1
|
Kazama R, Ishikawa R, Sakai S. Development of Hemispherical 3D Models of Human Brain and B Cell Lymphomas Using On-Chip Cell Dome System. Bioengineering (Basel) 2024; 11:1303. [PMID: 39768123 PMCID: PMC11727638 DOI: 10.3390/bioengineering11121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Lymphocytes are generally non-adherent. This makes it challenging to fabricate three-dimensional (3D) structures mimicking the three-dimensional lymphoma microenvironment in vivo. This study presents the fabrication of a hemispherical 3D lymphoma model using the on-chip Cell Dome system with a hemispherical cavity (1 mm in diameter and almost 300 µm in height). Both the human brain lymphoma cell line (TK) and human B cell lymphoma cell line (KML-1) proliferated and filled the cavities. Hypoxic regions were observed in the center of the hemispherical structures. CD19 expression did not change in either cell line, while CD20 expression was slightly upregulated in TK cells and downregulated in KML-1 cells cultured in the Cell Dome compared to those cultured in two-dimensional (2D) flasks. In addition, both TK and KML-1 cells in the hemispherical structures exhibited higher resistance to doxorubicin than those in 2D flasks. These results demonstrate the effectiveness of the on-chip Cell Dome for fabricating 3D lymphoma models and provide valuable insights into the study of lymphoma behavior and the development of new drugs for lymphoma treatment.
Collapse
Affiliation(s)
| | | | - Shinji Sakai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Osaka, Japan; (R.K.); (R.I.)
| |
Collapse
|
2
|
Santamaria-Martínez A, Epiney J, Srivastava D, Tavernari D, Varrone M, Milowich D, Letovanec I, Krueger T, Duran R, Ciriello G, Cairoli A, Oricchio E. Development of patient-derived lymphomoids with preserved tumor architecture for lymphoma therapy screening. Nat Commun 2024; 15:10650. [PMID: 39653701 PMCID: PMC11628617 DOI: 10.1038/s41467-024-55098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
The efficacy of anti-cancer therapies depends on the genomic composition of the tumor, its microenvironment, spatial organization, and intra-tumor heterogeneity. B-cell lymphomas are a heterogeneous group of tumors emerging from B-cells at different stages of differentiation and exhibiting tumor-specific interactions with the tumor microenvironment. Thus, the effect of drug treatments can be influenced by the tumor composition and functional interactions among immune cells. Here, we develop a platform to maintain small fragments of human lymphoma tissue in culture for several days, and use them to test response to small molecules. We collect 27 patient samples representative of different lymphoma subtypes, and establish ex vivo tissue fragments that retain histological, cellular, and molecular characteristics of the original tissue, here referred to as lymphomoids. Using lymphomoids, we test sensitivity to several clinically approved drugs in parallel and examine tissue remodeling upon treatment. Moreover, when this information is available, we show that the effect of the inhibitors observed in lymphomoids is consistent with the patients' response in the clinic. Thus, lymphomoids represent an innovative ex vivo model to assess the effect of anti-cancer therapies while preserving the tissue structure and its components.
Collapse
Affiliation(s)
- Albert Santamaria-Martínez
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| | - Justine Epiney
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Division of Hematology and Central Hematology Laboratory, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Divyanshu Srivastava
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Daniele Tavernari
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Marco Varrone
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Dina Milowich
- Institut Central des Hôpitaux (ICH), Hôpital du Valais, Sion, Switzerland
| | - Igor Letovanec
- Institut Central des Hôpitaux (ICH), Hôpital du Valais, Sion, Switzerland
| | | | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Giovanni Ciriello
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anne Cairoli
- Division of Hematology and Central Hematology Laboratory, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| |
Collapse
|
3
|
Demirtürk N, Varan G, Kağa S, Malanga M, Bilensoy E. Optimization and characterization of Rituximab targeted multidrug loaded cyclodextrin nanoparticles against Non-Hodgkin Lymphoma. Int J Pharm 2024; 662:124488. [PMID: 39032870 DOI: 10.1016/j.ijpharm.2024.124488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Currently, Non-Hodgkin Lymphoma (NHL) constitutes 85-90 % of all lymphomas. Clinical treatment of NHL is based on the "4-drug regimen" known as CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone). Rituximab (RTX) is added to increase the effectiveness and selectivity of the treatment and is the first-line standard treatment for NHL patients. However, success is often prevented by the development of drug resistance. In this study, it was aimed to overcome drug resistance by using two novel tumor-targeted derivatives: guanidine-amphiphilic cyclodextrin (ACD) and guanidine-cyclodextrin polymer (PCD) nanoparticles (NP). These constructs display promise in overcoming drug resistance and enhancing the effectiveness of R-CHOP treatment while potentially eliminating the need for corticosteroid. NP were found to be smaller than 200 nm by dynamic light scattering (DLS). Hemolytic activity and cytotoxicity data on L929 cells demonstrated the safety of the newly synthesized CD derivatives. Additional in vitro characterization studies, including surface charge, physical stability, drug loading capacity, drug release profile, and imaging, as well as conventional and 3D cell culture studies were carried out. Compared to drug solutions, the viability of Daudi human lymphoma cells was statistically significantly decreased in both drug-loaded ACD and PCD NP formulations (p < 0.05). Additionally, RTX-conjugated and drug-loaded ACD NPs exhibited the lowest cell viability due to RTX dependent cytotoxicity.
Collapse
Affiliation(s)
- Nurbanu Demirtürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey.
| | - Gamze Varan
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06100 Ankara, Turkey
| | - Sadık Kağa
- Department of Biomedical Engineering, Faculty of Engineering, Afyon Kocatepe University, 03300 Afyon, Turkey
| | - Milo Malanga
- CarboHyde Zrt., Berlini u. 47-49, 1045 Budapest, Hungary
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
4
|
Song WH, Lim YS, Kim JE, Kang HY, Lee C, Rajbongshi L, Hwang SY, Oh SO, Kim BS, Lee D, Song YJ, Yoon S. A Marine Collagen-Based 3D Scaffold for In Vitro Modeling of Human Prostate Cancer Niche and Anti-Cancer Therapeutic Discovery. Mar Drugs 2024; 22:295. [PMID: 39057404 PMCID: PMC11277582 DOI: 10.3390/md22070295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recently, the need to develop a robust three-dimensional (3D) cell culture system that serves as a valuable in vitro tumor model has been emphasized. This system should closely mimic the tumor growth behaviors observed in vivo and replicate the key elements and characteristics of human tumors for the effective discovery and development of anti-tumor therapeutics. Therefore, in this study, we developed an effective 3D in vitro model of human prostate cancer (PC) using a marine collagen-based biomimetic 3D scaffold. The model displayed distinctive molecular profiles and cellular properties compared with those of the 2D PC cell culture. This was evidenced by (1) increased cell proliferation, migration, invasion, colony formation, and chemoresistance; (2) upregulated expression of crucial multidrug-resistance- and cancer-stemness-related genes; (3) heightened expression of key molecules associated with malignant progressions, such as epithelial-mesenchymal transition transcription factors, Notch, matrix metalloproteinases, and pluripotency biomarkers; (4) robust enrichment of prostate cancer stem cells (CSCs); and (5) enhanced expression of integrins. These results suggest that our 3D in vitro PC model has the potential to serve as a research platform for studying PC and prostate CSC biology, as well as for screening novel therapies targeting PC and prostate CSCs.
Collapse
Affiliation(s)
- Won Hoon Song
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Ji-Eun Kim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Hae Yeong Kang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea;
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| |
Collapse
|
5
|
Dobaño-López C, Valero JG, Araujo-Ayala F, Nadeu F, Gava F, Faria C, Norlund M, Morin R, Bernes-Lasserre P, Arenas F, Grau M, López C, López-Oreja I, Serrat N, Martínez-Farran A, Hernández L, Playa-Albinyana H, Giménez R, Beà S, Campo E, Lagarde JM, López-Guillermo A, Magnano L, Colomer D, Bezombes C, Pérez-Galán P. Patient-derived follicular lymphoma spheroids recapitulate lymph node signaling and immune profile uncovering galectin-9 as a novel immunotherapeutic target. Blood Cancer J 2024; 14:75. [PMID: 38697976 PMCID: PMC11636880 DOI: 10.1038/s41408-024-01041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Follicular lymphoma (FL), the most common indolent non-Hodgkin lymphoma, constitutes a paradigm of immune tumor microenvironment (TME) contribution to disease onset, progression, and heterogenous clinical outcome. Here we present the first FL-Patient Derived Lymphoma Spheroid (FL-PDLS), including fundamental immune actors and features of TME in FL lymph nodes (LNs). FL-PDLS is organized in disc-shaped 3D structures composed of proliferating B and T cells, together with macrophages with an intermediate M1/M2 phenotype. FL-PDLS recapitulates the most relevant B-cell transcriptional pathways present in FL-LN (proliferation, epigenetic regulation, mTOR, adaptive immune system, among others). The T cell compartment in the FL-PDLS preserves CD4 subsets (follicular helper, regulatory, and follicular regulatory), also encompassing the spectrum of activation/exhaustion phenotypes in CD4 and CD8 populations. Moreover, this system is suitable for chemo and immunotherapy testing, recapitulating results obtained in the clinic. FL-PDLS allowed uncovering that soluble galectin-9 limits rituximab, rituximab, plus nivolumab/TIM-3 antitumoral activities. Blocking galectin-9 improves rituximab efficacy, highlighting galectin-9 as a novel immunotherapeutic target in FL. In conclusion, FL-PDLS maintains the crosstalk between malignant B cells and the immune LN-TME and constitutes a robust and multiplexed pre-clinical tool to perform drug screening in a patient-derived system, advancing toward personalized therapeutic approaches.
