1
|
Qiu X, Wu W, Zhang S, Huang C, Lin D. 3-Hydroxybutyrate Promotes Myoblast Proliferation and Differentiation through Energy Metabolism and GPR109a-Mediated Ca 2+-NFAT Signaling Pathways. J Proteome Res 2025; 24:2063-2080. [PMID: 40099866 DOI: 10.1021/acs.jproteome.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Skeletal muscle wasting is a critical clinical problem associated with several diseases that significantly impair patient outcomes due to the progressive loss of muscle mass and function. This study explores the potential of 3-hydroxybutyrate (3-HB) as a therapeutic agent to counteract muscle atrophy by promoting the proliferation and differentiation of C2C12 myoblasts. Using nuclear magnetic resonance (NMR)-based metabolomics analysis, we uncover the underlying mechanisms by which 3-HB exerts its effects. Our findings demonstrate that 3-HB exerts its effects through two distinct mechanisms: as a metabolic substrate and as a signaling molecule. As a metabolic substrate, 3-HB enhances myoblast energy efficiency by stimulating the expression of G protein-coupled receptor 109a (GPR109a), which subsequently upregulates the 3-HB transporters MCT1 and CD147, the utilization enzyme OXCT1, and phosphorylated AMPK, thereby increasing ATP production. As a signaling molecule, 3-HB activates GPR109a, promoting calcium influx, improving calcium homeostasis, and increasing the expression of Ca2+-related proteins such as CAMKK2. This signaling cascade activates calcineurin (CaN), facilitating NFAT translocation to the nucleus and gene expression that drives myoblast proliferation and differentiation. By elucidating the dual regulatory roles of 3-HB in energy metabolism and cellular signaling, this study not only advances our understanding of muscle physiology but also highlights the potential of 3-HB as a novel therapeutic approach for the prevention or treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenfang Wu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuya Zhang
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361024, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Kirkham AL, Avery JP, Beltran RS, Burns JM. Post-lactation mass recovery and metabolic hormone dynamics in adult female Weddell seals. Gen Comp Endocrinol 2025; 365:114706. [PMID: 40074089 DOI: 10.1016/j.ygcen.2025.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Weddell seal (Leptonychotes weddellii) females lose substantial body mass across an intensive, nutritionally restricted lactation period and then must rapidly recover mass during the short Antarctic summer. In this study, we examined endocrine dynamics associated with mass loss across lactation and subsequent realimentation in Weddell seals, comparing patterns between seals that recently gave birth and demographically similar non-reproductive females (skip females) in McMurdo Sound, Antarctica. Postpartum seals near weaning (∼35 days postpartum, n = 64) and skip females (n = 32) were handled during early austral summer (November/December) and rehandled in late summer (January/February). Body mass, body composition (% lipid), and a suite of metabolic hormones (growth hormone (GH), insulin-like growth factor (IGF)-I, cortisol, total thyroxine (tT4), free thyroxine (fT4), and total triiodothyronine (tT3) and IGF binding protein (IGFBP)-2 and -3) were measured. Postpartum seals gained mass after weaning (0.98 ± 0.56 kg·day-1 (mean ± SD)), primarily as lean tissue rather than lipid, while their serum concentrations of tT4 and fT4, IGF-I, and cortisol increased. Their circulating GH and IGFBP-2 concentrations decreased and correlated negatively with mass. Skip females had greater body masses and lipid stores than postpartum seals at the end of the lactation period in early summer, but they lost mass (-1.03 ± 0.35 kg·day-1) and lipid stores over summer while their serum cortisol concentrations increased. Overall, body mass and composition of postpartum and skip females converged across summer. This convergence, likely driven in large part by contrasting endocrine profiles between the groups, may allow female Weddell seals to reach an advantageous seasonal body mass "set point" by onset of winter.
Collapse
Affiliation(s)
- Amy L Kirkham
- Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA; College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK 99801, USA.
| | - Julie P Avery
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, PO Box 755910, AK 99775, USA.
| | - Roxanne S Beltran
- Ecology and Evolutionary Biology, University of California Santa Cruz, CA 95060, USA.
| | - Jennifer M Burns
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX 79409, USA.
| |
Collapse
|
3
|
Wang HJ, Fan W, Liu S, Kim K, Matsushima A, Ogawa S, Kang HG, Zhu J, Estepa G, He M, Crossley L, Liddle C, Kim MS, Truitt ML, Yu RT, Atkins AR, Downes M, Evans RM. BCL6 coordinates muscle mass homeostasis with nutritional states. Proc Natl Acad Sci U S A 2025; 122:e2408896122. [PMID: 39841144 PMCID: PMC11789089 DOI: 10.1073/pnas.2408896122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Nutritional status is a determining factor for growth during development and homeostatic maintenance in adulthood. In the context of muscle, growth hormone (GH) coordinates growth with nutritional status; however, the detailed mechanisms remain to be fully elucidated. Here, we show that the transcriptional repressor B cell lymphoma 6 (BCL6) maintains muscle mass by sustaining GH action. Muscle-specific genetic deletion of BCL6 at either perinatal or adult stages profoundly reduces muscle mass and compromises muscle strength. Conversely, muscle-directed viral overexpression of BCL6 significantly reverses the loss of muscle mass and strength. Mechanistically, we show that BCL6 transcriptionally represses the suppressor of cytokine signaling 2 to sustain the anabolic actions of GH in muscle. Additionally, we find that GH itself transcriptionally inhibits BCL6 through the Janus kinase and signal transducer and activator of transcription 5 (JAK/STAT5) pathway. Supporting the physiologic relevance of this feedback regulation, we show the coordinated suppression of muscle Bcl6 expression with the induction of GH in the fasted state. These findings reveal the complexity of the feedback controls modulating GH signaling and identify BCL6 as a key homeostatic regulator coordinating muscle mass with nutrient availability. Moreover, these studies open avenues for targeted therapeutic strategies to combat muscle-wasting conditions.
