1
|
Aloliqi AA, Alnuqaydan AM, Albutti A, Alharbi BF, Rahmani AH, Khan AA. Current updates regarding biogenesis, functions and dysregulation of microRNAs in cancer: Innovative approaches for detection using CRISPR/Cas13‑based platforms (Review). Int J Mol Med 2025; 55:90. [PMID: 40242952 PMCID: PMC12021393 DOI: 10.3892/ijmm.2025.5531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
MicroRNAs (miRNAs) are short non‑coding RNAs, which perform a key role in cellular differentiation and development. Most human diseases, particularly cancer, are linked to miRNA functional dysregulation implicated in the expression of tumor‑suppressive or oncogenic targets. Cancer hallmarks such as continued proliferative signaling, dodging growth suppressors, invasion and metastasis, triggering angiogenesis, and avoiding cell death have all been demonstrated to be affected by dysregulated miRNAs. Thus, for the treatment of different cancer types, the detection and quantification of this type of RNA is significant. The classical and current methods of RNA detection, including northern blotting, reverse transcription‑quantitative PCR, rolling circle amplification and next‑generation sequencing, may be effective but differ in efficiency and accuracy. Furthermore, these approaches are expensive, and require special instrumentation and expertise. Thus, researchers are constantly looking for more innovative approaches for miRNA detection, which can be advantageous in all aspects. In this regard, an RNA manipulation tool known as the CRISPR and CRISPR‑associated sequence 13 (CRISPR/Cas13) system has been found to be more advantageous in miRNA detection. The Cas13‑based miRNA detection approach is cost effective and requires no special instrumentation or expertise. However, more research and validation are required to confirm the growing body of CRISPR/Cas13‑based research that has identified miRNAs as possible cancer biomarkers for diagnosis and prognosis, and as targets for treatment. In the present review, current updates regarding miRNA biogenesis, structural and functional aspects, and miRNA dysregulation during cancer are described. In addition, novel approaches using the CRISPR/Cas13 system as a next‑generation tool for miRNA detection are discussed. Furthermore, challenges and prospects of CRISPR/Cas13‑based miRNA detection approaches are described.
Collapse
Affiliation(s)
- Abdulaziz A. Aloliqi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Abdullah M. Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Aqel Albutti
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Basmah F. Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| |
Collapse
|
2
|
Zeng L, Wu Y, Zhu L, He J, Yuan Y, Wang X, Tang K, Tan W. Targeting long non-coding RNA RP11-502I4.3 inhibits the trend of angiogenesis in diabetic retinopathy. PLoS One 2025; 20:e0312791. [PMID: 40367061 PMCID: PMC12077687 DOI: 10.1371/journal.pone.0312791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/25/2025] [Indexed: 05/16/2025] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. We hypothesised that the long non-coding RNA RP11-502I4.3 may be involved in angiogenesis associated with DR. We investigated the role of RP11-502I4.3 in DR by examining its regulation of vascular endothelial growth factor (VEGF). We assessed differences in RP11-502I4.3 expression between the control group and streptozotocin-induced diabetic rats or high glucose (HG)-stimulated human retinal microvascular endothelial cells (HRMECs). VEGF expression was measured with and without lentiviral vectors overexpressing RP11-502I4.3. We analysed the structural alterations related to DR after overexpressing RP11-502I4.3. Our analysis revealed that RP11-502I4.3 expression was lower in the retinas of diabetic rats and HG-stimulated HRMECs compared with normal glucose conditions. Overexpressing of RP11-502I4.3 resulted in decreased VEGF levels. Diabetic rats exhibited retinopathy characterised by thinning of the retinal layer thickness, structural changes in the inner and outer nuclear layers, a reduced count of retinal ganglion cells, and the presence of acellular capillaries. The proliferative activity, migration count, and tube formation ability of HG-treated HRMECs were significantly higher than those of the control group. However, these changes were inhibited by RP11-502I4.3 overexpression. Overexpression RP11-502I4.3 might inhibit retinopathy of diabetic rats and HG-induced angiogenesis by downregulating VEGF expression.
Collapse
Affiliation(s)
- Lan Zeng
- Department of Ophthalmology, The First People’s Hospital of Zunyi (also known as The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| | - Yuhao Wu
- Zunyi Medical University, Zunyi, China
| | | | - Junhao He
- Department of Ophthalmology, The First People’s Hospital of Zunyi (also known as The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
- Scientific Research Center, The First People’s Hospital of Zunyi (also known as The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| | - Yuan Yuan
- Department of Ophthalmology, The First People’s Hospital of Zunyi (also known as The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| | - Xiaocong Wang
- Department of Ophthalmology, The First People’s Hospital of Zunyi (also known as The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| | - Kai Tang
- Zunyi Medical University, Zunyi, China
- Department of Ophthalmology, Heyou Hospital, Foshan, China.
| | - Wei Tan
- Department of Ophthalmology, The First People’s Hospital of Zunyi (also known as The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| |
Collapse
|
3
|
Wu YW, Chen JW, Tsai HY, Leu HB, Chang CC, Chang TT. Fatty acid binding protein 3 activates endothelial adhesion of circulating monocytes and impairs endothelial angiogenesis. Br J Pharmacol 2025; 182:1989-2013. [PMID: 39894951 DOI: 10.1111/bph.17451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Vascular inflammation and endothelial dysfunction cause the development of atherosclerotic cardiovascular diseases including coronary artery disease (CAD). While elevated fatty acid binding protein 3 (FABP3) may be associated with the presence of cardiovascular diseases, its mechanistic effects remain unclear. This study aimed to investigate the role of FABP3 in impaired angiogenesis and the development of atherosclerosis in CAD. EXPERIMENTAL APPROACH In total, 1104 patients were enrolled in a clinical observational study and the correlation between serum FABP3 and cardiovascular events were analysed. Another group of CAD patients and non-CAD subjects were enrolled, and their plasma FABP3 concentrations were measured. Primary cultured mononuclear cells endothelial progenitor cells and human coronary artery endothelial cells were used in vitro. Matrigel plug neovascularisation assay and the aortic ring assay were used in wild-type and apolipoprotein E-knockout mice in vivo. KEY RESULTS Circulating FABP3 was up-regulated in the cardiovascular event-positive group and in the CAD patients. Mononuclear cells from the CAD patients presented increased expression of FABP3. FABP3 enhanced the expression of adhesion molecules, including integrin β2, integrin α4 and PSGL1 in mononuclear cells. FABP3 caused endothelial cell dysfunction through the ERK/p38/STAT1/VEGF signalling pathway. Moreover, oxLDL or TNF-α stimulations impaired endothelial cell function through FABP3-dependent signalling pathways. FABP3 also impaired in vivo angiogenesis. CONCLUSION AND IMPLICATIONS This study elucidates the clinical and pathological impact of FABP3 on atherosclerotic CAD. Future research may be necessary to evaluate whether FABP3 could be a therapeutic target, especially with regard to stable CAD.
Collapse
Affiliation(s)
- Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
| | - Jaw-Wen Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Faculty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hao-Yuan Tsai
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hsin-Bang Leu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Healthcare and Management Centre, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Chi Chang
- Faculty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Ting Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Ph.D. Program of Interdisciplinary Medicine and Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Kömür M, Kıyan HT, Öztürk AA. Development of donepezil hydrochloride-loaded PLGA-based nanoparticles for Alzheimer's disease treatment. Sci Rep 2025; 15:13184. [PMID: 40240764 PMCID: PMC12003670 DOI: 10.1038/s41598-025-95792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, nanoparticle (NP) systems have demonstrated significant promise in pharmaceutical applications. This study focused on the development of donepezil hydrochloride-loaded PLGA-NPs, prepared using the 'Double Emulsion Solvent Evaporation' method. The impact of varying concentrations of polyvinyl alcohol-(PVA) in the aqueous phase and sonication time on NP characteristics was comprehensively examined. Results showed that increasing PVA concentration and sonication time resulted in a reduction in NP size, with an optimal formulation (I-DNP) achieving a particle size of 136.37 nm ± 0.93 and a PDI of 0.122 ± 0.011, indicating uniformity. The zeta potential was measured at - 24.17mV ± 1.21, confirming the electrostatic stability of the formulation, essential for long-term stability. Trehalose was incorporated to enhance stability, and gastrointestinal stability testing revealed that I-DNP degraded faster in acidic environments. The encapsulation efficiency reached 69.22 ± 4.84%, suggesting effective drug loading, and release studies exhibited a sustained release profile, with a Fickian and non-Fickian release mechanism. DSC, FT-IR, and 1H-NMR analyses confirmed the encapsulation and structural integrity of the formulation. In biological activity studies, I-DNP exhibited potent anti-AChE and anti-BuChE activities, with Chorioallantoic Membrane (CAM) assays showing significant inhibition of angiogenesis. These findings highlight the potential of I-DNP as a promising therapeutic strategy for Alzheimer's disease, demonstrating its ability to enhance drug stability, controlled release, and potential blood-brain barrier (BBB) penetration. Future studies will focus on long-term stability testing and in vivo Alzheimer's models to further validate its clinical applicability. This research contributes to the advancement of nanoparticle-based drug delivery systems for neurodegenerative diseases, paving the way for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Merve Kömür
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| | - Hülya Tuba Kıyan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| | - A Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye.
| |
Collapse
|
5
|
Jung C, Han JW, Lee SJ, Kim KH, Oh JE, Bae S, Lee S, Nam YJ, Kim S, Dang C, Kim J, Chu N, Lee EJ, Yoon YS. Novel Directly Reprogrammed Smooth Muscle Cells Promote Vascular Regeneration as Microvascular Mural Cells. Circulation 2025; 151:1076-1094. [PMID: 39945059 PMCID: PMC11996609 DOI: 10.1161/circulationaha.124.070217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/08/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Although cell therapy has emerged as a promising approach to promote neovascularization, its effects are mostly limited to capillaries. To generate larger or more stable vessels, layering of mural cells such as smooth muscle cells (SMCs) or pericytes is required. Recently, direct reprogramming approaches have been developed for generating SMCs. However, such reprogrammed SMCs lack genuine features of contractile SMCs, a native SMC phenotype; thus, their therapeutic and vessel-forming potential in vivo was not explored. Therefore, we aimed to directly reprogram human dermal fibroblasts toward contractile SMCs (rSMCs) and investigated their role for generating vascular mural cells in vivo and their therapeutic effects on ischemic disease. METHODS We applied myocardin and all-trans retinoic acid with specific culture conditions to directly reprogram human dermal fibroblasts into rSMCs. We characterized their phenotype as contractile SMCs through quantitative reverse-transcriptase polymerase chain reaction, flow cytometry, and immunostaining. We then explored their contractility using a vasoconstrictor, carbachol, and through transmission electron microscope and bulk RNA sequencing. Next, we evaluated whether transplantation of rSMCs improves blood flow and induces vessel formation as mural cells in a mouse model of hindlimb ischemia with laser Doppler perfusion imaging and histological analysis. We also determined their paracrine effects. RESULTS Our novel culture conditions using myocardin and all-trans retinoic acid efficiently reprogrammed human dermal fibroblasts into SMCs. These rSMCs displayed characteristics of contractile SMCs at the mRNA, protein, and cellular levels. Transplantation of rSMCs into ischemic mouse hind limbs enhanced blood flow recovery and vascular repair and improved limb salvage. Histological examination showed that vascular density was increased and the engrafted rSMCs were incorporated into the vascular wall as pericytes and vascular SMCs, thereby contributing to formation of more stable and larger microvessels. Quantitative reverse-transcriptase polymerase chain reaction analysis revealed that these transplanted rSMCs exerted pleiotropic effects, including angiogenic, arteriogenic, vessel-stabilizing, and tissue regenerative effects, on ischemic limbs. CONCLUSIONS A combination of myocardin and all-trans retinoic acid in defined culture conditions efficiently reprogrammed human fibroblasts into contractile and functional SMCs. The rSMCs were shown to be effective for vascular repair and contributed to neovascularization through mural cells and various paracrine effects. These human rSMCs could represent a novel source for cell-based therapy and research.
