1
|
Kim MG, Ryu SM, Shin Y. Recent advances in bioreceptor-based sensing for extracellular vesicle analysis. Biosens Bioelectron 2025; 280:117432. [PMID: 40187151 DOI: 10.1016/j.bios.2025.117432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale, membrane-bound structures secreted by various cell types into biofluids. They show great potential as biomarkers for disease diagnostics, owing to their ability to carry molecular cargo that reflects their cellular origin. However, the inherent heterogeneity of EVs in terms of size, composition, and source presents significant challenges for reliable detection and analysis. Recent advances in bioreceptor-based biosensor technologies provide promising solutions by offering high sensitivity and specificity in EV detection and characterization. These technologies address the limitations of conventional methods, such as ultracentrifugation and bulk analysis. Biosensors utilizing antibodies, aptamers, peptides, lectins, and molecularly imprinted polymers enable precise detection of EV subpopulations by targeting specific EV surface markers, including proteins, lipids, and glycans. Additionally, these biosensors support multiplexed and real-time analysis while preserving the structural integrity of EVs. This review highlights the transformative potential of combining modern biosensing tools with bioreceptor technologies to advance EV research and diagnostics, paving the way for innovations in disease diagnostics and therapeutic monitoring.
Collapse
Affiliation(s)
- Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Soo Min Ryu
- Life Science and Biotechnology, Underwood International College, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Life Science and Biotechnology, Underwood International College, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Aloliqi AA, Alnuqaydan AM, Albutti A, Alharbi BF, Rahmani AH, Khan AA. Current updates regarding biogenesis, functions and dysregulation of microRNAs in cancer: Innovative approaches for detection using CRISPR/Cas13‑based platforms (Review). Int J Mol Med 2025; 55:90. [PMID: 40242952 PMCID: PMC12021393 DOI: 10.3892/ijmm.2025.5531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
MicroRNAs (miRNAs) are short non‑coding RNAs, which perform a key role in cellular differentiation and development. Most human diseases, particularly cancer, are linked to miRNA functional dysregulation implicated in the expression of tumor‑suppressive or oncogenic targets. Cancer hallmarks such as continued proliferative signaling, dodging growth suppressors, invasion and metastasis, triggering angiogenesis, and avoiding cell death have all been demonstrated to be affected by dysregulated miRNAs. Thus, for the treatment of different cancer types, the detection and quantification of this type of RNA is significant. The classical and current methods of RNA detection, including northern blotting, reverse transcription‑quantitative PCR, rolling circle amplification and next‑generation sequencing, may be effective but differ in efficiency and accuracy. Furthermore, these approaches are expensive, and require special instrumentation and expertise. Thus, researchers are constantly looking for more innovative approaches for miRNA detection, which can be advantageous in all aspects. In this regard, an RNA manipulation tool known as the CRISPR and CRISPR‑associated sequence 13 (CRISPR/Cas13) system has been found to be more advantageous in miRNA detection. The Cas13‑based miRNA detection approach is cost effective and requires no special instrumentation or expertise. However, more research and validation are required to confirm the growing body of CRISPR/Cas13‑based research that has identified miRNAs as possible cancer biomarkers for diagnosis and prognosis, and as targets for treatment. In the present review, current updates regarding miRNA biogenesis, structural and functional aspects, and miRNA dysregulation during cancer are described. In addition, novel approaches using the CRISPR/Cas13 system as a next‑generation tool for miRNA detection are discussed. Furthermore, challenges and prospects of CRISPR/Cas13‑based miRNA detection approaches are described.
Collapse
Affiliation(s)
- Abdulaziz A. Aloliqi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Abdullah M. Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Aqel Albutti
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Basmah F. Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| |
Collapse
|
3
|
Shadman SM, Tavakoli-Koopaei R, Mehrgardi MA, Javadi-Zarnaghi F. ViPER: A visual bipolar electrochemical biosensor based on isothermal addition of a universal tag for detection of SARS-CoV-2. Biosens Bioelectron 2025; 275:117199. [PMID: 39904661 DOI: 10.1016/j.bios.2025.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Emergence of recent pandemics/endemics e.g. COVID-19 and Dengue fever, demonstrated the necessity of development of strategies for swift adaptation of present biosensor for detection of the new emerging pathogens. However, development of a biosensor for a new target is time- and labor-consuming. In this study, we aimed to integrate the primer exchange reaction (PER), an isothermal technique that extends an initiator DNA with a user-defined single-stranded DNA tail, with bipolar electrochemistry. This integration led to the development of a universal biosensor, termed ViPER. We demonstrated the utility of the developed system to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic RNA as a model. The genomic RNA was reverse transcribed to a short cDNA and was tailed with a universal tag, consequently, the tagged cDNA was applied to an electrochemiluminescence integrated bipolar electrochemical biosensor (BPE-ECL). ECL signals were recorded using a digital camera and analyzed by ImageJ. The platform demonstrated a linear response over a wide dynamic range of 10-7-10-17 M for the target nucleic acid with a detection limit of 2.31 × 10-17 M for synthetic targets. The biosensor could also successfully discriminate between biological RNA samples from infected and non-infected individuals. This study introduces the potential of DNA-based visual biosensors for detecting single-stranded RNAs in low-equipped environments, and it holds promises for further development of an ultrasensitive method for various human RNA-based viral pathogens. Moreover, we can design a platform with a predetermined DNA probe sequence for a vast variety of different targets, simply by changing the PER input.
Collapse
Affiliation(s)
| | - Reyhaneh Tavakoli-Koopaei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Fatemeh Javadi-Zarnaghi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran.
| |
Collapse
|
4
|
Rezvani RN, Aw R, Chan W, Satish K, Chen H, Lavy A, Rimal S, Patel DA, Rao G, Swartz JR, DeLisa MP, Kvam E, Karim AS, Krüger A, Kightlinger W, Jewett MC. Scalable Cell-Free Production of Active T7 RNA Polymerase. Biotechnol Bioeng 2025. [PMID: 40296704 DOI: 10.1002/bit.28993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
The SARS-CoV-2 pandemic highlighted the urgent need for biomanufacturing paradigms that are robust and fast. Here, we demonstrate the rapid process development and scalable cell-free production of T7 RNA polymerase, a critical component in mRNA vaccine synthesis. We carry out a 1-L cell-free gene expression (CFE) reaction that achieves over 90% purity, low endotoxin levels, and enhanced activity relative to commercial T7 RNA polymerase. To achieve this demonstration, we implement rolling circle amplification to circumvent difficulties in DNA template generation, and tune cell-free reaction conditions, such as temperature, additives, purification tags, and agitation, to boost yields. We achieve production of a similar quality and titer of T7 RNA polymerase over more than four orders of magnitude in reaction volume. This proof of principle positions CFE as a viable solution for decentralized biotherapeutic manufacturing, enhancing preparedness for future public health crises or emergent threats.
Collapse
Affiliation(s)
- Ryan N Rezvani
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc., San Diego, California, USA
| | - Rochelle Aw
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Wei Chan
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc., San Diego, California, USA
| | - Krishnathreya Satish
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc., San Diego, California, USA
| | - Han Chen
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc., San Diego, California, USA
| | - Adi Lavy
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc., San Diego, California, USA
| | - Swechha Rimal
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc., San Diego, California, USA
| | - Divyesh A Patel
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc., San Diego, California, USA
| | - Govind Rao
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore, Maryland, USA
| | - James R Swartz
- Department of Chemical Engineering and Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Erik Kvam
- GE HealthCare Technology and Innovation Center, Niskayuna, New York, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Antje Krüger
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc., San Diego, California, USA
| | - Weston Kightlinger
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc., San Diego, California, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Zhang M, Huang J, Dai Y, Jin S, Jia Q, Li X, Pang X, Sun J, Lu Y. Thermostatic nucleic acid amplification technology in foodborne pathogen detection: opportunities and challenges. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 40255112 DOI: 10.1080/10408398.2025.2493207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Foodborne pathogenic bacteria contamination plays a crucial role in food safety concerns, prompting an increasing focus on the detection of such pathogens in recent years. Conventional detection methods are known for their time-consuming and complex nature, hindering the timely identification of pathogenic bacteria in food. Recently, rapid detection techniques utilizing immunoassay, molecular biology, and biosensor technologies have rapidly emerged as the primary means of pathogenic bacteria detection. Molecular biology methods, characterized by heightened sensitivity and specificity, are widely embraced in this field. Notably, the thermostatic nucleic acid amplification method is recognized for combing the rapid and sensitive attributes of regular molecular biology with its user-friendly operation and equipment advantages. This comprehensive review outlines the various thermostatic nucleic acid amplification technologies, explores their potential integration with other innovative methodologies, highlights their applications in foodborne pathogenic bacteria detection, addresses the limitations of current techniques, and suggest future development paths. Ultimately, this review aims to serve as a valuable resource for enhancing and advancing foodborne pathogenic bacteria detection methodologies.
Collapse
Affiliation(s)
- Moran Zhang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Jiaming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongjin Dai
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Shanshan Jin
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Qianqian Jia
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Xiangfei Li
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Xinyi Pang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Jing Sun
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Yingjian Lu
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Mihajlovic L, Iyengar BR, Baier F, Barbier I, Iwaszkiewicz J, Zoete V, Wagner A, Schaerli Y. A direct experimental test of Ohno's hypothesis. eLife 2025; 13:RP97216. [PMID: 40172958 PMCID: PMC11964449 DOI: 10.7554/elife.97216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno's hypothesis to work. We experimentally tested Ohno's hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno's hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno's hypothesis that point to the importance of gene dosage.
Collapse
Affiliation(s)
- Ljiljana Mihajlovic
- Department of Fundamental Microbiology, University of LausanneLausanneSwitzerland
| | - Bharat Ravi Iyengar
- Department of Evolutionary Biology and Environmental Studies, University of ZurichZurichSwitzerland
- Institute for Evolution and Biodiversity, University of MünsterMünsterGermany
| | - Florian Baier
- Department of Fundamental Microbiology, University of LausanneLausanneSwitzerland
| | - Içvara Barbier
- Department of Fundamental Microbiology, University of LausanneLausanneSwitzerland
| | | | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of BioinformaticsLausanneSwitzerland
- Department of Oncology UNIL-CHUV, Ludwig Institute for Cancer Research, University of LausanneEpalingesSwitzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of ZurichZurichSwitzerland
- The Swiss Institute of BioinformaticsLausanneSwitzerland
- The Santa Fe InstituteSanta FeUnited States
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of LausanneLausanneSwitzerland
| |
Collapse
|
7
|
He X, Wu J, Tan X, Xu S, Kong W, Liu X. Development of Duplex Loop-Mediated Isothermal Amplification with Hydroxynaphthol Blue for Detection of Infectious Spleen and Kidney Necrosis Virus and Aeromonas hydrophila in Chinese Perch ( Siniperca chuatsi). Microorganisms 2025; 13:586. [PMID: 40142479 PMCID: PMC11946703 DOI: 10.3390/microorganisms13030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Bacterial sepsis caused by Aeromonas hydrophila (A. hydrophila) and infectious spleen and kidney necrosis virus disease (ISKNVD) caused by infectious spleen and kidney necrosis virus (ISKNV) frequently result in significant mortality among Chinese perch (Siniperca chuatsi). Co-infection of mandarin fish with A. hydrophila and ISKNV occurs from time to time. In this study, a visual detection method for ISKNV and A. hydrophila was developed, using loop-mediated isothermal amplification (LAMP) and pre-addition of hydroxynaphthol blue. Primers for amplifying LAMP in the same system were designed based on the conserved regions of the MCP gene of infectious spleen and kidney necrosis virus, as well as the hlyA gene of A. hydrophila. The results showed that this method amplified bright trapezoidal bands in the presence of only A. hydrophila or ISKNV and both, with sky blue for positive amplification and violet for negative amplification. There was no cross-reactivity with other pathogens, and fragments of 182 bp, 171 bp and 163 bp appeared after digestion of the A. hydrophila LAMP product and 136 bp, 117 bp and 96 bp appeared after digestion of the ISKNV LAMP product. This holds true even when both positive products are present simultaneously. The minimum detection limit of this method was 100 fg for A. hydrophila and 100 fg for ISKNV, and the minimum detection limit for the mixed template was 1 pg. Overall, this method has high sensitivity and specificity to rapidly detect and distinguish between the two pathogens.