Collapse
Affiliation(s)
- Cèlia Dobaño-López
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Juan García Valero
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Ferran Araujo-Ayala
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Ferran Nadeu
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Fabien Gava
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Carla Faria
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | | | | | - Fabian Arenas
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Marta Grau
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Cristina López
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
| | - Irene López-Oreja
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Neus Serrat
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ares Martínez-Farran
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Lluís Hernández
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Heribert Playa-Albinyana
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Rubén Giménez
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Silvia Beà
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Elías Campo
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | | | - Armando López-Guillermo
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Servei Hematologia, Hospital Clínic, Barcelona, Spain
| | - Laura Magnano
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- IMACTIV-3D, Toulouse, France
- University of Barcelona, Medical School, Barcelona, Spain
- Servei Hematologia, Hospital Clínic, Barcelona, Spain
| | - Dolors Colomer
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Christine Bezombes
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| | - Patricia Pérez-Galán
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
6
|
Brauge B, Dessauge E, Creusat F, Tarte K. Modeling the crosstalk between malignant B cells and their microenvironment in B-cell lymphomas: challenges and opportunities. Front Immunol 2023; 14:1288110. [PMID: 38022603 PMCID: PMC10652758 DOI: 10.3389/fimmu.2023.1288110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
B-cell lymphomas are a group of heterogeneous neoplasms resulting from the clonal expansion of mature B cells arrested at various stages of differentiation. Specifically, two lymphoma subtypes arise from germinal centers (GCs), namely follicular lymphoma (FL) and GC B-cell diffuse large B-cell lymphoma (GCB-DLBCL). In addition to recent advances in describing the genetic landscape of FL and GCB-DLBCL, tumor microenvironment (TME) has progressively emerged as a central determinant of early lymphomagenesis, subclonal evolution, and late progression/transformation. The lymphoma-supportive niche integrates a dynamic and coordinated network of immune and stromal cells defining microarchitecture and mechanical constraints and regulating tumor cell migration, survival, proliferation, and immune escape. Several questions are still unsolved regarding the interplay between lymphoma B cells and their TME, including the mechanisms supporting these bidirectional interactions, the impact of the kinetic and spatial heterogeneity of the tumor niche on B-cell heterogeneity, and how individual genetic alterations can trigger both B-cell intrinsic and B-cell extrinsic signals driving the reprogramming of non-malignant cells. Finally, it is not clear whether these interactions might promote resistance to treatment or, conversely, offer valuable therapeutic opportunities. A major challenge in addressing these questions is the lack of relevant models integrating tumor cells with specific genetic hits, non-malignant cells with adequate functional properties and organization, extracellular matrix, and biomechanical forces. We propose here an overview of the 3D in vitro models, xenograft approaches, and genetically-engineered mouse models recently developed to study GC B-cell lymphomas with a specific focus on the pros and cons of each strategy in understanding B-cell lymphomagenesis and evaluating new therapeutic strategies.
Collapse
Affiliation(s)
- Baptiste Brauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Elise Dessauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Florent Creusat
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Karin Tarte
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
- SITI Laboratory, Centre Hospitalier Universitaire (CHU) Rennes, Etablissement Français du sang, Univ Rennes, Rennes, France
| |
Collapse
|
7
|
Saleh T, Bloukh S, Hasan M, Al Shboul S. Therapy-induced senescence as a component of tumor biology: Evidence from clinical cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188994. [PMID: 37806641 DOI: 10.1016/j.bbcan.2023.188994] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Therapy-Induced Senescence (TIS) is an established response to anticancer therapy in a variety of cancer models. Ample evidence has characterized the triggers, hallmarks, and functional outcomes of TIS in preclinical studies; however, limited evidence delineates TIS in clinical cancer (human tumor samples). We examined the literature that investigated the induction of TIS in samples derived from human cancers and highlighted the major findings that suggested that TIS represents a main constituent of tumor biology. The most frequently utilized approach to identify TIS in human cancers was to investigate the protein expression of senescence-associated markers (such as cyclins, cyclin-dependent kinase inhibitors, Ki67, DNA damage repair response markers, DEC1, and DcR1) via immunohistochemical techniques using formalin-fixed paraffin-embedded (FFPE) tissue samples and/or testing the upregulation of Senescence-Associated β-galactosidase (SA-β-gal) in frozen sections of unfixed tumor samples. Collectively, and in studies where the extent of TIS was determined, TIS was detected in 31-66% of tumors exposed to various forms of chemotherapy. Moreover, TIS was not only limited to both malignant and non-malignant components of tumoral tissue but was also identified in samples of normal (non-transformed) tissue upon chemo- or radiotherapy exposure. Nevertheless, the available evidence continues to be limited and requires a more rigorous assessment of in vivo senescence based on novel approaches and more reliable molecular signatures. The accurate assessment of TIS will be beneficial for determining its relevant contribution to the overall outcome of cancer therapy and the potential translatability of senotherapeutics.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13115, Jordan.
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mira Hasan
- Department of Medicine, University of Connecticut Health Center, Farmington, USA
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13115, Jordan
| |
Collapse
|
8
|
Faria C, Gava F, Gravelle P, Valero JG, Dobaño-López C, Van Acker N, Quelen C, Jalowicki G, Morin R, Rossi C, Lagarde JM, Fournié JJ, Ysebaert L, Laurent C, Pérez-Galán P, Bezombes C. Patient-derived lymphoma spheroids integrating immune tumor microenvironment as preclinical follicular lymphoma models for personalized medicine. J Immunother Cancer 2023; 11:e007156. [PMID: 37899130 PMCID: PMC10619028 DOI: 10.1136/jitc-2023-007156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Follicular lymphoma (FL), the most common indolent non-Hodgkin's Lymphoma, is a heterogeneous disease and a paradigm of the contribution of immune tumor microenvironment to disease onset, progression, and therapy resistance. Patient-derived models are scarce and fail to reproduce immune phenotypes and therapeutic responses. METHODS To capture disease heterogeneity and microenvironment cues, we developed a patient-derived lymphoma spheroid (FL-PDLS) model culturing FL cells from lymph nodes (LN) with an optimized cytokine cocktail that mimics LN stimuli and maintains tumor cell viability. RESULTS FL-PDLS, mainly composed of tumor B cells (60% on average) and autologous T cells (13% CD4 and 3% CD8 on average, respectively), rapidly organizes into patient-specific three-dimensional (3D) structures of three different morphotypes according to 3D imaging analysis. RNAseq analysis indicates that FL-PDLS reproduces FL hallmarks with the overexpression of cell cycle, BCR, or mTOR signaling related gene sets. FL-PDLS also recapitulates the exhausted immune phenotype typical of FL-LN, including expression of BTLA, TIGIT, PD-1, TIM-3, CD39 and CD73 on CD3+ T cells. These features render FL-PDLS an amenable system for immunotherapy testing. With this aim, we demonstrate that the combination of obinutuzumab (anti-CD20) and nivolumab (anti-PD1) reduces tumor load in a significant proportion of FL-PDLS. Interestingly, B cell depletion inversely correlates with the percentage of CD8+ cells positive for PD-1 and TIM-3. CONCLUSIONS In summary, FL-PDLS is a robust patient-derived 3D system that can be used as a tool to mimic FL pathology and to test novel immunotherapeutic approaches in a context of personalized medicine.
Collapse
Affiliation(s)
- Carla Faria
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
| | - Fabien Gava
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
| | - Pauline Gravelle
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
- Department of Pathology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, Toulouse, France
| | - Juan Garcia Valero
- Department of Hemato-Oncology, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Celia Dobaño-López
- Department of Hemato-Oncology, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Nathalie Van Acker
- Department of Pathology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, Toulouse, France
- Imag'IN Platform, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, Toulouse, France
| | - Cathy Quelen
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
- Department of Pathology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, Toulouse, France
| | - Gael Jalowicki
- IUCT-Oncopole, Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, Toulouse, France
| | | | - Cédric Rossi
- Department of Hematology, Hôpital François Mitterrand and U1231 INSERM, Dijon, France
| | | | - Jean-Jacques Fournié
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
| | - Loïc Ysebaert
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
- Department of Hematology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, Toulouse, France
| | - Camille Laurent
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
- Department of Pathology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, Toulouse, France
- Imag'IN Platform, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, Toulouse, France
| | - Patricia Pérez-Galán
- Department of Hemato-Oncology, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Christine Bezombes
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
| |
Collapse
|
9
|
Russler-Germain DA, Ghobadi A. T-cell redirecting therapies for B-cell non-Hodgkin lymphoma: recent progress and future directions. Front Oncol 2023; 13:1168622. [PMID: 37465110 PMCID: PMC10351267 DOI: 10.3389/fonc.2023.1168622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Several key advances in the treatment of B-cell non-Hodgkin lymphoma (B-NHL) over the past two decades have strategically exploited B-cell lineage markers suitable for targeting by immunotherapies. First, the addition of the anti-CD20 monoclonal antibody (mAb) rituximab to a range of standard therapies conferred remarkable outcomes improvements in diverse settings, perhaps most prominently an overall survival advantage in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Subsequently, multiple chimeric antigen receptor (CAR) T-cell therapies targeting CD19 have revolutionized the treatment of relapsed/refractory (rel/ref) DLBCL and are active in other B-NHL subtypes as well. Most recently, the longstanding aspiration to exploit patients' endogenous T-cells to combat lymphoma has been achieved via T-cell redirecting therapies such as bispecific antibodies (BsAbs) that incorporate dual targeting of a T-cell antigen such as CD3 plus a B-cell antigen such as CD19 or CD20 expressed by the tumor. These novel agents have demonstrated impressive activity as monotherapies in patients with heavily pre-treated, rel/ref B-NHL of a variety of subtypes. Now, myriad clinical trials are exploring combinations of T-cell redirectors with targeted therapies, antibody-drug conjugates, conventional chemotherapy, and even new immunotherapies. Here, we highlight key landmarks in the development of T-cell redirecting therapies for the treatment of B-NHL, emerging evidence and lessons from recent clinical trials, and exciting new directions in this arena.
Collapse
Affiliation(s)
- David A. Russler-Germain
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Armin Ghobadi
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
10
|
Araujo-Ayala F, Dobaño-López C, Valero JG, Nadeu F, Gava F, Faria C, Norlund M, Morin R, Bernes-Lasserre P, Serrat N, Playa-Albinyana H, Giménez R, Campo E, Lagarde JM, López-Guillermo A, Gine E, Colomer D, Bezombes C, Pérez-Galán P. A novel patient-derived 3D model recapitulates mantle cell lymphoma lymph node signaling, immune profile and in vivo ibrutinib responses. Leukemia 2023:10.1038/s41375-023-01885-1. [PMID: 37031299 DOI: 10.1038/s41375-023-01885-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/10/2023]
Abstract
Mantle cell lymphoma (MCL), a rare and aggressive B-cell non-Hodgkin lymphoma, mainly develops in the lymph node (LN) and creates a protective and immunosuppressive niche that facilitates tumor survival, proliferation and chemoresistance. To capture disease heterogeneity and tumor microenvironment (TME) cues, we have developed the first patient-derived MCL spheroids (MCL-PDLS) that recapitulate tumor oncogenic pathways and immune microenvironment in a multiplexed system that allows easy drug screening, including immunotherapies. MCL spheroids, integrated by tumor B cells, monocytes and autologous T-cells self-organize in disc-shaped structures, where B and T-cells maintain viability and proliferate, and monocytes differentiate into M2-like macrophages. RNA-seq analysis demonstrated that tumor cells recapitulate hallmarks of MCL-LN (proliferation, NF-kB and BCR), with T cells exhibiting an exhaustion profile (PD1, TIM-3 and TIGIT). MCL-PDLS reproduces in vivo responses to ibrutinib and demonstrates that combination of ibrutinib with nivolumab (anti-PD1) may be effective in ibrutinib-resistant cases by engaging an immune response with increased interferon gamma and granzyme B release. In conclusion, MCL-PDLS recapitulates specific MCL-LN features and in vivo responses to ibrutinib, representing a robust tool to study MCL interaction with the immune TME and to perform drug screening in a patient-derived system, advancing toward personalized therapeutic approaches.