Collapse
Affiliation(s)
- Cholomi Jung
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji Woong Han
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shin-Jeong Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyung Hee Kim
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jee Eun Oh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seongho Bae
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Young-Jae Nam
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Sangsung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chaewon Dang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nakhyung Chu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun Jig Lee
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Endocrinology, Division of Endocrinology and Metabolism, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young-sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Nishiyama A, Shigematsu K, Koyama H, Hoshina K, Miyata T. Anatomical Courses of Collateral Circulations in Patients with Infrainguinal Chronic Lower-Extremity Arterial Occlusive Disease. Ann Vasc Surg 2025; 117:36-43. [PMID: 40216018 DOI: 10.1016/j.avsg.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND This study aimed to identify the anatomical course of collateral vessels in chronic lower-extremity arterial occlusive disease to optimize intramuscular injection sites for angiogenesis therapy. METHODS We retrospectively analyzed 35 limbs with superficial femoral artery (SFA) occlusion and 17 limbs with 3 crural artery occlusion using 1-mm slice contrast-enhanced computed tomography. Collateral vessels (≥1 mm) connecting the common femoral to popliteal arteries, and popliteal to foot arteries were identified. Donor and recipient arteries, and vessel courses were documented. RESULTS In SFA occlusion, 49 collateral vessels were identified. The deep femoral artery was the sole donor. Recipient arteries were predominantly the lateral (94%) and medial (6%) superior genicular arteries. Seventy-one percent (35 of 49) of collaterals ran within the short head of the biceps femoris. In crural artery occlusion, 17 collaterals were found. Donor arteries included the peroneal (29%), posterior tibial (24%), and combinations thereof. Recipient arteries were the anterior tibial (53%), plantar (29%), and dorsalis pedis (18%). All collaterals coursed through the soleus muscle, with 35% traversing the posterior tibial muscle. CONCLUSION Collateral vessels in chronic lower-extremity arterial occlusive disease exhibit preferential development within specific muscles. In SFA occlusion, collaterals develop predominantly within the short head of the biceps femoris, while in crural artery occlusion, collaterals develop within the soleus muscle. These findings suggest that targeted intramuscular injections, guided by anatomical knowledge of collateral pathways, may enhance angiogenesis therapy efficacy.
Collapse
Affiliation(s)
- Ayako Nishiyama
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan; Department of Vascular Surgery, Saiseikai Kawaguchi General Hospital, Saitama, Japan.
| | - Kunihiro Shigematsu
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan; Department of Vascular Surgery, International University of Health and Welfare, Mita General Hospital, Tokyo, Japan
| | - Hiroyuki Koyama
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan; Department of Surgery, Airi Hospital, Tokyo, Japan
| | - Katsuyuki Hoshina
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Tetsuro Miyata
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan; Japan Medical Safety Research Organization, Tokyo, Japan
| |
Collapse
|
7
|
Li J, Hou D, Li J, Li R, Sun M. Association between the atherogenic index of plasma and the systemic immuno-inflammatory index using NHANES data from 2005 to 2018. Sci Rep 2025; 15:11245. [PMID: 40175471 PMCID: PMC11965486 DOI: 10.1038/s41598-025-96090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/26/2025] [Indexed: 04/04/2025] Open
Abstract
The atherogenic index of plasma (AIP) is used to evaluate the risk of atherosclerosis, while the systemic immune-inflammation index (SII) measures inflammation. The AIP and SII are indicators used to predict diseases in various areas. This study aims to explore the relationship between AIP and SII. A cross-sectional study design was used to recruit 70,190 participants from the National Health and Nutrition Examination Survey (NHANES) conducted between 2005 and 2018, excluding AIP missing data, SII missing data, participants under 20 years of age, and participants with missing covariates to eventually include 8163 participants. We used weighted multiple linear regression analysis, trend test, smooth curve fitting and threshold effect analysis to examine the relationship between AIP and SII. Among the 8163 participants included in the study, the mean (± SD) age was 48.412 ± 16.842 years. The mean SII (± SD) for all participants was 519.910 ± 316.974. In a model adjusted for all covariates (Model 3), AIP showed a significant positive correlation with SII [β (95% CI) 32.497 (5.425, 59.569), P = 0.021]. The smooth curve fitting results of AIP and SII are an "inverted U-shape" non-linear relationship, and the inflection point is at AIP = 0.82. This positive association between AIP and SII was found only in females and participants under 50. Specifically, for females, the positive correlation between AIP and SII was linear [β (95% CI) 80.791 (44.625, 116.958); P < 0.001]. In participants under 50, the positive correlation between AIP and SII was [β (95% CI) 34.198 (3.087, 65.310); P = 0.034], and there was also an "inverted U-shape" non-linear relationship with an inflection point of AIP = 0.549. For participants aged 20-50 years and males, the smooth curve showed a "down-flat-down" non-linear relationship. There is a significant positive correlation between AIP and SII. A positive association between AIP and SII was observed exclusively in females and among participants under 50. Furthermore, AIP and SII demonstrated a nonlinear relationship that resembles an "inverted U-shape". These findings offer new insights into the prevention, treatment, and management of cardiovascular disease. However, further comprehensive cohort studies are necessary to validate the relationship between AIP and SII.
Collapse
Affiliation(s)
- Jiayu Li
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Dan Hou
- PLA Northern Theater Command General Hospital, Shenyang, Liaoning, China.
| | - Jiarong Li
- Shaoguan University, Shaoguan, Guangdong, China
| | - Rongcai Li
- Guangzhou Institute of Technology, Guangzhou, Guangdong, China
| | - Ming Sun
- PLA Northern Theater Command General Hospital, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Saloni, Sachan M, Rahul, Verma RS, Patel GK. SOXs: Master architects of development and versatile emulators of oncogenesis. Biochim Biophys Acta Rev Cancer 2025; 1880:189295. [PMID: 40058508 DOI: 10.1016/j.bbcan.2025.189295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Transcription factors regulate a variety of events and maintain cellular homeostasis. Several transcription factors involved in embryonic development, has been shown to be closely associated with carcinogenesis when deregulated. Sry-like high mobility group box (SOX) proteins are potential transcription factors which are evolutionarily conserved. They regulate downstream genes to determine cell fate, via various signaling pathways and cellular processes essential for tissue and organ development. Dysregulation of SOXs has been reported to promote or suppress tumorigenesis by modulating cellular reprogramming, growth, proliferation, angiogenesis, metastasis, apoptosis, immune modulation, lineage plasticity, maintenance of the stem cell pool, therapy resistance and cancer relapse. This review provides a crucial understanding of the molecular mechanism by which SOXs play multifaceted roles in embryonic development and carcinogenesis. It also highlights their potential in advancing therapeutic strategies aimed at targeting SOXs and their downstream effectors in various malignancies.
Collapse
Affiliation(s)
- Saloni
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Rahul
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rama Shanker Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Girijesh Kumar Patel
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
9
|
Luo H, Zhang W, Zeng W, Wang Y, Feng J, Lan Y, Dong X, Liu T, Sun Y, Lu H. OPN3-mediated positive regulation of angiogenesis in HUVECs through VEGFR2 interaction. Commun Biol 2025; 8:529. [PMID: 40164822 PMCID: PMC11958745 DOI: 10.1038/s42003-025-07958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Many rhodopsin-like G-protein-coupled receptors (Rh-GPCRs) are known to either promote or inhibit angiogenesis. Among these, Opsin 4 and Opsin 5 are specifically involved in vascular development within the eye. Opsin 3 (OPN3), another member of Rh-GPCRs, performs a variety of light-dependent and light-independent functions in extraocular tissue. However, its role in endothelial cells and angiogenesis remains unclear. Here, we found that OPN3 knockdown or knockout in zebrafish impairs embryonic angiogenesis and vascular development. Similarly, silencing OPN3 in human umbilical vein endothelial cells (HUVECs) inhibits cellular proliferation, migration, sprouting, and tube formation, while OPN3 overexpression promotes these cellular processes. Moreover, OPN3 regulates angiogenesis in HUVECs through the VEGFR2-AKT pathway, with OPN3 and VEGFR2 co-localizing at the plasma membrane and forming a physical complex. These findings provide new insights into the non-light-dependent functions of OPN3 in angiogenesis, expanding our understanding of its physiological roles and offering potential therapeutic strategies for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Huanhuan Luo
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen Zeng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianglong Feng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinghua Lan
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xian Dong
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Liu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Sun
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongguang Lu
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China.
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
10
|
Chitoran E, Rotaru V, Stefan DC, Gullo G, Simion L. Blocking Tumoral Angiogenesis VEGF/VEGFR Pathway: Bevacizumab-20 Years of Therapeutic Success and Controversy. Cancers (Basel) 2025; 17:1126. [PMID: 40227654 PMCID: PMC11988089 DOI: 10.3390/cancers17071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
The "angiogenesis switch"-defined as the active process by which solid tumors develop their own circulation-plays an important role in both tumoral growth and propagation. As the malignant tumor grows and reaches a critical size, the metabolic needs as a function of an ever-increasing distance to the nearest emergent blood vessel, can no longer be covered by the microenvironment of the peritumoral tissue. Although a relatively discrete process, the "angiogenic switch" acts as a limiting stage of tumoral development present from the avascular hyperplasia phase to the vascularized neoplastic phase, providing support for tumor expansion and metastasis. Over time, research has focused on blocking the angiogenetic pathways (such as VEGF/VEGFR signaling axis) leading to the development of targeted therapeutic agents such as Bevacizumab. Objectives: We conducted a review of the molecular principles of tumoral angiogenesis and we tried to follow the history of Bevacizumab from its first approval for human usage 20 years ago to current days, focusing on the impact this agent had in solid tumor therapy. A comprehensive review of clinical trials pertaining to Bevacizumab (from the era of the preclinic trials leading to approval for human usage, to the more recent randomized trial focusing on combination targeted therapy) further details the role of this drug. We aimed to establish if this ancient drug continues to have a place in modern oncology. Conclusions: Bevacizumab, one of the first drugs targeting tumoral microenvironment, remains one of the most important oncologic agents blocking the VEGF/VEGFR angiogenic pathway. otherwise, history of 20 years marked by numerous controversies (ranging from methodological errors of clinical trials to withdrawal of approval for human usage in breast cancer patients, from discussions about severe side effects to resistance to therapy and limited efficacity), Bevacizumab continues to provide an optimal therapeutic option for many solid tumors that previously had little to no means of treatment, improving otherwise bleak outcomes. Even in the era of personalized precision oncology, Bevacizumab continues to be a key element in many therapeutic regimens both as monotherapy and in combination with newer targeted agents.
Collapse
Affiliation(s)
- Elena Chitoran
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Vlad Rotaru
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Daniela-Cristina Stefan
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Laurentiu Simion
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
11
|
Gao Y, Liang C, Yang B, Liao L, Su X. Application and Mechanism of Adipose Tissue-Derived Microvascular Fragments in Tissue Repair and Regeneration. Biomolecules 2025; 15:422. [PMID: 40149958 PMCID: PMC11939927 DOI: 10.3390/biom15030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
One of the long-standing challenges in the field of tissue repair and regeneration is the rapid establishment of local microvascular circulation and restoration of perfusion at the site of defects or injuries. Recently, adipose tissue-derived microvascular fragments (ad-MVFs) have attracted increasing attention from researchers. Adipose tissue is rich in blood vessels, and significant progress has been made in the extraction and preservation techniques for microvascular fragments within it. Ad-MVFs promote tissue and organ repair and regeneration through three main mechanisms. First, they accelerate rapid and efficient vascularization at the injury site, enabling early vessel perfusion. Second, the stem cell components within ad-MVFs provide a rich source of cells for tissue and organ regeneration. Third, they play a role in immune regulation, facilitating integration with host tissues after implantation. The application methods of ad-MVFs are diverse. They can be directly implanted or pre-cultivated, facilitating their combination with various scaffolds and broadening their application scope. These properties have led to the wide use of ad-MVFs in tissue engineering, with promising prospects. This review demonstrates that ad-MVFs can serve as a reliable and highly feasible unit for tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine & Department of Pediatric, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.G.); (C.L.); (B.Y.); (L.L.)
| |
Collapse
|
12
|
Huang S, Ma L, Li B, Dou J, Xu Q, Wang Y. Genomic analysis reveals population structure and selection signatures in plateau dairy cattle. BMC Genomics 2025; 26:240. [PMID: 40075267 PMCID: PMC11905691 DOI: 10.1186/s12864-025-11335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND To solve the problem of an insufficient supply of dairy products in Tibet, work has been carried out to improve native dairy cattle and introduce purebred dairy cattle from low-altitude areas. The harsh environment of the plateau not only severely limits the production performance of high-yielding dairy cattle, such as Holstein and Jersey cattle, but also challenges their survival. The population structure and plateau adaptation mechanism of plateau dairy cattle are rarely reported. In this study, key genes and pathways affecting plateau purebred and crossbred dairy cattle were explored using genetic chip information. RESULTS The results showed that the genetic diversity of the Tibet dairy cattle population was higher than that of the native cattle and plains dairy cattle. Purebred Holstein and Jersey cattle in Tibet were genetically closer to dairy cattle in the plains, and crossbred dairy cattle were admixed with more Tibet cattle and Apaijiza cattle. Based on the fixation index (FST), integrated haplotype score (iHS), and cross-population extend haplotype homozygosity (XP-EHH) approaches, 60 and 40 genes were identified in plateau Holstein and Jersey cattle, respectively. A total of 78 and 70 genes were identified in crossbred cattle compared to Holstein and Tibet cattle respectively. These genes are related to cardiac health and development, neuronal development and function, angiogenesis and hematopoietic, pigmentation, growth and development, and immune response. CONCLUSIONS Our results provide a glimpse into diverse selection signatures in plateau dairy cattle, which can be used to enhance our understanding of the genomic basis of plateau adaptation in dairy cattle. These results support further research on breeding strategies such as marker-assisted selection and gene editing in plateau dairy cattle populations.