Collapse
Affiliation(s)
- Xiao He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.H.); (J.W.); (X.T.); (S.X.)
| | - Jingyi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.H.); (J.W.); (X.T.); (S.X.)
| | - Xu Tan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.H.); (J.W.); (X.T.); (S.X.)
| | - Sunan Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.H.); (J.W.); (X.T.); (S.X.)
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.H.); (J.W.); (X.T.); (S.X.)
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
8
|
Mu X, Xiao S, Zhao S, Tian J. Near-infrared DNA-AgNCs enzyme-free fluorescence biosensing for microRNA imaging in living cells based on self-replicating catalytic hairpin self-assembly. Int J Biol Macromol 2025; 294:139489. [PMID: 39756721 DOI: 10.1016/j.ijbiomac.2025.139489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
In this work, a fast signal amplification system mediated by self-replicating catalytic hairpin self-assembly (SCHA) was established for microRNA-155 using near-infrared DNA-Ag Nanoclusters (DNA-AgNCs) as fluorescence signal output. Among them, two fission target-like DNA sequences are merged into two hairpin DNA H1 and H2, and the AgNCs template sequence is designed at the sticky end of H1 and H2. The target can be recycled in the system to form a double-stranded DNA structure (H1-H2), which will detach the H1/H2-AgNCs from the surface of the polypyrrole nanoparticles (PPy NPs) and cause the near-infrared fluorescence signal of DNA-AgNCs to be restored. At this point, the two-split target-like DNA sequences will be reassembled to initiator DNA. The acquired replicas can also be recycled as a brand-new activation unit to initiate the SCHA response, resulting in rapid replication of the target/triggered DNA, accompanied by the generation of higher fluorescence signals. This autocatalytic signal amplification approach has been successfully applicable to fast signal amplification, enzyme-free and label-free for microRNA-155 assay in biological samples, and the detection limit (LOD) is 240 fM (S/N = 3). At the same time, this SCHA system can realize intracellular microRNA fluorescence imaging, which presents a promising approach to developing advanced molecular diagnostic tools.
Collapse
Affiliation(s)
- Xiaomei Mu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shixiu Xiao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jianniao Tian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
9
|
Kong L, Xu J, Shen W, Zhang S, Xu Z, Zhu KY. Development and evaluation of RNA microsphere-based RNAi approaches for managing the striped flea beetle (Phyllotreta striolata), a globally destructive pest of Cruciferae crops. PEST MANAGEMENT SCIENCE 2025; 81:1529-1538. [PMID: 39584569 DOI: 10.1002/ps.8557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND RNA interference (RNAi) technology has emerged as a promising strategy for species-specific management of agricultural pests. However, the application of this technology has been significantly hindered by the instability of the interfering RNA molecules in the insect body after ingestion leading to variations in the susceptibility to the RNA triggers across different taxonomic groups of insects. Therefore, it is necessary to develop new approaches that will overcome these challenges associated with the use of RNAi-based insect pest management strategies. This study explored the use of RNA microspheres (RMS) synthesized via rolling-circle transcription (RCT) technology as a potential method for managing striped flea beetle (Phyllotreta striolata), a globally destructive pest of Cruciferae crops. RESULTS The synthesized RMS against the genes encoding reticulocalbin (RMS-PsRCN) and ribosomal RNA (RMS-PsrRNA) were highly effective in both silencing their target genes and causing increased P. striolata adult mortality. Relative expression levels of the target genes RMS-PsRCN and RMS-PsrRNA were decreased by 74.9% and 68.92%, respectively, in RMS fed adults, compared with the control adults fed RMS-EGFP. Consequently, the adult mortalities were 81.7% and 73.3% when fed RMS-PsRCN and RMS-PsrRNA, respectively, compared with 8.3% in the control adults. Furthermore, movements of adults fed RMS-PsRCN and RMS-PsrRNA were decreased by 70.2% and 55.7%, respectively, compared with the control adults. CONCLUSIONS This study shows the potential of using RMS to suppress the expression of target genes and subsequently produce significant mortality rates and behavioral changes in RMS-fed adult P. striolata. These findings underscore the promises and viability of using RMS as an effective strategy for gene function studies and species-specific management of agricultural important insect pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linghao Kong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiazheng Xu
- Laboratory of Artificial Intelligence for Education, School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Weihong Shen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Songhan Zhang
- Agriculture Technology Extension Service Center of Shanghai, Shanghai, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
10
|
Zhang X, Chen W, Wan S, Qu B, Liao F, Cheng D, Zhang Y, Ding Z, Yang Y, Yuan Q. Spatially Selective MicroRNA Imaging in Human Colorectal Cancer Tissues Using a Multivariate-Gated Signal Amplification Nanosensor. J Am Chem Soc 2025; 147:6679-6687. [PMID: 39933117 DOI: 10.1021/jacs.4c16001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
MicroRNA (miRNA) is involved in the genesis in viand development of colorectal cancer. The in vivo imaging of miRNA at the tumor sites is essential for understanding its role in colorectal cancer pathology and therapeutic target identification. However, achieving accurate imaging of miRNA at the tumor sites is hindered by the low abundance of miRNAs in tumor cells and nonspecific signal leakage in normal tissues. Here, we report a multivariate-gated catalytic hairpin assembly (CHA) nanosensor for the specific amplified imaging of microRNA-21 (miR-21) in human colorectal cancer tissues to reveal the underlying miR-21-associated molecular mechanism. The endogenous glutathione and exogenous near-infrared multivariate-gated design in combination with CHA probes improves the signal strength of target miR-21 and reduces the background interference. The nanosensor enables specific amplified imaging of miR-21 in vivo, and the signal-to-background ratios are 1.6-fold compared with traditional CHA methods. With the assistance of the designed nanosensor, we achieve the preliminary identification of tumor tissues and normal tissues from human clinical surgical resection samples. The overexpressed miR-21 is found to suppress the core mismatch repair recognition protein human mutS homologue 2 involved in DNA damage recognition and repair to inhibit the therapeutic efficacy of colorectal cancer. The strategy of probe design, which combines multivariate-gated activation methods with a signal amplification system, is applicable for accurate miRNA imaging and disease-relevant molecular mechanism research.
Collapse
Affiliation(s)
- Xiaoming Zhang
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Wenhui Chen
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Songlin Wan
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Bing Qu
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Fei Liao
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Di Cheng
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Yun Zhang
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Zhao Ding
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
11
|
Kim J, Kim YR, Lee SM, Lee J, Lee S, Yong D, Park HG. Novel Isothermal Amplification Integrated with CRISPR/Cas13a and Its Applications for Ultrasensitive Detection of SARS-CoV-2. ACS Synth Biol 2025; 14:463-469. [PMID: 39834214 DOI: 10.1021/acssynbio.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We herein developed an ultrasensitive and rapid strategy to identify genomic nucleic acids by integrating a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 13a (Cas13a) into our recently developed isothermal technique, nicking and extension chain reaction system-based amplification (NESBA) reaction. In this technique, named CESBA, the NESBA reaction isothermally produces a large amount of RNA amplicons from the initial target genomic RNA (gRNA). The RNA amplicons bind to the crispr RNA (crRNA) and activate the collateral cleavage activity of Cas13a, which would then cleave the reporter probe nearby, consequently producing the final signals. Based on this design principle, we successfully detected SARS-CoV-2 gRNA as a model target very sensitively down to even a single copy (0.05 copies/μL) in both fluorescence- and lateral flow assay (LFA)-based modes with excellent specificity against other human coronaviruses (H-CoVs). We further validated the clinical applicability of CESBA by testing the 20 clinical samples with 100% clinical sensitivity and specificity. This work represents a potent and innovative strategy for the identification of genomic nucleic acids in molecular diagnostics, delivering exceptional levels of sensitivity.
Collapse
Affiliation(s)
- Jaemin Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yo Rim Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Mo Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinhwan Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seoyoung Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Wang L, Tang R, Wang W, Bu L, Sun J, Fu Y, Li M, Yi Z. Recent developments in isothermal amplification technology for rapid detection of SARS-CoV-2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:652-664. [PMID: 39679561 DOI: 10.1039/d4ay01106f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally, posing a significant threat to human health. Rapid and accurate detection of infectious disease pathogens is of crucial practical significance for early screening, timely intervention, and outbreak prevention. However, conventional diagnostic methods are increasingly unable to meet clinical demands. Recently developed isothermal analysis methods offer mild reaction conditions and reduce dependence on specialized instruments. These convenient, fast, and reliable methods show great promise for diagnosing infectious pathogens, especially for on-site detection in areas without laboratories or with limited resources. Among them, loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA), which integrate various widely used detection techniques, stand out as rapidly advancing and relatively mature isothermal nucleic acid amplification technologies. This review outlines several representative isothermal amplification technologies and associated detection methods. We summarize the latest advancements in LAMP and RPA technologies for the rapid detection of SARS-CoV-2 and discuss the future prospects of isothermal amplification in diversified testing.
