of Speciation in the Fish Family Poeciliidae. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.639751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexual conflict is caused by differences between the sexes in how fitness is maximized. These differences are shaped by the discrepancy in the investment in gametes, how mates are chosen and how embryos and young are provided for. Fish in the family Poeciliidae vary from completely provisioning eggs before they are fertilized to providing virtually all resources after fertilization via the functional equivalent of a mammalian placenta. This shift in when females provision their young relative to when an egg is fertilized is predicted to cause a fundamental change in when and how sexual conflict is manifested. If eggs are provisioned before fertilization, there should be strong selection for females to choose with whom they mate. Maternal provisioning after fertilization should promote a shift to post-copulatory mate choice. The evolution of maternal provisioning may in turn have cascading effects on the evolution of diverse features of the biology of these fish because of this shift in when mates are chosen. Here we summarize what these consequences are and show that the evolution of maternal provisioning is indeed associated with and appears to govern the evolution of male traits associated with sexual selection. The evolution of placentas and associated conflict does not cause accelerated speciation, contrary to predictions. Accelerated speciation rate is instead correlated with the evolution of male traits associated with sexual selection, which implies a more prominent role of pre-copulatory reproductive isolation in causing speciation in this family.
Collapse
|
32
|
House CM, Lewis Z, Sharma MD, Hodgson DJ, Hunt J, Wedell N, Hosken DJ. Sexual selection on the genital lobes of male Drosophila simulans. Evolution 2021; 75:501-514. [PMID: 33386741 DOI: 10.1111/evo.14158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/01/2022]
Abstract
Sexual selection is thought to be responsible for the rapid divergent evolution of male genitalia with several studies detecting multivariate sexual selection on genital form. However, in most cases, selection is only estimated during a single episode of selection, which provides an incomplete view of net selection on genital traits. Here, we estimate the strength and form of multivariate selection on the genitalia arch of Drosophila simulans when mating occurs in the absence of a competitor and during sperm competition, in both sperm defence and offense roles (i.e., when mating first and last). We found that the strength of sexual selection on the genital arch was strongest during noncompetitive mating and weakest during sperm offense. However, the direction of selection was similar across selection episodes with no evidence for antagonistic selection. Overall, selection was not particularly strong despite genitals clearly evolving rapidly in this species.
Collapse
Affiliation(s)
- Clarissa M House
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | - Zenobia Lewis
- School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Manmohan D Sharma
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - David J Hodgson
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - John Hunt
- School of Science, Western Sydney University, Richmond, NSW, Australia.,Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - Nina Wedell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - David J Hosken
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| |
Collapse
|
33
|
Lai J, Maddison WP, Ma H, Zhang J. Intra‐specific variation of non‐genitalic and genitalic traits in two euophryine jumping spider species. J Zool (1987) 2020. [DOI: 10.1111/jzo.12856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J. Lai
- The Key Laboratory of Invertebrate Systematics and Application, College of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding Hebei China
| | - W. P. Maddison
- Departments of Zoology and Botany and Beaty Biodiversity Museum University of British Columbia Vancouver BC Canada
| | - H. Ma
- Hebei Key Laboratory of Wetland Ecology and Conservation Hengshui University Hengshui Hebei China
| | - J. Zhang
- The Key Laboratory of Invertebrate Systematics and Application, College of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding Hebei China
- Hebei Key Laboratory of Wetland Ecology and Conservation Hengshui University Hengshui Hebei China
| |
Collapse
|
34
|
Byers KA, Proctor HC. Morphology of genitalia and non-genitalic contact structures inTrouessartiafeather mites (Astigmata: Analgoidea: Trouessartiidae): is there evidence of correlated evolution between the sexes? CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Positive correlations between the shapes of male and female sexual structures can be interpreted as cooperative or as combative. In the feather mite genus Trouessartia Canestrini, 1899, the spermaducts of females range from entirely internal to extending externally for varying lengths, whereas male primary genitalia range from gracile to massive. Males also possess a pair of adanal suckers used to hold onto the dorsal surface of the female during copulation. In the area of this attachment, females exhibit ornamentation and have strongly developed dorsal setae (setae h1), which we hypothesized serve to weaken the male’s hold during copulation. In male and female Trouessartia from 51 bird species, we compared female external spermaduct length and male genitalic “massiveness” and explored whether patterns of female dorsal ornamentation and (or) h1 seta size correlate with male adanal sucker size. Our results indicate that females with longer external spermaducts are associated with males with relatively massive genitalia. However, we found no significant relationship between male adanal sucker size and female ornamentation or h1 seta size. Further information regarding how the genitalia interact during sperm transfer is necessary to interpret correlations in genitalia size and strong intersexual differences in dorsal ornamentation and seta size in Trouessartia.