Collapse
Affiliation(s)
- Shangzhen Huang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, MARA, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Longgang Ma
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, MARA, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary Medicine, Academy of Agriculture and Animal Husbandry of Tibet Autonomous Region, Lhasa, 850000, China
| | - Jinhuan Dou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Qing Xu
- Institute of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, MARA, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Wu J, Wang J, Pei Z, Zhu Y, Zhang X, Zhou Z, Ye C, Song M, Hu Y, Xue P, Zhao G. Endothelial senescence induced by PAI-1 promotes endometrial fibrosis. Cell Death Discov 2025; 11:89. [PMID: 40050610 PMCID: PMC11885584 DOI: 10.1038/s41420-025-02377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Intrauterine adhesions (IUAs), also known as Asherman's syndrome (AS), represent a significant cause of uterine infertility for which effective treatment remains elusive. The endometrium's ability to regenerate cyclically depends heavily on the growth and regression of its blood vessels. However, trauma to the endometrial basal layer can disrupt the subepithelial capillary plexus, impeding regeneration. This damage results in the replacement of native cells with fibroblasts and myofibroblasts, ultimately leading to fibrosis. Endothelial cells (ECs) play a pivotal role in the vascular system, extending beyond their traditional barrier function. Through single-cell sequencing and experimental validation, we discovered that ECs undergo senescence in IUA patients, impairing angiogenesis and fostering stromal cell fibrosis. Further analysis revealed significant interactions between ECs and PAI-1+ stromal cells. PAI-1, derived from stromal cells, promotes EC senescence via the urokinase-type plasminogen activator receptor (uPAR). Notably, prior to fibrosis onset, TGF-β upregulates PAI-1 expression in stromal cells in a SMAD dependent manner. In an IUA mouse model, inhibiting PAI-1 mitigated EC senescence and endometrial fibrosis. Our findings underscore the crucial role of EC senescence in IUA pathogenesis, contributing to vascular reduction and fibrosis. Targeting PAI-1 represents a promising therapeutic strategy to suppress EC senescence and alleviate endometrial fibrosis, offering new insights into the treatment of IUAs.
Collapse
Affiliation(s)
- Jing Wu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongrui Pei
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaru Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xier Zhang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zihan Zhou
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chunying Ye
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Minmin Song
- Obstetrics and Gynaecology Hospital, Fudan University, Shanghai, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Pingping Xue
- Department of Reproductive Medicine Center, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Su W, Liao C, Liu X. Angiogenic and neurogenic potential of dental-derived stem cells for functional pulp regeneration: A narrative review. Int Endod J 2025; 58:391-410. [PMID: 39660369 DOI: 10.1111/iej.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/26/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Dental pulp tissue engineering is expected to become an ideal treatment for irreversible pulpitis and apical periodontitis. However, angiogenesis and neurogenesis for functional pulp regeneration have not yet met the standard for large-scale clinical application, and need further research. OBJECTIVE This review focused on the potential mechanisms of angiogenesis and neurogenesis in pulp regeneration, including stem cell types, upstream and downstream regulatory molecules and cascade signalling pathways, thereby providing a theoretical basis and inspiring new ideas to improve the effectiveness of dental pulp tissue engineering. METHODS An electronic literature search was carried out using the keywords of 'pulp regeneration', 'stem cell transplantation', 'dental pulp stem cells', 'angiogenesis' and 'neurogenesis'. The resulting literature was screened and reviewed. RESULTS Stem cells used in dental pulp tissue engineering can be classified as dental-derived and non-dental-derived stem cells, amongst which dental pulp stem cells (DPSC) have achieved promising results in animal experiments and clinical trials. Multiple molecules and signalling pathways are involved in the process of DPSC-mediated angiogenic and neurogenetic regeneration. In order to promote angiogenesis and neurogenesis in pulp regeneration, feasible measures include the addition of growth factors, the modulation of transcription factors and signalling pathways, the use of extracellular vesicles and the modification of bioscaffold materials. CONCLUSION Dental pulp tissue engineering has had breakthroughs in preclinical and clinical studies in vivo. Overcoming difficulties in pulpal angiogenesis and neurogenesis, and achieving functional pulp regeneration will lead to a significant impact in endodontics.
Collapse
Affiliation(s)
- Wanting Su
- School of Stomatology, Jinan University, Guangzhou, China
| | - Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Yılmaz C, Güvendi Şengör B, Karaduman A, Tiryaki MM, Kültürsay B, Unkun T, Zehir R. Association of wide pulse pressure with coronary collateral flow in patients with ST-elevation myocardial infarction undergoing percutaneous coronary intervention. J Hum Hypertens 2025; 39:210-216. [PMID: 39690270 DOI: 10.1038/s41371-024-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Coronary collateral flow (CCF) is crucial for myocardial viability in patients with obstructive coronary artery disease, specifically ST-elevation myocardial infarction (STEMI). However, hypertension can contribute to vascular dysfunction and hinder the formation of CCF. Wide pulse pressure (WPP), defined as ≥65 mmHg, may better reflect impaired cardiovascular health compared to classic blood pressure indices. The effect of WPP on CCF remains unclear. Therefore, we aimed to evaluate the impact of WPP on CCF. This retrospective study included 1180 STEMI patients that underwent primary percutaneous coronary intervention (PCI) between 2021 and 2023 at a tertiary healthcare center. Patients were classified into good and poor CCF groups based on the Rentrop classification. Out of these patients, 272 (23.1%) had good CCF, while 908 (76.9%) had poor CCF. Two distinct models were constructed using multivariable logistic regression analysis to identify independent predictors of good CCF, including pulse pressure (Model 1) and WPP (Model 2). Covariates such as age, gender, diabetes mellitus, smoking, pre-infarction angina, Killip Class 3/4, multivessel disease, peak troponin, pre-thrombolysis in myocardial infarction (TIMI) flow 0, and previous PCI were added to both models. WPP was identified as an independent predictor that negatively influences good CCF (OR: 0.511, 95% CI: 0.334-0.783, p = 0.002). Moreover, diabetes, pre-infarction angina, Killip class III/IV, multivessel disease, and pre-TIMI flow 0 were also found to be independent predictors of CCF. WPP, derived from blood pressure measurements, has been associated with poor CCF in STEMI patients undergoing primary PCI and may serve as a predictor of poor CCF.
Collapse
Affiliation(s)
- Cemalettin Yılmaz
- Department of Cardiology, Malazgirt State Hospital, Malazgirt, Muş, Turkey.
| | - Büşra Güvendi Şengör
- Department of Cardiology, Kartal Kosuyolu Research and Education Hospital, Istanbul, Kartal, Turkey
| | - Ahmet Karaduman
- Department of Cardiology, Kartal Kosuyolu Research and Education Hospital, Istanbul, Kartal, Turkey
| | | | - Barkın Kültürsay
- Department of Cardiology, Kartal Kosuyolu Research and Education Hospital, Istanbul, Kartal, Turkey
| | - Tuba Unkun
- Department of Cardiology, Kartal Kosuyolu Research and Education Hospital, Istanbul, Kartal, Turkey
| | - Regayip Zehir
- Department of Cardiology, Kartal Kosuyolu Research and Education Hospital, Istanbul, Kartal, Turkey
| |
Collapse
|
16
|
Li S, Zhang Y, Zhang T, Jiang D, Li M, Chen L, Jiang J, Zhang C, Li Q. Urolithin B suppresses phenotypic switch in vascular smooth muscle cells induced by PDGF-BB via inhibiting the PI3K-AKT pathway. In Vitro Cell Dev Biol Anim 2025; 61:311-319. [PMID: 39806237 DOI: 10.1007/s11626-024-01005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Atherosclerosis (AS) is a prevalent cardiovascular condition, and the growth and phenotypic switch of vascular smooth muscle cells (VSMCs) play a crucial role in its development. Studies have revealed that the activation of certain transcription factors and signaling pathways can trigger these cellular changes. Consequently, targeting these pathways and pivotal molecules has emerged as a promising strategy for AS treatment. Drugs that can reverse the cellular changes in VSMCs may offer new therapeutic options for AS, marking a significant advancement. While previous research has suggested that urolithin B (Uro B) possesses anti-atherosclerotic properties, its exact mechanism remains to be fully understood, especially the effect of Uro B in VSMCs. This study discovered that Uro B can impede the proliferation and migration of VSMCs prompted by PDGF-BB, as well as their phenotypic changes, indicating that Uro B could potentially prevent AS by inhibiting the phenotypic switch of VSMCs.
Collapse
Affiliation(s)
- Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, No. 1 Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yi Zhang
- School of Basic Medical Sciences, Southwest Medical University, No. 1 Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, No. 1 Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, No. 1 Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Mi Li
- School of Basic Medical Sciences, Southwest Medical University, No. 1 Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, No. 1 Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, No. 1 Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
17
|
Mao R, Zhang J, Qin H, Liu Y, Xing Y, Zeng W. Application progress of bio-manufacturing technology in kidney organoids. Biofabrication 2025; 17:022007. [PMID: 39933190 DOI: 10.1088/1758-5090/adb4a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Kidney transplantation remains a pivotal treatment modality for kidney disease, yet its progress is significantly hindered by the scarcity of donor kidneys and ethical dilemmas surrounding their procurement. As organoid technology evolves and matures, the creation of bionic human kidney organoids offers profound potential for advancing kidney disease research, drug nephrotoxicity screening, and regenerative medicine. Nevertheless, current kidney organoid models grapple with limitations such as constrained cellular differentiation, underdeveloped functional structures, and a crucial absence of vascularization. This deficiency in vascularization, in particular, stunts organoid development, restricts their size, diminishes filtration capabilities, and may trigger immune inflammatory reactions through the resulting ischemic microenvironment. Hence, the achievement of vascularization within kidney organoids and the successful establishment of functional microvascular networks constitutes a paramount goal for their future progression. In this review, we provide an overview of recent advancements in biotechnology domains, encompassing organ-on-a-chip technology, biomimetic matrices, and bioprinting, with the aim of catalyzing technological breakthroughs that can enhance the vascularization of kidney organoids and broaden their applicability. These technologies hold the key to unlocking the full potential of kidney organoids as a transformative therapeutic option for kidney disease.
Collapse
Affiliation(s)
- Runqi Mao
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Junming Zhang
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Haoxiang Qin
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Yuanyuan Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Yuxin Xing
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, People's Republic of China
- Jinfeng Laboratory, Chongqing 401329, People's Republic of China
| |
Collapse
|
18
|
Aye SSS, Fang Z, Wu MCL, Lim KS, Ju LA. Integrating microfluidics, hydrogels, and 3D bioprinting for personalized vessel-on-a-chip platforms. Biomater Sci 2025; 13:1131-1160. [PMID: 39834160 DOI: 10.1039/d4bm01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Thrombosis, a major cause of morbidity and mortality worldwide, presents a complex challenge in cardiovascular medicine due to the intricacy of clotting mechanisms in living organisms. Traditional research approaches, including clinical studies and animal models, often yield conflicting results due to the inability to control variables in these complex systems, highlighting the need for more precise investigative tools. This review explores the evolution of in vitro thrombosis models, from conventional polydimethylsiloxane (PDMS)-based microfluidic devices to advanced hydrogel-based systems and cutting-edge 3D bioprinted vascular constructs. We discuss how these emerging technologies, particularly vessel-on-a-chip platforms, are enabling researchers to control previously unmanageable factors, thereby offering unprecedented opportunities to pinpoint specific clotting mechanisms. While PDMS-based devices offer optical transparency and fabrication ease, their inherent limitations, including non-physiological rigidity and surface properties, have driven the development of hydrogel-based systems that better mimic the extracellular matrix of blood vessels. The integration of microfluidics with biomimetic materials and tissue engineering approaches has led to the development of sophisticated models capable of simulating patient-specific vascular geometries, flow dynamics, and cellular interactions under highly controlled conditions. The advent of 3D bioprinting further enables the creation of complex, multi-layered vascular structures with precise spatial control over geometry and cellular composition. Despite significant progress, challenges remain in achieving long-term stability, incorporating immune components, and translating these models to clinical applications. By providing a comprehensive overview of current advancements and future prospects, this review aims to stimulate further innovation in thrombosis research and accelerate the development of more effective, personalized approaches to thrombosis prevention and treatment.