Collapse
Affiliation(s)
- Linlin Wang
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, Shandong Province, China.
| | - Ruitong Tang
- Department of Medical Microbiology, School of Basic Medicine, Shandong Second Medical University, Weifang, China.
| | - Wentao Wang
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, Shandong Province, China.
| | - Lingguang Bu
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, Shandong Province, China.
| | - Jingle Sun
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, Shandong Province, China.
| | - Yurong Fu
- Department of Medical Microbiology, School of Basic Medicine, Shandong Second Medical University, Weifang, China.
| | - Meng Li
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, Shandong Province, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, Shandong Province, China.
| |
Collapse
|
13
|
Wang R, Hastings WJ, Saliba JG, Bao D, Huang Y, Maity S, Kamal Ahmad OM, Hu L, Wang S, Fan J, Ning B. Applications of Nanotechnology for Spatial Omics: Biological Structures and Functions at Nanoscale Resolution. ACS NANO 2025; 19:73-100. [PMID: 39704725 PMCID: PMC11752498 DOI: 10.1021/acsnano.4c11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Spatial omics methods are extensions of traditional histological methods that can illuminate important biomedical mechanisms of physiology and disease by examining the distribution of biomolecules, including nucleic acids, proteins, lipids, and metabolites, at microscale resolution within tissues or individual cells. Since, for some applications, the desired resolution for spatial omics approaches the nanometer scale, classical tools have inherent limitations when applied to spatial omics analyses, and they can measure only a limited number of targets. Nanotechnology applications have been instrumental in overcoming these bottlenecks. When nanometer-level resolution is needed for spatial omics, super resolution microscopy or detection imaging techniques, such as mass spectrometer imaging, are required to generate precise spatial images of target expression. DNA nanostructures are widely used in spatial omics for purposes such as nucleic acid detection, signal amplification, and DNA barcoding for target molecule labeling, underscoring advances in spatial omics. Other properties of nanotechnologies include advanced spatial omics methods, such as microfluidic chips and DNA barcodes. In this review, we describe how nanotechnologies have been applied to the development of spatial transcriptomics, proteomics, metabolomics, epigenomics, and multiomics approaches. We focus on how nanotechnology supports improved resolution and throughput of spatial omics, surpassing traditional techniques. We also summarize future challenges and opportunities for the application of nanotechnology to spatial omics methods.
Collapse
Affiliation(s)
- Ruixuan Wang
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Waylon J. Hastings
- Department
of Psychiatry and Behavioral Science, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Julian G. Saliba
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Duran Bao
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yuanyu Huang
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Sudipa Maity
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Omar Mustafa Kamal Ahmad
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Logan Hu
- Groton
School, 282 Farmers Row, Groton, Massachusetts 01450, United States
| | - Shengyu Wang
- St.
Margaret’s Episcopal School, 31641 La Novia Avenue, San
Juan Capistrano, California92675, United States
| | - Jia Fan
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Bo Ning
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
14
|
Guo SX, Zhang Q, Bai NN, Yue PY, Niu JP, Yin CC, Yue AQ, Du WJ, Zhao JZ. Swift and portable detection of soybean mosaic virus SC7 through RNA extraction and loop-mediated isothermal amplification using lateral flow device. Front Microbiol 2025; 15:1478218. [PMID: 39831125 PMCID: PMC11739293 DOI: 10.3389/fmicb.2024.1478218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The soybean mosaic disease-caused by the soybean mosaic virus (SMV)-significantly impacts soybean quality and yield. Among its various strains, SMV-SC7 is prevalent in China. Therefore, rapid and accurate diagnosis is deemed critical to mitigate the spread of SMV-SC7. In this study, a simple and rapid magnetic bead-based RNA extraction method was optimized. Furthermore, a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay that requires no specialized equipment such as PCR Amplifier was proposed, employing a lateral flow device (LFD) for visual interpretation of SMV-SC7. The RT-LAMP-LFD approach facilitated specificity testing of SMV-SC7. Moreover, the limit of detection (LOD) of this method was as low as 10-5 ng (2.4 copies). The sensitivity of RT-LAMP-LFD was 10-fold higher than that of the colorimetric RT-LAMP method. In 194 field samples tested, the RT-LAMP-LFD detection of the SMV-SC7 had accuracy of 98.45% in comparison to RT-qPCR. In conclusion, the assay exhibited high specificity, sensitivity, and rapidity, enabling economical and portable detection of SMV-SC7 and providing technical support to identify SMV-SC7-infected soybeans.
Collapse
Affiliation(s)
- Shui-Xian Guo
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Qing Zhang
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Nan-Nan Bai
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pei-Yao Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jing-Ping Niu
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Cong-Cong Yin
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ai-Qin Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wei-Jun Du
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jin-Zhong Zhao
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
15
|
Hamidizadeh M, Martins RF, Bier FF. Point-of-Care Diagnostics Using Self-heating Elements from Smart Food Packaging: Moving Towards Instrument-Free Nucleic Acid-Based Detection. Mol Diagn Ther 2025; 29:67-80. [PMID: 39550729 PMCID: PMC11742007 DOI: 10.1007/s40291-024-00753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
Compromising between accuracy and rapidity is an important issue in analytics and diagnostics, often preventing timely and appropriate reactions to disease. This issue is particularly critical for infectious diseases, where reliable and rapid diagnosis is crucial for effective treatment and easier containment, thereby reducing economic and societal impacts. Diagnostic technologies are vital in disease modeling, tracking, treatment decision making, and epidemic containment. At the point-of-care level in modern healthcare, accurate diagnostics, especially those involving genetic-level analysis and nucleic acid amplification techniques, are still needed. However, implementing these techniques in remote or non-laboratory settings poses challenges because of the need for trained personnel and specialized equipment, as all nucleic acid-based diagnostic techniques, such as polymerase chain reaction and isothermal nucleic acid amplification, require temperature cycling or elevated and stabilized temperatures. However, in smart food packaging, there are approved and commercially available methods that use temperature regulation to enable autonomous heat generation without external sources, such as chemical heaters with phase change materials. These approaches could be applied in diagnostics, facilitating point-of-care, electricity-free molecular diagnostics, especially with nucleic acid-based detection methods such as isothermal nucleic acid amplification. In this review, we explore the potential interplay between self-heating elements, isothermal nucleic acid amplification techniques, and phase change materials. This paves the way for the development of truly portable, electricity-free, point-of-care diagnostic tools, particularly advantageous for on-site detection in resource-limited remote settings and for home use.
Collapse
Affiliation(s)
- Mojdeh Hamidizadeh
- Institute of Biochemistry and Biology, Chair of Molecular Bioanalytics and Bioelectronics, University of Potsdam, Potsdam, Germany.
| | - Renata F Martins
- Institute of Molecular Diagnostics and Bioanalytics (IMDB) gGmbH, Potsdam, Germany
| | - Frank F Bier
- Institute of Biochemistry and Biology, Chair of Molecular Bioanalytics and Bioelectronics, University of Potsdam, Potsdam, Germany
- Institute of Molecular Diagnostics and Bioanalytics (IMDB) gGmbH, Potsdam, Germany
| |
Collapse
|
16
|
Attar S, Browning VE, Krebs M, Liu Y, Nichols EK, Tsue AF, Shechner DM, Shendure J, Lieberman JA, Schweppe DK, Akilesh S, Beliveau BJ. Efficient and highly amplified imaging of nucleic acid targets in cellular and histopathological samples with pSABER. Nat Methods 2025; 22:156-165. [PMID: 39548245 DOI: 10.1038/s41592-024-02512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
In situ hybridization (ISH) is a powerful tool for investigating the spatial arrangement of nucleic acid targets in fixed samples. ISH is typically visualized using fluorophores to allow high sensitivity and multiplexing or with colorimetric labels to facilitate covisualization with histopathological stains. Both approaches benefit from signal amplification, which makes target detection effective, rapid and compatible with a broad range of optical systems. Here, we introduce a unified technical platform, termed 'pSABER', for the amplification of ISH signals in cell and tissue systems. pSABER decorates the in situ target with concatemeric binding sites for a horseradish peroxidase-conjugated oligonucleotide, enabling the localized deposition of fluorescent or colorimetric substrates. We demonstrate that pSABER effectively labels DNA and RNA targets in cultured cells and FFPE specimens. Furthermore, pSABER can achieve fivefold signal amplification over conventional signal amplification by exchange reaction (SABER) and can be serially multiplexed using solution exchange. Therefore, by linking nucleic acid detection to robust signal amplification capable of diverse readouts, pSABER will have broad utility in research and clinical settings.
Collapse
Affiliation(s)
- Sahar Attar
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Mary Krebs
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yuzhen Liu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Eva K Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ashley F Tsue
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Joshua A Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Kidney Research Institute, Seattle, WA, USA.
| | - Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Lee J, Han J, Song Y, Gu B, Kim E. Design and Optimization of Isothermal Gene Amplification for Generation of High-Gain Oligonucleotide Products by MicroRNAs. ACS MEASUREMENT SCIENCE AU 2024; 4:737-750. [PMID: 39713023 PMCID: PMC11660000 DOI: 10.1021/acsmeasuresciau.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 12/24/2024]
Abstract
Thermal cycling-based quantitative polymerase chain reaction (qPCR) represents the gold standard method for accurate and sensitive nucleic acid quantification in laboratory settings. However, its reliance on costly thermal cyclers limits the implementation of this technique for rapid point-of-care (POC) diagnostics. To address this, isothermal amplification techniques such as rolling circle amplification (RCA) have been developed, offering a simpler alternative that can operate without the need for sophisticated instrumentation. This study focuses on the development and optimization of toehold-mediated RCA (TRCA), which employs a conformationally switchable dumbbell DNA template for the sensitive and selective detection of cancer-associated miRNAs, specifically miR-21. In addition, we developed variants of hyperbranched TRCA (HTRCA), nicking-assisted TRCA (NTRCA), and hyperbranched NTRCA (HNTRCA) to facilitate exponential amplification by enhancing TRCA through the sequential incorporation of reverse primer (Pr) and nicking endonuclease (nE). By conducting a systematic kinetic analysis of the initial rate and end point signals for varying concentrations of key reaction components, we could identify optimal conditions that markedly enhanced the sensitivity and specificity of the TRCA variants. In particular, HNTRCA, which exploits the synergistic effect of Pr and nE, demonstrated an approximately 3000-fold improvement in the detection limit (260 fM) and a wider dynamic range of more than 4 log orders of magnitude compared to TRCA, thereby evidencing its superior performance. Also, we established a mechanistic model for TRCA that includes the roles of Pr and nE in different amplification processes. Model parameters were fitted to the experimental data, and additional simulations were conducted to compare the four amplification methods. Further tests with real biological samples revealed that this technique showed a good correlation with qPCR in quantifying miR-21 expression in various cell lines (0.9510 of Pearson's r), confirming its potential as a robust and rapid tool for nucleic acid detection. Therefore, the simplicity, high sensitivity, and potential for integration with POC diagnostic platforms make the HNTRCA system suitable for field deployment in resource-limited environments.