Collapse
Affiliation(s)
- Kaylee A. Byers
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Heather C. Proctor
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
35
|
Male and female genotype and a genotype-by-genotype interaction mediate the effects of mating on cellular but not humoral immunity in female decorated crickets. Heredity (Edinb) 2020; 126:477-490. [PMID: 33219366 DOI: 10.1038/s41437-020-00384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Sexually antagonistic coevolution is predicted to lead to the divergence of male and female genotypes related to the effects of substances transferred by males at mating on female physiology. The outcome of mating should thus depend on the specific combination of mating genotypes. Although mating has been shown to influence female immunity in diverse insect taxa, a male-female genotype-by-genotype effect on female immunity post mating remains largely unexplored. Here, we investigate the effects of mating on female decorated cricket baseline immunity and the potential for a male-genotype-by-female-genotype interaction affecting this response. Females from three distinct genotypic backgrounds were left unmated or singly mated in a fully reciprocal design to males from the same three genotypic backgrounds. Hemocytes and hemocyte microaggregations were quantified for female cellular immunity, and phenoloxidase, involved in melanization, and antibacterial activity for humoral immunity. In this system, female cellular immunity was more reactive to mating, and mating effects were genotype-dependent. Specifically, for hemocytes, a genotype-by-mating status interaction mediated the effect of mating per se, and a significant male-female genotype-by-genotype interaction determined hemocyte depletion post mating. Microaggregations were influenced by the female's genotype or that of her mate. Female humoral immune measures were unaffected, indicating that the propensity for post-mating effects on females is dependent on the component of baseline immunity. The genotype-by-genotype effect on hemocytes supports a role of sexual conflict in post-mating immune suppression, suggesting divergence of male genotypes with respect to modification of female post-mating immunity, and divergence of female genotypes in resistance to these effects.
Collapse
|
36
|
Moldowan PD, Brooks RJ, Litzgus JD. Sex, shells, and weaponry: coercive reproductive tactics in the painted turtle, Chrysemys picta. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Nomura S, Fujisawa T, Sota T. Gene expression during genital morphogenesis in the ground beetle Carabus maiyasanus. INSECT SCIENCE 2020; 27:975-986. [PMID: 31318143 DOI: 10.1111/1744-7917.12712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
To investigate the developmental genetics of genital formation in the carabid beetle Carabus maiyasanus, we compared gene expression patterns among five stages using transcriptomic RNA sequencing data from abdominal segments and genitalia in the third (last) larval instar (including prepupa) and pupal stages. We identified 18 839 genes, of which 10 796 were differentially expressed among stages or between sexes. There were relatively few differentially expressed genes (DEGs) between the sexes (3%). The DEGs were clustered into six groups, mainly according to stage-specific expression patterns. Genes in clusters 1-3 showed high expression levels before pupation and low expression levels during the pupal period, whereas genes in clusters 4-6 showed high expression levels from the prepupal to the pupal stages. Genes related to the initial pupation process and differentiation of genital discs in Drosophila were involved in clusters 4 and 6 and showed low expression levels at early third instar and elevated expression levels from the early prepupal stage, suggesting that the pupation process and genital differentiation started in the prepupal stage. Clusters 4 and 5 included developmental genes related to organ size control, which may be important in the formation of internal genital structures during the pupal stage.