Collapse
Affiliation(s)
- Ferran Araujo-Ayala
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Cèlia Dobaño-López
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Juan García Valero
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Ferran Nadeu
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Fabien Gava
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, Toulouse, France
- Université de Toulouse, Inserm, CNRS, Université Toulouse IIIPaul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
| | - Carla Faria
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, Toulouse, France
- Université de Toulouse, Inserm, CNRS, Université Toulouse IIIPaul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
| | | | | | | | - Neus Serrat
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
| | - Heribert Playa-Albinyana
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Rubén Giménez
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Elías Campo
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Hospital Clínic, Barcelona, Spain
- University of Barcelona, Medical School, Barcelona, Spain
| | | | - Armando López-Guillermo
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Hospital Clínic, Barcelona, Spain
- University of Barcelona, Medical School, Barcelona, Spain
| | - Eva Gine
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Hospital Clínic, Barcelona, Spain
| | - Dolors Colomer
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Hospital Clínic, Barcelona, Spain
- University of Barcelona, Medical School, Barcelona, Spain
| | - Christine Bezombes
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, Toulouse, France
- Université de Toulouse, Inserm, CNRS, Université Toulouse IIIPaul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
| | - Patricia Pérez-Galán
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain.
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
11
|
Bhatt R, Ravi D, Evens AM, Parekkadan B. Scaffold-mediated switching of lymphoma metabolism in culture. Cancer Metab 2022; 10:15. [PMID: 36224623 PMCID: PMC9559005 DOI: 10.1186/s40170-022-00291-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diffuse large B cell lymphoma (DLBCL) is an aggressive subtype of non-Hodgkin lymphoma (NHL) and accounts for about a third of all NHL cases. A significant proportion (~40%) of treated DLBCL patients develop refractory or relapsed disease due to drug resistance which can be attributed to metabolomic and genetic variations amongst diverse DLBCL subtypes. An assay platform that reproduces metabolic patterns of DLBCL in vivo could serve as a useful model for DLBCL. METHODS This report investigated metabolic functions in 2D and 3D cell cultures using parental and drug-resistant DLBCL cell lines as compared to patient biopsy tissue. RESULTS A 3D culture model controlled the proliferation of parental and drug-resistant DLBCL cell lines, SUDHL-10, SUDHL-10 RR (rituximab resistant), and SUDHL-10 OR (obinutuzumab resistant), as well as retained differential sensitivity to CHOP. The results from metabolic profiling and isotope tracer studies with D-glucose-13C6 indicated metabolic switching in 3D culture when compared with a 2D environment. Analysis of DLBCL patient tumor tissue revealed that the metabolic changes in 3D grown cells were shifted towards that of clinical specimens. CONCLUSION 3D culture restrained DLBCL cell line growth and modulated metabolic pathways that trend towards the biological characteristics of patient tumors. Counter-intuitively, this research thereby contends that 3D matrices can be a tool to control tumor function towards a slower growing and metabolically dormant state that better reflects in vivo tumor physiology.
Collapse
Affiliation(s)
- Rachana Bhatt
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- Department of Medicine, Rutgers Biomedical Health Sciences, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
12
|
Thumrongsiri N, Dana P, Bawab R, Tanyapanyachon P, Treetidnipa C, Saengkrit N, Sathornsumetee S. Assessment of therapeutic effect of CD20-targeted immunoliposome in primary central nervous system lymphoma. Biomed Pharmacother 2022; 150:112979. [PMID: 35461090 DOI: 10.1016/j.biopha.2022.112979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a form of extranodal non-Hodgkin's B-cell lymphoma limited to the CNS. The treatment of PCNSL is ineffective partly due to the blood-brain barrier (BBB) restriction of delivery of many drugs including anti-CD20 (Rituximab; RTX) which is a standard treatment for systemic B-cell lymphomas. In this study, liposome with tween-80 surface modification was fabricated and conjugated with RTX for enhancing BBB penetration to target lymphoma cells in the CNS. Physicochemical characterizations of Lip/RTX were performed and spherical shape liposomes with narrow size distribution were demonstrated by TEM. An average diameter of Lip/RTX was 168.57 ± 1.57 nm with the percentage of RTX conjugation at 90.94. Cell internalization monitored by flow cytometry confirmed that conjugation of RTX promoted liposome entry into Raji cells expressing CD20. Antitumor activity of Lip/RTX was comparable to free RTX indicating that RTX moieties on liposome remained their therapeutic function. In addition, Lip/RTX inhibited tumor aggressiveness by limiting cell migration and invasion. Systemic administration of Lip/RTX significantly prolonged survival of mice harboring intracranial lymphoma xenografts. Taken together, Lip/RTX presents a new potential treatment for patients with PCNSL.
Collapse
Affiliation(s)
- Nutthanit Thumrongsiri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Paweena Dana
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Rand Bawab
- Department of Biomedical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Prattana Tanyapanyachon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Chaichana Treetidnipa
- Research Network NANOTEC-Mahidol University in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Sith Sathornsumetee
- Research Network NANOTEC-Mahidol University in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand; Department of Medicine (Neurology), Faculty of Medicine Siriraj Hospital, Mahidol University 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| |
Collapse
|
13
|
Three-dimensional models: a novel approach for lymphoma research. J Cancer Res Clin Oncol 2022; 148:753-765. [DOI: 10.1007/s00432-021-03897-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022]
|
14
|
Banerjee P, Kotla S, Reddy Velatooru L, Abe RJ, Davis EA, Cooke JP, Schadler K, Deswal A, Herrmann J, Lin SH, Abe JI, Le NT. Senescence-Associated Secretory Phenotype as a Hinge Between Cardiovascular Diseases and Cancer. Front Cardiovasc Med 2021; 8:763930. [PMID: 34746270 PMCID: PMC8563837 DOI: 10.3389/fcvm.2021.763930] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Overlapping risks for cancer and cardiovascular diseases (CVD), the two leading causes of mortality worldwide, suggest a shared biology between these diseases. The role of senescence in the development of cancer and CVD has been established. However, its role as the intersection between these diseases remains unclear. Senescence was originally characterized by an irreversible cell cycle arrest after a high number of divisions, namely replicative senescence (RS). However, it is becoming clear that senescence can also be instigated by cellular stress, so-called stress-induced premature senescence (SIPS). Telomere shortening is a hallmark of RS. The contribution of telomere DNA damage and subsequent DNA damage response/repair to SIPS has also been suggested. Although cellular senescence can mediate cell cycle arrest, senescent cells can also remain metabolically active and secrete cytokines, chemokines, growth factors, and reactive oxygen species (ROS), so-called senescence-associated secretory phenotype (SASP). The involvement of SASP in both cancer and CVD has been established. In patients with cancer or CVD, SASP is induced by various stressors including cancer treatments, pro-inflammatory cytokines, and ROS. Therefore, SASP can be the intersection between cancer and CVD. Importantly, the conventional concept of senescence as the mediator of cell cycle arrest has been challenged, as it was recently reported that chemotherapy-induced senescence can reprogram senescent cancer cells to acquire “stemness” (SAS: senescence-associated stemness). SAS allows senescent cancer cells to escape cell cycle arrest with strongly enhanced clonogenic growth capacity. SAS supports senescent cells to promote both cancer and CVD, particularly in highly stressful conditions such as cancer treatments, myocardial infarction, and heart failure. As therapeutic advances have increased overlapping risk factors for cancer and CVD, to further understand their interaction may provide better prevention, earlier detection, and safer treatment. Thus, it is critical to study the mechanisms by which these senescence pathways (SAS/SASP) are induced and regulated in both cancer and CVD.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loka Reddy Velatooru
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Rei J Abe
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Elizabeth A Davis
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P Cooke
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Keri Schadler
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joerg Herrmann
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
15
|
A novel 3D culture model recapitulates primary FL B cell features and promotes their survival. Blood Adv 2021; 5:5372-5386. [PMID: 34555842 PMCID: PMC9153016 DOI: 10.1182/bloodadvances.2020003949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
3D alginate spheroid model supports self-organization of lymphoma B cells and stromal cells mimicking lymphoma cell niche. This high-throughput 3D model is suitable for testing new therapeutic agents in B-NHL.
Non-Hodgkin B-cell lymphomas (B-NHL) mainly develop within lymph nodes as aggregates of tumor cells densely packed with their surrounding microenvironment, creating a tumor niche specific to each lymphoma subtypes. In vitro preclinical models mimicking biomechanical forces, cellular microenvironment, and 3D organization of B-cell lymphomas remain scarce, while all these parameters are key determinants of lymphomagenesis and drug resistance. Using a microfluidic method based on cell encapsulation inside permeable, elastic, and hollow alginate microspheres, we developed a new tunable 3D model incorporating lymphoma B cells, extracellular matrix (ECM), and/or tonsil stromal cells (TSC). Under 3D confinement, lymphoma B cells were able to form cohesive spheroids resulting from overexpression of ECM components. Moreover, lymphoma B cells and TSC dynamically formed self-organized 3D spheroids favoring tumor cell growth. 3D culture induced resistance to the classical chemotherapeutic agent doxorubicin, but not to the BCL2 inhibitor ABT-199, identifying this approach as a relevant in vitro model to assess the activity of therapeutic agents in B-NHL. RNA-sequence analysis highlighted the synergy of 3D, ECM, and TSC in upregulating similar pathways in malignant B cells in vitro than those overexpressed in primary lymphoma B cells in situ. Finally, our 3D model including ECM and TSC allowed long-term in vitro survival of primary follicular lymphoma B cells. In conclusion, we propose a new high-throughput 3D model mimicking lymphoma tumor niche and making it possible to study the dynamic relationship between lymphoma B cells and their microenvironment and to screen new anti-cancer drugs.
Collapse
|
16
|
Pan H, Li W, Chen Z, Luo Y, He W, Wang M, Tang X, He H, Liu L, Zheng M, Jiang X, Yin T, Liang R, Ma Y, Cai L. Click CAR-T cell engineering for robustly boosting cell immunotherapy in blood and subcutaneous xenograft tumor. Bioact Mater 2021; 6:951-962. [PMID: 33102938 PMCID: PMC7560591 DOI: 10.1016/j.bioactmat.2020.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
The adoptive transfer of chimeric antigen receptor-T (CAR-T) cells has shown remarkable clinical responses in hematologic malignancies. However, unsatisfactory curative results and side effects for tumor treatment are still unsolved problems. Herein we develop a click CAR-T cell engineering strategy via cell glycometabolic labeling for robustly boosting their antitumor effects and safety in vivo. Briefly, paired chemical groups (N3/BCN) are separately incorporated into CAR-T cell and tumor via nondestructive intrinsic glycometabolism of exogenous Ac4GalNAz and Ac4ManNBCN, serving as an artificial ligand-receptor. Functional groups anchored on cell surface strengthen the interaction of CAR-T cell and tumor via bioorthogonal click chemistry, further enhancing specific recognition, migration and selective antitumor effects of CAR-T cells. In vivo, click CAR-T cell completely removes lymphoma cells and minimizes off-target toxicity via selective and efficient bioorthogonal targeting in blood cancer. Surprisingly, compared to unlabeled cells, artificial bioorthogonal targeting significantly promotes the accumulation, deep penetration and homing of CAR-T cells into tumor tissues, ultimately improving its curative effect for solid tumor. Click CAR-T cell engineering robustly boosts selective recognition and antitumor capabilities of CAR T cells in vitro and in vivo, thereby holding a great potential for effective clinical cell immunotherapy with avoiding adverse events in patients.