Collapse
Affiliation(s)
- Jihee Lee
- Department
of Bioengineering and Nano-Bioengineering, Research Center for Bio
Materials and Process Development, Incheon
National University, Incheon 22012, Republic of Korea
| | - Jueun Han
- Department
of Bioengineering and Nano-Bioengineering, Research Center for Bio
Materials and Process Development, Incheon
National University, Incheon 22012, Republic of Korea
| | - Yejin Song
- Department
of Bioengineering and Nano-Bioengineering, Research Center for Bio
Materials and Process Development, Incheon
National University, Incheon 22012, Republic of Korea
| | - Boram Gu
- School
of Chemical Engineering, Chonnam National
University, Gwangju 61186, Republic of Korea
| | - Eunjung Kim
- Department
of Bioengineering and Nano-Bioengineering, Research Center for Bio
Materials and Process Development, Incheon
National University, Incheon 22012, Republic of Korea
- Division
of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
18
|
Lu Z, Wang X, Chen J. AI-empowered visualization of nucleic acid testing. Life Sci 2024; 359:123209. [PMID: 39488264 DOI: 10.1016/j.lfs.2024.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
AIMS The visualization of nucleic acid testing (NAT) results plays a critical role in diagnosing and monitoring infectious and genetic diseases. The review aims to review the current status of AI-based NAT result visualization. It systematically introduces commonly used AI-based methods and techniques for NAT, emphasizing the importance of result visualization for accessible, clear, and rapid interpretation. This highlights the importance of developing a NAT visualization platform that is user-friendly and efficient, setting a clear direction for future advancements in making nucleic acid testing more accessible and effective for everyday applications. METHOD This review explores both the commonly used NAT methods and AI-based techniques for NAT result visualization. The focus then shifts to AI-based methodologies, such as color detection and result interpretation through AI algorithms. The article presents the advantages and disadvantages of these techniques, while also comparing the performance of various NAT platforms in different experimental contexts. Furthermore, it explores the role of AI in enhancing the accuracy, speed, and user accessibility of NAT results, highlighting visualization technologies adapted from other fields of experimentation. SIGNIFICANCE This review offers valuable insights for researchers and everyday users, aiming to develop effective visualization platforms for NAT, ultimately enhancing disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Zehua Lu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 10083, China
| | - Xiaogang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 10083, China.
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 10083, China.
| |
Collapse
|
19
|
Nair VK, Sharma C, Kumar S, Sengupta M, Ghosh S. Probing the role of ligation and exonuclease digestion towards non-specific amplification in bioanalytical RCA assays. Analyst 2024; 149:5491-5503. [PMID: 39404091 DOI: 10.1039/d4an00866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Non-specific amplification (NSA, amplification in the absence of a target analyte) in bioanalytical rolling circle amplification (RCA) assays, especially those involving pre-synthesized circular DNA (cDNA), affects its analytical sensitivity. Despite extensive development of RCA-based bioanalytical methods, the NSA in RCA remains uncharacterized in terms of its magnitude or origin. NSA may originate from inefficient ligation or succeeding cDNA purification steps. This study comprehensively quantifies NSA across several ligation and digestion techniques for the first time since the innovation of RCA. To quantify the NSA in RCA, cDNAs were prepared using self-annealing, splint-padlock, or cohesive end ligations. The cDNAs were then subjected to nine different exonuclease digestion steps and quantified for NSA under linear as well as hyperbranched RCA conditions. We investigated buffer compositions, divalent ion concentrations, single or dual enzyme digestion, cohesive end lengths, and splint lengths. The optimized conditions successfully mitigated absolute NSA by 30-100-fold and relative NSA (normalized against primer-assisted RCA) to ∼5%. Besides understanding the mechanistic origin of NSA, novel aspects of enzyme-substrate selectivity, buffer composition, and the role of divalent ions were discovered. With increasing bioanalytical RCA applications, this study will help standardize NSA-free assays.
Collapse
Affiliation(s)
- Vandana Kuttappan Nair
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Chandrika Sharma
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Shrawan Kumar
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Mrittika Sengupta
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
| | - Souradyuti Ghosh
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| |
Collapse
|
20
|
Wang T, Bai L, Wang G, Han J, Wu L, Chen X, Zhang H, Feng J, Wang Y, Wang R, Zhang X. SATCAS: A CRISPR/Cas13a-based simultaneous amplification and testing platform for one-pot RNA detection and SNPs distinguish in clinical diagnosis. Biosens Bioelectron 2024; 263:116636. [PMID: 39116631 DOI: 10.1016/j.bios.2024.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
The clinical diagnosis of pathogen infectious diseases increasingly requires sensitive and rapid RNA detection technologies. The RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a system has shown immense potential in molecular diagnostics due to its trans-cleavage activity. However, most Cas13a-based detection methods require an amplicon transcription step, and the multi-step open-tube operations are prone to contamination, limiting their widespread application. Here, we propose an ultrasensitive (single-copy range, ∼aM) and rapid (within 40 min) isothermal one-pot RNA detection platform, termed SATCAS (Simultaneous Amplification and Testing platform based on Cas13a). This method effectively distinguishes viable bacteria (0%-100%) under constant total bacterial conditions, demonstrating its robustness and universality. SATCAS excels in identifying single nucleotide polymorphisms (SNPs), particularly detecting 0.5% drug-resistant mutations. We validated SATCAS by detecting infections in biological samples from 68 HBV, 23 EBV, and 48 SARS-CoV-2 patients, achieving 100% sensitivity, 92.86% specificity, and 97.06% accuracy in HBV infection testing. We anticipate that SATCAS has broad application potential in the early diagnosis, subtyping, drug resistance detection, and point-of-care monitoring of pathogen infectious diseases.
Collapse
Affiliation(s)
- Ting Wang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, PR China
| | - Linlin Bai
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Guoling Wang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, PR China
| | - Jingli Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, PR China; National Clinical Research Center for Hematologic Disease, Beijing, PR China
| | - Lixin Wu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, PR China
| | - Xuanzhong Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, PR China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, PR China.
| | - Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, PR China.
| | - Yongming Wang
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, PR China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 200438, PR China.
| | - Rui Wang
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, PR China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 200438, PR China; International Human Phenome Institutes, Shanghai, 200433, PR China.
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, PR China; National Clinical Research Center for Hematologic Disease, Beijing, PR China.
| |
Collapse
|
21
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
22
|
Sun P, Gou H, Che X, Chen G, Feng C. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy. Chem Commun (Camb) 2024; 60:10805-10821. [PMID: 39248025 DOI: 10.1039/d4cc03774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
DNAzymes, a class of single-stranded catalytic DNA with good stability, high catalytic activity, and easy synthesis, functionalization and modification properties, have garnered significant interest in the realm of biosensing and bioimaging. Their integration with fluorescent dyes or chemiluminescent moieties has led to remarkable bioimaging outcomes, while DNAzyme-based biosensors have demonstrated robust sensitivity and selectivity in detecting metal ions, nucleic acids, proteins, enzyme activities, exosomes, bacteria and microorganisms. In addition, by delivering DNAzymes into tumor cells, the mRNA therein can be cleaved to regulate the expression of corresponding proteins, which has further propelled the application of DNAzymes in cancer gene therapy and synergistic therapy. This paper reviews the strategies for screening attractive DNAzymes such as SELEX and high-throughput sequencing, and briefly describes the amplification strategies of DNAzymes, which mainly include catalytic hairpin assembly (CHA), DNA walker, hybridization chain reaction (HCR), DNA origami, CRISPR-Cas12a, rolling circle amplification (RCA), and aptamers. In addition, applications of DNAzymes in bioimaging, biosensing, and cancer therapy are also highlighted. Subsequently, the possible challenges of these DNAzymes in practical applications are further pointed out, and future research directions are suggested.
Collapse
Affiliation(s)
- Pei Sun
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Xinran Che
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
23
|
Shiraishi M, Nabeshima N, Suzuki K, Fujita M, Iwai S. Endonuclease Q as a robust enhancer for nucleic acid amplification. Anal Biochem 2024; 692:115569. [PMID: 38750682 DOI: 10.1016/j.ab.2024.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Isothermal nucleic acid amplification techniques are attracting increasing attention in molecular diagnosis and biotechnology. However, most existing techniques are complicated by the need for intricate primer design and numerous enzymes and primers. Here, we have developed a simple method, termed NAQ, that employs adding both endonuclease Q (EndoQ) and dUTP/dITP to conventional rolling circle amplification reactions to increase DNA amplification. NAQ does not require intricate primer design or DNA sequence-specific enzymes, and existing isothermal amplification techniques could be readily adapted to include both EndoQ and dUTP/dITP.
Collapse
Affiliation(s)
- Miyako Shiraishi
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan; Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, Japan.
| | - Noboru Nabeshima
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, Japan
| | - Keiichiro Suzuki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, Japan; Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, Japan
| |
Collapse
|
24
|
Hou Z, Deng W, Li A, Zhang Y, Chang J, Guan X, Chang Y, Wang K, Wang X, Ruan J. A sensitive one-pot ROA assay for rapid miRNA detection. ABIOTECH 2024; 5:298-308. [PMID: 39279850 PMCID: PMC11399362 DOI: 10.1007/s42994-024-00140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/05/2024] [Indexed: 09/18/2024]
Abstract
MicroRNAs (miRNAs) and short RNA fragments (18-25 nt) are crucial biomarkers in biological research and disease diagnostics. However, their accurate and rapid detection remains a challenge, largely due to their low abundance, short length, and sequence similarities. In this study, we report on a highly sensitive, one-step RNA O-circle amplification (ROA) assay for rapid and accurate miRNA detection. The ROA assay commences with the hybridization of a circular probe with the test RNA, followed by a linear rolling circle amplification (RCA) using dUTP. This amplification process is facilitated by U-nick reactions, which lead to an exponential amplification for readout. Under optimized conditions, assays can be completed within an hour, producing an amplification yield up to the microgram level, with a detection limit as low as 0.15 fmol (6 pM). Notably, the ROA assay requires only one step, and the results can be easily read visually, making it user-friendly. This ROA assay has proven effective in detecting various miRNAs and phage ssRNA. Overall, the ROA assay offers a user-friendly, rapid, and accurate solution for miRNA detection. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00140-0.
Collapse
Affiliation(s)
- Zhihao Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Wenpeng Deng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 China
| | - Alun Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Ya Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Jianye Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Xinyue Guan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Kaile Wang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xinjie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| |
Collapse
|
25
|
Rösch EL, Sack R, Chowdhury MS, Wolgast F, Zaborski M, Ludwig F, Schilling M, Viereck T, Rand U, Lak A. Amplification- and Enzyme-Free Magnetic Diagnostics Circuit for Whole-Genome Detection of SARS-CoV-2 RNA. Chembiochem 2024; 25:e202400251. [PMID: 38709072 DOI: 10.1002/cbic.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Polymerase chain reaction (PCR) requires thermal cycling and enzymatic reactions for sequence amplification, hampering their applications in point-of-care (POC) settings. Magnetic bioassays based on magnetic particle spectroscopy (MPS) and magnetic nanoparticles (MNPs) are isothermal, wash-free, and can be quantitative. Realizing them amplification- and enzyme-free on a benchtop device, they will become irreplaceable for POC applications. Here we demonstrate a first-in-class magnetic signal amplification circuit (MAC) that enables detection of whole genome of SARS-CoV-2 by combining the specificity of toehold-mediated DNA strand displacement with the magnetic response of MNPs to declustering processes. Using MAC, we detect the N gene of SARS-CoV-2 samples at a concentration of 104 RNA copies/μl as determined by droplet digital PCR. Further, we demonstrate that MAC can reliably distinguish between SARS-CoV-2 and other human coronaviruses. Being a wash-, amplification- and enzyme-free biosensing concept and working at isothermal conditions (25 °C) on a low-cost benchtop MPS device, our MAC biosensing concept offers several indispensable features for translating nucleic acid detection to POC applications.