Collapse
Affiliation(s)
- Shota Nomura
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Tomochika Fujisawa
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
38
|
Dale Broder E, Ghalambor CK, Handelsman CA, Ruell EW, Reznick DN, Angeloni LM. Rapid evolution and plasticity of genitalia. J Evol Biol 2020; 33:1361-1370. [PMID: 32896937 DOI: 10.1111/jeb.13700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022]
Abstract
Genital morphology exhibits tremendous variation and is intimately linked with fitness. Sexual selection, nonmating natural selection and neutral forces have been explored as potential drivers of genital divergence. Though less explored, genitalia may also be plastic in response to the developmental environment. In poeciliid fishes, the length of the male intromittent organ, the gonopodium, may be driven by sexual selection if longer gonopodia attract females or aid in forced copulation attempts or by nonmating natural selection if shorter gonopodia allow predator evasion. The rearing environment may also affect gonopodium development. Using an experimental introduction of Trinidadian guppies into four replicate streams with reduced predation risk, we tested whether this new environment caused the evolution of genitalia. We measured gonopodium length after rearing the source and introduced populations for two generations in the laboratory to remove maternal and other environmental effects. We split full-sibling brothers into different rearing treatments to additionally test for developmental plasticity of gonopodia in response to predator cues and food levels as well as the evolution of plasticity. The introduced populations had shorter gonopodia after accounting for body size, demonstrating rapid genital evolution in 2-3 years (8-12 generations). Brothers reared on low food levels had longer gonopodia relative to body size than those on high food, reflecting maintenance of gonopodium length despite a reduction in body size. In contrast, gonopodium length was not significantly different in response to the presence or absence of predator cues. Because the plastic response to low food was maintained between the source and introduced populations, there was no evidence that plasticity evolved. This study demonstrates the importance of both evolution and developmental plasticity in explaining genital variation.
Collapse
Affiliation(s)
- E Dale Broder
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.,Department of Biology, St. Ambrose University, Davenport, IA, USA
| | - Cameron K Ghalambor
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.,Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Corey A Handelsman
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Emily W Ruell
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - David N Reznick
- Department of Biology, University of California Riverside, Riverside, CA, USA
| | - Lisa M Angeloni
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
39
|
Carvalho APS, St Laurent RA, Toussaint EFA, Storer C, Dexter KM, Aduse-Poku K, Kawahara AY. Is Sexual Conflict a Driver of Speciation? A Case Study With a Tribe of Brush-footed Butterflies. Syst Biol 2020; 70:413-420. [PMID: 32882028 DOI: 10.1093/sysbio/syaa070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 07/16/2020] [Accepted: 08/23/2020] [Indexed: 01/09/2023] Open
Abstract
Understanding the evolutionary mechanisms governing the uneven distribution of species richness across the tree of life is a great challenge in biology. Scientists have long argued that sexual conflict is a key driver of speciation. This hypothesis, however, has been highly debated in light of empirical evidence. Recent advances in the study of macroevolution make it possible to test this hypothesis with more data and increased accuracy. In the present study, we use phylogenomics combined with four different diversification rate analytical approaches to test whether sexual conflict is a driver of speciation in brush-footed butterflies of the tribe Acraeini. The presence of a sphragis, an external mating plug found in most species among Acraeini, was used as a proxy for sexual conflict. Diversification analyses statistically rejected the hypothesis that sexual conflict is associated with shifts in diversification rates in Acraeini. This result contrasts with earlier studies and suggests that the underlying mechanisms driving diversification are more complex than previously considered. In the case of butterflies, natural history traits acting in concert with abiotic factors possibly play a stronger role in triggering speciation than does sexual conflict. [Acraeini butterflies; arms race; exon capture phylogenomics; Lepidoptera macroevolution; sexual selection; sphragis.].
Collapse
Affiliation(s)
- Ana Paula S Carvalho
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA.,McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
| | - Ryan A St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA.,Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| | | | - Caroline Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
| | - Kelly M Dexter
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
| | - Kwaku Aduse-Poku
- Biology Department, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA.,Life & Earth Sciences Department, Georgia State University, Perimeter College, Atlanta, GA 30302, USA
| | - Akito Y Kawahara
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA.,McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA.,Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| |
Collapse
|
40
|
André GI, Firman RC, Simmons LW. The coevolution of male and female genitalia in a mammal: A quantitative genetic insight. Evolution 2020; 74:1558-1567. [PMID: 32490547 DOI: 10.1111/evo.14031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/10/2020] [Accepted: 05/30/2020] [Indexed: 12/28/2022]
Abstract
Male genitalia are among the most phenotypically diverse morphological traits, and sexual selection is widely accepted as being responsible for their evolutionary divergence. Studies of house mice suggest that the shape of the baculum (penis bone) affects male reproductive fitness and experimentally imposed postmating sexual selection has been shown to drive divergence in baculum shape across generations. Much less is known of the morphology of female genitalia and its coevolution with male genitalia. In light of this, we used a paternal half-sibling design to explore patterns of additive genetic variation and covariation underlying baculum shape and female vaginal tract size in house mice (Mus musculus domesticus). We applied a landmark-based morphometrics approach to measure baculum size and shape in males and the length of the vaginal tract and width of the cervix in females. Our results reveal significant additive genetic variation in house mouse baculum morphology and cervix width, as well as evidence for genetic covariation between male and female genital measures. Our data thereby provide novel insight into the potential for the coevolutionary divergence of male and female genital traits in a mammal.