Collapse
Affiliation(s)
- Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
- HRYZ Biotech Co., Shenzhen, 518057, PR China
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Yingmei Luo
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Wei He
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Mengmeng Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xiaofan Tang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Huamei He
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
- HRYZ Biotech Co., Shenzhen, 518057, PR China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xin Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Yifan Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
- HRYZ Biotech Co., Shenzhen, 518057, PR China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| |
Collapse
|
17
|
3D Model Characterization by 2D and 3D Imaging in t(14;18)-Positive B-NHL: Perspectives for In Vitro Drug Screens in Follicular Lymphoma. Cancers (Basel) 2021; 13:cancers13071490. [PMID: 33804934 PMCID: PMC8036410 DOI: 10.3390/cancers13071490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Follicular lymphoma is an indolent B cell lymphoproliferative disorder of transformed follicular center B cells, which accounts for 20–30 percent of all non-Hodgkin lymphoma (NHL) cases. Although huge efforts have been made in the last 10 years, this pathology is still considered as incurable, leaving open the discovery and testing of new therapeutic targets requiring relevant preclinical models. Here, we report a realistic 3D model of t (14;18)-positive B-NHL cell culture (ultra-low attachment (ULA)-multicellular aggregates of lymphoma cells (MALC)), which monitored by state-of-the-art 2D and 3D imaging, allows more robust drug testing. Abstract Follicular lymphoma (FL) is an indolent B cell lymphoproliferative disorder of transformed follicular center B cells, which accounts for 20–30 percent of all non-Hodgkin lymphoma (NHL) cases. Great advances have been made to identify the most relevant targets for precision therapy. However, no relevant models for in vitro studies have been developed or characterized in depth. To this purpose, we generated a 3D cell model from t(14;18)-positive B-NHL cell lines cultured in ultra-low attachment 96-well plates. Morphological features and cell growth behavior were evaluated by classical microscopy (2D imaging) and response to treatment with different drugs was evaluated by a high-content analysis system to determine the robustness of the model. We show that the ultra-low attachment (ULA) method allows the development of regular, spherical and viable ULA-multicellular aggregates of lymphoma cells (MALC). However, discrepancies in the results obtained after 2D imaging analyses on drug-treated ULA-MALC prompted us to develop 3D imaging and specific analyses. We show by using light sheet microscopy and specifically developed 3D imaging algorithms that 3D imaging and dedicated analyses are necessary to characterize morphological properties of 3D models and drug effects. This study proposes a new method, but also imaging tools and informatic solutions, developed for FL necessary for future preclinical studies.
Collapse
|
18
|
Patel NH, Bloukh S, Alwohosh E, Alhesa A, Saleh T, Gewirtz DA. Autophagy and senescence in cancer therapy. Adv Cancer Res 2021; 150:1-74. [PMID: 33858594 DOI: 10.1016/bs.acr.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tumor cells can undergo diverse responses to cancer therapy. While apoptosis represents the most desirable outcome, tumor cells can alternatively undergo autophagy and senescence. Both autophagy and senescence have the potential to make complex contributions to tumor cell survival via both cell autonomous and cell non-autonomous pathways. The induction of autophagy and senescence in tumor cells, preclinically and clinically, either individually or concomitantly, has generated interest in the utilization of autophagy modulating and senolytic therapies to target autophagy and senescence, respectively. This chapter summarizes the current evidence for the promotion of autophagy and senescence as fundamental responses to cancer therapy and discusses the complexity of their functional contributions to cell survival and disease outcomes. We also highlight current modalities designed to exploit autophagy and senescence in efforts to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Nipa H Patel
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah Bloukh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Enas Alwohosh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ahmad Alhesa
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
19
|
Foxall R, Narang P, Glaysher B, Hub E, Teal E, Coles MC, Ashton-Key M, Beers SA, Cragg MS. Developing a 3D B Cell Lymphoma Culture System to Model Antibody Therapy. Front Immunol 2021; 11:605231. [PMID: 33628205 PMCID: PMC7897703 DOI: 10.3389/fimmu.2020.605231] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Diffuse large cell B cell lymphoma (DLBCL) accounts for approximately 30%-40% of all non-Hodgkin lymphoma (NHL) cases. Current first line DLBCL treatment results in long-term remission in more than 60% of cases. However, those patients with primary refractory disease or early relapse exhibit poor prognosis, highlighting a requirement for alternative therapies. Our aim was to develop a novel model of DLBCL that facilitates in vitro testing of current and novel therapies by replicating key components of the tumor microenvironment (TME) in a three-dimensional (3D) culture system that would enable primary DLBCL cell survival and study ex vivo. The TME is a complex ecosystem, comprising malignant and non-malignant cells, including cancer-associated fibroblasts (CAF) and tumor-associated macrophages (TAM) whose reciprocal crosstalk drives tumor initiation and growth while fostering an immunosuppressive milieu enabling its persistence. The requirement to recapitulate, at least to some degree, this complex, interactive network is exemplified by the rapid cell death of primary DLBCL cells removed from their TME and cultured alone in vitro. Building on previously described methodologies to generate lymphoid-like fibroblasts from adipocyte derived stem cells (ADSC), we confirmed lymphocytes, specifically B cells, interacted with this ADSC-derived stroma, in the presence or absence of monocyte-derived macrophages (MDM), in both two-dimensional (2D) cultures and a 3D collagen-based spheroid system. Furthermore, we demonstrated that DLBCL cells cultured in this system interact with its constituent components, resulting in their improved viability as compared to ex-vivo 2D monocultures. We then assessed the utility of this system as a platform to study therapeutics in the context of antibody-directed phagocytosis, using rituximab as a model immunotherapeutic antibody. Overall, we describe a novel 3D spheroid co-culture system comprising key components of the DLBCL TME with the potential to serve as a testbed for novel therapeutics, targeting key cellular constituents of the TME, such as CAF and/or TAM.
Collapse
Affiliation(s)
- Russell Foxall
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Priyanka Narang
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Bridget Glaysher
- Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Elin Hub
- Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Emma Teal
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Mark C Coles
- Centre for Immunology and Infection, University of York, York, United Kingdom.,Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Margaret Ashton-Key
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom.,Department of Cellular Pathology, Southampton University Hospital Trust, Southampton, United Kingdom
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| |
Collapse
|
20
|
A Marine Collagen-Based Biomimetic Hydrogel Recapitulates Cancer Stem Cell Niche and Enhances Progression and Chemoresistance in Human Ovarian Cancer. Mar Drugs 2020; 18:md18100498. [PMID: 33003514 PMCID: PMC7599646 DOI: 10.3390/md18100498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Recent attention has focused on the development of an effective three-dimensional (3D) cell culture system enabling the rapid enrichment of cancer stem cells (CSCs) that are resistant to therapies and serving as a useful in vitro tumor model that accurately reflects in vivo behaviors of cancer cells. Presently, an effective 3D in vitro model of ovarian cancer (OC) was developed using a marine collagen-based hydrogel. Advantages of the model include simplicity, efficiency, bioactivity, and low cost. Remarkably, OC cells grown in this hydrogel exhibited biochemical and physiological features, including (1) enhanced cell proliferation, migration and invasion, colony formation, and chemoresistance; (2) suppressed apoptosis with altered expression levels of apoptosis-regulating molecules; (3) upregulated expression of crucial multidrug resistance-related genes; (4) accentuated expression of key molecules associated with malignant progression, such as epithelial–mesenchymal transition transcription factors, Notch, and pluripotency biomarkers; and (5) robust enrichment of ovarian CSCs. The findings indicate the potential of our 3D in vitro OC model as an in vitro research platform to study OC and ovarian CSC biology and to screen novel therapies targeting OC and ovarian CSCs.
Collapse
|
21
|
Chu Y, Awasthi A, Lee S, Edani D, Yin C, Hochberg J, Shah T, Chung TH, Ayello J, van de Ven C, Klein C, Lee D, Cairo MS. Obinutuzumab (GA101) vs. rituximab significantly enhances cell death, antibody-dependent cytotoxicity and improves overall survival against CD20+ primary mediastinal B-cell lymphoma (PMBL) in a xenograft NOD-scid IL2Rgnull (NSG) mouse model: a potential targeted agent in the treatment of PMBL. Oncotarget 2020; 11:3035-3047. [PMID: 32850008 PMCID: PMC7429176 DOI: 10.18632/oncotarget.27691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBL), a distinct mature B-cell lymphoma, expresses CD20 and has recently been successfully treated with the combination of a type I anti-CD20 monoclonal antibody, rituximab, with multiple combination chemotherapy regimens. Obinutuzumab is a glycoengineered type II anti-CD20 monoclonal antibody (mAb), recognizing a unique CD20 extracellular membrane epitope with enhanced antibody dependent cellular cytotoxicity (ADCC) vs rituximab. We hypothesize that obinutuzumab vs rituximab will significantly enhance in-vitro and in-vivo cytotoxicity against PMBL. PMBL cells were treated with equal dose of obinutuzumab and rituximab for 24 hours (1–100 μg/ml). ADCC were performed with ex-vivo expanded natural killer cells at 10:1 E: T ratio. Mice were xenografted with intravenous injections of luciferase expressing Karpas1106P cells and treated every 7 days for 8 weeks. Tumor burden was monitored by IVIS spectrum system. Compared with rituximab, obinutuzumab significantly inhibited PMBL cell proliferation (p = 0.01), promoted apoptosis (p = 0.05) and enhanced ADCC (p = 0.0002) against PMBL. Similarly, in PMBL xenografted NOD scid gamma mice, obinutuzumab significantly enhanced survival than rituximab when treated with equal doses (p = 0.05). Taken together our results suggest that obinutuzumab significantly enhanced natural killer cytotoxicity, reduced PMBL proliferation and prolonged the overall survival in humanized PMBL xenografted NOD scid gamma mice.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Co-first authors
| | - Aradhana Awasthi
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Co-first authors
| | - Sanghoon Lee
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Dina Edani
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Changhong Yin
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Jessica Hochberg
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Tishi Shah
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Christian Klein
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center, Zurich, Switzerland
| | - Dean Lee
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA.,Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
22
|
Bordes J, Incerti S, Mora-Ramirez E, Tranel J, Rossi C, Bezombes C, Bordenave J, Bardiès M, Brown R, Bordage MC. Monte Carlo dosimetry of a realistic multicellular model of follicular lymphoma in a context of radioimmunotherapy. Med Phys 2020; 47:5222-5234. [PMID: 32623743 DOI: 10.1002/mp.14370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/20/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Small-scale dosimetry studies generally consider an artificial environment where the tumors are spherical and the radionuclides are homogeneously biodistributed. However, tumor shapes are irregular and radiopharmaceutical biodistributions are heterogeneous, impacting the energy deposition in targeted radionuclide therapy. To bring realism, we developed a dosimetric methodology based on a three-dimensional in vitro model of follicular lymphoma incubated with rituximab, an anti-CD20 monoclonal antibody used in the treatment of non-Hodgkin lymphomas, which might be combined with a radionuclide. The effects of the realistic geometry and biodistribution on the absorbed dose were highlighted by comparison with literature data. Additionally, to illustrate the possibilities of this methodology, the effect of different radionuclides on the absorbed dose distribution delivered to the in vitro tumor were compared. METHODS The starting point was a model named multicellular aggregates of lymphoma cells (MALC). Three MALCs of different dimensions and their rituximab biodistribution were considered. Geometry, antibody location and concentration were extracted from selective plane illumination microscopy. Assuming antibody radiolabeling with Auger electron (125 I and 111 In) and β- particle emitters (177 Lu, 131 I and 90 Y), we simulated energy deposition in MALCs using two Monte Carlo codes: Geant4-DNA with "CPA100" physics models for Auger electron emitters and Geant4 with "Livermore" physics models for β- particle emitters. RESULTS MALCs had ellipsoid-like shapes with major radii, r, of ~0.25, ~0.5 and ~1.3 mm. Rituximab was concentrated in the periphery of the MALCs. The absorbed doses delivered by 177 Lu, 131 I and 90 Y in MALCs were compared with literature data for spheres with two types of homogeneous biodistributions (on the surface or throughout the volume). Compared to the MALCs, the mean absorbed doses delivered in spheres with surface biodistributions were between 18% and 38% lower, while with volume biodistribution they were between 15% and 29% higher. Regarding the radionuclides comparison, the relationship between MALC dimensions, rituximab biodistribution and energy released per decay impacted the absorbed doses. Despite releasing less energy, 125 I delivered a greater absorbed dose per decay than 111 In in the r ~ 0.25 mm MALC (6.78·10-2 vs 6.26·10-2 µGy·Bq-1 ·s-1 ). Similarly, the absorbed doses per decay in the r ~ 0.5 mm MALC for 177 Lu (2.41·10-2 µGy·Bq-1 ·s-1 ) and 131 I (2.46·10-2 µGy·Bq-1 ·s-1 ) are higher than for 90 Y (1.98·10-2 µGy·Bq-1 ·s-1 ). Furthermore, radionuclides releasing more energy per decay delivered absorbed dose more uniformly through the MALCs. Finally, when considering the radiopharmaceutical effective half-life, due to the biological half-life of rituximab being best matched by the physical half-life of 177 Lu and 131 I compared to 90 Y, the first two radionuclides delivered higher absorbed doses. CONCLUSION In the simulated configurations, β- emitters delivered higher and more uniform absorbed dose than Auger electron emitters. When considering radiopharmaceutical half-lives, 177 Lu and 131 I delivered absorbed doses higher than 90 Y. In view of real irradiation of MALCs, such a work may be useful to select suited radionuclides and to help explain the biological effects.