Collapse
Affiliation(s)
- Hui J. Wang
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Sihao Liu
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Kyeongkyu Kim
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Ayami Matsushima
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka819-0395, Japan
| | - Satoshi Ogawa
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Hyun Gyu Kang
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Jonathan Zhu
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Gabriela Estepa
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Mingxiao He
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Lillian Crossley
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead, NSW2124, Australia
| | - Minseok S. Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Republic of Korea
| | - Morgan L. Truitt
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | | | - Michael Downes
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute, La Jolla, CA92037-1002
| |
Collapse
|
4
|
Holliday A, Horner K, Johnson KO, Dagbasi A, Crabtree DR. Appetite-related Gut Hormone Responses to Feeding Across the Life Course. J Endocr Soc 2025; 9:bvae223. [PMID: 39777204 PMCID: PMC11702868 DOI: 10.1210/jendso/bvae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 01/11/2025] Open
Abstract
Appetite-related hormones are secreted from the gut, signaling the presence of nutrients. Such signaling allows for cross-talk between the gut and the appetite-control regions of the brain, influencing appetite and food intake. As nutritional requirements change throughout the life course, it is perhaps unsurprising that appetite and eating behavior are not constant. Changes in appetite-related gut hormones may underpin these alterations in appetite and eating. In this article, we review evidence of how the release of appetite-related gut hormones changes throughout the life course and how this impacts appetite and eating behaviour. We focus on hormones for which there is the strongest evidence of impact on appetite, food intake, and body weight: the anorexigenic glucagon like peptide-1, peptide tyrosine tyrosine, and cholecystokinin, and the orexigenic ghrelin. We consider hormone concentrations, particularly in response to feeding, from the very early days of life, through childhood and adolescence, where responses may reflect energy requirements to support growth and development. We discuss the period of adulthood and midlife, with a particular focus on sex differences and the effect of menstruation, pregnancy, and menopause, as well as the potential influence of appetite-related gut hormones on body composition and weight status. We then discuss recent advancements in our understanding of how unfavorable changes in appetite-related gut hormone responses to feeding in later life may contribute to undernutrition and a detrimental aging trajectory. Finally, we briefly highlight priorities for future research.
Collapse
Affiliation(s)
- Adrian Holliday
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Katy Horner
- Institute of Sport and Health, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Kelsie O Johnson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5RF, UK
| | - Aygul Dagbasi
- Section of Nutrition, Department of Metabolism Digestion and Reproduction, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Daniel R Crabtree
- The Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
5
|
Mendes J, Palma J, Santos A, Ribeiro J, Oliveiros B, Silva H. Association of rs35767 polymorphism in the IGF1 gene with athletic performance in power and endurance sports: A meta-analysis. Growth Horm IGF Res 2024; 79:101627. [PMID: 39514943 DOI: 10.1016/j.ghir.2024.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Sport performance is a multifactorial phenotype dependent on the interaction of multiple genetic and non-genetic factors. More than 200 polymorphisms have been associated with athletic performance. The single nucleotide polymorphism (SNP) rs35767, located in the regulatory region of the IGF1 gene, influences its expression and has been associated with sports-related phenotypes. We aimed to perform a meta-analysis to evaluate the association between the rs35767 polymorphism of the IGF1 gene and athletic performance in power and endurance sports. METHODS Literature has been retrieved from PubMed, Web of Science, Scopus, Embase, and Sport Discus databases until October 2023. This study was designed according to the PRISMA statement. Different models were tested, and heterogeneity was evaluated. RESULTS Three studies were included in this meta-analysis. Statistically significant differences were highlighted for the frequency of the minor allele when comparing all athletes and controls (p < 0.001; OR = 1.74; 95 % CI = 1.26-2.40), endurance athletes and controls (p = 0.016; OR = 1.87; 95 % CI = 1.12-3.1) and power sport athletes and controls (p = 0.007; OR = 1.62; 95 % CI = 1.14-2.31). No statistically significant difference was found between the power and endurance groups. According to data analysis, the recessive model is the most suitable genetic model. CONCLUSIONS This metanalysis supports the role of the minor allele of the rs35767 polymorphism of the IGF1 gene as favoring an athlete's performance in endurance and power sports.
Collapse
Affiliation(s)
- João Mendes
- University of Coimbra, Faculty of Medicine, Institute of Medical Genetics/UCGenomics, 3000-548 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, 3000-548 Coimbra, Portugal.
| | - João Palma
- Faculty of Sports Science and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal
| | - Amândio Santos
- Faculty of Sports Science and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal; Research Centre for Sport and Physical Activity (CIDAF), University of Coimbra, 3040-248 Coimbra, Portugal
| | - Joana Ribeiro
- University of Coimbra, Faculty of Medicine, Institute of Medical Genetics/UCGenomics, 3000-548 Coimbra, Portugal.
| | - Bárbara Oliveiros
- University of Coimbra, Faculty of Medicine, Institute of Medical Genetics/UCGenomics, 3000-548 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, 3000-548 Coimbra, Portugal.
| | - Henriqueta Silva
- University of Coimbra, Faculty of Medicine, Institute of Medical Genetics/UCGenomics, 3000-548 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, 3000-548 Coimbra, Portugal.
| |
Collapse
|
6
|
Mennitti C, Farina G, Imperatore A, De Fonzo G, Gentile A, La Civita E, Carbone G, De Simone RR, Di Iorio MR, Tinto N, Frisso G, D’Argenio V, Lombardo B, Terracciano D, Crescioli C, Scudiero O. How Does Physical Activity Modulate Hormone Responses? Biomolecules 2024; 14:1418. [PMID: 39595594 PMCID: PMC11591795 DOI: 10.3390/biom14111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Physical activity highly impacts the neuroendocrine system and hormonal secretion. Numerous variables, both those related to the individual, including genetics, age, sex, biological rhythms, nutritional status, level of training, intake of drugs or supplements, and previous or current pathologies, and those related to the physical activity in terms of type, intensity, and duration of exercise, or environmental conditions can shape the hormonal response to physical exercise. The aim of this review is to provide an overview of the effects of physical exercise on hormonal levels in the human body, focusing on changes in concentrations of hormones such as cortisol, testosterone, and insulin in response to different types and intensities of physical activity. Regular monitoring of hormonal responses in athletes could be a potential tool to design individual training programs and prevent overtraining syndrome.
Collapse
Affiliation(s)
- Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Gabriele Farina
- Department of Human Exercise and Health Sciences, University of Rome “Foro Italico” Piazza L. de Bosis 6, 00135 Rome, Italy;
| | - Antonio Imperatore
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Giulia De Fonzo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Alessandro Gentile
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (E.L.C.); (G.C.); (D.T.)
| | - Gianluigi Carbone
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (E.L.C.); (G.C.); (D.T.)
| | - Rosa Redenta De Simone
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, 00166 Rome, Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (E.L.C.); (G.C.); (D.T.)
| | - Clara Crescioli
- Department of Human Exercise and Health Sciences, University of Rome “Foro Italico” Piazza L. de Bosis 6, 00135 Rome, Italy;
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| |
Collapse
|
7
|
Damanti S, Senini E, De Lorenzo R, Merolla A, Santoro S, Festorazzi C, Messina M, Vitali G, Sciorati C, Rovere-Querini P. Acute Sarcopenia: Mechanisms and Management. Nutrients 2024; 16:3428. [PMID: 39458423 PMCID: PMC11510680 DOI: 10.3390/nu16203428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Acute sarcopenia refers to the swift decline in muscle function and mass following acute events such as illness, surgery, trauma, or burns that presents significant challenges in hospitalized older adults. METHODS narrative review to describe the mechanisms and management of acute sarcopenia. RESULTS The prevalence of acute sarcopenia ranges from 28% to 69%, likely underdiagnosed due to the absence of muscle mass and function assessments in most clinical settings. Systemic inflammation, immune-endocrine dysregulation, and anabolic resistance are identified as key pathophysiological factors. Interventions include early mobilization, resistance exercise, neuromuscular electrical stimulation, and nutritional strategies such as protein supplementation, leucine, β-hydroxy-β-methyl-butyrate, omega-3 fatty acids, and creatine monohydrate. Pharmaceuticals show variable efficacy. CONCLUSIONS Future research should prioritize serial monitoring of muscle parameters, identification of predictive biomarkers, and the involvement of multidisciplinary teams from hospital admission to address sarcopenia. Early and targeted interventions are crucial to improve outcomes and prevent long-term disability associated with acute sarcopenia.