Collapse
Affiliation(s)
- Gonçalo I André
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009, Australia
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009, Australia
| |
Collapse
|
41
|
Łukasiewicz A. Juvenile diet quality and intensity of sexual conflict in the mite Sancassania berlesei. BMC Evol Biol 2020; 20:35. [PMID: 32164531 PMCID: PMC7069193 DOI: 10.1186/s12862-020-1599-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differing evolutionary interests of males and females may result in sexual conflict, whereby traits or behaviours that are beneficial for male reproductive success (e.g., traits related to male-male competition) are costly for females. Since sexual conflict may play an important role in areas such as speciation, population persistence or evolution of life history traits, understanding what factors modulate the intensity of sexual conflict is important. This study aims to examine juvenile diet quality as one of the underestimated ecological factors that may affect the intensity of sexual conflict via individual conditions. I used food manipulation during the development of the mite Sancassania berlesei to investigate the effects on male reproductive behaviour and competitiveness, male-induced harm to female fitness and female resistance to this harm. RESULTS Males that were exposed to low-quality food started mating later than the control males, and number of their mating attempts were lower compared to those of control males. Moreover, males from the low-quality diet treatment sired fewer offspring under competition than males from the control treatment. However, the fitness of females exposed to males reared on a poor diet did not differ from that of females mated with control males. Furthermore, female diet quality did not alter their resistance to male-induced harm. CONCLUSION Overall, diet quality manipulation affected male reproductive behaviour and mating success. However, I found no evidence that the intensity of sexual conflict in S. berlesei depends on male or female conditions. Investigating a broader range of environmental factors will provide a better understanding of sexual conflict dynamics and its feedback into associated evolutionary mechanisms.
Collapse
Affiliation(s)
- Aleksandra Łukasiewicz
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
42
|
Okada K, Katsuki M, Kiyose K, Okada Y. Older males are more competitive in male fights and more aggressive toward females in the broad-horned flour beetle Gnatocerus cornutus. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Iversen LL, Svensson EI, Christensen ST, Bergsten J, Sand-Jensen K. Sexual conflict and intrasexual polymorphism promote assortative mating and halt population differentiation. Proc Biol Sci 2020; 286:20190251. [PMID: 30890096 DOI: 10.1098/rspb.2019.0251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sexual conflict is thought to be an important evolutionary force in driving phenotypic diversification, population divergence, and speciation. However, empirical evidence is inconsistent with the generality that sexual conflict enhances population divergence. Here, we demonstrate an alternative evolutionary outcome in which sexual conflict plays a conservative role in maintaining male and female polymorphisms locally, rather than promoting population divergence. In diving beetles, female polymorphisms have evolved in response to male mating harassment and sexual conflict. We present the first empirical evidence that this female polymorphism is associated with (i) two distinct and sympatric male morphological mating clusters (morphs) and (ii) assortative mating between male and female morphs. Changes in mating traits in one sex led to a predictable change in the other sex which leads to predictable within-population evolutionary dynamics in male and female morph frequencies. Our results reveal that sexual conflict can lead to assortative mating between male offence and female defence traits, if a stable male and female mating polymorphisms are maintained. Stable male and female mating polymorphisms are an alternative outcome to an accelerating coevolutionary arms race driven by sexual conflict. Such stable polymorphisms challenge the common view of sexual conflict as an engine of rapid speciation via exaggerated coevolution between sexes.