Collapse
Affiliation(s)
- San Seint Seint Aye
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Zhongqi Fang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Mike C L Wu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Khoon S Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
19
|
Ma G, Xu K, Yu L, Haag R. pH-Responsive Polyglycerol Nanogels for Periodontitis Treatment through Antibacterial and Pro-Angiogenesis Action. Angew Chem Int Ed Engl 2025; 64:e202418882. [PMID: 39828663 DOI: 10.1002/anie.202418882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
Periodontitis is a microbe-driven inflammatory disease leading to bone resorption and tissue destruction. We propose a dual-functional nanogel complex armed with the antimicrobial drug triclosan (TCS) and the pro-angiogenesis medication deferoxamine (DFO) for combating microbial pathogens and promoting tissue regeneration. The nanogel system (NG-TCS-DFO) that we fabricated from linear polyglycerol exhibits well-defined spherical morphology and a positively charged surface for bacteria adhesion. The rapid and sustained degradation of NG-TCS-DFO in the acidic environment of an infection site induces the on-demand release of TCS and DFO. The NG-TCS-DFO shows potent bacteria elimination of the gingivitis-causing bacteria Porphyromonas gingivalis in both planktonic (99.9 %) and biofilm (99 %) states. Furthermore, the NG-TCS-DFO can promote vascularization and migration of human umbilical vein endothelial cells (HUVECs). Contributing to the synergistic effect of TCS and DFO, the NG-TCS-DFO demonstrates significant bone tissue regeneration and accelerated healing of periodontitis in vivo. This polyglycerol-based nanogel may therefore offer smart combined delivery of multiple therapeutics against bacteria-driven diseases.
Collapse
Affiliation(s)
- Guoxin Ma
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Ke Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| |
Collapse
|
20
|
Wallace EJ, O'Dwyer J, Dolan EB, Burke LP, Wylie R, Bellavia G, Straino S, Cianfarani F, Ciotti G, Serini S, Calviello G, Roche ET, Mitra T, Duffy GP. Actuation-Mediated Compression of a Mechanoresponsive Hydrogel by Soft Robotics to Control Release of Therapeutic Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2401744. [PMID: 39692747 PMCID: PMC11831469 DOI: 10.1002/advs.202401744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/31/2024] [Indexed: 12/19/2024]
Abstract
Therapeutic proteins, the fastest growing class of pharmaceuticals, are subject to rapid proteolytic degradation in vivo, rendering them inactive. Sophisticated drug delivery systems that maintain protein stability, prolong therapeutic effects, and reduce administration frequency are urgently required. Herein, a mechanoresponsive hydrogel is developed contained within a soft robotic drug delivery (SRDD) device. In a step-change from previously reported systems, pneumatic actuation of this system releases the cationic therapeutic protein Vascular Endothelial Growth Factor (VEGF) in a bioactive form which is required for therapeutic angiogenesis, the growth of new blood vessels, in numerous clinical conditions. The ability of the SRDD device to release bioactive VEGF in a spatiotemporal manner from the hydrogel is tested in diabetic rats - a model in which angiogenesis is difficult to stimulate. Daily actuation of the SRDD device in the diabetic rat model significantly increased cluster of differentiation 31+ (CD31+) blood vessel number (p = 0.0335) and the diameter of alpha-smooth muscle actin+ (α-SMA+) blood vessels (p = 0.0025) compared to passive release of VEGF from non-actuated devices. The SRDD device combined with the mechanoresponsive hydrogel offers the potential to deliver an array of bioactive therapeutics in a spatiotemporal manner to mimic their natural release in vivo.
Collapse
Affiliation(s)
- Eimear J. Wallace
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- Explora‐Bioscience SrlG. Peroni 386Rome00131Italy
| | - Joanne O'Dwyer
- Pharmacology and TherapeuticsSchool of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
| | - Eimear B. Dolan
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
- Biomedical EngineeringSchool of EngineeringUniversity of GalwayGalwayH91 HX31Ireland
| | - Liam P. Burke
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- Antimicrobial Resistance and Microbial Ecology GroupSchool of Medicine, College of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 DK59Ireland
- Centre for One HealthRyan InstituteUniversity of GalwayGalwayH91 DK59Ireland
| | - Robert Wylie
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
| | | | | | | | | | - Simona Serini
- Department of Translational Medicine and SurgerySection of General Pathology, Faculty of Medicine and SurgeryUniversità Cattolica del Sacro CuoreLargo F. VitoRome1‐00168Italy
| | - Gabriella Calviello
- Department of Translational Medicine and SurgerySection of General Pathology, Faculty of Medicine and SurgeryUniversità Cattolica del Sacro CuoreLargo F. VitoRome1‐00168Italy
| | - Ellen T. Roche
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA 01239USA
- Harvard‐MIT Program in Health Sciences and TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Tapas Mitra
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
| | - Garry P. Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College DublinDublinD02 W9K7Ireland
| |
Collapse
|
21
|
Al-Eitan L, Kharmah HA. Effect of EMB-FUBINACA on brain endothelial cell angiogenesis: Expression analysis of angiogenic markers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1613-1624. [PMID: 39136736 DOI: 10.1007/s00210-024-03322-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/21/2024] [Indexed: 02/14/2025]
Abstract
Angiogenesis is the process by which blood vessels are generated from preexisting ones. Synthetic cannabinoids represent new psychoactive substances that bind to the cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R) and simulate similar effects of tetrahydrocannabinol, the primary component found in cannabis. In the present study, we used the synthetic cannabinoid EMB-FUBINACA to study its impact on brain angiogenesis. Human brain microvascular endothelial cells (HBMECs) were cultivated in DMEM media before being subjected to different concentrations of EMB-FUBINACA and the control. Cell viability and the migration rates of HBMECs were evaluated using the viability and wound healing assays, respectively. An in vitro Matrigel Tube Formation Assay was carried out to measure the angiogenic capacity of endothelial cells. Angiopoietin-1 (ANG-1), Angiopoietin-2 (ANG-2), and vascular endothelial growth factor (VEGF) mRNA expression were detected using Real-Time PCR. The released VEGF, ANG-1, and ANG-2 concentrations were detected using ELISA. Western blotting was performed to measure the levels of phosphorylated GSK-3β, VEGF, ANG-1, and ANG-2. EMB-FUBINACA stimulated endothelial cell proliferation, migration, and capillary tube-like formation and promoted the expression of proangiogenic factors on RNA and protein levels. This study points out that the synthetic cannabinoid EMB-FUBINACA is a potential candidate for further investigations to confirm its potential as an inducer of brain angiogenesis. This could encourage researchers to create a new therapeutic approach for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Hana Abu Kharmah
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
22
|
Sebo DJ, Ali I, Fetsko AR, Trimbach AA, Taylor MR. Activation of Wnt/β-catenin in neural progenitor cells regulates blood-brain barrier development and promotes neuroinflammation. Sci Rep 2025; 15:3496. [PMID: 39875426 PMCID: PMC11775206 DOI: 10.1038/s41598-025-85784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature. Using transgenic reporters of Wnt/β-catenin transcriptional activity, we found an inverse correlation between activated Wnt/β-catenin signaling in endothelial cells (ECs) versus non-ECs within these distinct microenvironments. Our results indicated that the level of Wnt/β-catenin signaling in non-ECs may regulate Wnt/β-catenin activity in adjacent ECs. To further test this concept, we generated a transgenic Tet-On inducible system to drive constitutively active β-catenin expression in neural progenitor cells (NPCs). We found that dose-dependent activation of Wnt/β-catenin in NPCs caused severe deficiency in CNS angiogenesis and BBB development. Additionally, we discovered a significant increase in the proliferation of microglia and infiltration of peripheral neutrophils indicative of a stereotypical neuroinflammatory response. In conclusion, our results demonstrate the importance of proper Wnt/β-catenin signaling within specific CNS microenvironments and highlights the potentially deleterious consequences of aberrant Wnt activation.
Collapse
Affiliation(s)
- Dylan J Sebo
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Irshad Ali
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey R Fetsko
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aubrey A Trimbach
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael R Taylor
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
23
|
Lee PH, An MH, Jang AS. Angiogenesis Factors as Emerging Circulating Biomarkers in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2025; 17:22-31. [PMID: 39895600 PMCID: PMC11791373 DOI: 10.4168/aair.2025.17.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025]
Abstract
Angiogenesis is an important event in the development of allergic inflammation as well as in the pathophysiology of tissue remodeling in asthma. Increased angiogenesis is a well-documented feature of airway remodeling in asthma. Angiogenesis refers to the formation of new blood vessels from pre-existing endothelium. Angiogenesis can be initiated by endogenous angiogenic factors released from mesenchymal cells or inflammatory cells. Under physiological conditions, angiogenesis is controlled by an equilibrium between pro-endogenous and anti-endogenous angiogenic factors released from the extracellular matrix to become bioavailable. The presence of increased size and number of bronchial blood vessels indicates that angiogenesis plays a crucial role in tissue growth and remodeling in asthma. However, the diagnostic significance of circulating angiogenic factors in asthma remains unclear. This review summarizes the role of angiogenesis in airway remodeling in asthma, and the potential diagnostic implications of circulating angiogenetic factors.
Collapse
Affiliation(s)
- Pureun-Haneul Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Min-Hyeok An
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
24
|
Yan W, Cheng J, Wu H, Gao Z, Li Z, Cao C, Meng Q, Wu Y, Ren S, Zhao F, Wang H, Liu P, Wang J, Hu X, Ao Y. Vascular Smooth Muscle Cells Transdifferentiate into Chondrocyte-Like Cells and Facilitate Meniscal Fibrocartilage Regeneration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0555. [PMID: 39717465 PMCID: PMC11665451 DOI: 10.34133/research.0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
The effective and translational strategy to regenerate knee meniscal fibrocartilage remained challenging. Herein, we first identified vascular smooth muscle cells (VSMCs) transdifferentiated into fibrochondrocytes and participated in spontaneous meniscal regeneration using smooth muscle cell lineage tracing transgenic mice meniscal defect model. Then, we identified low-intensity pulsed ultrasound (LIPUS) acoustic stimulus enhanced fibrochondrogenic transdifferentiation of VSMCs in vitro and in vivo. Mechanistically, LIPUS stimulus could up-regulate mechanosensitive ion channel Piezo1 expression and then activate the transforming growth factor β1 (TGFβ1) signal, following repression of the Notch signal, consequently enhancing fibrochondrogenic transdifferentiation of VSMCs. Finally, we demonstrated that the regular LIPUS stimulus enhanced anisotropic native-like meniscal fibrocartilage tissue regeneration in a beagle canine subtotal meniscectomy model at 6 months postoperatively. The single-cell RNA sequencing analysis confirmed the role of VSMC fibrochondrogenic transdifferentiation in meniscal regeneration.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Haoda Wu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Zeyuan Gao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Zong Li
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Chenxi Cao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yue Wu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Shuang Ren
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Fengyuan Zhao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Hongde Wang
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Ping Liu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jianquan Wang
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
25
|
Lampejo AO, Perez LF, Girgis MM, Sharma B, Siemann DW, Murfee WL. A Novel in vivo Rat Mesentery Model for Studying Tumor Spheroid-Induced Microvascular Remodeling. J Vasc Res 2024; 62:63-77. [PMID: 39701053 PMCID: PMC11965820 DOI: 10.1159/000543011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION The tumor microenvironment is comprised of neoplastic cells and a variety of host cell types. Investigation of cell dynamics within this environment has motivated in vitro and ex vivo biomimetic model development. Our laboratory recently introduced the tumor spheroid-rat mesentery culture model to investigate cancer-induced lymphatic/blood vessel remodeling. To validate the physiological relevance of this model, the objective of this study was to determine the effect of tumor spheroids on microvascular remodeling after transplantation onto rat mesenteric tissues in vivo. METHODS Spheroids derived from H1299 lung cancer cells were seeded onto rat mesenteric tissues during a survival surgical procedure. Tissues were harvested 3-5 days post-seeding and stained with PECAM and LYVE-1 to identify blood and lymphatic vessels, respectively. RESULTS At all timepoints, cancer cells remained adhered to the tissue. Tissues seeded with tumor spheroids were shown to have increased vascular density, capillary sprouting, and tortuosity compared to sham tissues exposed to sterile saline only. Tumor spheroids also induced the formation of lymphatic/blood vessel connections and LYVE-1-negative protrusions emerging from lymphatic vessels. CONCLUSION Overall, this study underscores the use of in vivo modeling to aid in the discovery of novel vascular growth dynamics and offers new methodologies for studying tumor-induced remodeling. INTRODUCTION The tumor microenvironment is comprised of neoplastic cells and a variety of host cell types. Investigation of cell dynamics within this environment has motivated in vitro and ex vivo biomimetic model development. Our laboratory recently introduced the tumor spheroid-rat mesentery culture model to investigate cancer-induced lymphatic/blood vessel remodeling. To validate the physiological relevance of this model, the objective of this study was to determine the effect of tumor spheroids on microvascular remodeling after transplantation onto rat mesenteric tissues in vivo. METHODS Spheroids derived from H1299 lung cancer cells were seeded onto rat mesenteric tissues during a survival surgical procedure. Tissues were harvested 3-5 days post-seeding and stained with PECAM and LYVE-1 to identify blood and lymphatic vessels, respectively. RESULTS At all timepoints, cancer cells remained adhered to the tissue. Tissues seeded with tumor spheroids were shown to have increased vascular density, capillary sprouting, and tortuosity compared to sham tissues exposed to sterile saline only. Tumor spheroids also induced the formation of lymphatic/blood vessel connections and LYVE-1-negative protrusions emerging from lymphatic vessels. CONCLUSION Overall, this study underscores the use of in vivo modeling to aid in the discovery of novel vascular growth dynamics and offers new methodologies for studying tumor-induced remodeling.