Collapse
Affiliation(s)
- Sarah Damanti
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Eleonora Senini
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Aurora Merolla
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Simona Santoro
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Costanza Festorazzi
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Marco Messina
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Giordano Vitali
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
| | - Clara Sciorati
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Patrizia Rovere-Querini
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| |
Collapse
|
8
|
Ma S, Liu J, Zhao Y, Wang Y, Zhao R. In ovo betaine injection improves breast muscle growth in newly hatched goslings through FXR/IGF-2 pathway. Poult Sci 2024; 103:104075. [PMID: 39094501 PMCID: PMC11345595 DOI: 10.1016/j.psj.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Betaine has been shown to enhance growth performance and increase breast muscle yield in ducks and broilers through various mechanisms, including the modification of DNA methylation. However, the impact of in ovo betaine injection on muscle growth in newly hatched goslings remains unclear. In this study, fifty eggs were injected with saline or betaine at 7.5 mg/egg prior to incubation, and the subsequent effects on breast muscle growth in the newly hatched goslings were investigated. Betaine significantly increased (P < 0.05) the hatch weight, breast muscle weight, and breast muscle index, accompanied by an augmentation in muscle bundle cross-sectional area. Concurrently, betaine significantly upregulated (P < 0.05) the expression levels of myogenic regulatory factors, including myogenin (MyoG) and paired box 7 (Pax7) both mRNA and protein, while downregulating (P < 0.05) the mRNA and protein levels of myostatin (MSTN). Histological analysis revealed a higher abundance of proliferating cell nuclear antigen (PCNA) and Pax7 immune-positive cells in the breast muscle of the betaine group, consistent with elevated PCNA and Pax7 mRNA and protein levels. Additionally, significantly increased (P < 0.05) contents of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2) were observed in the breast muscle of the betaine group, so was mRNA expression of IGF-1, IGF-2, and insulin-like growth factor 1 receptor (IGF-1R). Betaine also significantly in8creased (P < 0.05) global DNA methylation of the breast muscle, accompanied by enhanced mRNA and protein levels of methionine cycle and DNA methylation-related enzymes, Interestingly, the promoter regions of IGF-1, IGF-2, and IGF-1R genes were significantly hypomethylated (P < 0.05). Moreover, in ovo betaine injection significantly upregulated (P < 0.05) the protein level of farnesoid X receptor (FXR) in breast muscle and FXR binding to the promoter of IGF-2 gene. These findings suggest that in ovo betaine injection promotes breast muscle growth during embryonic development in goslings through the FXR-mediated IGF-2 pathway, ultimately improving hatch weight and breast muscle weight.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yulan Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yan Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
9
|
Tangbjerg M, Damgaard A, Karlsen A, Svensson RB, Schjerling P, Gelabert‐Rebato M, Pankratova S, Sangild PT, Kjaer M, Mackey AL. Insulin-like growth factor-1 infusion in preterm piglets does not affect growth parameters of skeletal muscle or tendon tissue. Exp Physiol 2024; 109:1529-1544. [PMID: 38980930 PMCID: PMC11363143 DOI: 10.1113/ep092010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Prematurity has physical consequences, such as lower birth weight, decreased muscle mass and increased risk of adult-onset metabolic disease. Insulin-like growth factor 1 (IGF-1) has therapeutic potential to improve the growth and quality of muscle and tendon in premature births, and thus attenuate some of these sequalae. We investigated the effect of IGF-1 on extensor carpi radialis muscle and biceps brachii tendon of preterm piglets. The preterm group consisted of 19-day-old preterm (10 days early) piglets, treated with either IGF-1 or vehicle. Term controls consisted of groups of 9-day-old piglets (D9) and 19-day-old piglets (D19). Muscle samples were analysed by immunofluorescence to determine the cross-sectional area (CSA) of muscle fibres, fibre type composition, satellite cell content and central nuclei-containing fibres in the muscle. Tendon samples were analysed for CSA, collagen content and maturation, and vascularization. Gene expression of the tendon was measured by RT-qPCR. Across all endpoints, we found no significant effect of IGF-1 treatment on preterm piglets. Preterm piglets had smaller muscle fibre CSA compared to D9 and D19 control group. Satellite cell content was similar across all groups. For tendon, we found an effect of age on tendon CSA, and mRNA levels of COL1A1, tenomodulin and scleraxis. Immunoreactivity for elastin and CD31, and several markers of tendon maturation, were increased in D9 compared to the preterm piglets. Collagen content was similar across groups. IGF-1 treatment of preterm-born piglets does not influence the growth and maturation of skeletal muscle and tendon.
Collapse
Affiliation(s)
- Malene Tangbjerg
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Ann Damgaard
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Anders Karlsen
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Rene B. Svensson
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Peter Schjerling
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Miriam Gelabert‐Rebato
- Research Institute of Biomedical and Health Sciences (IUIBS)University of Las Palmas de Gran Canaria, Las Palmas de Gran CanariaCanary IslandsSpain
| | - Stanislava Pankratova
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
- Department of NeonatologyRigshospitaletCopenhagenDenmark
- Department of PediatricsOdense University HospitalOdenseDenmark
| | - Michael Kjaer
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Abigail L. Mackey
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
Annibalini G, Di Patria L, Valli G, Bocconcelli M, Saltarelli R, Ferri L, Barberi L, Fanelli F, Morrone A, Barone R, Guerrini R, Musarò A, Stocchi V, Barbieri E. Impaired myoblast differentiation and muscle IGF-1 receptor signaling pathway activation after N-glycosylation inhibition. FASEB J 2024; 38:e23797. [PMID: 38963344 DOI: 10.1096/fj.202400213rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.