Collapse
Affiliation(s)
- Julien Bordes
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Sébastien Incerti
- Université de Bordeaux, CENBG, UMR 5797, Gradignan, F-33170, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, F-33170, France
| | - Erick Mora-Ramirez
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,Escuela de Física, CICANUM, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Jonathan Tranel
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cédric Rossi
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,CHU Dijon, Hématologie Clinique, Hôpital François Mitterand, Dijon, 21000, France
| | - Christine Bezombes
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Julie Bordenave
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Manuel Bardiès
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Richard Brown
- Institute of Nuclear Medicine, University College London, 235 Euston Road, London, NW1 2BU, UK
| | - Marie-Claude Bordage
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| |
Collapse
|
23
|
Abstract
New treatment strategies in follicular lymphoma (FL) are driven by a deeper understanding of microenvironmental cues supporting lymphomagenesis, chemoresistance, and immuno-escape. These immune-mediated signaling pathways contribute to initial learnings and clinical successes with lenalidomide, the first, oral, non-chemotherapeutic immunomodulatory drug, combined with anti-CD20 antibodies. This combination of lenalidomide with rituximab showed similar efficacy to chemoimmunotherapy (CIT) in first-line patients requiring therapy, and is approved in relapsed/refractory FL. We review the biology supporting the rationale for adequate inhibitory receptor/ligand pathways targeting the tissue immune microenvironment of FL cells, and potential immunomodulating combinations to replace CIT in the near future.
Collapse
Affiliation(s)
- Loic Ysebaert
- Service d'Hematologie, Institut Universitaire du Cancer de Toulouse-Oncopole, Center for Cancer Research of Toulouse (CRCT), Inserm UMR1037, IUC-Toulouse-Oncopole, 1 Avenue Irene Joliot-Curie, Toulouse 31059, France
| | - Franck Morschhauser
- Univ. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche Sur les Formes Injectables et les Technologies Associees, Lille F-59000, France.
| |
Collapse
|
24
|
Saleh T, Bloukh S, Carpenter VJ, Alwohoush E, Bakeer J, Darwish S, Azab B, Gewirtz DA. Therapy-Induced Senescence: An "Old" Friend Becomes the Enemy. Cancers (Basel) 2020; 12:cancers12040822. [PMID: 32235364 PMCID: PMC7226427 DOI: 10.3390/cancers12040822] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
For the past two decades, cellular senescence has been recognized as a central component of the tumor cell response to chemotherapy and radiation. Traditionally, this form of senescence, termed Therapy-Induced Senescence (TIS), was linked to extensive nuclear damage precipitated by classical genotoxic chemotherapy. However, a number of other forms of therapy have also been shown to induce senescence in tumor cells independently of direct genomic damage. This review attempts to provide a comprehensive summary of both conventional and targeted anticancer therapeutics that have been shown to induce senescence in vitro and in vivo. Still, the utility of promoting senescence as a therapeutic endpoint remains under debate. Since senescence represents a durable form of growth arrest, it might be argued that senescence is a desirable outcome of cancer therapy. However, accumulating evidence suggesting that cells have the capacity to escape from TIS would support an alternative conclusion, that senescence provides an avenue whereby tumor cells can evade the potentially lethal action of anticancer drugs, allowing the cells to enter a temporary state of dormancy that eventually facilitates disease recurrence, often in a more aggressive state. Furthermore, TIS is now strongly connected to tumor cell remodeling, potentially to tumor dormancy, acquiring more ominous malignant phenotypes and accounts for several untoward adverse effects of cancer therapy. Here, we argue that senescence represents a barrier to effective anticancer treatment, and discuss the emerging efforts to identify and exploit agents with senolytic properties as a strategy for elimination of the persistent residual surviving tumor cell population, with the goal of mitigating the tumor-promoting influence of the senescent cells and to thereby reduce the likelihood of cancer relapse.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Valerie J. Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Enas Alwohoush
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Jomana Bakeer
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Sarah Darwish
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Belal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Correspondence:
| |
Collapse
|
25
|
Decaup E, Rossi C, Gravelle P, Laurent C, Bordenave J, Tosolini M, Tourette A, Perrial E, Dumontet C, Poupot M, Klein C, Savina A, Fournié JJ, Bezombes C. A Tridimensional Model for NK Cell-Mediated ADCC of Follicular Lymphoma. Front Immunol 2019; 10:1943. [PMID: 31475004 PMCID: PMC6702952 DOI: 10.3389/fimmu.2019.01943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
Follicular lymphoma (FL) is the second most frequent subtype of B non-Hodgkin's lymphomas (NHL) for which the treatment is based on the use of anti-CD20 mAbs. NK cells play a crucial role in their mechanism of action and the number of these cells mediating antibody-dependent cell cycotoxicity (ADCC) in the peripheral blood of FL patients predict the outcome. However, their presence in FL biopsies, their activation and their role have been poorly investigated. Moreover, in vitro studies have not deciphered the exact signaling cascades triggered by NK cells in presence of anti-CD20 mAbs on both effector and target cells in a relevant FL model. We performed in silico analyses and ex vivo functional assays to determine the presence and the activation status of NK cells in FL biopsies. We modelized ADCC phenomenon by developing a co-culture model composed by 3D-cultured FL cells and NK cells. Thus, we investigated the biological effect of anti-CD20 mAbs by fluorescent microscopy and the phosphorylation status of survival pathways by cell bar coding phosphoflow in target cells. In parallel, we measured the status of activation of downstream FcγRIIIa signaling pathways in effector cells and their activation (CD69, perforin, granzyme B, IFNγ) by flow cytometry. We determined by in vivo experiments the effects of anti-CD20 mAbs in presence of NK cells in SCID-Beige engrafted FL mice. Here, we show that functional NK cells infiltrate FL biopsies, and that their presence tends to correlate with the survival of FL patients. Using our 3D co-culture model, we show that rituximab and GA101 are able to promote degranulation, CD69 expression, IFNγ production and activate FcγRIIIa signaling cascade in NK cells, and inhibit survival pathways and induce apoptosis in FL cells. The effect of GA101 seems to be more pronounced as observed in vivo in a xenograft FL model. This study strongly supports the role of NK cells in FL and highlights the application of the 3D co-culture model for in vitro validation.
Collapse
Affiliation(s)
- Emilie Decaup
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - Cédric Rossi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CHU Dijon, Hématologie Clinique, Hôpital François Mitterand, Dijon, France
| | - Pauline Gravelle
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Julie Bordenave
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - Marie Tosolini
- Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Anne Tourette
- INSERM1052/CNRS5286/Université Claude Bernard, Lyon, France
| | | | | | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - Christian Klein
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - Christine Bezombes
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| |
Collapse
|
26
|
Vidal-Crespo A, Matas-Céspedes A, Rodriguez V, Rossi C, Valero JG, Serrat N, Sanjuan-Pla A, Menéndez P, Roué G, López-Guillermo A, Giné E, Campo E, Colomer D, Bezombes C, van Bueren JL, Chiu C, Doshi P, Pérez-Galán P. Daratumumab displays in vitro and in vivo anti-tumor activity in models of B-cell non-Hodgkin lymphoma and improves responses to standard chemo-immunotherapy regimens. Haematologica 2019; 105:1032-1041. [PMID: 31296574 PMCID: PMC7109732 DOI: 10.3324/haematol.2018.211904] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
CD38 is expressed in several types of non-Hodgkin lymphoma (NHL) and constitutes a promising target for antibody-based therapy. Daratumumab (Darzalex) is a first-in-class anti-CD38 antibody approved for the treatment of relapsed/refractory (R/R) multiple myeloma (MM). It has also demonstrated clinical activity in Waldenström macroglobulinaemia and amyloidosis. Here, we have evaluated the activity and mechanism of action of daratumumab in preclinical in vitro and in vivo models of mantle cell lymphoma (MCL), follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL), as monotherapy or in combination with standard chemo-immunotherapy. In vitro, daratumumab engages Fc-mediated cytotoxicity by antibody-dependent cell cytotoxicity and antibody-dependent cell phagocytosis in all lymphoma subtypes. In the presence of human serum, complement-dependent cell cytotoxicity was marginally engaged. We demonstrated by Selective Plane Illumination Microscopy that daratumumab fully penetrated a three-dimensional (3D) lymphoma organoid and decreased organoid volume. In vivo, daratumumab completely prevents tumor outgrowth in models of MCL and FL, and shows comparable activity to rituximab in a disseminated in vivo model of blastic MCL. Moreover, daratumumab improves overall survival (OS) in a mouse model of transformed CD20dim FL, where rituximab showed limited activity. Daratumumab potentiates the antitumor activity of CHOP and R-CHOP in MCL and FL xenografts. Furthermore, in a patient-derived DLBCL xenograft model, daratumumab anti-tumor activity was comparable to R-CHOP and the addition of daratumumab to either CHOP or R-CHOP led to full tumor regression. In summary, daratumumab constitutes a novel therapeutic opportunity in certain scenarios and these results warrant further clinical development.