Collapse
Affiliation(s)
- Lars Lønsmann Iversen
- 1 Department of Biology, Freshwater Biology, University of Copenhagen , Copenhagen 2100 , Denmark.,2 Center for Biodiversity Outcomes, Arizona State University , Tempe, AZ , USA
| | - Erik I Svensson
- 3 Evolutionary Ecology Unit, Department of Biology, Lund University , Lund 223 62 , Sweden
| | | | - Johannes Bergsten
- 4 Department of Zoology, Swedish Museum of Natural History , Box 50007, 104 05 Stockholm , Sweden
| | - Kaj Sand-Jensen
- 1 Department of Biology, Freshwater Biology, University of Copenhagen , Copenhagen 2100 , Denmark
| |
Collapse
|
44
|
Wulff NC, Lehmann GUC. Sexual selection on bushcricket genitalia operates in a mosaic pattern. Ecol Evol 2020; 10:2320-2338. [PMID: 32184984 PMCID: PMC7069301 DOI: 10.1002/ece3.6025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022] Open
Abstract
In most species with internal fertilization, male genitalia evolve faster than other morphological structures. This holds true for genital titillators, which are used exclusively during mating in several bushcricket subfamilies. Several theories have been proposed for the sexual selection forces driving the evolution of internal genitalia, especially sperm competition, sexually antagonistic coevolution (SAC), and cryptic female choice (CFC). However, it is unclear whether the evolution of genitalia can be described with a single hypothesis or a combination of them. The study of species-specific genitalia action could contribute to the controversial debate about the underlying selective evolutionary forces. We studied female mating behaviors in response to experimentally modified titillators in a phylogenetically nested set of four bushcricket species: Roeseliana roeselii, Pholidoptera littoralis littoralis, Tettigonia viridissima (of the subfamily Tettigoniinae), and Letana inflata (Phaneropterinae). Bushcricket titillators have several potential functions; they stimulate females and suppress female resistance, ensure proper ampulla or spermatophore attachment, and facilitate male fixation. In R. roeselii, titillators stimulate females to accept copulations, supporting sexual selection by CFC. Conversely, titillator modification had no observable effect on the female's behavior in T. viridissima. The titillators of Ph. l. littoralis mechanically support the mating position and the spermatophore transfer, pointing to sexual selection by SAC. Mixed support was found in L. inflata, where manipulation resulted in increased female resistance (evidence for CFC) and mating failures by reduced spermatophore transfer success (evidence for SAC). Sexual selection is highly species-specific with a mosaic support for either cryptic female choice or sexually antagonistic coevolution or a combination of both in the four species.
Collapse
Affiliation(s)
- Nadja C. Wulff
- Department of Biology, Evolutionary EcologyHumboldt University BerlinBerlinGermany
| | | |
Collapse
|
45
|
McNamara KB, Sloan NS, Kershaw SE, van Lieshout E, Simmons LW. Males evolve to be more harmful under increased sexual conflict intensity in a seed beetle. Behav Ecol 2020. [DOI: 10.1093/beheco/arz186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
One conspicuous manifestation of sexual conflict is traumatic mating, in which male genitalia damage the female during copulation. The penis of the seed beetle, Callosobruchus maculatus, is covered in spines that damage the female reproductive tract. Females kick males ostensibly to shorten these harmful copulations. How these iconic conflict behaviors coevolve in response to sexual conflict intensity can provide insight into the economics of these traits. We examined whether male harm and female resistance coevolved in response to elevated sexual conflict. We quantified copulation behavior and female reproductive tract damage of individuals from replicated populations evolving for 32 generations under low or high sexual conflict (female- and male-biased treatments, respectively). First, we permitted females ad libitum matings with males from either sex-ratio treatment, recording her tract damage and longevity. Second, we performed a full-factorial cross of matings by males and females from each of the replicate populations, recording mating and kicking duration and reproductive output. We found manipulation of sexual conflict intensity led to the evolution of male harmfulness, but not female resistance to harm. We also demonstrate that female kicking does not respond to sexual conflict intensity, suggesting it does not function to mitigate male harm in this species. Our findings demonstrate the complexities of behavioral and morphological coevolutionary responses to sexual conflict intensity in an important model species.