Collapse
Affiliation(s)
- Arinola O. Lampejo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Luciana Fonseca Perez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Miriam M. Girgis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Dietmar W. Siemann
- Department of Radiation Oncology, University of Florida, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Walter L. Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, University of Florida Health Cancer Center, Gainesville, FL, USA
| |
Collapse
|
26
|
Li Y, Lu F, Zhang C, Xu H, Yang S. Dynamic susceptibility contrast-enhanced MRI with USPIO in evaluating angiogenesis of the peri-infarction zones in subacute ischemic stroke in a permanent middle cerebral artery occlusion rat model. Acta Radiol 2024; 65:1529-1539. [PMID: 39449316 DOI: 10.1177/02841851241290646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) can reflect the angiogenesis of ischemic stroke. PURPOSE To investigate the value of DSC-MRI with ultrasmall superparamagnetic particles of iron oxides (USPIO) in evaluating angiogenesis in the peri-infarction zones in subacute ischemic stroke in a permanent middle cerebral artery occlusion (pMCAO) rat model. MATERIAL AND METHODS A total of 21 Sprague-Dawley rats were randomly divided into the pMCAO and sham operation groups. Every rat in each group underwent DSC-MRI with USPIO at 3, 5, and 7 days. DSC-MRI parameters of the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), relative mean transit time (rMTT), and relative time to peak (rTTP) were measured, calculated, and compared among the different times. Sequential correlations were analyzed among the histopathological indexes with the microvascular density (MVD) and percentage of vascular area (%VA), the serum factors with vascular endothelial growth factor (VEGF), vascular cell adhesion molecule 1 (VCAM-1), and perfusion parameters, respectively. RESULTS The rCBV and rCBF in the peri-infarction area of pMCAO rats were significantly higher on day 7 than on day 3, whereas no significant changes in rMTT and rTTP were observed at 3, 5, and 7 days. Significantly positive correlations were found between rCBV and MVD, %VA, VEGF, VCAM-1, between rCBF and MVD, %VA, VEGF, and VCAM-1 at 3, 5, and 7 days in the pMCAO group. CONCLUSION The rCBV and rCBF deriving from USPIO-DSC may be potentially useful for evaluating the angiogenesis of the peri-infarction zones in the subacute phase of ischemic stroke.
Collapse
Affiliation(s)
- Yuanchao Li
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Cheng Zhang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Huihui Xu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Shuohui Yang
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
27
|
Pandey S, Kaur G, Rana N, Chopra S, Rather I, Kumar R, Laroiya I, Chadha VD, Satz S, Stabin MG, Mittal BR, Shukla J. Advancing Cancer Theranostics Through Integrin αVβ3-Targeted Peptidomimetic IAC: From Bench to Bedside. Cancer Biother Radiopharm 2024; 39:632-643. [PMID: 38977419 DOI: 10.1089/cbr.2023.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Introduction: The expression of alpha-five beta-three (αVβ3) integrins is upregulated in various malignancies undergoing angiogenesis. The development of integrin antagonists as diagnostic probes makes the αVβ3 integrin a suitable candidate for targeting tumor angiogenesis. The goal of this study was to optimize the radiolabeling and evaluate the potential of conjugated integrin antagonist carbamate (IAC), a peptidomimetic, as a theranostic radiopharmaceutical for targeting tumor angiogenesis. Methodology: Radiolabeling of DOTAGA [2,2',2"-{10-(2,6-dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl} triacetic-acid]-IAC with [68Ga]Ga, [177Lu]Lu, and [225Ac]Ac was optimized. The binding affinity (Kd) of DOTAGA-IAC for the αVβ3 receptor and cancer cell lines was quantified. The biodistribution studies were conducted in healthy Wistar rats. Dosimetry analysis was performed on [177Lu]Lu-DOTAGA-IAC distribution data. A pilot study of [68Ga]Ga-DOTAGA-IAC and [18F]FDG Positron Emission Tomography (PET/CT) imaging was performed in five patients with histopathologically confirmed breast cancer. PET/CT findings were compared between [68Ga]Ga-DOTAGA-IAC and [18F]FDG in these patients. Results: Radiopharmaceuticals were prepared with high radiochemical purity (>99.9%). Kd and Bmax measurements were 15.02 nM and 417 fmol for αVβ3 receptor protein: 115.7 nM and 295.3 fmol for C6 glioma cells. Biodistribution studies in rats suggested the excretion via kidneys and partially through the hepatobiliary route. The effective dose of [177Lu]Lu-DOTAGA-IAC was found to be 0.17 mSv/MBq. The dynamic study in patients revealed the optimal imaging time to be 30-35 mins postadministration. Out of the cohort, [68Ga]Ga-DOTAGA-IAC detected the primary lesions in all five patients with a mean standard uptake value (SUVmax) of 3.94 ± 0.58 compared with [18F]FDG (SUVmax 13.8 ± 6.53). Conclusion: The study demonstrates that DOTAGA-IAC exhibits strong binding to αVβ3 integrin, positioning it as a promising PET agent for assessing primary and metastatic cancers. The outcomes from the pilot study suggest the potential of [68Ga]Ga-DOTAGA-IAC PET/CT in breast carcinoma diagnosis. While recognizing the theranostic potential of DOTAGA-IAC for αVβ3 integrin-expressing tumors, further clinical investigations are warranted to comprehensively assess therapeutic efficacy.
Collapse
Affiliation(s)
- Somit Pandey
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Gurvinder Kaur
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Nivedita Rana
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Sejal Chopra
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Imran Rather
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (P.G.I.M.E.R), Chandigarh, India
| | - Rajender Kumar
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Ishita Laroiya
- Department of Surgery, Post Graduate Institute of Medical Education & Research (P.G.I.M.E.R), Chandigarh, India
| | - Vijayta D Chadha
- Center for Nuclear Medicine, Panjab University, Chandigarh, India
| | - Stanley Satz
- Advanced Innovative Partners, Inc., Miami, Florida, USA
| | | | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Jaya Shukla
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| |
Collapse
|
28
|
Abtahi MS, Fotouhi A, Rezaei N, Akalin H, Ozkul Y, Hossein-Khannazer N, Vosough M. Nano-based drug delivery systems in hepatocellular carcinoma. J Drug Target 2024; 32:977-995. [PMID: 38847573 DOI: 10.1080/1061186x.2024.2365937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024]
Abstract
The high recurrence rate of hepatocellular carcinoma (HCC) and poor prognosis after medical treatment reflects the necessity to improve the current chemotherapy protocols, particularly drug delivery methods. Development of targeted and efficient drug delivery systems (DDSs), in all active, passive and stimuli-responsive forms for selective delivery of therapeutic drugs to the tumour site has been extended to improve efficacy and reduce the severe side effects. Recent advances in nanotechnology offer promising breakthroughs in the diagnosis, treatment and monitoring of cancer cells. In this review, the specific design of DDSs based on the different nano-particles and their surface engineering is discussed. In addition, the innovative clinical studies in which nano-based DDS was used in the treatment of HCC were highlighted.
Collapse
Affiliation(s)
- Maryam Sadat Abtahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
29
|
Alkazemi H, Mitchell GM, Lokmic-Tomkins Z, Heath DE, O'Connor AJ. Hierarchically vascularized and suturable tissue constructs created through angiogenesis from tissue-engineered vascular grafts. Acta Biomater 2024; 189:168-178. [PMID: 39368723 DOI: 10.1016/j.actbio.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
A major roadblock in implementing engineered tissues clinically lies in their limited vascularization. After implantation, such tissues do not integrate with the host's circulation as quickly as needed, commonly resulting in loss of viability and functionality. This study presents a solution to the vascularization problem that could enable the survival and function of large, transplantable, and vascularized engineered tissues. The technique allows vascularization of a cell laden hydrogel through angiogenesis from a suturable tissue-engineered vascular graft (TEVG) constructed from electrospun polycaprolactone with macropores. The graft is surrounded by a layer of cell-laden gelatin-methacryloyl hydrogel. The constructs are suturable and possess mechanical properties like native vessels. Angiogenesis occurs through the pores in the graft, resulting in a hydrogel containing an extensive vascular network that is connected to an implantable TEVG. The size of the engineered tissue and the degree of vascularization can be increased by adding multiple TEVGs into a single construct. The engineered tissue has the potential to be immediately perfused by the patient's blood upon surgical anastomosis to host vessels, enabling survival of implanted cells. These findings provide a meaningful step to address the longstanding problem of fabricating suturable pre-vascularized tissues which could survive upon implantation in vivo. STATEMENT OF SIGNIFICANCE: Creating vascularized engineered tissues that can be transplanted and rapidly perfused by the host blood supply is a major challenge which has limited the clinical impact of tissue engineering. In this study we demonstrate a technique to fabricate vascularized tissue constructs via angiogenesis from a suturable tissue-engineered vascular graft. The macroporous graft is surrounded with hydrogel, allowing endothelial cells to migrate from the lumen and vascularize the hydrogel layer with capillary-like structures connected to the macrovessel. The graft has comparable mechanical properties to native blood vessels and larger constructs can be fabricated by incorporating multiple grafts. These constructs could potentially be connected surgically to the circulation at an implantation site to support their immediate perfusion and survival.
Collapse
Affiliation(s)
- Hazem Alkazemi
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Victoria 3010, Australia
| | - Geraldine M Mitchell
- O'Brien Institute Department of Vincent's Institute of Medical Research, Victoria 3065, Australia; Faculty of Health Sciences, Australian Catholic University, Victoria 3065, Australia; Department of Surgery at St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | | | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Victoria 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Victoria 3010, Australia; Aikenhead Centre for Medical Discovery (ACMD), Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
30
|
Wu M, Pokreisz P, Claus P, Casazza A, Gillijns H, Caluwé E, De Petrini M, Belmans A, Reyns G, Collen D, Janssens SP. Recombinant human placental growth factor-2 in post-infarction left ventricular dysfunction: a randomized, placebo-controlled, preclinical study. Basic Res Cardiol 2024; 119:795-806. [PMID: 39090343 DOI: 10.1007/s00395-024-01069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Placental growth factor (PlGF)-2 induces angio- and arteriogenesis in rodents but its therapeutic potential in a clinically representative post-infarction left ventricular (LV) dysfunction model remains unclear. We, therefore, investigated the safety and efficacy of recombinant human (rh)PlGF-2 in the infarcted porcine heart in a randomized, placebo-controlled blinded study. We induced myocardial infarction (MI) in pigs using 75 min mid-LAD balloon occlusion followed by reperfusion. After 4 w, we randomized pigs with marked LV dysfunction (LVEF < 40%) to receive continuous intravenous infusion of 5, 15, 45 µg/kg/day rhPlGF-2 or PBS (CON) for 2 w using osmotic pumps. We evaluated the treatment effect at 8 w using comprehensive MRI and immunohistochemistry and measured myocardial PlGF-2 receptor transcript levels. At 4 w after MI, infarct size was 16-18 ± 4% of LV mass, resulting in significantly impaired systolic function (LVEF 34 ± 4%). In the pilot study (3 pigs/dose), PIGF administration showed sustained dose-dependent increases in plasma concentrations for 14 days without systemic toxicity and was associated with favorable post-infarct remodeling. In the second phase (n = 42), we detected no significant differences at 8 w between CON and PlGF-treated pigs in infarct size, capillary or arteriolar density, global LV function and regional myocardial blood flow at rest or during stress. Molecular analysis showed significant downregulation of the main PlGF-2 receptor, pVEGFR-1, in dysfunctional myocardium. Chronic rhPIGF-2 infusion was safe but failed to induce therapeutic neovascularization and improve global cardiac function after myocardial infarction in pigs. Our data emphasize the critical need for properly designed trials in representative large animal models before translating presumed promising therapies to patients.