Collapse
Affiliation(s)
- Anna Vidal-Crespo
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Matas-Céspedes
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain
| | - Vanina Rodriguez
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cédric Rossi
- Department of Hematology, Dijon University Hospital, Dijon, France
| | - Juan G Valero
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain
| | - Neus Serrat
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain
| | - Alejandra Sanjuan-Pla
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Pablo Menéndez
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Gaël Roué
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Armando López-Guillermo
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain.,Department of Hematology, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Eva Giné
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain.,Department of Hematology, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Elías Campo
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Faculty of Medicine, University of Barcelona, Barcelona Spain
| | - Dolors Colomer
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Christine Bezombes
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France
| | | | | | | | - Patricia Pérez-Galán
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain .,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain
| |
Collapse
|
27
|
Latour S, Zanese M, Le Morvan V, Vacher AM, Menard N, Bijou F, Durrieu F, Soubeyran P, Savina A, Vacher P, Bresson-Bepoldin L. Role of Calcium Signaling in GA101-Induced Cell Death in Malignant Human B Cells. Cancers (Basel) 2019; 11:cancers11030291. [PMID: 30832225 PMCID: PMC6468563 DOI: 10.3390/cancers11030291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
GA101/obinutuzumab is a novel type II anti-CD20 monoclonal antibody (mAb), which is more effective than rituximab (RTX) in preclinical and clinical studies when used in combination with chemotherapy. Ca2+ signaling was shown to play a role in RTX-induced cell death. This report concerns the effect of GA101 on Ca2+ signaling and its involvement in the direct cell death induced by GA101. We reveal that GA101 triggered an intracellular Ca2+ increase by mobilizing intracellular Ca2+ stores and activating Orai1-dependent Ca2+ influx in non-Hodgkin lymphoma cell lines and primary B-Cell Chronic Lymphocytic Leukemia (B-CLL) cells. According to the cell type, Ca2+ was mobilized from two distinct intracellular compartments. In Raji, BL2, and B-CLL cells, GA101 induced a Ca2+ release from lysosomes, leading to the subsequent lysosomal membrane permeabilization and cell death. Inhibition of this calcium signaling reduced GA101-induced cell death in these cells. In SU-DHL-4 cells, GA101 mobilized Ca2+ from the endoplasmic reticulum (ER). Inhibition of ER replenishment, by blocking Orai1-dependent Ca2+ influx, led to an ER stress and unfolded protein response (UPR) which sensitized these cells to GA101-induced cell death. These results revealed the central role of Ca2+ signaling in GA101’s action mechanism, which may contribute to designing new rational drug combinations improving its clinical efficacy.
Collapse
Affiliation(s)
- Simon Latour
- Institut Bergonié, Comprehensive Cancer Centre, F-33000 Bordeaux, France.
- Department of Life and Health Sciences, University of Bordeaux, F-33076 Bordeaux, France.
- INSERM, U1218 ACTION, F-33000 Bordeaux, France.
| | - Marion Zanese
- Institut Bergonié, Comprehensive Cancer Centre, F-33000 Bordeaux, France.
- Department of Life and Health Sciences, University of Bordeaux, F-33076 Bordeaux, France.
- INSERM, U1218 ACTION, F-33000 Bordeaux, France.
| | - Valérie Le Morvan
- Institut Bergonié, Comprehensive Cancer Centre, F-33000 Bordeaux, France.
- Department of Life and Health Sciences, University of Bordeaux, F-33076 Bordeaux, France.
- INSERM, U1218 ACTION, F-33000 Bordeaux, France.
| | - Anne-Marie Vacher
- Institut Bergonié, Comprehensive Cancer Centre, F-33000 Bordeaux, France.
- Department of Life and Health Sciences, University of Bordeaux, F-33076 Bordeaux, France.
- INSERM, U1218 ACTION, F-33000 Bordeaux, France.
| | - Nelly Menard
- Institut Bergonié, Comprehensive Cancer Centre, F-33000 Bordeaux, France.
- Department of Life and Health Sciences, University of Bordeaux, F-33076 Bordeaux, France.
- INSERM, U1218 ACTION, F-33000 Bordeaux, France.
| | - Fontanet Bijou
- Institut Bergonié, Comprehensive Cancer Centre, F-33000 Bordeaux, France.
| | - Francoise Durrieu
- Institut Bergonié, Comprehensive Cancer Centre, F-33000 Bordeaux, France.
| | - Pierre Soubeyran
- Institut Bergonié, Comprehensive Cancer Centre, F-33000 Bordeaux, France.
- Department of Life and Health Sciences, University of Bordeaux, F-33076 Bordeaux, France.
- INSERM, U1218 ACTION, F-33000 Bordeaux, France.
| | - Ariel Savina
- Institut Roche, 92100 Boulogne-Billancourt, France.
| | - Pierre Vacher
- Institut Bergonié, Comprehensive Cancer Centre, F-33000 Bordeaux, France.
- Department of Life and Health Sciences, University of Bordeaux, F-33076 Bordeaux, France.
- INSERM, U1218 ACTION, F-33000 Bordeaux, France.
| | - Laurence Bresson-Bepoldin
- Institut Bergonié, Comprehensive Cancer Centre, F-33000 Bordeaux, France.
- Department of Life and Health Sciences, University of Bordeaux, F-33076 Bordeaux, France.
- INSERM, U1218 ACTION, F-33000 Bordeaux, France.
| |
Collapse
|
28
|
Sabhachandani P, Sarkar S, Mckenney S, Ravi D, Evens AM, Konry T. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release. J Control Release 2019; 295:21-30. [PMID: 30550941 PMCID: PMC6396303 DOI: 10.1016/j.jconrel.2018.12.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL), the most common subtype of Non-Hodgkin lymphoma, exhibits pathologic heterogeneity and a dynamic immunogenic tumor microenvironment (TME). However, the lack of preclinical in vitro models of DLBCL TME hinders optimal therapeutic screening. This study describes the development of an integrated droplet microfluidics-based platform for high-throughput generation of immunogenic DLBCL spheroids. The spheroids consist of three cell types (cancer, fibroblast and lymphocytes) in a novel hydrogel combination of alginate and puramatrix, which promoted cell adhesion and aggregation. This system facilitates dynamic analysis of cellular interaction, proliferation and therapeutic efficacy via spatiotemporal monitoring and secretome profiling. The immunomodulatory drug lenalidomide had direct anti-proliferative effect on activated B-cell like DLBCL spheroids and reduced several cytokines and other markers (e.g., CCL2, CCL3, CCL4, CD137 and ANG-1 levels) compared with untreated spheroids. Collectively, this novel spheroid platform will enable high-throughput anti-cancer therapeutic screening in a semi-automated manner.
Collapse
MESH Headings
- Alginates/chemistry
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/immunology
- Cell Culture Techniques/instrumentation
- Cell Culture Techniques/methods
- Cell Line
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Coculture Techniques/instrumentation
- Coculture Techniques/methods
- Drug Screening Assays, Antitumor/instrumentation
- Drug Screening Assays, Antitumor/methods
- Equipment Design
- Humans
- Hydrogels/chemistry
- Immunologic Factors/pharmacology
- Lab-On-A-Chip Devices
- Lenalidomide/pharmacology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/immunology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/immunology
Collapse
Affiliation(s)
- Pooja Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Saheli Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Seamus Mckenney
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Shehzad A, Ravinayagam V, AlRumaih H, Aljafary M, Almohazey D, Almofty S, Al-Rashid NA, Al-Suhaimi EA. Application of Three-dimensional (3D) Tumor Cell Culture Systems and Mechanism of Drug Resistance. Curr Pharm Des 2019; 25:3599-3607. [PMID: 31612821 DOI: 10.2174/1381612825666191014163923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
The in-vitro experimental model for the development of cancer therapeutics has always been challenging. Recently, the scientific revolution has improved cell culturing techniques by applying three dimensional (3D) culture system, which provides a similar physiologically relevant in-vivo model for studying various diseases including cancer. In particular, cancer cells exhibiting in-vivo behavior in a model of 3D cell culture is a more accurate cell culture model to test the effectiveness of anticancer drugs or characterization of cancer cells in comparison with two dimensional (2D) monolayer. This study underpins various factors that cause resistance to anticancer drugs in forms of spheroids in 3D in-vitro cell culture and also outlines key challenges and possible solutions for the future development of these systems.
Collapse
Affiliation(s)
- Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Vijaya Ravinayagam
- Scientific Research & Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hamad AlRumaih
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Meneerah Aljafary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dana Almohazey
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sarah Almofty
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noor A Al-Rashid
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
30
|
Rossi C, Gravelle P, Decaup E, Bordenave J, Poupot M, Tosolini M, Franchini DM, Laurent C, Morin R, Lagarde JM, Ysebaert L, Ligat L, Jean C, Savina A, Klein C, Céspedes AM, Perez-Galan P, Fournié JJ, Bezombes C. Boosting γδ T cell-mediated antibody-dependent cellular cytotoxicity by PD-1 blockade in follicular lymphoma. Oncoimmunology 2018; 8:1554175. [PMID: 30723586 DOI: 10.1080/2162402x.2018.1554175] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Follicular lymphoma (FL) is a common non Hodgkin's lymphoma subtype in which immune escape mechanisms are implicated in resistance to chemo-immunotherapy. Although molecular studies point to qualitative and quantitative deregulation of immune checkpoints, in depth cellular analysis of FL immune escape is lacking. Here, by functional assays and in silico analyses we show that a subset of FL patients displays a 'high' immune escape phenotype. These FL cases are characterized by abundant infiltration of PD1+ CD16+ TCRVγ9Vδ2 γδ T lymphocytes. In a 3D co-culture assay (MALC), γδ T cells mediate both direct and indirect (ADCC in the presence of anti-CD20 mAbs) cytolytic activity against FL cell aggregates. Importantly, PD-1, which is expressed by most FL-infiltrating γδ T lymphocytes with ADCC capacity, impairs these functions. In conclusion, we identify a PD1-regulated γδ T cell cytolytic immune component in FL. Our data provide a treatment rational by PD-1 blockade aimed at boosting γδ T cell anti-tumor functions in FL.