Collapse
Affiliation(s)
- Kathryn B McNamara
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
- School of BioSciences, University of Melbourne, BioSciences 4, Royal Parade, Parkville, Australia
| | - Nadia S Sloan
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
| | - Sian E Kershaw
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
| | - Emile van Lieshout
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
| |
Collapse
|
46
|
Rostant WG, Mason JS, de Coriolis JC, Chapman T. Resource-dependent evolution of female resistance responses to sexual conflict. Evol Lett 2020; 4:54-64. [PMID: 32055411 PMCID: PMC7006461 DOI: 10.1002/evl3.153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 01/31/2023] Open
Abstract
Sexual conflict can promote the evolution of dramatic reproductive adaptations as well as resistance to its potentially costly effects. Theory predicts that responses to sexual conflict will vary significantly with resource levels—when scant, responses should be constrained by trade‐offs, when abundant, they should not. However, this can be difficult to test because the evolutionary interests of the sexes align upon short‐term exposure to novel environments, swamping any selection due to sexual conflict. What is needed are investigations of populations that are well adapted to both differing levels of sexual conflict and resources. Here, we used this approach in a long‐term experimental evolution study to track the evolution of female resistance to sexual conflict in the fruit fly Drosophila melanogaster. In resource‐rich regimes, high‐conflict females evolved resistance to continual exposure to males. There was no difference in baseline survival, consistent with the idea that responses evolving under nutritional abundance experienced no trade‐offs with resistance. In the poor resource regimes, the ability of high‐conflict females to evolve resistance to males was severely compromised and they also showed lower baseline survival than low‐conflict females. This suggested high‐conflict females traded off somatic maintenance against any limited resistance they had evolved in response to sexual conflict. Overall, these findings provide experimental support for the hypothesis that evolutionary responses to sexual conflict are critically dependent upon resource levels.
Collapse
Affiliation(s)
- Wayne G Rostant
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| | - Janet S Mason
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| | | | - Tracey Chapman
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| |
Collapse
|
47
|
Svensson EI, Willink B, Duryea MC, Lancaster LT. Temperature drives pre‐reproductive selection and shapes the biogeography of a female polymorphism. Ecol Lett 2019; 23:149-159. [DOI: 10.1111/ele.13417] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023]
|
48
|
Vos M, Buckling A, Kuijper B. Sexual Selection in Bacteria? Trends Microbiol 2019; 27:972-981. [PMID: 31493990 DOI: 10.1016/j.tim.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 01/05/2023]
Abstract
A main mechanism of lateral gene transfer in bacteria is transformation, where cells take up free DNA from the environment which subsequently can be recombined into the genome. Bacteria are also known to actively release DNA into the environment through secretion or lysis, which could aid uptake via transformation. Various evolutionary benefits of DNA uptake and DNA release have been proposed but these have all been framed in the context of natural selection. Here, we interpret bacterial DNA uptake and release in the context of sexual selection theory, which has been central to our understanding of the bewildering diversity of traits associated with sexual reproduction in the eukaryote world but has never been applied to prokaryotes. Specifically, we explore potential scenarios where bacteria releasing DNA into the environment could compete for successful uptake by other cells, or where bacteria could selectively take up DNA to enhance their fitness. We conclude that there is potential for sexual selection to act in bacteria, and that this might in part explain the considerable diversity in transformation-related behaviours.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Bram Kuijper
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| |
Collapse
|
49
|
|
50
|
Sloan NS, Simmons LW. The evolution of female genitalia. J Evol Biol 2019; 32:882-899. [PMID: 31267594 DOI: 10.1111/jeb.13503] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
Female genitalia have been largely neglected in studies of genital evolution, perhaps due to the long-standing belief that they are relatively invariable and therefore taxonomically and evolutionarily uninformative in comparison with male genitalia. Contemporary studies of genital evolution have begun to dispute this view, and to demonstrate that female genitalia can be highly diverse and covary with the genitalia of males. Here, we examine evidence for three mechanisms of genital evolution in females: species isolating 'lock-and-key' evolution, cryptic female choice and sexual conflict. Lock-and-key genital evolution has been thought to be relatively unimportant; however, we present cases that show how species isolation may well play a role in the evolution of female genitalia. Much support for female genital evolution via sexual conflict comes from studies of both invertebrate and vertebrate species; however, the effects of sexual conflict can be difficult to distinguish from models of cryptic female choice that focus on putative benefits of choice for females. We offer potential solutions to alleviate this issue. Finally, we offer directions for future studies in order to expand and refine our knowledge surrounding female genital evolution.
Collapse
Affiliation(s)
- Nadia S Sloan
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Western Australia, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|