Collapse
Affiliation(s)
- Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Di Patria
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giacomo Valli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bocconcelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Lorenzo Ferri
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Laura Barberi
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia, University of Rome La Sapienza, Rome, Italy
| | - Fabiana Fanelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Amelia Morrone
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Renzo Guerrini
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia, University of Rome La Sapienza, Rome, Italy
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, Rome, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
11
|
Hoseini M, Paknejad H, Sudagar M, Anvarifar H, Shekarabi SPH. Nucleotides supplementation (Nucleoforce fish™) in Caspian roach (Rutilus caspicus) diet: Growth performance, skin mucosal immune response, and resistance to salinity stress. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109381. [PMID: 38246268 DOI: 10.1016/j.fsi.2024.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
In this study, the growth, epidermal mucosal immunity, expression of growth-related genes, cross-protection, and resistance to salinity stress of Caspian roach were scrutinized in response to dietary levels of nucleotides (NT). Accordingly, 1200 fish (0.51 ± 0.01 g) were fed ad libitum with a basal diet (38.88 % crude protein and 10.04 % crude lipid in dry basis) containing incremental levels of NT at 0 (NT-0; control), 0.3 g kg-1 (NT-0.3), 0.6 g kg-1 (NT-0.6), and 1.2 g kg-1 (NT-1.2) for 8 weeks in triplicates. The growth performance was significantly increased in the fish fed with NT-0.6 and NT-1.2 diets compared to the control group (p < 0.05). A significant elevation in the growth hormone and insulin-like growth factor-I gene expression was recorded in NT-added groups at 0.6 and 1.2 g kg-1 compared to the control group (p < 0.05). In contrast to the control group, feeding on NT-0.6 and NT-1.2 diets had a remarkable effect on the skin mucus soluble protein and immunoglobulin levels (p < 0.05). After the feeding trial, we examined how salinity stress (15 g/l salinity) lonely and salinity stress under non-lethal thermal shock (+10 °C) affected heat shock protein (HSP70). Then, the mRNA expression of HSP70 gene from the gill was analyzed at 0, 2, 8, and 24 h post-challenge tests. The HSP70 gene expression level was approximately up-regulated more than 2-fold in NT-6 and NT-1.2 treatments compared to the control group under the salinity stress. Altogether, this research represents that the addition of NT at 0.6 and 1.2 g kg-1 in Caspian roach diet can improve overall performance and resistance to salinity stress.
Collapse
Affiliation(s)
- Marjan Hoseini
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hamed Paknejad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Mohammad Sudagar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hossein Anvarifar
- University of Applied Science and Technology, Provincial Unit, Gorgan, Golestan, Iran
| | - Seyed Pezhman Hosseini Shekarabi
- National Research Center of Saltwater Aquatic Animals, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bafq, Iran
| |
Collapse
|
12
|
Shi B, Sun R, Liu X, Xu Y, Jiang Y, Yan K, Chen Y. Cloning, phylogenetic and expression analysis of two MyoDs in yellowtail kingfish (Seriola lalandi). Gen Comp Endocrinol 2024; 347:114422. [PMID: 38092071 DOI: 10.1016/j.ygcen.2023.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
Yellowtail kingfish (Seriola lalandi) is a pelagic piscivore distributed circumglobally. Owing to its great market value, the growth mechanism of S. lalandi, including muscle development and growth, is a hot research topic. The myoblast determination protein (MyoD) gene has been shown to play an important role in formation of myoblasts and the function of somites in fish. The open reading frame (ORF) sequences of MyoD1 and MyoD2 in S. lalandi encoded 298 and 263 amino acids possessing three common characteristic domains, respectively, containing a myogenic basic domain, a bHLH domain, and a ser-rich region (helix III). S. lalandi MyoDs shared the highest identity with the MyoDs of S. dumerili. MyoDs are highly expressed in white muscle (P < 0.05) in S. lalandi. The expression level of MyoD1 mRNA was higher than that of MyoD2 mRNA during embryonic and early developmental stages, indicating that the two MyoD isoforms may have different roles in muscle formation. Moreover, the mRNA expression of MyoDs in the brain, pituitary, liver and muscle of endocrine growth axis were analyzed in the various sizes and ages stages. The expression levels of MyoDs in the different sizes and ages of S. lalandi showed that expression of both these genes was particularly high in 400-g fish and 2-year-old fish (P < 0.05). Moreover, the increases in the mRNA expression and plasma levels of growth hormone (GH) and insulin-like growth factor (IGF-I) were accompanied by an increase in mRNA expression of MyoDs, indicating the roles of GH and IGF-I in muscle development and growth of S. lalandi. Overall, the expression profiles of genes associated with muscle development are the first step taken towards deciphering fast growth mechanism in this important Seriola fish.
Collapse
Affiliation(s)
- Bao Shi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Ranran Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Xuezhou Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| | - Yongjiang Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Yan Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Kewen Yan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
13
|
Ratajczak M, Krzywicka M, Szulińska M, Musiałowska D, Kusy K, Karolkiewicz J. Effects of 12-Week Combined Strength and Endurance Circuit Training Program on Insulin Sensitivity and Retinol-Binding Protein 4 in Women with Insulin-Resistance and Overweight or Mild Obesity: A Randomized Controlled Trial. Diabetes Metab Syndr Obes 2024; 17:93-106. [PMID: 38204866 PMCID: PMC10778163 DOI: 10.2147/dmso.s432954] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Background Circuit training is an exercise mode, that may include both endurance and resistance components. There are premises that a combination of these two modalities brings additional benefits, particularly in improving insulin sensitivity. The retinol-binding protein 4 (RBP4) may inhibit signaling from insulin metabolic pathways in skeletal muscles, thus developing insulin resistance. This study aimed to evaluate whether moderate intensity circuit training combining strength and endurance exercise induces changes in tissue insulin sensitivity, carbohydrate and lipid metabolism, and serum RBP4 levels in insulin-resistant women. Methods In this clinical controlled trial women diagnosed with insulin-resistance were randomly divided into two groups. The training group (T) performed circuit training combining strength (50%-80%1RM) and endurance (50%-75%HRR) exercise on five weight and two cardio machines, for 33 minutes, three times per week, for 3 months. Women from the control non-training group (NT) did not change their previous physical activity. At the beginning of the study and after the intervention period, a one-repetition maximum, body mass, and composition, resting heart rate (HR), blood pressure, glucose, insulin, blood lipids, thyroid-stimulating hormone (TSH), insulin-like growth factor-1 (IGF-1), RBP4, and insulin resistance (HOMA-IR) were measured. The results of 27 patients were analyzed using a two-way repeated measures ANOVA. Results Significant differences in the pattern of change over time between the groups for resting HR (p < 0.010) and total lean mass (p < 0.039) were found. No differences in HOMA-IR, and RBP4 were observed post-study compared to pre-study in the T group. A significant correlation between RBP4 and TSH concentration was found. Conclusion Twelve-week circuit training combining strength and endurance exercise has minor effects on HOMA-IR, glucose and lipid metabolism, IGF-1, TSH, and RBP4. Although moderate-intensity circuit training is considered safe, its effectiveness in patients with overweight and mild obesity may be insufficient to reduce insulin resistance. Trial Registration ClinicalTrials.gov: NCT04528693, registered August 23, 2020.