Collapse
Affiliation(s)
- Ming Wu
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
| | - Peter Pokreisz
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
- CoBioRes NV, Leuven, Belgium
| | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
| | | | - Hilde Gillijns
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
| | - Ellen Caluwé
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
| | | | - Ann Belmans
- Leuven Biostatistics and Statistical Bioinformatics Center, KU Leuven, Leuven, Belgium
| | | | - Desire Collen
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
- CoBioRes NV, Leuven, Belgium
| | - Stefan P Janssens
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium.
- Department of Cardiology, University Hospital Leuven, Leuven, Belgium.
| |
Collapse
|
31
|
Li J, Wang K, Starodubtseva MN, Nadyrov E, Kapron CM, Hoh J, Liu J. Complement factor H in molecular regulation of angiogenesis. MEDICAL REVIEW (2021) 2024; 4:452-466. [PMID: 39444793 PMCID: PMC11495524 DOI: 10.1515/mr-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/07/2024] [Indexed: 10/25/2024]
Abstract
Angiogenesis, the process of formation of new capillaries from existing blood vessels, is required for multiple physiological and pathological processes. Complement factor H (CFH) is a plasma protein that inhibits the alternative pathway of the complement system. Loss of CFH enhances the alternative pathway and increases complement activation fragments with pro-angiogenic capacity, including complement 3a, complement 5a, and membrane attack complex. CFH protein contains binding sites for C-reactive protein, malondialdehyde, and endothelial heparan sulfates. Dysfunction of CFH prevents its interaction with these molecules and initiates pro-angiogenic events. Mutations in the CFH gene have been found in patients with age-related macular degeneration characterized by choroidal neovascularization. The Cfh-deficient mice show an increase in angiogenesis, which is decreased by administration of recombinant CFH protein. In this review, we summarize the molecular mechanisms of the anti-angiogenic effects of CFH and the regulatory mechanisms of CFH expression. The therapeutic potential of recombinant CFH protein in angiogenesis-related diseases has also been discussed.
Collapse
Affiliation(s)
- Jiang Li
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Kaili Wang
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Maria N. Starodubtseva
- Gomel State Medical University, Gomel, Belarus
- Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | | | | | - Josephine Hoh
- Department of Ophthalmology, Yale School of Medicine, New Haven, CT, USA
| | - Ju Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Gomel State Medical University, Gomel, Belarus
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| |
Collapse
|
32
|
Xu Z, Chen Z, Wang W, Meng X, Wang X, Xia Y, Meng Q, Li Y, Song R, Chen G. Cuttlefish ink-derived melanin nanoparticle-embedded tremella fuciformis polysaccharide hydrogels for the treatment of MRSA-infected diabetic wounds. Int J Biol Macromol 2024; 277:134342. [PMID: 39111486 DOI: 10.1016/j.ijbiomac.2024.134342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/04/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Diabetic wounds arise great attention as they are difficult to heal and easily suffer from serious bacterial infection. However, the overuse of antibiotics increases the resistance of bacteria and makes common drugs ineffective. Here, we developed a photothermal hydrogel (TFP/NP) composed of tremella fuciformis polysaccharides (TFPs) and cuttlefish ink-derived melanin nanoparticles (NPs). The NPs can produce reliable photothermal effects under near-infrared laser (NIR) irradiation and help to remove the bacteria in the wounds, while TFPs were able to form hydrogel frameworks which possessed anti-inflammatory effects and could be applied to promote wound healing. The TFP/NP hydrogels produced stable thermal effects under NIR irradiation and could continuously kill bacteria. The experiment on a full-layer skin wound sMRSA activity and could improve the healing efficiency. The wounds of the mice could be repaired within 14 days after reasonable treatment. In addition, the hydrogels play significant roles in promoting collagen deposition, anti-inflammation, angiogenesis, and cell proliferation during the therapeutic process. This research provides a simple and effective method for the therapy of bacterial infection wounds through the synergistic effect of TFPs and NPs.
Collapse
Affiliation(s)
- Zhou Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Zhiling Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Weijie Wang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China.
| | - Xiangjun Meng
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Xuewen Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Yinhe Xia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Qingye Meng
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Yuli Li
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China.
| | - Gang Chen
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China.
| |
Collapse
|
33
|
Toprak K, Yılmaz R, Kaplangoray M, Memioğlu T, İnanır M, Akyol S, Özen K, Biçer A, Demirbağ R. Comparison of the effect of uric acid/albumin ratio on coronary colleteral circulation with other inflammation-based markers in stable coronary artery disease patients. Perfusion 2024; 39:1440-1452. [PMID: 37674333 DOI: 10.1177/02676591231202105] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
BACKGROUND The Uric acid/Albumin ratio (UAR) has recently been identified as a prominent marker in cardiovascular diseases. In this study, we aimed to reveal the effect of UAR on coronary collateral circulation (CCC) in patients with stable coronary artery disease (CAD) patients by comparing it with conventional inflammation-based markers. METHODS In this study, 415 consecutive patients who underwent coronary angiography for stable angina pectoris and were found to have chronic total occlusion in at least one coronary artery were retrospectively included. The study population was divided into two groups as good CCC (Rentrop 2-3) and poor CCC (Rentrop 0-1) according to the Rentrop classification, and the groups were compared in terms of UAR and other traditional inflammation-based markers. RESULTS In the poor CCC group, C-reactive protein/albumin ratio (CAR), monocyte/high-density lipoprotein cholesterol ratio (MHR), neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), systemic immune-inflammation index (SII) and UAR were found to be significantly high (p < .05, for all). UAR negatively correlated with rentrop classification (r = -0.383, p < .001). In multivariate regression analysis, MHR, NLR, SII and UAR were determined as independent predictors for poor CCC (p < .05, for all). The ability of UAR to predict poor CCC was superior to uric acid and albumin alone (p < .0001, for both). In addition, UAR was found to be superior to other inflammation-based markers in predicting poor CCC (p < .005, for all). CONCLUSION UAR was identified as a strong and independent predictor of CCC. In this context, UAR may be a useful biomarker in the risk prediction of patients with stable CAD.
Collapse
Affiliation(s)
- Kenan Toprak
- Faculty of Medicine, Department of Cardiology, Harran University, Sanliurfa, Turkey
| | - Rüstem Yılmaz
- Faculty of Medicine, Department of Cardiology, Samsun University, Samsun, Turkey
| | - Mustafa Kaplangoray
- Medical Faculty, Department of Cardiology, Şeyh Edebali University, Bilecik, Turkey
| | - Tolga Memioğlu
- Medical Faculty, Department of Cardiology, Abant Izzet Baysal University, Bolu, Turkey
| | - Mehmet İnanır
- Medical Faculty, Department of Cardiology, Abant Izzet Baysal University, Bolu, Turkey
| | - Selahattin Akyol
- Department of Cardiology, Kartal Kosuyolu High Specialization Training and Research Hospital, İstanbul, Turkey
| | - Kaya Özen
- Department of Cardiology, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Türkiye
| | - Asuman Biçer
- Faculty of Medicine, Department of Cardiology, Harran University, Sanliurfa, Turkey
| | - Recep Demirbağ
- Faculty of Medicine, Department of Cardiology, Harran University, Sanliurfa, Turkey
| |
Collapse
|
34
|
Ubanako P, Mirza S, Ruff P, Penny C. Exosome-mediated delivery of siRNA molecules in cancer therapy: triumphs and challenges. Front Mol Biosci 2024; 11:1447953. [PMID: 39355533 PMCID: PMC11442288 DOI: 10.3389/fmolb.2024.1447953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
The discovery of novel and innovative therapeutic strategies for cancer treatment and management remains a major global challenge. Exosomes are endogenous nanoscale extracellular vesicles that have garnered increasing attention as innovative vehicles for advanced drug delivery and targeted therapy. The attractive physicochemical and biological properties of exosomes, including increased permeability, biocompatibility, extended half-life in circulation, reduced toxicity and immunogenicity, and multiple functionalization strategies, have made them preferred drug delivery vehicles in cancer and other diseases. Small interfering RNAs (siRNAs) are remarkably able to target any known gene: an attribute harnessed to knock down cancer-associated genes as a viable strategy in cancer management. Extensive research on exosome-mediated delivery of siRNAs for targeting diverse types of cancer has yielded promising results for anticancer therapy, with some formulations progressing through clinical trials. This review catalogs recent advances in exosome-mediated siRNA delivery in several types of cancer, including the manifold benefits and minimal drawbacks of such innovative delivery systems. Additionally, we have highlighted the potential of plant-derived exosomes as innovative drug delivery systems for cancer treatment, offering numerous advantages such as biocompatibility, scalability, and reduced toxicity compared to traditional methods. These exosomes, with their unique characteristics and potential for effective siRNA delivery, represent a significant advancement in nanomedicine and cancer therapeutics. Further exploration of their manufacturing processes and biological mechanisms could significantly advance natural medicine and enhance the efficacy of exosome-based therapies.
Collapse
Affiliation(s)
- Philemon Ubanako
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
35
|
Wang J, Xiong T, Wu Q, Qin X. Integrated Strategies for Targeting Arteriogenesis and Angiogenesis After Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01291-4. [PMID: 39225878 DOI: 10.1007/s12975-024-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The interdependence between arteriogenesis and angiogenesis is crucial for enhancing perfusion by synchronously improving leptomeningeal collaterals (LMCs) and microvascular networks after stroke. However, current approaches often focus on promoting arteriogenesis and angiogenesis separately, neglecting the potential synergistic benefits of targeting both processes simultaneously. Therefore, it is imperative to consider both arteriogenesis and angiogenesis as integral and complementary strategies for post-stroke revascularization. To gain a deeper understanding of their relationships after stroke and to facilitate the development of targeted revascularization strategies, we compared them based on their timescale, space, and pathophysiology. The temporal differences in the occurrence of arteriogenesis and angiogenesis allow them to restore blood flow at different stages after stroke. The spatial differences in the effects of arteriogenesis and angiogenesis enable them to specifically target the ischemic penumbra and core infarct region. Additionally, the endothelial cell, as the primary effector cell in their pathophysiological processes, is promising target for enhancing both. Therefore, we provide an overview of key signals that regulate endothelium-mediated arteriogenesis and angiogenesis. Finally, we summarize current therapeutic strategies that involve these signals to promote both processes after stroke, with the aim of inspiring future therapeutic advances in revascularization.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Taoying Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
36
|
Liu T, Zhang J, Chang F, Sun M, He J, Ai D. Role of endothelial Raptor in abnormal arteriogenesis after lower limb ischaemia in type 2 diabetes. Cardiovasc Res 2024; 120:1218-1234. [PMID: 38722901 DOI: 10.1093/cvr/cvae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Proper arteriogenesis after tissue ischaemia is necessary to rebuild stable blood circulation; nevertheless, this process is impaired in type 2 diabetes mellitus (T2DM). Raptor is a scaffold protein and a component of mammalian target of rapamycin complex 1 (mTORC1). However, the role of the endothelial Raptor in arteriogenesis under the conditions of T2DM remains unknown. This study investigated the role of endothelial Raptor in ischaemia-induced arteriogenesis during T2DM. METHODS AND RESULTS Although endothelial mTORC1 is hyperactive in T2DM, we observed a marked reduction in the expression of endothelial Raptor in two mouse models and in human vessels. Inducible endothelial-specific Raptor knockout severely exacerbated impaired hindlimb perfusion and arteriogenesis after hindlimb ischaemic injury in 12-week high-fat diet fed mice. Additionally, we found that Raptor deficiency dampened vascular endothelial growth factor receptor 2 (VEGFR2) signalling in endothelial cells (ECs) and inhibited VEGF-induced cell migration and tube formation in a PTP1B-dependent manner. Furthermore, mass spectrometry analysis indicated that Raptor interacts with neuropilin 1 (NRP1), the co-receptor of VEGFR2, and mediates VEGFR2 trafficking by facilitating the interaction between NRP1 and Synectin. Finally, we found that EC-specific overexpression of the Raptor mutant (loss of mTOR binding) reversed impaired hindlimb perfusion and arteriogenesis induced by endothelial Raptor knockout in high-fat diet fed mice. CONCLUSION Collectively, our study demonstrated the crucial role of endothelial Raptor in promoting ischaemia-induced arteriogenesis in T2DM by mediating VEGFR2 signalling. Thus, endothelial Raptor is a novel therapeutic target for promoting arteriogenesis and ameliorating perfusion in T2DM.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Jiachen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Fangyuan Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Mengyu Sun
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinlong He
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| |
Collapse
|
37
|
Meretsky CR, Polychronis A, Liovas D, Schiuma AT. Advances in Tissue Engineering and Its Future in Regenerative Medicine Compared to Traditional Reconstructive Techniques: A Comparative Analysis. Cureus 2024; 16:e68872. [PMID: 39376883 PMCID: PMC11457798 DOI: 10.7759/cureus.68872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Tissue engineering represents a revolutionary approach in regenerative medicine, offering promising alternatives to traditional reconstructive techniques. This systematic review explores recent advances in tissue engineering, comparing their efficacy, postoperative outcomes, and patient satisfaction to conventional methods. A comprehensive literature search was conducted across PubMed, Cochrane Library, and Google Scholar, covering studies published from 2000 to 2024. Fourteen studies were selected for final analysis based on inclusion criteria focusing on outcomes such as scar quality, postoperative pain, and patient satisfaction. The review demonstrated that tissue engineering techniques consistently provided superior cosmetic outcomes with minimal scarring compared to traditional methods. Patients undergoing tissue-engineered procedures experienced mild-to-moderate postoperative pain with rapid resolution, whereas traditional techniques resulted in moderate to severe pain requiring extended management. Furthermore, patients treated with tissue engineering reported high satisfaction rates due to improved cosmetic and functional outcomes. Despite challenges such as ensuring adequate vascularization, controlling scaffold degradation, and overcoming regulatory and cost barriers, ongoing research and development are essential to fully realize the potential of these innovative therapies. Tissue engineering offers significant advantages over traditional reconstructive techniques and has the potential to profoundly improve patient care in regenerative medicine.