Collapse
Affiliation(s)
- Enja Laureen Rösch
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Rebecca Sack
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Mohammad Suman Chowdhury
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Florian Wolgast
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Margarete Zaborski
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), Inhoffenstr. 7b, Braunschweig, 38124, Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Meinhard Schilling
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Thilo Viereck
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Ulfert Rand
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), Inhoffenstr. 7b, Braunschweig, 38124, Germany
| | - Aidin Lak
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| |
Collapse
|
26
|
Steinek C, Guirao-Ortiz M, Stumberger G, Tölke AJ, Hörl D, Carell T, Harz H, Leonhardt H. Generation of densely labeled oligonucleotides for the detection of small genomic elements. CELL REPORTS METHODS 2024; 4:100840. [PMID: 39137784 PMCID: PMC11384094 DOI: 10.1016/j.crmeth.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The genome contains numerous regulatory elements that may undergo complex interactions and contribute to the establishment, maintenance, and change of cellular identity. Three-dimensional genome organization can be explored with fluorescence in situ hybridization (FISH) at the single-cell level, but the detection of small genomic loci remains challenging. Here, we provide a rapid and simple protocol for the generation of bright FISH probes suited for the detection of small genomic elements. We systematically optimized probe design and synthesis, screened polymerases for their ability to incorporate dye-labeled nucleotides, and streamlined purification conditions to yield nanoscopy-compatible oligonucleotides with dyes in variable arrays (NOVA probes). With these probes, we detect genomic loci ranging from genome-wide repetitive regions down to non-repetitive loci below the kilobase scale. In conclusion, we introduce a simple workflow to generate densely labeled oligonucleotide pools that facilitate detection and nanoscopic measurements of small genomic elements in single cells.
Collapse
Affiliation(s)
- Clemens Steinek
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Miguel Guirao-Ortiz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gabriela Stumberger
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Annika J Tölke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - David Hörl
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hartmann Harz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
27
|
Lee H, Langseth CM, Salas SM, Sariyar S, Metousis A, Rueda-Alaña E, Bekiari C, Lundberg E, Garcı A-Moreno F, Grillo M, Nilsson M. Open-source, high-throughput targeted in situ transcriptomics for developmental and tissue biology. Development 2024; 151:dev202448. [PMID: 39099456 PMCID: PMC11385644 DOI: 10.1242/dev.202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/19/2024] [Indexed: 08/06/2024]
Abstract
Multiplexed spatial profiling of mRNAs has recently gained traction as a tool to explore the cellular diversity and the architecture of tissues. We propose a sensitive, open-source, simple and flexible method for the generation of in situ expression maps of hundreds of genes. We use direct ligation of padlock probes on mRNAs, coupled with rolling circle amplification and hybridization-based in situ combinatorial barcoding, to achieve high detection efficiency, high-throughput and large multiplexing. We validate the method across a number of species and show its use in combination with orthogonal methods such as antibody staining, highlighting its potential value for developmental and tissue biology studies. Finally, we provide an end-to-end computational workflow that covers the steps of probe design, image processing, data extraction, cell segmentation, clustering and annotation of cell types. By enabling easier access to high-throughput spatially resolved transcriptomics, we hope to encourage a diversity of applications and the exploration of a wide range of biological questions.
Collapse
Affiliation(s)
- Hower Lee
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | | | - Sergio Marco Salas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Sanem Sariyar
- Science for Life Laboratory, Department of Protein Science, KTH - Royal Institute of Technology, 17165Stockholm, Sweden
| | - Andreas Metousis
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Eneritz Rueda-Alaña
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Christina Bekiari
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, Department of Protein Science, KTH - Royal Institute of Technology, 17165Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Fernando Garcı A-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
- IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, 48013 BilbaoSpain
| | - Marco Grillo
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| |
Collapse
|
28
|
Hamidi SV, Jahromi AK, Hosseini II, Moakhar RS, Collazos C, Pan Q, Liang C, Mahshid S. Surface-Based Multimeric Aptamer Generation and Bio-Functionalization for Electrochemical Biosensing Applications. Angew Chem Int Ed Engl 2024; 63:e202402808. [PMID: 38764376 DOI: 10.1002/anie.202402808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Multimeric aptamers have gained more attention than their monomeric counterparts due to providing more binding sites for target analytes, leading to increased affinity. This work attempted to engineer the surface-based generation of multimeric aptamers by employing the room temperature rolling circle amplification (RCA) technique and chemically modified primers for developing a highly sensitive and selective electrochemical aptasensor. The multimeric aptamers, generated through surface RCA, are hybridized to modified spacer primers, facilitating the positioning of the aptamers in the proximity of sensing surfaces. These multimeric aptamers can be used as bio-receptors for capturing specific targets. The surface amplification process was fully characterized, and the optimal amplification time for biosensing purposes was determined, using SARS-CoV-2 spike protein (SP). Interestingly, multimeric aptasensors produced considerably higher response signals and affinity (more than 10-fold), as well as higher sensitivity (almost 4-fold) compared to monomeric aptasensors. Furthermore, the impact of surface structures on the response signals was studied by utilizing both flat working electrodes (WEs) and nano-/microislands (NMIs) WEs. The NMIs multimeric aptasensors showed significantly higher sensitivity in buffer and saliva media with the limit of detection less than 2 fg/ml. Finally, the developed NMIs multimeric aptasensors were clinically challenged with several saliva patient samples.
Collapse
Affiliation(s)
- Seyed Vahid Hamidi
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | | | - Imman I Hosseini
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | | | - Cesar Collazos
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, 3T 1E2, Canada
| | - Qinghua Pan
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, 3T 1E2, Canada
| | - Chen Liang
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Lady Davis Institute for Medical Research and McGill Centre for Viral Diseases, Jewish General Hospital, Montreal, Quebec, 3T 1E2, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, H3A 0G4, Canada
| |
Collapse
|
29
|
Tian R, Xie F, Liu Y, Liu G, Li Q, Wang J, Zhang H, Dai L, Zhang W. Recombinase polymerase amplification combined with lateral flow biosensor for rapid visual detection of Clostridium perfringens in chicken meat and milk. Front Vet Sci 2024; 11:1395188. [PMID: 39011320 PMCID: PMC11246993 DOI: 10.3389/fvets.2024.1395188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Aims Clostridium perfringens is one of the major anaerobic pathogen causing food poisoning and animal enteritis. With the rise of antibiotic resistance and the restrictions of the use of antibiotic growth promoting agents (AGPs) in farming, Clostridium enteritis and food contamination have become more common. It is time-consuming and labor-intensive to confirm the detection by standard culture methods, and it is necessary to develop on-site rapid detection tools. In this study, a combination of recombinase polymerase amplification (RPA) and lateral flow biosensor (LFB) was used to visually detect C. perfringens in chicken meat and milk. Methods and results Two sets of primers were designed for the plc gene of C. perfringens, and the amplification efficiency and specificity of the primers. Selection of primers produces an amplified fragment on which the probe is designed. The probe was combined with the lateral flow biosensor (LFB). The reaction time and temperature of RPA-LFB assay were optimized, and the sensitivity of the assay was assessed. Several common foodborne pathogens were selected to test the specificity of the established method. Chicken and milk samples were artificially inoculated with different concentrations (1 × 102 CFU/mL to 1 × 106 CFU/mL) of C. perfringens, and the detection efficiency of RPA-LFB method and PCR method was compared. RPA-LFB can be completed in 20 min and the results can be read visually by the LFB test strips. The RPA-LFB has acceptable specificity and the lowest detection limit of 100 pg./μL for nucleic acid samples. It was able to stably detect C. perfringens contamination in chicken and milk at the lowest concentration of 1 × 104 CFU/mL and 1 × 103 CFU/mL, respectively. Conclusion In conclusion, RPA-LFB is specific and sensitive. It is a rapid, simple and easy-to-visualize method for the detection of C. perfringens in food and is suitable for use in field testing work.
Collapse
Affiliation(s)
- Rui Tian
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xie
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guangjin Liu
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qingxia Li
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Jinxiu Wang
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Hongjian Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Lei Dai
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Wei Zhang
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Li W, Cai B, Chen R, Cui J, Wang H, Li Z. Application of recombinase polymerase amplification with CRISPR/Cas12a and multienzyme isothermal rapid amplification with lateral flow dipstick assay for Bactrocera correcta. PEST MANAGEMENT SCIENCE 2024; 80:3317-3325. [PMID: 38375936 DOI: 10.1002/ps.8035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Bactrocera correcta is a quarantine pest that negatively impacts the fruit and vegetable industry. Differentiating B. correcta from similar species, especially in non-adult stages, remains challenging. Rapid molecular identification techniques, such as recombinase polymerase amplification (RPA) combined with CRISPR/Cas12a and multienzyme isothermal rapid amplification with lateral flow dipstick (MIRA-LFD), play a crucial role in early monitoring and safeguarding agricultural production. Our study introduces two methods for the rapid visual identification of B. correcta. RESULTS Bactrocera correcta specific RPA primers, CRISPR RNA (crRNA), and the LFD probe were designed based on the cox1 genes. The RPA reaction conditions were optimized (at 37 °C for 8 min) for effective template DNA amplification. Two nucleic acid detection methods were established to visualize RPA. In the RPA-CRISPR/Cas12a system, the optimal LbCas12a/crRNA concentration ratio was 200:400 nmol L-1. Successful amplification was determined by the presence or absence of green fluorescence following 15 min incubation at 37 °C. The MIRA-LFD system achieved precise identification of the target species within 4 min at 37 °C. Both methods exhibited high specificity and sensitivity, allowing for detection from 1.0 × 10-1 ng μL-1 of DNA. Combined with rapid DNA extraction, rapid identification of individual B. correcta at different developmental stages was achieved, enhancing the practicality and convenience of the established methods. CONCLUSION Our research findings demonstrate that both the RPA-CRISPR/Cas12a and MIRA-LFD methods for B. correcta detection was accurate and rapid (within 30 min and 10 min, respectively), at 37 °C. Our methods do not rely on expensive equipment, thus possess high practical value, providing improved identification solutions for port quarantine pests and field applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weisong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
| | - Bo Cai
- Post-Entry Quarantine Station for Tropical Plant, Haikou Customs District, Haikou, P. R. China
| | - Ranran Chen
- National Agro-Tech Extension and Service Center, Beijing, P. R. China
| | - Jianchen Cui
- Beijing Plant Protection Station, Beijing, P. R. China
| | - Hui Wang
- Hainan Adminstration of Off-season Plant Breeding, Sanya, P. R. China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
| |
Collapse
|
31
|
Koryukov MA, Oscorbin IP, Novikova LM, Gordukova MA, Turina IE, Galeeva EV, Kudlay DA, Filipenko ML. A Novel Multiplex LAMP Assay for the Detection of Respiratory Human Adenoviruses. Int J Mol Sci 2024; 25:7215. [PMID: 39000322 PMCID: PMC11241107 DOI: 10.3390/ijms25137215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Human adenoviruses (HAdVs) are common pathogens that are associated with a variety of diseases, including respiratory tract infections (RTIs). Without reliable, fast, and cost-effective detection methods for HAdVs, patients may be misdiagnosed and inappropriately treated. To address this problem, we have developed a multiplex loop-mediated isothermal amplification (LAMP) assay for the detection of the species Human adenovirus B (HAdV-B), Human adenovirus C (HAdV-C) and Human adenovirus E (HAdV-E) that cause RTIs. This multiplexing approach is based on the melting curve analysis of the amplicons with a specific melting temperature for each HAdV species. Without the need for typing of HAdVs, the LAMP results can be visually detected using colorimetric analysis. The assay reliably detects at least 375 copies of HAdV-B and -C and 750 copies of HAdV-E DNA per reaction in less than 35 min at 60 °C. The designed primers have no in silico cross-reactivity with other human respiratory pathogens. Validation on 331 nasal swab samples taken from patients with RTIs showed a 90-94% agreement rate with our in-house multiplex quantitative polymerase chain reaction (qPCR) method. Concordance between the quantitative and visual LAMP was 99%. The novel multiplexed LAMP could be an alternative to PCR for diagnostic purposes, saving personnel and equipment time, or could be used for point-of-care testing.