Collapse
Affiliation(s)
- Cédric Rossi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France.,CHU Dijon, Hématologie clinique, Hôpital François Mitterand, Dijon, France
| | - Pauline Gravelle
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France.,Department of Pathology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Emilie Decaup
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France
| | - Julie Bordenave
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France
| | - Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Don-Marc Franchini
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France.,Department of Pathology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | | | | | - Loïc Ysebaert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France.,Department of Hematology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Laetitia Ligat
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Christine Jean
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France
| | | | - Christian Klein
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Alba Matas Céspedes
- Hematology-Oncology department, IDIBAPS, Center Esther Koplowitz, Barcelona, Spain
| | - Patricia Perez-Galan
- Hematology-Oncology department, IDIBAPS, Center Esther Koplowitz, Barcelona, Spain
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France
| | - Christine Bezombes
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France
| |
Collapse
|
31
|
Liu G, Wang B, Li S, Jin Q, Dai Y. Human breast cancer decellularized scaffolds promote epithelial-to-mesenchymal transitions and stemness of breast cancer cells in vitro. J Cell Physiol 2018; 234:9447-9456. [PMID: 30478896 DOI: 10.1002/jcp.27630] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
Breast cancer, with unsatisfactory survival rates, is the leading cause of cancer-related death in women worldwide. Recent advances in the genetic basis of breast cancer have benefitted the development of gene-based medicines and therapies. Tissue engineering technologies, including tissue decellularizations and reconstructions, are potential therapeutic alternatives for cancer research and tissue regeneration. In our study, human breast cancer biopsies were decellularized by a detergent technique, with sodium lauryl ether sulfate (SLES) solution, for the first time. And the decellularization process was optimized to maximally maintain tissue microarchitectures and extracellular matrix (ECM) components with minimal DNA compounds preserved. Histology analysis and DNA quantification results confirmed the decellularization effect with maximal genetic compounds removal. Quantification, immunofluorescence, and histology analyses demonstrated better preservation of ECM components in 0.5% SLES-treated scaffolds. Scaffolds seeded with MCF-7 cells demonstrated the process of cell recellularization in vitro, with increased cell migration, proliferation, and epithelial-to-mesenchymal transition (EMT) process. When treated with 5-fluorouracil, the expressions of stem cell markers, including Oct4, Sox2, and CD49F, were maximally maintained in the recellularized scaffold with decreased apoptosis rates compared with monolayer cells. These results showed that the decellularized breast scaffold model with SLES treatments would help to simulate the pathogenesis of breast cancer in vitro. And we hope that this model could further accelerate the development of effective therapies for breast cancer and benefit drug screenings.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of life science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Biao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of life science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Shubin Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of life science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qin Jin
- Department of Pathlogy, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Yanfeng Dai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of life science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
32
|
Jin Q, Liu G, Li S, Yuan H, Yun Z, Zhang W, Zhang S, Dai Y, Ma Y. Decellularized breast matrix as bioactive microenvironment for in vitro three‐dimensional cancer culture. J Cell Physiol 2018; 234:3425-3435. [PMID: 30387128 DOI: 10.1002/jcp.26782] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Qin Jin
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock College of Life Science, Inner Mongolia University Hohhot Inner Mongolia China
- Department of Pathology Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Gang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock College of Life Science, Inner Mongolia University Hohhot Inner Mongolia China
| | - Shubin Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock College of Life Science, Inner Mongolia University Hohhot Inner Mongolia China
| | - Haihan Yuan
- Department of Obstetrics People's Hospital of Beijing Daxing District Beijing China
| | - Zhizhong Yun
- Centre of Reproductive Medicine Inner Mongolia Hospital Hohhot Inner Mongolia China
| | - Wenqi Zhang
- College of Basic Medical Wanna Medical School Wuhu China
| | - Shu Zhang
- Department of Pathology Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Yanfeng Dai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock College of Life Science, Inner Mongolia University Hohhot Inner Mongolia China
| | - Yuzhen Ma
- Centre of Reproductive Medicine Inner Mongolia Hospital Hohhot Inner Mongolia China
| |
Collapse
|
33
|
Zoellner AK, Peter N, Zimmermann Y, Hutter G, Hiddemann W, Dreyling M. Transient antagonism of anti-CD20 monoclonal antibodies and PI3K inhibitor idelalisib in DLBCL cell lines. Eur J Haematol 2018; 101:143-149. [PMID: 29617050 DOI: 10.1111/ejh.13075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION PI3K inhibitors are evaluated for relapsed and refractory Diffuse large B-cell lymphoma (DLBCL) patients. OBJECTIVE As rituximab has shown to influence B-cell receptor (BCR) signaling, we investigated the interaction of anti-CD20 antibody rituximab and the new type II glycoengineered anti-CD20 antibody obinutuzumab in combination with the PI3K delta inhibitor idelalisib. METHODS Established DLBCL cell lines were treated with either rituximab or obinutuzumab alone or in combination with PI3K delta inhibitor idelalisib. RESULTS Rituximab and to a lesser extent obinutuzumab monotherapy resulted in a temporary upregulation of p-Akt, p42/44, and p38 signaling pathways. Idelalisib reduced p-Akt expression. Rituximab antagonized the p-Akt downregulation at early time points, while obinutuzumab did not interfere with idelalisib's effects. In cell growth analysis, early antagonism could also be detected. CONCLUSION The combination of idelalisib with CD antibodies shows an initial antagonism of rituximab but not obinutuzumab in downregulation of PI3K-signaling targets.
Collapse
Affiliation(s)
- Anna-Katharina Zoellner
- Department of Medicine III, Ludwig-Maximilians-University, Munich, Germany
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians-University, Munich, Germany
| | - Nico Peter
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians-University, Munich, Germany
| | - Yvonne Zimmermann
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians-University, Munich, Germany
| | - Grit Hutter
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians-University, Munich, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Dreyling
- Department of Medicine III, Ludwig-Maximilians-University, Munich, Germany
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
34
|
Awasthi A, Rolland DCM, Ayello J, van de Ven C, Basrur V, Conlon K, Fermin D, Barth MJ, Klein C, Elenitoba-Johnson KSJ, Lim MS, Cairo MS. A comparative global phosphoproteomics analysis of obinutuzumab (GA101) versus rituximab (RTX) against RTX sensitive and resistant Burkitt lymphoma (BL) demonstrates differential phosphorylation of signaling pathway proteins after treatment. Oncotarget 2017; 8:113895-113909. [PMID: 29371955 PMCID: PMC5768372 DOI: 10.18632/oncotarget.23040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/26/2017] [Indexed: 01/13/2023] Open
Abstract
We recently demonstrated that obinutuzumab (GA101), a novel glycoengineered type II CD20 Ab compared to rituximab (RTX) mediates significantly enhanced antibody-dependent cell cytotoxicity (ADCC) in vitro and increased overall survival in a Burkitt lymphoma (BL) xenograft non-obese diabetic severe combined immunodeficiency gamma (NSG) model. In this study we compared the phosphoproteomic changes by pathway analysis following obinutuzumab vs RTX against RTX-sensitive (Raji) and -resistant BL (Raji4RH). Phosphoproteomic analyses were performed by mass-spectrometry (MS)-based label-free quantitative phosphoproteomic profiling. We demonstrated that 418 proteins in Raji and 377 proteins in Raji 4RH, were differentially phosphorylated (>1.5-fold) after obinutuzumab vs. RTX. Proteins that were significantly differentially phosphorylated included the B cell antigen receptor (BCR) (PLCG2, BTK and GSK3B), Fc gamma phagocytosis (FCRG2B, MAPK1, PLCG2 and RAF1), and natural killer cell-mediated cytotoxicity (MAPK1, RAF1, PLCG2 and MAPK3) signaling pathways. Differential phosphorylation of BCR or cytotoxicity pathway proteins revealed significant up-regulation of BTK, PLCY2 and ERK1/RAF1 after obinutuzumab compared to RTX. Silencing of PLCG2 in the BCR and MAPK1 in the cytotoxicity pathway significantly increased BL proliferation and decreased BL cytotoxicity after obinutuzumab compared to RTX. These results in combination with our previous results demonstrating a significant improvement in in vitro BL cytotoxicity and in vivo BL survival by obinutuzumab compared to RTX may in part be due to differential effects on selected BL protein signaling pathways.
Collapse
Affiliation(s)
- Aradhana Awasthi
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Delphine C M Rolland
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kevin Conlon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Damian Fermin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew J Barth
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Christian Klein
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA.,Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
35
|
Ikram M, Lim Y, Baek SY, Jin S, Jeong YH, Kwak JY, Yoon S. Co-targeting of Tiam1/Rac1 and Notch ameliorates chemoresistance against doxorubicin in a biomimetic 3D lymphoma model. Oncotarget 2017; 9:2058-2075. [PMID: 29416753 PMCID: PMC5788621 DOI: 10.18632/oncotarget.23156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Lymphoma is a heterogeneous disease with a highly variable clinical course and prognosis. Improving the prognosis for patients with relapsed and treatment-resistant lymphoma remains challenging. Current in vitro drug testing models based on 2D cell culture lack natural tissue-like structural organization and result in disappointing clinical outcomes. The development of efficient drug testing models using 3D cell culture that more accurately reflects in vivo behaviors is vital. Our aim was to establish an in vitro 3D lymphoma model that can imitate the in vivo 3D lymphoma microenvironment. Using this model, we explored strategies to enhance chemosensitivity to doxorubicin, an important chemotherapeutic drug widely used for the treatment of hematological malignancies. Lymphoma cells grown in this model exhibited excellent biomimetic properties compared to conventional 2D culture including (1) enhanced chemotherapy resistance, (2) suppressed rate of apoptosis, (3) upregulated expression of drug resistance genes (MDR1, MRP1, BCRP and HIF-1α), (4) elevated levels of tumor aggressiveness factors including Notch (Notch-1, -2, -3, and -4) and its downstream molecules (Hes-1 and Hey-1), VEGF and MMPs (MMP-2 and MMP-9), and (5) enrichment of a lymphoma stem cell population. Tiam1, a potential biomarker of tumor progression, metastasis, and chemoresistance, was activated in our 3D lymphoma model. Remarkably, we identified two synergistic therapeutic oncotargets, Tiam1 and Notch, as a strategy to combat resistance against doxorubicin in EL4 T and A20 B lymphoma. Therefore, our data suggest that our 3D lymphoma model is a promising in vitro research platform for studying lymphoma biology and therapeutic approaches.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yeseon Lim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Sun-Yong Baek
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Songwan Jin
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung 15073, Korea
| | - Young Hun Jeong
- Department of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Jong-Young Kwak
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sik Yoon
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The specialized microenvironments of lymphoid tissue affect immune cell function and progression of disease. However, current animal models are low throughput and a large number of human diseases are difficult to model in animals. Animal models are less amenable to manipulation of tissue niche components, signalling pathways, epigenetics, and genome editing than ex vivo models. On the other hand, conventional 2D cultures lack the physiological relevance to study precise microenvironmental interactions. Thus, artificial tissues are being developed to study these interactions in the context of immune development, function, and disease. RECENT FINDINGS New bone marrow and lymph node models have been created to, respectively, study microenvironmental interactions in hematopoiesis and germinal center-like biology. These models have also been extended to understand the effect of these interactions on the progression and therapeutic response in leukemia, multiple myeloma, and lymphoma. SUMMARY 3D in-vitro immune models have elucidated new cellular, biochemical, and biophysical interactions as potential regulatory mechanisms, therapeutic targets, or biomarkers that previously could not be studied in animal models and conventional 2D cultures. Incorporation of advanced biomaterials, microfluidics, genome editing, and single-cell analysis tools will enable further studies of function, driver mutations, and tumor heterogeneity. Continual refinement will help inform the development of antibody and cell-based immunotherapeutics and patient-specific treatment plans.