Collapse
Affiliation(s)
| | - Andreas Polychronis
- General Surgery, St. George's University School of Medicine, Great River, USA
| | - Dimitria Liovas
- Medicine, St. George's University School of Medicine, Great River, USA
| | | |
Collapse
|
38
|
Schrier I, Slotki-Itzchakov O, Elkis Y, Most-Menachem N, Adato O, Fitoussi-Allouche D, Shpungin S, Unger R, Nir U. Fer governs mTORC1 regulating pathways and sustains viability of pancreatic ductal adenocarcinoma cells. Front Oncol 2024; 14:1427029. [PMID: 39206154 PMCID: PMC11349523 DOI: 10.3389/fonc.2024.1427029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a high percentage of morbidity. The deciphering and identification of novel targets and tools for intervening with its adverse progression are therefore of immense importance. To address this goal we adopted a specific inhibitor of the intracellular tyrosine kinase Fer, whose expression level is upregulated in PDAC tumors, and is associated with poor prognosis of patients. Subjecting PDAC cells to the E260-Fer inhibitor, unraveled its simultaneous effects on the mitochondria, and on a non-mitochondrial ERK1/2 regulatory cascade. E260 caused severe mitochondrial deformation, resulting in cellular- aspartate and ATP depletion, and followed by the activation of the metabolic sensor AMPK. This led to the phosphorylation and deactivation of the bona fide AMPK substrate, RAPTOR, which serves as a positive regulator of the mTORC1 metabolic hub. Accordingly, this resulted in the inhibition of the mTORC1 activity. In parallel, E260 downregulated the activation state of the ERK1/2 kinases, and their ability to neutralize the mTORC1 suppressor TSC2, thereby accentuating the inhibition of mTORC1. Importantly, both activation of AMPK and downregulation of ERK1/2 and mTORC1 were also achieved upon the knockdown of Fer, corroborating the regulatory role of Fer in these processes. Concomitantly, in PDAC tumors and not in healthy pancreatic tissues, the expression levels of Fer demonstrate moderate but statistically significant positive correlation with the expression levels of mTOR and its downstream effector LARP1. Finally, targeting the Fer driven activation of mTORC1, culminated in necrotic death of the treated PDAC cells, envisaging a new intervention tool for the challenging PDAC disease.
Collapse
Affiliation(s)
- Ilan Schrier
- Department of Surgery, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orel Slotki-Itzchakov
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yoav Elkis
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nofar Most-Menachem
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Orit Adato
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
39
|
Huang M, Liu Y, Cheng Y, Dai W. Role of inflammatory biomarkers in mediating the effect of lipids on spontaneous intracerebral hemorrhage: a two-step, two-sample Mendelian randomization study. Front Neurol 2024; 15:1411555. [PMID: 39170073 PMCID: PMC11337198 DOI: 10.3389/fneur.2024.1411555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background Spontaneous intracerebral hemorrhage (sICH) is a form of stroke with high mortality rates and significant neurological implications for patients. Abnormalities in lipid metabolism have been implicated in various cardiovascular diseases, yet their relationship with sICH remains insufficiently explored, particularly concerning their association with inflammatory factors. Methods Employing a two-sample, two-step Mendelian Randomization approach, combined with data from GWAS datasets, to investigate the causal relationship between plasma lipid levels and sICH. Additionally, the role of inflammatory factors in this relationship was examined, and sensitivity analyses were conducted to ensure the robustness of the results. Results The results indicate a significant causal relationship between 19 plasma lipid metabolites and sICH. Furthermore, mediation analysis revealed that three distinct lipids, namely Sterol ester (27:1/20:2), Phosphatidylcholine (16:0_20:4), and Sphingomyelin (d34:1), exert their influence on sICH through inflammatory factors. TRAIL (OR: 1.078, 95% CI: 1.016-1.144, p = 0.013) and HGF (OR: 1.131, 95% CI: 1.001-1.279, p = 0.049) were identified as significant mediators. Conclusion This study provides new evidence linking abnormalities in lipid metabolism with sICH and elucidates the role of inflammatory factors as mediators. These findings contribute to a better understanding of the pathogenesis of sICH and offer novel insights and therapeutic strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Mingsheng Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiheng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiran Dai
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Chiu FC, Kuo HM, Yu CL, Selvam P, Su IL, Tseng CC, Yuan CH, Wen ZH. Marine-derived antimicrobial peptide piscidin-1 triggers extrinsic and intrinsic apoptosis in oral squamous cell carcinoma through reactive oxygen species production and inhibits angiogenesis. Free Radic Biol Med 2024; 220:28-42. [PMID: 38679300 DOI: 10.1016/j.freeradbiomed.2024.04.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Cancer of the head and neck encompasses a wide range of cancers, including oral and oropharyngeal cancers. Oral cancer is often diagnosed at advanced stages and has a dismal prognosis. Piscidin-1, a marine antimicrobial peptide (AMP) containing approximately 22 amino acids, also exhibits significant anticancer properties. We investigated the possible anti-oral cancer effects of piscidin-1 and clarified the mechanisms underlying these effects. We treated the oral squamous cell carcinoma cell lines OC2 and SCC4 with piscidin-1. Cell viability and the expression of different hallmark apoptotic molecules, including reactive oxygen species (ROS), were tested using the appropriate MTT assay, flow cytometry and western blotting assays, and human umbilical vein endothelial cell (HUVEC) wound healing, migration, and tube formation (angiogenesis) assays. Piscidin-1 increases cleaved caspase 3 levels to induce apoptosis. Piscidin-1 also increases ROS levels and intensifies oxidative stress in the endoplasmic reticulum and mitochondria, causing mitochondrial dysfunction. Additionally, it decreases the oxygen consumption rates and activity of mitochondrial complexes I-V. As expected, the antioxidants MitoTEMPOL and N-acetylcysteine reduce piscidin-1-induced ROS generation and intracellular calcium accumulation. Piscidin-1 also inhibits matrix metalloproteinase (MMP)-2/-9 expression in HUVECs, affecting migration and tube formation angiogenesis. We demonstrated that piscidin-1 can promote apoptosis via both intrinsic and extrinsic apoptotic pathways and findings indicate that piscidin-1 has anti-proliferative and anti-angiogenic properties in oral cancer treatment. Our study on piscidin-1 thus provides a basis for future translational anti-oral cancer drug research and a new theoretical approach for anti-oral cancer clinical research.
Collapse
Affiliation(s)
- Fu-Ching Chiu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833301, Taiwan
| | - Chen-Ling Yu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Padhmavathi Selvam
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - I-Li Su
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Antai Medical Care Corporation, Antai Tian-Sheng Memorial Hospital, Pingtung, 92842, Taiwan
| | - Chung-Chih Tseng
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
| | - Chien-Han Yuan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Department of Otolaryngology, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan; Department of Otolaryngology, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
41
|
Li Y, Zhang L, Yang W, Lin L, Pan J, Lu M, Zhang Z, Li Y, Li C. Notoginsenoside R 1 decreases intraplaque neovascularization by governing pericyte-endothelial cell communication via Ang1/Tie2 axis in atherosclerosis. Phytother Res 2024; 38:4036-4052. [PMID: 38886264 DOI: 10.1002/ptr.8257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Atherosclerosis represents the major cause of mortality worldwide and triggers higher risk of acute cardiovascular events. Pericytes-endothelial cells (ECs) communication is orchestrated by ligand-receptor interaction generating a microenvironment which results in intraplaque neovascularization, that is closely associated with atherosclerotic plaque instability. Notoginsenoside R1 (R1) exhibits anti-atherosclerotic bioactivity, but its effect on angiogenesis in atherosclerotic plaque remains elusive. The aim of our study is to explore the therapeutic effect of R1 on vulnerable plaque and investigate its potential mechanism against intraplaque neovascularization. The impacts of R1 on plaque stability and intraplaque neovascularization were assessed in ApoE-/- mice induced by high-fat diet. Pericytes-ECs direct or non-direct contact co-cultured with VEGF-A stimulation were used as the in vitro angiogenesis models. Overexpressing Ang1 in pericytes was performed to investigate the underlying mechanism. In vivo experiments, R1 treatment reversed atherosclerotic plaque vulnerability and decreased the presence of neovessels in ApoE-/- mice. Additionally, R1 reduced the expression of Ang1 in pericytes. In vitro experiments demonstrated that R1 suppressed pro-angiogenic behavior of ECs induced by pericytes cultured with VEGF-A. Mechanistic studies revealed that the anti-angiogenic effect of R1 was dependent on the inhibition of Ang1 and Tie2 expression, as the effects were partially reversed after Ang1 overexpressing in pericytes. Our study demonstrated that R1 treatment inhibited intraplaque neovascularization by governing pericyte-EC association via suppressing Ang1-Tie2/PI3K-AKT paracrine signaling pathway. R1 represents a novel therapeutic strategy for atherosclerotic vulnerable plaques in clinical application.
Collapse
Affiliation(s)
- Yuan Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
42
|
Chitoran E, Rotaru V, Ionescu SO, Gelal A, Capsa CM, Bohiltea RE, Mitroiu MN, Serban D, Gullo G, Stefan DC, Simion L. Bevacizumab-Based Therapies in Malignant Tumors-Real-World Data on Effectiveness, Safety, and Cost. Cancers (Basel) 2024; 16:2590. [PMID: 39061228 PMCID: PMC11274419 DOI: 10.3390/cancers16142590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Overall, it is estimated that more than 3,500,000 patients have received Bevacizumab as part of systemic oncologic treatment. Bevacizumab and its biosimilars are currently marketed in over 130 countries. Given the wide usage of Bevacizumab in current oncological practice, it is very important to compare the "real-world" results to those obtained in controlled clinical trials. This study aims to describe the clinical experience of using Bevacizumab in a large cohort of cancer patients in "non-controlled real-world" conditions with regard to effectiveness, safety, and cost of therapy. METHODS For this purpose, we conducted an open, observational, retrospective study involving all patients treated for solid malignant tumors in the Bucharest Institute of Oncology with "Prof. Dr. Al. Trestioreanu" with Bevacizumab-based systemic therapy, between 2017 and 2021. RESULTS The study consisted of 657 treatment episodes in 625 patients (F/B = 1.62/1, with a median age of 57.6 years) which were treated for malignant tumors (majority colorectal, non-small cell lung, ovarian, and breast cancer). First-line treatment was administered in 229 patients, and the rest received Bevacizumab as second or subsequent lines of treatment. The overall response rate to Bevacizumab-based therapies was around 60-65% across all indication except for subsequent treatment lines in colorectal and ovarian cancers, where lower values were recorded (27.1%, and 31.5% respectively). Median PFS for the entire cohort was 8.2 months (95% CI 6.8-9.6), and the median OS was 13.2 months (95% CI 11.5-14.9). Usual bevacizumab-related toxicities were observed, including bleeding, hypertension, wound-healing complications, gastrointestinal perforation, other types of fistulas, septic complications, and thromboembolic events. Although the clinical benefits are undeniable, the addition of Bevacizumab to standard chemotherapy increased the overall treatment cost by 213%. CONCLUSIONS Bevacizumab remains a high-cost therapy, but it can add to clinical benefits (like overall survival, progression-free survival, and response rate) when used in conjunction with standard chemotherapy. Similar results as those presented in various controlled trials are observable even on unselected cohorts of patients in the uncontrolled conditions of "real-world" oncological practice. Off-label usage is encountered in clinical practice, and this aspect should be monitored given the potential adverse effects of the therapy.