Collapse
Affiliation(s)
- Maksim A. Koryukov
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; (M.A.K.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Igor P. Oscorbin
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; (M.A.K.)
| | - Lidiya M. Novikova
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; (M.A.K.)
| | - Maria A. Gordukova
- G. Speransky Children’s Hospital No. 9, 29 Shmitovsky Prospect, Moscow 123317, Russia
| | - Irina E. Turina
- Department of Natural Sciences, I.M. Sechenov First Moscow State Medical University, Pogodinskaya St. 1, Moscow 119991, Russia
| | - Elena V. Galeeva
- G. Speransky Children’s Hospital No. 9, 29 Shmitovsky Prospect, Moscow 123317, Russia
| | - Dmitry A. Kudlay
- Department of Natural Sciences, I.M. Sechenov First Moscow State Medical University, Pogodinskaya St. 1, Moscow 119991, Russia
| | - Maxim L. Filipenko
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; (M.A.K.)
| |
Collapse
|
32
|
Roy SD, Ramasamy S, Obbineni JM. An evaluation of nucleic acid-based molecular methods for the detection of plant viruses: a systematic review. Virusdisease 2024; 35:357-376. [PMID: 39071869 PMCID: PMC11269559 DOI: 10.1007/s13337-024-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 07/30/2024] Open
Abstract
Precise and timely diagnosis of plant viruses is a prerequisite for the implementation of efficient management strategies, considering factors like globalization of trade and climate change facilitating the spread of viruses that lead to agriculture yield losses of billions yearly worldwide. Symptomatic diagnosis alone may not be reliable due to the diverse symptoms and confusion with plant abiotic stresses. It is crucial to detect plant viruses accurately and reliably and do so with little time. A complete understanding of the various detection methods is necessary to achieve this. Enzyme-linked immunosorbent assay (ELISA), has become more popular as a method for detecting viruses but faces limitations such as antibody availability, cost, sample volume, and time. Advanced techniques like polymerase chain reaction (PCR) have surpassed ELISA with its various sensitive variants. Over the last decade, nucleic acid-based molecular methods have gained popularity and have quickly replaced other techniques, such as serological techniques for detecting plant viruses due to their specificity and accuracy. Hence, this review enables the reader to understand the strengths and weaknesses of each molecular technique starting with PCR and its variations, along with various isothermal amplification followed by DNA microarrays, and next-generation sequencing (NGS). As a result of the development of new technologies, NGS is becoming more and more accessible and cheaper, and it looks possible that this approach will replace others as a favoured approach for carrying out regular diagnosis. NGS is also becoming the method of choice for identifying novel viruses. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00863-0.
Collapse
Affiliation(s)
- Subha Deep Roy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Jagan M. Obbineni
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
33
|
Liu Y, Jin L, Mao J, Deng R, Lin F, Cheng Y, Li M, Dai J. Signal amplified colorimetric nucleic acid detection based on autocatalytic hairpin assembly. RSC Adv 2024; 14:17152-17157. [PMID: 38808241 PMCID: PMC11130644 DOI: 10.1039/d4ra01982b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Herein, a nucleic acid assay based on autocatalytic hairpin assembly (ACHA) was proposed. In this system, two split G-quadruplex sequences were integrated into H1 and H2, respectively. And a DNA strand with the same sequence to target DNA was integrated into the assistant hairpin H3. In the presence of target DNA, the hairpin structure of H1 was opened and catalytic hairpin assembly (CHA) was activated, and then a series of DNA assembly steps based on the toehold-mediated DNA strand displacement were triggered and the product H1-H2 with sticky ends on both sides was formed. On the one side of H1-H2, the split two G-quadruplex sequences were close enough to form the intact G-quadruplex for the signal readout. At the same time, two sticky ends on the other side of H1-H2 hybridized with H3 and a new sticky end with the sequence same to the target DNA was exposed, which can immediately trigger the autocatalytic hairpin assembly reaction, and then the reaction rate of CHA was effectively accelerated and the colorimetric signal was significantly amplified. This ACHA signal amplified strategy has been successfully applied for the rapid and colorimetric nucleic acid detection.
Collapse
Affiliation(s)
- Yunhua Liu
- School of Chemical Engineering, Guizhou Institute of Technology Guiyang 550000 China +86-13458610501
| | - Limin Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College Tianjin 300192 China
| | - Jianfei Mao
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| | - Ru Deng
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| | - Fengyi Lin
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| | - Yuxin Cheng
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| | - Min Li
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| | - Jianyuan Dai
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| |
Collapse
|
34
|
Lee H, You J, Lee H, Kim W, Jang K, Park J, Na S. Enhanced selective discrimination of point-mutated viral RNA through false amplification regulatory direct insertion in rolling circle amplification. Biosens Bioelectron 2024; 252:116145. [PMID: 38412685 DOI: 10.1016/j.bios.2024.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Coronaviruses are single-stranded RNA viruses with high mutation rates. Although a diagnostic method for coronaviruses has been developed, variants appear rapidly. Low test accuracy owing to single-point mutations is one of the main factors in the failure to prevent the early spread of coronavirus infection. Although reverse transcription-quantitative polymerase chain reaction can detect coronavirus infection, it cannot exclude the possibility of false positives, and an additional multiplexing kit is needed to discriminate single nucleotide polymorphism (SNP) variants. Therefore, in this study, we introduced a new nucleic acid amplification method to determine whether an infected person has a SNP mutation using a lateral flow assay (LFA) as a point-of-care test. Unlike traditional DNA amplification methods, direct insertion into rolling circle amplification amplifies the target genes without false amplification. After SNP-selective nucleic acid amplification, nuclease enzymes are used to make double-stranded DNA fragments that the LFA can detect, where specific mismatched DNA is found and cleaved to show different signals when a SNP-type is present. Therefore, wild- and SNP-type variants can be selectively detected. In this study, the limit of detection was 400 aM for viral RNA, and we successfully identified a dominant SNP variant selectively. Clinical tests were also conducted.
Collapse
Affiliation(s)
- Hakbeom Lee
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Juneseok You
- Department of Mechanical Engineering, Kumoh National Institute of Technology, Gumi, 31977, Republic of Korea
| | - Hansol Lee
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woojoo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kuewhan Jang
- School of Mechanical Engineering, Hoseo University, Asan, 31499, Republic of Korea.
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, 16419, Republic of Korea.
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
35
|
Jaies I, Shah FA, Qadiri SSN, Qayoom I, Bhat BA, Dar SA, Bhat FA. Immunological and molecular diagnostic techniques in fish health: present and future prospectus. Mol Biol Rep 2024; 51:551. [PMID: 38642170 DOI: 10.1007/s11033-024-09344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 04/22/2024]
Abstract
Fish health management is critical to aquaculture and fisheries as it directly affects sustainability and productivity. Fish disease diagnosis has taken a massive stride because of advances in immunological and molecular diagnostic tools which provide a sensitive, quick, and accurate means of identifying diseases. This review presents an overview of the main molecular and immunological diagnostic methods for determining the health of fish. The immunological techniques help to diagnose different fish diseases by detecting specific antigens and antibodies. The application of immunological techniques to vaccine development is also examined in this review. The genetic identification of pathogens is made possible by molecular diagnostic techniques that enable the precise identification of bacterial, viral, and parasitic organisms in addition to evaluating host reactions and genetic variation associated with resistance to disease. The combination of molecular and immunological methods has resulted in the creation of novel techniques for thorough evaluation of fish health. These developments improve treatment measures, pathogen identification and provide new information about the variables affecting fish health, such as genetic predispositions and environmental stresses. In the framework of sustainable fish farming and fisheries management, this paper focuses on the importance of these diagnostic techniques that play a crucial role in protecting fish populations and the aquatic habitats. This review also examines the present and potential future directions in immunological and molecular diagnostic techniques in fish health.
Collapse
Affiliation(s)
- Inain Jaies
- Division of Aquatic Animal Health Management, Faculty of Fisheries, SKUAST-K, Rangil, Ganderbal, Jammu and Kashmir, 190006, India
| | - Feroz Ahmad Shah
- Division of Aquatic Animal Health Management, Faculty of Fisheries, SKUAST-K, Rangil, Ganderbal, Jammu and Kashmir, 190006, India.
| | - Syed Shariq Nazir Qadiri
- Division of Aquatic Animal Health Management, Faculty of Fisheries, SKUAST-K, Rangil, Ganderbal, Jammu and Kashmir, 190006, India
| | - Imtiyaz Qayoom
- Division of Aquatic Environmental Management, Faculty of Fisheries, SKUAST-K, Rangil, Ganderbal, Jammu and Kashmir, 190006, India
| | - Bilal Ahmad Bhat
- Division of Social Sciences, Faculty of Fisheries, SKUAST-K, Rangil, Ganderbal, Jammu and Kashmir, 190006, India
| | - Shabir Ahmad Dar
- Division of Aquatic Animal Health Management, Faculty of Fisheries, SKUAST-K, Rangil, Ganderbal, Jammu and Kashmir, 190006, India
| | - Farooz Ahmad Bhat
- Division of Fisheries Resource Management, Faculty of Fisheries, SKUAST-K, Rangil, Ganderbal, Jammu and Kashmir, 190006, India
| |
Collapse
|
36
|
Wang R, Zhou R, Meng Y, Zheng J, Lu W, Yang Y, Yang J, Wu Y, Shan W. Specific Detection of Phytophthora parasitica by Recombinase Polymerase Amplification Assays Based on a Unique Multicopy Genomic Sequence. PLANT DISEASE 2024; 108:987-995. [PMID: 37884481 DOI: 10.1094/pdis-04-23-0722-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Phytophthora parasitica is a highly destructive oomycete plant pathogen that is capable of infecting a wide range of hosts including many agricultural cash crops, fruit trees, and ornamental garden plants. One of the most important diseases caused by P. parasitica worldwide is black shank of tobacco. Rapid, sensitive, and specific pathogen detection is crucial for early rapid diagnosis, which can facilitate effective disease management. In this study, we used a genomics approach to identify repeated sequences in the genome of P. parasitica by genome sequence alignment and identified a 203-bp P. parasitica-specific sequence, PpM34, that is present in 31 to 60 copies in the genome. The P. parasitica genome specificity of PpM34 was supported by PCR amplification of 24 genetically diverse strains of P. parasitica, 32 strains representing 12 other Phytophthora species, one Pythium species, six fungal species, and three bacterial species, all of which are plant pathogens. Our PCR and real-time PCR assays showed that the PpM34 sequence was highly sensitive in specifically detecting P. parasitica. Finally, we developed a PpM34-based high-efficiency recombinase polymerase amplification assay, which allowed us to specifically detect as little as 1 pg of P. parasitica total DNA from both pure cultures and infected Nicotiana benthamiana at 39°C using a fluorometric thermal cycler. The sensitivity, specificity, convenience, and rapidity of this assay represent a major improvement for early diagnosis of P. parasitica infection.