Collapse
Affiliation(s)
- Marzena Ratajczak
- Department of Medical Biology, Poznan University of Physical Education, Poznan, 61-871, Poland
| | - Monika Krzywicka
- Department of Cardiological and Rheumatological Rehabilitation, Poznan University of Physical Education, Poznan, 61-871, Poland
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Dominika Musiałowska
- Insulin Resistance Foundation – Healthy Diet and Healthy Life, Poznan, 61-379, Poland
| | - Krzysztof Kusy
- Department of Athletics Strength and Conditioning, Poznan University of Physical Education, Poznan, 61-871, Poland
| | - Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, Poznan, 61-871, Poland
| |
Collapse
|
14
|
Yavas A, van Putten M, Aartsma-Rus A. Antisense Oligonucleotide-Mediated Downregulation of IGFBPs Enhances IGF-1 Signaling. J Neuromuscul Dis 2024; 11:299-314. [PMID: 38189760 DOI: 10.3233/jnd-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Insulin-like growth factor-1 (IGF-1) has been considered as a therapeutic agent for muscle wasting conditions including Duchenne muscular dystrophy as it stimulates muscle regeneration, growth and function. Several preclinical and clinical studies have been conducted to show the therapeutic potential of IGF-1, however, delivery issues, short half-life and isoform complexity have impose challenges. Antisense oligonucleotides (AONs) are able to downregulate target proteins by interfering with their transcripts. Here, we investigated the feasibility of enhancing IGF-1 signaling by downregulation of IGF-binding proteins. We observed that out of frame exon skipping of Igfbp1 and Igfbp3 downregulated their protein expression, which increased Akt phosphorylation on the downstream IGF-1 signaling in vitro. 3'RNA sequencing analysis revealed the related transcriptome in C2C12 cells in response to IGFBP3 downregulation. The AONs did however not induce any exon skipping or protein knockdown in mdx mice after 6 weeks of systemic treatment. We conclude that IGFBP downregulation could be a good strategy to increase IGF-1 signaling but alternative tools are needed for efficient delivery and knockdown in vivo.
Collapse
Affiliation(s)
- Alper Yavas
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Mazzarino M, Melis I, Quaresima E, Botrè F. Detection of synthetic analogues of insulin-like growth factor 1 in different biological fluids by liquid chromatography quadrupole time-of-flight mass spectrometry: comparison of different immunoaffinity protocols. Anal Bioanal Chem 2023; 415:6117-6131. [PMID: 37566232 DOI: 10.1007/s00216-023-04885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
Insulin-like growth factor 1 analogues are prohibited in sport for their ability to enhance athletic performance in several sport disciplines. Their detection presents several analytical challenges, mainly due to the minimum required performance limits fixed by the World Anti-Doping Agency. Here, we are presenting analytical workflows to detect IGF-1 and its analogues in different biological matrices. Several off-line immunocapture techniques and protocols were comparatively evaluated. Separation and detection were performed by using standard flow reverse-phase liquid chromatography coupled to a time-of-flight mass spectrometer. The best recoveries were obtained using magnetic beads or pipette tips functionalized with protein A. The analytical workflows were fully validated for qualitative determinations: all the target analytes were clearly distinguishable from the interference of the matrices, with limits of detection and identification in the range of 0.05-0.30 ng/mL in urine and 0.5-2.0 ng/mL in serum/plasma. The extraction efficiency proved to be repeatable (CV% < 10) with recoveries higher than 50%. Intra- and inter-day precision were found to be smaller than 10 and 15%, respectively. The method was successfully applied to the analysis of authentic matrix samples containing the target peptides at the minimum required performance limits, proving that the method developed can be successfully applied to detect and identify IGF-1 analogues for doping control purposes in all the matrices selected. The analytical workflow developed here to detect the target peptides in different matrices can be readily implemented in anti-doping laboratories and has the potential to be adapted for the simultaneous analysis of different similarly sized peptide hormones of doping relevance.
Collapse
Affiliation(s)
- Monica Mazzarino
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy.
| | - Isabella Melis
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| | - Edoardo Quaresima
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
- Research and Expertise in Anti-Doping Sciences REDs, Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
| |
Collapse
|
16
|
Tarantino G, Sinatti G, Citro V, Santini SJ, Balsano C. Sarcopenia, a condition shared by various diseases: can we alleviate or delay the progression? Intern Emerg Med 2023; 18:1887-1895. [PMID: 37490203 PMCID: PMC10543607 DOI: 10.1007/s11739-023-03339-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/01/2023] [Indexed: 07/26/2023]
Abstract
Sarcopenia is a severe condition common to various chronic diseases and it is reckoned as a major health problem. It encompasses many different molecular mechanisms that have been for a while discovered but not definitely clarified. Although sarcopenia is a disability status that leads to serious health consequences, the scarcity of suitable animal models has curtailed research addressing this disorder. Another limitation in the field of clinical investigation of sarcopenic patients is the lack of a generally accepted definition coupled with the difficulty of adopting common diagnostic criteria. In fact, both do not permit to clarify the exact prevalence rate and consequently limit physicians to establish any kind of therapeutical approach or, when possible, to adopt preventive measures. Unfortunately, there is no standardized cure, apart from doing more physical activity and embracing a balanced diet, but newly discovered substances start being considered. In this review, authors try to give an overview addressing principal pathways of sarcopenia and offer critical features of various possible interventions.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| | - Gaia Sinatti
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy
| | - Vincenzo Citro
- Department of General Medicine, "Umberto I" Hospital, Nocera Inferiore, SA, Italy
| | - Silvano Jr Santini
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy
- Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy
| | - Clara Balsano
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy.
- Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy.
| |
Collapse
|
17
|
Tezze C, Sandri M, Tessari P. Anabolic Resistance in the Pathogenesis of Sarcopenia in the Elderly: Role of Nutrition and Exercise in Young and Old People. Nutrients 2023; 15:4073. [PMID: 37764858 PMCID: PMC10535169 DOI: 10.3390/nu15184073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The development of sarcopenia in the elderly is associated with many potential factors and/or processes that impair the renovation and maintenance of skeletal muscle mass and strength as ageing progresses. Among them, a defect by skeletal muscle to respond to anabolic stimuli is to be considered. Common anabolic stimuli/signals in skeletal muscle are hormones (insulin, growth hormones, IGF-1, androgens, and β-agonists such epinephrine), substrates (amino acids such as protein precursors on top, but also glucose and fat, as source of energy), metabolites (such as β-agonists and HMB), various biochemical/intracellular mediators), physical exercise, neurogenic and immune-modulating factors, etc. Each of them may exhibit a reduced effect upon skeletal muscle in ageing. In this article, we overview the role of anabolic signals on muscle metabolism, as well as currently available evidence of resistance, at the skeletal muscle level, to anabolic factors, from both in vitro and in vivo studies. Some indications on how to augment the effects of anabolic signals on skeletal muscle are provided.
Collapse
Affiliation(s)
- Caterina Tezze
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Paolo Tessari
- Department of Medicine, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
18
|
Ohno Y, Nakatani M, Ito T, Matsui Y, Ando K, Suda Y, Ohashi K, Yokoyama S, Goto K. Activation of Lactate Receptor Positively Regulates Skeletal Muscle Mass in Mice. Physiol Res 2023; 72:465-473. [PMID: 37795889 PMCID: PMC10634564 DOI: 10.33549/physiolres.935004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/23/2023] [Indexed: 01/05/2024] Open
Abstract
G protein-coupled receptor 81 (GPR81), a selective receptor for lactate, expresses in skeletal muscle cells, but the physiological role of GPR81 in skeletal muscle has not been fully elucidated. As it has been reported that the lactate administration induces muscle hypertrophy, the stimulation of GPR81 has been suggested to mediate muscle hypertrophy. To clarify the contribution of GPR81 activation in skeletal muscle hypertrophy, in the present study, we investigated the effect of GPR81 agonist administration on skeletal muscle mass in mice. Male C57BL/6J mice were randomly divided into control group and GPR81 agonist-administered group that received oral administration of the specific GPR81 agonist 3-Chloro-5-hydroxybenzoic acid (CHBA). In both fast-twitch plantaris and slow-twitch soleus muscles of mice, the protein expression of GPR81 was observed. Oral administration of CHBA to mice significantly increased absolute muscle weight and muscle weight relative to body weight in the two muscles. Moreover, both absolute and relative muscle protein content in the two muscles were significantly increased by CHBA administration. CHBA administration also significantly upregulated the phosphorylation level of p42/44 extracellular signal-regulated kinase-1/2 (ERK1/2) and p90 ribosomal S6 kinase (p90RSK). These observations suggest that activation of GRP81 stimulates increased the mass of two types of skeletal muscle in mice in vivo. Lactate receptor GPR81 may positively affect skeletal muscle mass through activation of ERK pathway.
Collapse
Affiliation(s)
- Y Ohno
- Faculty of Rehabilitation and Care, Seijoh University, Tokai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Park A, Orlandini MF, Szor DJ, Junior UR, Tustumi F. The impact of sarcopenia on esophagectomy for cancer: a systematic review and meta-analysis. BMC Surg 2023; 23:240. [PMID: 37592262 PMCID: PMC10433615 DOI: 10.1186/s12893-023-02149-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Esophagectomy is the gold-standard treatment for locally advanced esophageal cancer but has high morbimortality rates. Sarcopenia is a common comorbidity in cancer patients. The exact burden of sarcopenia in esophagectomy outcomes remains unclear. Therefore, this systematic review and meta-analysis were performed to establish the impact of sarcopenia on postoperative outcomes of esophagectomy for cancer. METHODS We performed a systematic review and meta-analysis comparing sarcopenic with non-sarcopenic patients before esophagectomy for cancer (Registration number: CRD42021270332). An electronic search was conducted on Embase, PubMed, Cochrane, and LILACS, alongside a manual search of the references. The inclusion criteria were cohorts, case series, and clinical trials; adult patients; studies evaluating patients with sarcopenia undergoing esophagectomy or gastroesophagectomy for cancer; and studies that analyze relevant outcomes. The exclusion criteria were letters, editorials, congress abstracts, case reports, reviews, cross-sectional studies, patients undergoing surgery for benign conditions, and animal studies. The meta-analysis was synthesized with forest plots. RESULTS The meta-analysis included 40 studies. Sarcopenia was significantly associated with increased postoperative complications (RD: 0.08; 95% CI: 0.02 to 0.14), severe complications (RD: 0.11; 95% CI: 0.04 to 0.19), and pneumonia (RD: 0.13; 95% CI: 0.09 to 0.18). Patients with sarcopenia had a lower probability of survival at a 3-year follow-up (RD: -0.16; 95% CI: -0.23 to -0.10). CONCLUSION Preoperative sarcopenia imposes a higher risk for overall complications and severe complications. Besides, patients with sarcopenia had a lower chance of long-term survival.
Collapse
Affiliation(s)
- Amanda Park
- Department of Gastroenterology, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
- Centre for Evidence-Based Medicine, Centro Universitário Lusíada (UNILUS), Santos, Brazil
| | - Marina Feliciano Orlandini
- Department of Gastroenterology, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
- Centre for Evidence-Based Medicine, Centro Universitário Lusíada (UNILUS), Santos, Brazil
| | - Daniel José Szor
- Department of Gastroenterology, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Ulysses Ribeiro Junior
- Department of Gastroenterology, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Francisco Tustumi
- Department of Gastroenterology, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Kwarteng EA, Shank LM, Faulkner LM, Loch LK, Fatima S, Gupta S, Haynes HE, Ballenger KL, Parker MN, Brady SM, Zenno A, Tanofsky-Kraff M, Yanovski JA. Influence of puberty on relationships between body composition and blood pressure: a cross-sectional study. Pediatr Res 2023; 94:781-788. [PMID: 36750741 PMCID: PMC10403383 DOI: 10.1038/s41390-023-02503-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Fat mass (FM) and fat-free mass (FFM) are positively associated with blood pressure (BP) in youth. Yet, how puberty, independent of age, affects these relationships remains unclear. Given puberty may be a crucial period for cardiometabolic health, we examined how pubertal development moderates the associations of FM/FFM with BP. METHODS Pubertal development, resting BP, and body composition were assessed in a convenience sample of youth (5.5-17 years). General linear models were conducted to assess if pubertal development moderated the relationships between FM/FFM and systolic/diastolic BP standardized for age, sex, and height (SBPz/DBPz). RESULTS Among participants (N = 1405; age: M = 13.3 ± 2.9 years; 65.4% female; 53.2% racial/ethnic minority), FM/FFM were positively associated with SBPz and DBPz (ps ≤ 0.02). Pubertal development moderated the associations between FFM and BPz (ps ≤ 0.01), but not FM (ps > 0.43). For early/mid and late pubertal participants, there were positive associations between FFM and BP (DBPz: βs = 0.10-0.18, ps ≤ 0.01; SBPz: βs = 0.33-0.43, ps < 0.001); however, these relationships were attenuated, especially for prepubertal DBPz (DBPz: β = 0.01, p = 0.91; SBPz: β = 0.24, p = 0.001). CONCLUSIONS Puberty moderated the relationships between FFM and SBPz/DBPz in analyses that separately modeled the contributions of age and sex. These data suggest that the FFM-DBPz association may potentially be impacted by increasing sex hormone concentrations during puberty. IMPACT Fat mass (FM) and blood pressure (BP) were positively associated throughout puberty. Fat-free mass (FFM) and BP were positively associated throughout puberty; however, puberty moderated the FFM-BP relationship, such that there was a positive relationship in early/mid and late puberty, but the relationship was attenuated for prepubertal children. These findings contribute further insight into physiological and cardiometabolic changes occurring during puberty. Changes in hormone concentrations may explain the impact puberty has on the FFM-BP relationship. Understanding predictors of BP are important as childhood BP is associated with future cardiometabolic outcomes.