Collapse
Affiliation(s)
- Elena Chitoran
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Vlad Rotaru
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Sinziana-Octavia Ionescu
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Aisa Gelal
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Cristina-Mirela Capsa
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Radiology Department, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Roxana-Elena Bohiltea
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Obstetrics and Gynecology Department, “Filantropia” Clinical Hospital, 011132 Bucharest, Romania
| | - Madalina-Nicoleta Mitroiu
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Obstetrics and Gynecology Department, “Filantropia” Clinical Hospital, 011132 Bucharest, Romania
| | - Dragos Serban
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Department 4, Bucharest University Emergency Hospital, 050098 Bucharest, Romania
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Daniela-Cristina Stefan
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laurentiu Simion
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
43
|
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain 2024; 17:44. [PMID: 39020435 PMCID: PMC11256416 DOI: 10.1186/s13041-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD is the accumulation of amyloid-beta (Aβ) plaques, which play pivotal roles in disease progression. These plaques initiate a cascade of events including neuroinflammation, synaptic dysfunction, tau pathology, oxidative stress, impaired protein clearance, mitochondrial dysfunction, and disrupted calcium homeostasis. Aβ accumulation is also closely associated with other hallmark features of AD, underscoring its significance. Aβ is generated through cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its beneficial and detrimental effects.
Collapse
|
44
|
Cen K, Huang Y, Xie Y, Liu Y. The guardian of intracranial vessels: Why the pericyte? Biomed Pharmacother 2024; 176:116870. [PMID: 38850658 DOI: 10.1016/j.biopha.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Intracranial atherosclerotic stenosis (ICAS) is a pathological condition characterized by progressive narrowing or complete blockage of intracranial blood vessels caused by plaque formation. This condition leads to reduced blood flow to the brain, resulting in cerebral ischemia and hypoxia. Ischemic stroke (IS) resulting from ICAS poses a significant global public health challenge, especially among East Asian populations. However, the underlying causes of the notable variations in prevalence among diverse populations, as well as the most effective strategies for preventing and treating the rupture and blockage of intracranial plaques, remain incompletely comprehended. Rupture of plaques, bleeding, and thrombosis serve as precipitating factors in the pathogenesis of luminal obstruction in intracranial arteries. Pericytes play a crucial role in the structure and function of blood vessels and face significant challenges in regulating the Vasa Vasorum (VV)and preventing intraplaque hemorrhage (IPH). This review aims to explore innovative therapeutic strategies that target the pathophysiological mechanisms of vulnerable plaques by modulating pericyte biological function. It also discusses the potential applications of pericytes in central nervous system (CNS) diseases and their prospects as a therapeutic intervention in the field of biological tissue engineering regeneration.
Collapse
Affiliation(s)
- Kuan Cen
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - YinFei Huang
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - Yu Xie
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - YuMin Liu
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China.
| |
Collapse
|
45
|
Jing Y, Ye K, Zhang G, Zhu J, Mao Z, Zhang Q, Chen F. UFM1 inhibits hypoxia-induced angiogenesis via promoting proteasome degradation of HIF-1α. Mol Cell Biochem 2024; 479:1833-1852. [PMID: 38722467 DOI: 10.1007/s11010-024-05013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 07/18/2024]
Abstract
Angiogenesis is crucial for blood flow recovery and ischemic tissue repair of peripheral artery disease (PAD). Exploration of new mechanisms underlying angiogenesis will shed light on the treatment of PAD. Ubiquitin-fold modifier 1 (UFM1), a newly identified ubiquitin-like molecule, has been discovered to be involved in various pathophysiological processes. However, the role of UFM1 in the pathogenesis of PAD, especially in endothelial angiogenesis remains obscure, and we aimed to clarify this issue in this study. We initially found UFM1 was significantly upregulated in gastrocnemius muscles of PAD patients and hind limb ischemia mice. And UFM1 was mainly colocalized with endothelial cells in ischemic muscle tissues. Further, elevated expression of UFM1 was observed in hypoxic endothelial cells. Subsequent genetic inhibition of UFM1 dramatically enhanced migration, invasion, adhesion, and tube formation of endothelial cells under hypoxia. Mechanistically, UFM1 reduced the stability of hypoxia-inducible factor-1α (HIF-1α) and promoted the von Hippel-Lindau-mediated K48-linked ubiquitin-proteasome degradation of HIF-1α, which in turn decreased angiogenic factor VEGFA expression and suppressed VEGFA related signaling pathway. Consistently, overexpression of UFM1 inhibited the angiogenesis of endothelial cells under hypoxic conditions, whereas overexpression of HIF-1α reversed this effect. Collectively, our data reveal that UFM1 inhibits the angiogenesis of endothelial cells under hypoxia through promoting ubiquitin-proteasome degradation of HIF-1α, suggesting UFM1 might serve as a potential therapeutic target for PAD.
Collapse
Affiliation(s)
- Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Kuanping Ye
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Guangya Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai JiaoTong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Qianru Zhang
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China.
| |
Collapse
|
46
|
Kang Y, Na J, Karima G, Amirthalingam S, Hwang NS, Kim HD. Mesenchymal Stem Cell Spheroids: A Promising Tool for Vascularized Tissue Regeneration. Tissue Eng Regen Med 2024; 21:673-693. [PMID: 38578424 PMCID: PMC11187036 DOI: 10.1007/s13770-024-00636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are undifferentiated cells that can differentiate into specific cell lineages when exposed to the right conditions. The ability of MSCs to differentiate into particular cells is considered very important in biological research and clinical applications. MSC spheroids are clusters of MSCs cultured in three dimensions, which play an important role in enhancing the proliferation and differentiation of MSCs. MSCs can also participate in vascular formation by differentiating into endothelial cells and secreting paracrine factors. Vascularization ability is essential in impaired tissue repair and function recovery. Therefore, the vascularization ability of MSCs, which enhances angiogenesis and accelerates tissue healing has made MSCs a promising tool for tissue regeneration. However, MSC spheroids are a relatively new research field, and more research is needed to understand their full potential. METHODS In this review, we highlight the importance of MSC spheroids' vascularization ability in tissue engineering and regenerative medicine while providing the current status of studies on the MSC spheroids' vascularization and suggesting potential future research directions for MSC spheroids. RESULTS Studies both in vivo and in vitro have demonstrated MSC spheroids' capacity to develop into endothelial cells and stimulate vasculogenesis. CONCLUSION MSC spheroids show potential to enhance vascularization ability in tissue regeneration. Yet, further research is required to comprehensively understand the relationship between MSC spheroids and vascularization mechanisms.
Collapse
Affiliation(s)
- Yoonjoo Kang
- Department of IT Convergence (Brain Korea Plus 21), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jinwoo Na
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea
| | - Gul Karima
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of IT Convergence (Brain Korea Plus 21), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea.
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
47
|
Liu X, Huang K, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnology 2024; 22:354. [PMID: 38902775 PMCID: PMC11191225 DOI: 10.1186/s12951-024-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Fuxiao Zhang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Ge Huang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Lu Wang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Guiyu Wu
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Hui Ren
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Guang Yang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Zhiqing Lin
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| |
Collapse
|
48
|
Nwokoye PN, Abilez OJ. Bioengineering methods for vascularizing organoids. CELL REPORTS METHODS 2024; 4:100779. [PMID: 38759654 PMCID: PMC11228284 DOI: 10.1016/j.crmeth.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Organoids, self-organizing three-dimensional (3D) structures derived from stem cells, offer unique advantages for studying organ development, modeling diseases, and screening potential therapeutics. However, their translational potential and ability to mimic complex in vivo functions are often hindered by the lack of an integrated vascular network. To address this critical limitation, bioengineering strategies are rapidly advancing to enable efficient vascularization of organoids. These methods encompass co-culturing organoids with various vascular cell types, co-culturing lineage-specific organoids with vascular organoids, co-differentiating stem cells into organ-specific and vascular lineages, using organoid-on-a-chip technology to integrate perfusable vasculature within organoids, and using 3D bioprinting to also create perfusable organoids. This review explores the field of organoid vascularization, examining the biological principles that inform bioengineering approaches. Additionally, this review envisions how the converging disciplines of stem cell biology, biomaterials, and advanced fabrication technologies will propel the creation of increasingly sophisticated organoid models, ultimately accelerating biomedical discoveries and innovations.
Collapse
Affiliation(s)
- Peter N Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar J Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; Division of Pediatric CT Surgery, Stanford University, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
49
|
Li T, Wang J, Feng L, Zhou Q, Xie Q, Shen Y, Ji R, Liu X, Wang Y, Hu C. Discovery of novel thiophene-3-carboxamide derivatives as potential VEGFR-2 inhibitors with anti-angiogenic properties. Bioorg Chem 2024; 147:107358. [PMID: 38626490 DOI: 10.1016/j.bioorg.2024.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/18/2024]
Abstract
VEGFR-2 is an attractive target for the development of anti-tumor drugs and plays a crucial role in tumor angiogenesis. This study reports a series of novel thiophene-3-carboxamide derivatives based on PAN-90806 as VEGFR-2 inhibitors, among which compound 14d exhibits excellent anti-proliferative activity against HCT116, MCF7, PC3, and A549 cell lines, and has effective VEGFR-2 inhibitory activity with an IC50 value of 191.1 nM. Additionally, CETSA results indicated that VEGFR-2 was a relevant target of compound 14d in the cell lines, and compound 14d could also inhibit VEGFR-2 protein phosphorylation in A549 cell line. Furthermore, compound 14d inhibited colony formation, cell migration, and HUVECs tube formation in a dose-dependent manner. The mechanism by which 14d induced cancer cell death involves blocking the cell cycle, increasing ROS production, inducing apoptosis, and dose-dependently reducing the levels of phosphorylated ERK and MEK. Molecular docking and molecular dynamics simulations had shown that compound 14d could stably bind to the active site of VEGFR-2. These results confirmed that compound 14d might be a promising lead compound for anti-angiogenesis.
Collapse
Affiliation(s)
- Tai Li
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, 110016, China
| | - Jiawei Wang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, 110016, China
| | - Limiao Feng
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, 110016, China
| | - Qi Zhou
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, 110016, China
| | - Qian Xie
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, 110016, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanni Shen
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, 110016, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rongxin Ji
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, 110016, China
| | - Xiaoping Liu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, 110016, China.
| | - Yan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, 110016, China.
| |
Collapse
|
50
|
Simeroth S, Yu P. The role of lymphatic endothelial cell metabolism in lymphangiogenesis and disease. Front Cardiovasc Med 2024; 11:1392816. [PMID: 38798921 PMCID: PMC11119333 DOI: 10.3389/fcvm.2024.1392816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Lymphatic endothelial cells (LECs) line lymphatic vessels, which play an important role in the transport of lymph fluid throughout the human body. An organized lymphatic network develops via a process termed "lymphangiogenesis." During development, LECs respond to growth factor signaling to initiate the formation of a primary lymphatic vascular network. These LECs display a unique metabolic profile, preferring to undergo glycolysis even in the presence of oxygen. In addition to their reliance on glycolysis, LECs utilize other metabolic pathways such as fatty acid β-oxidation, ketone body oxidation, mitochondrial respiration, and lipid droplet autophagy to support lymphangiogenesis. This review summarizes the current understanding of metabolic regulation of lymphangiogenesis. Moreover, it highlights how LEC metabolism is implicated in various pathological conditions.
Collapse
Affiliation(s)
- Summer Simeroth
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Pengchun Yu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|