Collapse
Affiliation(s)
- Rongsheng Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ran Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiapeng Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
37
|
Kalhor K, Chen CJ, Lee HS, Cai M, Nafisi M, Que R, Palmer CR, Yuan Y, Zhang Y, Li X, Song J, Knoten A, Lake BB, Gaut JP, Keene CD, Lein E, Kharchenko PV, Chun J, Jain S, Fan JB, Zhang K. Mapping human tissues with highly multiplexed RNA in situ hybridization. Nat Commun 2024; 15:2511. [PMID: 38509069 PMCID: PMC10954689 DOI: 10.1038/s41467-024-46437-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
In situ transcriptomic techniques promise a holistic view of tissue organization and cell-cell interactions. There has been a surge of multiplexed RNA in situ mapping techniques but their application to human tissues has been limited due to their large size, general lower tissue quality and high autofluorescence. Here we report DART-FISH, a padlock probe-based technology capable of profiling hundreds to thousands of genes in centimeter-sized human tissue sections. We introduce an omni-cell type cytoplasmic stain that substantially improves the segmentation of cell bodies. Our enzyme-free isothermal decoding procedure allows us to image 121 genes in large sections from the human neocortex in <10 h. We successfully recapitulated the cytoarchitecture of 20 neuronal and non-neuronal subclasses. We further performed in situ mapping of 300 genes on a diseased human kidney, profiled >20 healthy and pathological cell states, and identified diseased niches enriched in transcriptionally altered epithelial cells and myofibroblasts.
Collapse
Affiliation(s)
- Kian Kalhor
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Chien-Ju Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | - Ho Suk Lee
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Electrical Engineering, University of California San Diego, La Jolla, CA, USA
| | - Matthew Cai
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Mahsa Nafisi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Richard Que
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Carter R Palmer
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Program in Biomedical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yixu Yuan
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yida Zhang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Jinghui Song
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Amanda Knoten
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Blue B Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Joseph P Gaut
- Department of Pathology and Immunology, Washington University School of Medicine, St.Louis, MO, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, 98103, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Altos Labs, San Diego, CA, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St.Louis, MO, USA
| | | | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Altos Labs, San Diego, CA, USA.
| |
Collapse
|
38
|
Shin S, Kim YJ, Yun HG, Chung H, Cho H, Choi S. 3D Amplified Single-Cell RNA and Protein Imaging Identifies Oncogenic Transcript Subtypes in B-Cell Acute Lymphoblastic Leukemia. ACS NANO 2024. [PMID: 38320154 DOI: 10.1021/acsnano.3c10421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Simultaneous in situ detection of transcript and protein markers at the single-cell level is essential for gaining a better understanding of tumor heterogeneity and for predicting and monitoring treatment responses. However, the limited accessibility to advanced 3D imaging techniques has hindered their rapid implementation. Here, we present a 3D single-cell imaging technique, termed 3D digital rolling circle amplification (4DRCA), capable of the multiplexed and amplified simultaneous digital quantification of single-cell RNAs and proteins using standard fluorescence microscopy and off-the-shelf reagents. We generated spectrally distinguishable DNA amplicons from molecular markers through an integrative protocol combining single-cell RNA and protein assays and directly enumerated the amplicons by leveraging an open-source algorithm for 3D deconvolution with a custom-built automatic gating algorithm. With 4DRCA, we were able to simultaneously quantify surface protein markers and cytokine transcripts in T-lymphocytes. We also show that 4DRCA can distinguish BCR-ABL1 fusion transcript positive B-cell acute lymphoblastic leukemia cells with or without CD19 protein expression. The accessibility and extensibility of 4DRCA render it broadly applicable to other cell-based diagnostic workflows, enabling sensitive and accurate single-cell RNA and protein profiling.
Collapse
Affiliation(s)
- Suyeon Shin
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yoon-Jin Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyo Geun Yun
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sungyoung Choi
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Healthcare Digital Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
39
|
Wang Z, Feng N, Zhou Y, Cheng X, Zhou C, Ma A, Wang Q, Li Y, Chen Y. Mesophilic Argonaute-Mediated Polydisperse Droplet Biosensor for Amplification-Free, One-Pot, and Multiplexed Nucleic Acid Detection Using Deep Learning. Anal Chem 2024; 96:2068-2077. [PMID: 38259216 DOI: 10.1021/acs.analchem.3c04426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Detection of nucleic acids from a single multiplexed and amplification-free test is critical for ensuring food safety, clinical diagnostics, and environmental monitoring. In this study, we introduced a mesophilic Argonaute protein from Clostridium butyricum (CbAgo), which exhibits nucleic acid endonuclease activity, to achieve a programmable, amplification-free system (PASS) for rapid nucleic acid quantification at ambient temperatures in one pot. By using CbAgo-mediated binding with specific guide DNA (gDNA) and subsequent targeted cleavage of wild-type target DNAs complementary to gDNA, PASS can detect multiple foodborne pathogen DNA (<102 CFU/mL) simultaneously. The fluorescence signals were then transferred to polydisperse emulsions and analyzed by using deep learning. This simplifies the process and increases the suitability of polydisperse emulsions compared to traditional digital PCR, which requires homogeneous droplets for accurate detection. We believe that PASS has the potential to become a next-generation point-of-care digital nucleic acid detection method.
Collapse
Affiliation(s)
- Zhipan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanan Zhou
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xinrui Cheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Cuiyun Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qinyu Wang
- Department of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430000, Hubei China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
40
|
Zhao F, Guan Y, Su F, Du Z, Wen S, Zhang L, Jin D. Lanthanide-Complex-Enhanced Bioorthogonal Branched DNA Amplification. Anal Chem 2024; 96:1556-1564. [PMID: 38214216 DOI: 10.1021/acs.analchem.3c04274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Fluorescence in situ hybridization (FISH) is a widely used technique for detecting intracellular nucleic acids. However, its effectiveness in detecting low-copy nucleic acids is limited due to its low fluorescence intensity and background autofluorescence. To address these challenges, we present here an approach of lanthanide-complex-enhanced bioorthogonal-branched DNA amplification (LEBODA) with high sensitivity for in situ nuclear acid detection in single cells. The approach capitalizes on two levels of signal amplification. First, it utilizes click chemistry to directly link a substantial number of bridge probes to target-recognizing probes, providing an initial boost in signal intensity. Second, it incorporates high-density lanthanide complexes into each bridge probe, enabling secondary amplifications. Compared to the traditional "double Z" probes used in the RNAscope method, LEBODA exhibits 4 times the single enhancement for RNA detection signal with the click chemistry approach. Using SARS-CoV-2 pseudovirus-infected HeLa cells, we demonstrate the superiority in the detection of viral-infected cells in rare populations as low as 20% infectious rate. More encouragingly, the LEBODA approach can be adapted for DNA-FISH and single-molecule RNA-FISH, as well as other hybridization-based signal amplification methods. This adaptability broadens the potential applications of LEBODA in the sensitive detection of biomolecules, indicating promising prospects for future research and practical use.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunpeng Guan
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Fei Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Zhongbo Du
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Dayong Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| |
Collapse
|
41
|
Duckworth AD, Slupsky JR, Kalakonda N. Highly Multiplexed and Simultaneous Characterization of Protein and RNA in Single Cells by Flow or Mass Cytometry Platforms Using Proximity Ligation Assay for RNA. Methods Mol Biol 2024; 2752:143-165. [PMID: 38194033 DOI: 10.1007/978-1-0716-3621-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In situ hybridization of oligonucleotide probes to intracellular RNA allows quantification of predefined gene transcripts within millions of single cells using cytometry platforms. Previous methods have been hindered by the number of RNA that can be analyzed simultaneously. Here we describe a method called proximity ligation assay for RNA (PLAYR) that permits highly multiplexed RNA analysis that can be combined with antibody staining. Potentially any number of RNA combined with antigen can be analyzed together, being limited only by the number of analytes that can be measured simultaneously.
Collapse
Affiliation(s)
- Andrew D Duckworth
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
42
|
Fang Y, Yang Y, Yao Z, Lei X, Dong Z, Zhang M, Yao R, Tian B. On-Particle Hyperbranched Rolling Circle Amplification-Scaffolded Magnetic Nanoactuator Assembly for Ferromagnetic Resonance Detection of MicroRNA. ACS Sens 2023; 8:4792-4800. [PMID: 38073137 DOI: 10.1021/acssensors.3c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Inspired by natural molecular machines, scientists are devoted to designing nanomachines that can navigate in aqueous solutions, sense their microenvironment, actuate, and respond. Among different strategies, magnetically driven nanoactuators can easily be operated remotely in liquids and thus are valuable in biosensing. Here we report a magnetic nanoactuator swarm with rotating-magnetic-field-controlled conformational changes for reaction acceleration and target quantification. By grafting nucleic acid amplification primers, magnetic nanoparticle (MNP) actuators can assemble and be fixed with a flexible DNA scaffold generated by surface-localized hyperbranched rolling circle amplification in response to the presence of a target microRNA, osa-miR156. Net magnetic anisotropy changes of the system induced by the MNP assembly can be measured by ferromagnetic resonance spectroscopy as shifts in the resonance field. With a total assay time of ca. 120 min, the proposed biosensor offers a limit of detection of 6 fM with a dynamic detection range spanning 5 orders of magnitude. The specificity of the system is validated by testing different microRNAs and salmon sperm DNA. Endogenous microRNAs extracted from Oryza sativa leaves are tested with both quantitative reverse transcription-PCR and our approach, showing comparable performances with a Pearson correlation coefficient >0.9 (n = 20).