Collapse
Affiliation(s)
- Esther A Kwarteng
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lisa M Shank
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USU), Bethesda, MD, USA
- Department of Medicine, Military Cardiovascular Outcomes Research (MiCOR) Program, USU, Bethesda, MD, USA
- Metis Foundation, San Antonio, TX, USA
| | - Loie M Faulkner
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lucy K Loch
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Syeda Fatima
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Suryaa Gupta
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hannah E Haynes
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USU), Bethesda, MD, USA
- Metis Foundation, San Antonio, TX, USA
| | - Kaitlin L Ballenger
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Megan N Parker
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USU), Bethesda, MD, USA
| | - Sheila M Brady
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Anna Zenno
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marian Tanofsky-Kraff
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences (USU), Bethesda, MD, USA
- Department of Medicine, Military Cardiovascular Outcomes Research (MiCOR) Program, USU, Bethesda, MD, USA
| | - Jack A Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Division of Intramural Research, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
21
|
Sánchez-Moya A, Balbuena-Pecino S, Vélez EJ, Perelló-Amorós M, García-Meilán I, Fontanillas R, Calduch-Giner JÀ, Pérez-Sánchez J, Fernández-Borràs J, Blasco J, Gutiérrez J. Cysteamine improves growth and the GH/IGF axis in gilthead sea bream ( Sparus aurata): in vivo and in vitro approaches. Front Endocrinol (Lausanne) 2023; 14:1211470. [PMID: 37547324 PMCID: PMC10400459 DOI: 10.3389/fendo.2023.1211470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 08/08/2023] Open
Abstract
Aquaculture is the fastest-growing food production sector and nowadays provides more food than extractive fishing. Studies focused on the understanding of how teleost growth is regulated are essential to improve fish production. Cysteamine (CSH) is a novel feed additive that can improve growth through the modulation of the GH/IGF axis; however, the underlying mechanisms and the interaction between tissues are not well understood. This study aimed to investigate the effects of CSH inclusion in diets at 1.65 g/kg of feed for 9 weeks and 1.65 g/kg or 3.3 g/kg for 9 weeks more, on growth performance and the GH/IGF-1 axis in plasma, liver, stomach, and white muscle in gilthead sea bream (Sparus aurata) fingerlings (1.8 ± 0.03 g) and juveniles (14.46 ± 0.68 g). Additionally, the effects of CSH stimulation in primary cultured muscle cells for 4 days on cell viability and GH/IGF axis relative gene expression were evaluated. Results showed that CSH-1.65 improved growth performance by 16% and 26.7% after 9 and 18 weeks, respectively, while CSH-3.3 improved 32.3% after 18 weeks compared to control diet (0 g/kg). However, no significant differences were found between both experimental doses. CSH reduced the plasma levels of GH after 18 weeks and increased the IGF-1 ones after 9 and 18 weeks. Gene expression analysis revealed a significant upregulation of the ghr-1, different igf-1 splice variants, igf-2 and the downregulation of the igf-1ra and b, depending on the tissue and dose. Myocytes stimulated with 200 µM of CSH showed higher cell viability and mRNA levels of ghr1, igf-1b, igf-2 and igf-1rb compared to control (0 µM) in a similar way to white muscle. Overall, CSH improves growth and modulates the GH/IGF-1 axis in vivo and in vitro toward an anabolic status through different synergic ways, revealing CSH as a feasible candidate to be included in fish feed.
Collapse
Affiliation(s)
- Albert Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Emilio J. Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Irene García-Meilán
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Josep Àlvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, Spanish National Research Council (CSIC)), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, Spanish National Research Council (CSIC)), Castellón, Spain
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Joaquin Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Soler Palacios B, Villares R, Lucas P, Rodríguez-Frade JM, Cayuela A, Piccirillo JG, Lombardía M, Delgado Gestoso D, Fernández-García M, Risco C, Barbas C, Corrales F, Sorzano COS, Martínez-Martín N, Conesa JJ, Iborra FJ, Mellado M. Growth hormone remodels the 3D-structure of the mitochondria of inflammatory macrophages and promotes metabolic reprogramming. Front Immunol 2023; 14:1200259. [PMID: 37475858 PMCID: PMC10354525 DOI: 10.3389/fimmu.2023.1200259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Macrophages are a heterogeneous population of innate immune cells that support tissue homeostasis through their involvement in tissue development and repair, and pathogen defense. Emerging data reveal that metabolism may control macrophage polarization and function and, conversely, phenotypic polarization may drive metabolic reprogramming. METHODS Here we use biochemical analysis, correlative cryogenic fluorescence microscopy and cryo-focused ion-beam scanning electron microscopy. RESULTS We demonstrate that growth hormone (GH) reprograms inflammatory GM-CSF-primed monocyte-derived macrophages (GM-MØ) by functioning as a metabolic modulator. We found that exogenous treatment of GM-MØ with recombinant human GH reduced glycolysis and lactate production to levels similar to those found in anti-inflammatory M-MØ. Moreover, GH treatment of GM-MØ augmented mitochondrial volume and altered mitochondrial dynamics, including the remodeling of the inner membrane to increase the density of cristae. CONCLUSIONS Our data demonstrate that GH likely serves a modulatory role in the metabolism of inflammatory macrophages and suggest that metabolic reprogramming of macrophages should be considered as a new target to intervene in inflammatory diseases.