Collapse
Affiliation(s)
- Shivem B. Shah
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
- Graduate Field Faculty of Immunology and Infectious Disease, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
37
|
Abstract
Hematological malignancies manifest as lymphoma, leukemia, and myeloma, and remain a burden on society. From initial therapy to endless relapse-related treatment, societal burden is felt not only in the context of healthcare cost, but also in the compromised quality of life of patients. Long-term therapeutic strategies have become the standard in keeping hematological malignancies at bay as these cancers develop resistance to each round of therapy with time. As a result, there is a continual need for the development of new drugs to combat resistant disease in order to prolong patient life, if not to produce a cure. This review aims to summarize advances in targeting lymphoma, leukemia, and myeloma through both cutting-edge and well established platforms. Current standard of treatment will be reviewed for these malignancies and emphasis will be made on new therapy development in the areas of antibody engineering, epigenetic small molecule inhibiting drugs, vaccine development, and chimeric antigen receptor cell engineering. In addition, platforms for the delivery of these and other drugs will be reviewed including antibody-drug conjugates, micro- and nanoparticles, and multimodal hydrogels. Lastly, we propose that tissue engineered constructs for hematological malignancies are the missing link in targeted drug discovery alongside mouse and patient-derived xenograft models.
Collapse
|
38
|
Ma B, Ujjani C. The clinical development of obinutuzumab for the treatment of follicular lymphoma. Cancer Manag Res 2017; 9:103-113. [PMID: 28435325 PMCID: PMC5391868 DOI: 10.2147/cmar.s114526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Impressive progress has been made in recent decades for advanced-stage follicular lymphoma with the availability of anti-CD20 monoclonal antibodies, initially rituximab and more recently obinutuzumab. Obinutuzumab is a unique, third-generation, fully humanized glycoengineered IgG1 type II anti-CD20 monoclonal antibody. It has been shown to have increased antitumor activity compared to rituximab in preclinical studies, including whole-blood B-cell depletion assays, xenograft models, and primate models. This has spurred on the development of obinutuzumab through Phase I/II trials as monotherapy and in combination with chemotherapeutic agents and other targeted therapies. Its efficacy compared to rituximab and in rituximab-refractory disease has led to its continued development and eventual approval for the treatment of follicular lymphoma. Here in this review, we highlight the design and development of obinutuzumab in the treatment of advanced stage grade 1-3A follicular lymphoma and its future directions.
Collapse
Affiliation(s)
| | - Chaitra Ujjani
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
39
|
Unexpected cross-reactivity of anti-cathepsin B antibodies leads to uncertainties regarding the mechanism of action of anti-CD20 monoclonal antibody GA101. Leuk Res 2017; 55:41-48. [PMID: 28122282 DOI: 10.1016/j.leukres.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/17/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
Abstract
GA101, also known as obinutuzumab or Gazyva (Gazyvaro), is a glycoengineered type II humanized antibody that targets the CD20 antigen expressed at the surface of B-cells. This novel anti-CD20 antibody is currently assessed in clinical trials with promising results as a single agent or as part of therapeutic combinations for the treatment of B-cell malignancies. Detailed understanding of the mechanisms of GA101-induced cell death is needed to get insight into possible resistance mechanisms occurring in patients. Although multiple in vitro and in vivo mechanisms have been suggested to describe the effects of GA101 on B-cells, currently available data are ambiguous. The aim of our study was to clarify the cellular mechanisms involved in GA101-induced cell death in vitro, and more particularly the respective roles played by lysosomal and mitochondrial membrane permeabilization. Our results confirm previous reports suggesting that GA101 triggers homotypic adhesion and caspase-independent cell death, two processes that are dependent on actin remodeling and involve the production of reactive oxygen species. With respect to lysosomal membrane permeabilization (LMP), our data suggest that lack of specificity of available antibodies directed against cathepsin B may have confounded previously published results, possibly challenging current LMP-driven model of GA101 action mode.
Collapse
|
40
|
Däbritz JHM, Yu Y, Milanovic M, Schönlein M, Rosenfeldt MT, Dörr JR, Kaufmann AM, Dörken B, Schmitt CA. CD20-Targeting Immunotherapy Promotes Cellular Senescence in B-Cell Lymphoma. Mol Cancer Ther 2016; 15:1074-81. [PMID: 26880268 DOI: 10.1158/1535-7163.mct-15-0627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
The CD20-targeting monoclonal antibody rituximab is an established component of immunochemotherapeutic regimens against B-cell lymphomas, where its coadministration with conventional anticancer agents has significantly improved long-term outcome. However, the cellular mechanisms by which rituximab exerts its antilymphoma activity are only partially understood. We show here that rituximab induces typical features of cellular senescence, a long-term growth arrest of viable cells with distinct biologic properties, in established B-cell lymphoma cell lines as well as primary transformed B cells. In addition, rituximab-based immunotherapy sensitized lymphoma cells to senescence induction by the chemotherapeutic compound adriamycin (a.k.a. doxorubicin), and, to a lesser extent, by the antimicrotubule agent vincristine. Anti-CD20 treatment further enhanced secretion of senescence-associated cytokines, and augmented the DNA damage response signaling cascade triggered by adriamycin. As the underlying prosenescence mechanism, we found intracellular reactive oxygen species (ROS) levels to be elevated in response to rituximab, and, in turn, the ROS scavenger N-acetylcysteine to largely abrogate rituximab-mediated senescence. Our results, further supported by gene set enrichment analyses in a clinical data set of chronic lymphocytic leukemia patient samples exposed to a rituximab-containing treatment regimen, provide important mechanistic insights into the biologic complexity of anti-CD20-evoked tumor responses, and unveil cellular senescence as a hitherto unrecognized effector principle of the antibody component in lymphoma immunochemotherapy. Mol Cancer Ther; 15(5); 1074-81. ©2016 AACR.
Collapse
Affiliation(s)
- J Henry M Däbritz
- Charité - University Medical Center, Medical Department of Hematology, Oncology and Tumor Immunology, Campus Virchow Clinic, Berlin, Germany. Charité - University Medical Center, Molekulares Krebsforschungszentrum, Berlin, Germany
| | - Yong Yu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maja Milanovic
- Charité - University Medical Center, Molekulares Krebsforschungszentrum, Berlin, Germany
| | - Martin Schönlein
- Charité - University Medical Center, Molekulares Krebsforschungszentrum, Berlin, Germany
| | - Mathias T Rosenfeldt
- Julius Maximilians University Würzburg, Department of Pathology, Würzburg, Germany
| | - Jan R Dörr
- Charité - University Medical Center, Molekulares Krebsforschungszentrum, Berlin, Germany
| | - Andreas M Kaufmann
- Charité - University Medical Center, Gynecological Tumor Immunology, Campus Benjamin Franklin, Berlin, Germany
| | - Bernd Dörken
- Charité - University Medical Center, Medical Department of Hematology, Oncology and Tumor Immunology, Campus Virchow Clinic, Berlin, Germany. Charité - University Medical Center, Molekulares Krebsforschungszentrum, Berlin, Germany. Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner Site Berlin, Germany
| | - Clemens A Schmitt
- Charité - University Medical Center, Medical Department of Hematology, Oncology and Tumor Immunology, Campus Virchow Clinic, Berlin, Germany. Charité - University Medical Center, Molekulares Krebsforschungszentrum, Berlin, Germany. Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner Site Berlin, Germany. Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
41
|
Follicular lymphoma: in vitro effects of combining lymphokine-activated killer (LAK) cell-induced cytotoxicity and rituximab- and obinutuzumab-dependent cellular cytotoxicity (ADCC) activity. Immunol Res 2015; 64:548-57. [DOI: 10.1007/s12026-015-8747-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Novel Therapies for Chronic Lymphocytic Leukemia: A Canadian Perspective. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:627-634.e5. [DOI: 10.1016/j.clml.2015.07.649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/09/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022]
|
43
|
Owen C, Bence-Bruckler I, Chamakhi I, Toze C, Assaily W, Christofides A, Robinson S. A canadian perspective on the first-line treatment of chronic lymphocytic leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:303-13. [PMID: 25937158 DOI: 10.1016/j.clml.2015.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022]
Abstract
Despite important advances in the treatment of first-line chronic lymphocytic leukemia (CLL) over the past decade, CLL remains an incurable disease with significant unmet needs. The combination of rituximab with fludarabine and cyclophosphamide (FCR) significantly improved overall survival and progression-free survival compared with fludarabine and cyclophosphamide alone in first-line treatment of CLL. However, because of its high toxicity, FCR is only recommended for younger, fit patients who can tolerate the treatment. This excludes a large fraction of CLL patients who are elderly and/or who have comorbidities. Thus, determining the appropriate treatment choices for this group of patients who are unfit for FCR treatment is a significant challenge in CLL. Current treatment choices in Canadian practice include bendamustine with rituximab, fludarabine with rituximab, and chlorambucil with rituximab. Two novel monoclonal antibodies, ofatumumab and obinutuzumab, have also recently received Health Canada approval for the first-line treatment of CLL patients in combination with chlorambucil. In addition, the Bruton tyrosine kinase inhibitor, ibrutinib, has recently been approved by Health Canada for the first-line treatment of CLL patients with deletion 17p. In the coming years, several other novel agents that are being developed are likely to change the CLL treatment landscape dramatically, however, because these novel agents are currently unavailable, the purpose of this review is to recommend the best treatment approaches in Canada using currently available therapies.
Collapse
Affiliation(s)
- Carolyn Owen
- Foothills Medical Centre & Tom Baker Cancer Centre, Calgary, Alberta, Canada.
| | | | - Inès Chamakhi
- Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Cynthia Toze
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | - Sue Robinson
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
44
|
Song HHG, Park KM, Gerecht S. Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv Drug Deliv Rev 2014; 79-80:19-29. [PMID: 24969477 PMCID: PMC4258430 DOI: 10.1016/j.addr.2014.06.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/14/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022]
Abstract
A growing number of failing clinical trials for cancer therapy are substantiating the need to upgrade the current practice in culturing tumor cells and modeling tumor angiogenesis in vitro. Many attempts have been made to engineer vasculature in vitro by utilizing hydrogels, but the application of these tools in simulating in vivo tumor angiogenesis is still very new. In this review, we explore current use of hydrogels and their design parameters to engineer vasculogenesis and angiogenesis and to evaluate the angiogenic capability of cancerous cells and tissues. By coupling these hydrogels with other technologies such as lithography and three-dimensional printing, one can create an advanced microvessel model as microfluidic channels to more accurately capture the native angiogenesis process.
Collapse
Affiliation(s)
- Hyun-Ho Greco Song
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, 3400 North Charles street, Baltimore, MD 21218, USA
| | - Kyung Min Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, 3400 North Charles street, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, 3400 North Charles street, Baltimore, MD 21218, USA.
| |
Collapse
|