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yulin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Ziyang Yao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xi Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| | - Meng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| |
Collapse
|
43
|
Sun Y, Zhang S, Qi L, Zhang X, Yang M, Guo Z, Wang Z, Du Y. Advancing Multiple Detection in RT-LAMP with a Specific Probe Assembled from Plural Three-Way-Junction Structures. Anal Chem 2023; 95:17808-17817. [PMID: 37972997 DOI: 10.1021/acs.analchem.3c03877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The timely detection of diseases and the accurate identification of pathogens require the development of efficient and reliable diagnostic methods. In this study, we have developed a novel specific multivariate probe termed MRTFP (multivariate real-time fluorescent probe) by assembling strand exchange three-way-junction (3WJ) structures. The 3WJ structures were incorporated into a four-angle probe (FP) and a hexagonal probe (HP), to target the multivariate genes of Salmonella. The FP and HP enable single-step and multiplexed detection in RT-LAMP (real-time loop-mediated isothermal amplification) with exceptional sensitivity and specificity. Encouragingly, real food samples contaminated with Salmonella (Salmonella enteritidis and Salmonella typhimurium) can be readily identified and distinguished with a minimum detectable concentration (MDC) of 103 CFU/mL without the need for further culture. The introduction of MRTFP allows for simultaneous detection of dual or three targets in a single tube for LAMP, thereby improving detection efficiency. The MRTFP simplifies the design of robust multivariate probes, exhibits excellent stability, and avoids interference from multiple probe units, offering significant potential for the development of specific probes for efficient and accurate disease detection and pathogen identification.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Sicai Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Lijuan Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Meiting Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhijun Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
44
|
Alexandrov T, Saez‐Rodriguez J, Saka SK. Enablers and challenges of spatial omics, a melting pot of technologies. Mol Syst Biol 2023; 19:e10571. [PMID: 37842805 PMCID: PMC10632737 DOI: 10.15252/msb.202110571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 10/17/2023] Open
Abstract
Spatial omics has emerged as a rapidly growing and fruitful field with hundreds of publications presenting novel methods for obtaining spatially resolved information for any omics data type on spatial scales ranging from subcellular to organismal. From a technology development perspective, spatial omics is a highly interdisciplinary field that integrates imaging and omics, spatial and molecular analyses, sequencing and mass spectrometry, and image analysis and bioinformatics. The emergence of this field has not only opened a window into spatial biology, but also created multiple novel opportunities, questions, and challenges for method developers. Here, we provide the perspective of technology developers on what makes the spatial omics field unique. After providing a brief overview of the state of the art, we discuss technological enablers and challenges and present our vision about the future applications and impact of this melting pot.
Collapse
Affiliation(s)
- Theodore Alexandrov
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- BioInnovation InstituteCopenhagenDenmark
| | - Julio Saez‐Rodriguez
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Sinem K Saka
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
45
|
Lee M, Shin S, Kim S, Park N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules 2023; 28:7327. [PMID: 37959747 PMCID: PMC10647268 DOI: 10.3390/molecules28217327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aptamers have been spotlighted as promising bio-recognition elements because they can be tailored to specific target molecules, bind to targets with a high affinity and specificity, and are easy to chemically synthesize and introduce functional groups to. In particular, fluorescent aptasensors are widely used in biological applications to diagnose diseases as well as prevent diseases by detecting cancer cells, viruses, and various biomarkers including nucleic acids and proteins as well as biotoxins and bacteria from food because they have the advantages of a high sensitivity, selectivity, rapidity, a simple detection process, and a low price. We introduce screening methods for isolating aptamers with q high specificity and summarize the sequences and affinities of the aptamers in a table. This review focuses on aptamer-based fluorescence detection sensors for biological applications, from fluorescent probes to mechanisms of action and signal amplification strategies.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Seonhye Shin
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Nokyoung Park
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| |
Collapse
|
46
|
Li N, Zhang L, Liu H, Xu Q, Ma F, Zhang CY. Label-free and sensitive detection of N6-methyladenosine demethylase activity in crude cell extracts and clinical cancer tissues based on demethylation-triggered exponential signal amplification. Anal Chim Acta 2023; 1278:341705. [PMID: 37709449 DOI: 10.1016/j.aca.2023.341705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
The m6A demethylase catalyzes the removal of m6A modification to establish proper RNA methylation patterns, and it has emerged as a promising disease biomarker and a therapeutic target. The reported m6A demethylase assays often suffer from tedious producers, expensive reagents, radioactive risk, limited sensitivity, and poor specificity. Herein, we develop a simple, selective, label-free, and highly sensitive fluorescent biosensor for m6A demethylase assay based on demethylation-triggered exponential signal amplification. In this biosensor, m6A demethylase-catalyzed demethylation can protect the circular DNA from the digestion by DpnI, subsequently triggering hyperbranched rolling circle amplification to achieve exponential signal amplification for producing abundant ssDNA and dsDNA products. The amplified DNA signal can be sensitively and simply detected by SYBR Gold in a label-free manner. This biosensor avoids any antibodies, washing/separation procedures, and fluorophore-/quencher-labeled probes, great simplifying the assay procedures and reducing the assay cost. Moreover, this biosensor achieves good specificity and excellent sensitivity with a detection limit of 1.2 fg/μL, which is superior to conventional ELISA (36.3 pg/μL). Especially, this biosensor enables direct monitoring of m6A demethylase activity in crude cell extracts with high accuracy, and it can be further applied for the screening of m6A demethylase inhibitor, measurement of m6A demethylase activity in different cell lines, and discrimination of m6A demethylase level in clinical cancer and healthy tissues, providing a facile and robust platform for RNA methylation-related biomedical research, disease diagnosis, and drug discovery.
Collapse
Affiliation(s)
- Na Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Lingfei Zhang
- Center for Disease Control and Prevention of Weihai City, Weihai, 264200, China
| | - Hao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
47
|
Liu WJ, Li HJ, Zou X, Liu Q, Ma F, Zhang CY. Deamination-triggered exponential signal amplification for chemiluminescent detection of cytosine deaminase at the single-cell level. Chem Commun (Camb) 2023; 59:11807-11810. [PMID: 37721021 DOI: 10.1039/d3cc04035f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
We construct a sensitive chemiluminescent biosensor for sensitive detection of cytosine deaminase APOBEC3A based on deamination-triggered exponential signal amplification. This biosensor displays good specificity and high sensitivity, and it can screen APOBEC3A inhibitors and measure endogenous APOBEC3A at the single-cell level, with prospective applications in disease diagnostics and therapy.
Collapse
Affiliation(s)
- Wen-Jing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Hai-Juan Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
48
|
Zhang S, Duan M, Li S, Hou J, Qin T, Teng Z, Hu J, Zhang H, Xia X. Current status of recombinase polymerase amplification technologies for the detection of pathogenic microorganisms. Diagn Microbiol Infect Dis 2023; 108:116097. [PMID: 39491865 DOI: 10.1016/j.diagmicrobio.2023.116097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 11/05/2024]
Abstract
Rapid detection of pathogenic microorganisms is key to the epidemiologic identification, prevention and control of disease in the field of public health. PCR-based pathogen detection methods have been widely used because they overcome the time-consuming issues encountered in traditional culture-based methods, including the limited detecting window-phase of immunological detection. However, the requirement for precise temperature-controlled thermal cyclers severely limits the application of these methods in resource-limited areas. Recombinase polymerase amplification (RPA) is a new type of nucleic acid amplification technology that can amplify DNA or RNA at a constant temperature. It has the advantages of simple operation, high specificity and sensitivity and a short detection time. In recent years, a number of alternative methods for pathogenic microorganism detection have been developed by combining microfluidic technology with RPA. Through the design of chip structures, optimization of injection modes, and utilization of multiple detection and quantification methods, the integration of pathogen nucleic acid extraction, amplification and detection is achieved, and this approach is suitable for the rapid detection of pathogenic microorganisms in various environments. In this review, we compare different nucleic acid amplification techniques, explain the principle of RPA technology, detection methods, and applications for pathogen microorganism detection and describe future direction of RPA application. These methods increase the ability to rapidly screen pathogenic microorganisms, thus improving the management of infectious diseases in the field of public health.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingyuan Duan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shuang Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jie Hou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ting Qin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
49
|
Ito K, Maeda K, Kariya M, Yasui K, Araki A, Takahashi Y, Takakura Y. Formation of DNA nanotubes increases uptake into fibroblasts via enhanced affinity for collagen. Int J Pharm 2023; 644:123297. [PMID: 37574114 DOI: 10.1016/j.ijpharm.2023.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
DNA nanostructures are promising delivery carriers because of their flexible structural design and high biocompatibility. Selectivity in cellular uptake is an important factor in the development of DNA-nanostructure-based delivery carriers. In this study, DNA nanotubes were selected as the DNA structures, and their selectivity for cellular uptake and the mechanisms involved were investigated. Unlike DNA nanostructures such as polypod-like nanostructured DNA or DNA tetrahedrons, which are easily taken up by macrophages, the formation of DNA nanotubes increases uptake by fibroblasts and fibroblast-like cells. We focused on the collagen expressed in cells as a factor in this process, and found DNA nanotube formation increased the affinity for type I collagen compared with that of single-stranded DNA. Collagenase treatment removes collagen from fibroblasts and reduces the uptake of DNA nanotubes by fibroblasts. We directly observed DNA nanotube uptake by fibroblasts using transmission electron microscopy, whereby the nanotubes were distributed on the cell surface, folded, fragmented, and taken up by phagocytosis. In conclusion, we demonstrated a novel finding that DNA nanotubes are readily taken up by fibroblasts and myoblasts.
Collapse
Affiliation(s)
- Koichi Ito
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koki Maeda
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mutsumi Kariya
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kento Yasui
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayana Araki
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
50
|
Lee M, Kang S, Kim S, Park N. Advances and Trends in miRNA Analysis Using DNAzyme-Based Biosensors. BIOSENSORS 2023; 13:856. [PMID: 37754090 PMCID: PMC10526965 DOI: 10.3390/bios13090856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023]
Abstract
miRNAs are endogenous small, non-coding RNA molecules that function in post-transcriptional regulation of gene expression. Because miRNA plays a pivotal role in maintaining the intracellular environment, and abnormal expression has been found in many cancer diseases, detection of miRNA as a biomarker is important for early diagnosis of disease and study of miRNA function. However, because miRNA is present in extremely low concentrations in cells and many types of miRNAs with similar sequences are mixed, traditional gene detection methods are not suitable for miRNA detection. Therefore, in order to overcome this limitation, a signal amplification process is essential for high sensitivity. In particular, enzyme-free signal amplification systems such as DNAzyme systems have been developed for miRNA analysis with high specificity. DNAzymes have the advantage of being more stable in the physiological environment than enzymes, easy to chemically synthesize, and biocompatible. In this review, we summarize and introduce the methods using DNAzyme-based biosensors, especially with regard to various signal amplification methods for high sensitivity and strategies for improving detection specificity. We also discuss the current challenges and trends of these DNAzyme-based biosensors.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea (S.K.)
| | - Seungjae Kang
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea (S.K.)
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| |
Collapse
|