Collapse
Affiliation(s)
- Blanca Soler Palacios
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Ricardo Villares
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Ana Cayuela
- Biocomputing Unit, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Jonathan G. Piccirillo
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Manuel Lombardía
- Functional Proteomics Laboratory, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - David Delgado Gestoso
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Miguel Fernández-García
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
- Department of Basic Medical Sciences, Medicine Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
| | - Cristina Risco
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Coral Barbas
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Nuria Martínez-Martín
- Tissue and Organ Homeostasis Program, Centro de Biologia Molecular Severo Ochoa, The Spanish National Research Council (CSIC)–Autonomus University of Madrid (UAM), Madrid, Spain
| | - José Javier Conesa
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Francisco J. Iborra
- Príncipe Felípe Research Centre (Associated Unit to the Biomedicine Institute of Valencia), Biomedicine Institute of Valencia, Valencia, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
23
|
Al-Samerria S, Radovick S. Exploring the Therapeutic Potential of Targeting GH and IGF-1 in the Management of Obesity: Insights from the Interplay between These Hormones and Metabolism. Int J Mol Sci 2023; 24:9556. [PMID: 37298507 PMCID: PMC10253584 DOI: 10.3390/ijms24119556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a growing public health problem worldwide, and GH and IGF-1 have been studied as potential therapeutic targets for managing this condition. This review article aims to provide a comprehensive view of the interplay between GH and IGF-1 and metabolism within the context of obesity. We conducted a systematic review of the literature that was published from 1993 to 2023, using MEDLINE, Embase, and Cochrane databases. We included studies that investigated the effects of GH and IGF-1 on adipose tissue metabolism, energy balance, and weight regulation in humans and animals. Our review highlights the physiological functions of GH and IGF-1 in adipose tissue metabolism, including lipolysis and adipogenesis. We also discuss the potential mechanisms underlying the effects of these hormones on energy balance, such as their influence on insulin sensitivity and appetite regulation. Additionally, we summarize the current evidence regarding the efficacy and safety of GH and IGF-1 as therapeutic targets for managing obesity, including in pharmacological interventions and hormone replacement therapy. Finally, we address the challenges and limitations of targeting GH and IGF-1 in obesity management.
Collapse
Affiliation(s)
- Sarmed Al-Samerria
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | | |
Collapse
|
24
|
Thanh LP, Wichasit N, Li Y, Batistel F, Tartrakoon W, Parys C, Guyader J, Loor JJ. Alterations in skeletal muscle abundance of protein turnover, stress, and antioxidant proteins during the periparturient period in dairy cows fed ethyl-cellulose rumen-protected methionine. J Dairy Sci 2023:S0022-0302(23)00278-3. [PMID: 37225585 DOI: 10.3168/jds.2022-23187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 05/26/2023]
Abstract
Skeletal muscle turnover helps support the physiological needs of dairy cows during the transition into lactation. We evaluated effects of feeding ethyl-cellulose rumen-protected methionine (RPM) during the periparturient period on abundance of proteins associated with transport AA and glucose, protein turnover, metabolism, and antioxidant pathways in skeletal muscle. Sixty multiparous Holstein cows were used in a block design and assigned to a control or RPM diet from -28 to 60 d in milk. The RPM was fed at a rate of 0.09% or 0.10% of dry matter intake (DMI) during the prepartal and postpartal periods to achieve a target Lys:Met ratio in the metabolizable protein of ∼2.8:1. Muscle biopsies from the hind leg of 10 clinically healthy cows per diet collected at -21, 1, and 21 d relative to calving were used for western blotting of 38 target proteins. Statistical analysis was performed using the PROC MIXED statement of SAS version 9.4 (SAS Institute Inc.) with cow as random effect, whereas diet, time, and diet × time were the fixed effects. Diet × time tended to affect prepartum DMI, with RPM cows consuming 15.2 kg/d and controls 14.6 kg/d. However, diet had no effect on postpartum DMI (17.2 and 17.1 ± 0.4 kg/d for control and RPM, respectively). Milk yield during the first 30 d in milk was also not affected by diet (38.1 and 37.5 ± 1.9 kg/d for control and RPM, respectively). Diet or time did not affect the abundance of several AA transporters or the insulin-induced glucose transporter (SLC2A4). Among evaluated proteins, feeding RPM led to lower overall abundance of proteins associated with protein synthesis (phosphorylated EEF2, phosphorylated RPS6KB1), mTOR activation (RRAGA), proteasome degradation (UBA1), cellular stress responses (HSP70, phosphorylated MAPK3, phosphorylated EIF2A, ERK1/2), antioxidant response (GPX3), and de novo synthesis of phospholipids (PEMT). Regardless of diet, there was an increase in the abundance of the active form of the master regulator of protein synthesis phosphorylated MTOR and the growth-factor-induced serine/threonine kinase phosphorylated AKT1 and PIK3C3, whereas the abundance of a negative regulator of translation (phosphorylated EEF2K) decreased over time. Compared with d 1 after calving and regardless of diet, the abundance of proteins associated with endoplasmic reticulum stress (XBP1 spliced), cell growth and survival (phosphorylated MAPK3), inflammation (transcription factor p65), antioxidant responses (KEAP1), and circadian regulation (CLOCK, PER2) of oxidative metabolism was upregulated at d 21 relative to parturition. These responses coupled with the upregulation of transporters for Lys, Arg, and His (SLC7A1) and glutamate/aspartate (SLC1A3) over time were suggestive of dynamic adaptations in cellular functions. Overall, management approaches that could take advantage of this physiological plasticity may help cows make a smoother transition into lactation.
Collapse
Affiliation(s)
- Lam Phuoc Thanh
- Department of Animal Sciences, Can Tho University, Ninh Kieu Can Tho, Vietnam 94000; Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Nithat Wichasit
- Department of Agricultural Science, Naresuan University, Phitsanulok, Thailand 65000
| | - Yu Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China 230036
| | - Fernanda Batistel
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - Wandee Tartrakoon
- Department of Agricultural Science, Naresuan University, Phitsanulok, Thailand 65000
| | - Claudia Parys
- Evonik Operations GmbH, Hanau-Wolfgang, Essen, Germany 63457
| | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, Essen, Germany 63457
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
25
|
Bersin TV, Cordova KL, Saenger EK, Journey ML, Beckman BR, Lema SC. Nutritional status affects Igf1 regulation of skeletal muscle myogenesis, myostatin, and myofibrillar protein degradation pathways in gopher rockfish (Sebastes carnatus). Mol Cell Endocrinol 2023; 573:111951. [PMID: 37169322 DOI: 10.1016/j.mce.2023.111951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Insulin-like growth factor-1 (Igf1) regulates skeletal muscle growth in fishes by increasing protein synthesis and promoting muscle hypertrophy. When fish experience periods of insufficient food intake, they undergo slower muscle growth or even muscle wasting, and those changes emerge in part from nutritional modulation of Igf1 signaling. Here, we examined how food deprivation (fasting) modulates Igf1 regulation of liver and skeletal muscle gene expression in gopher rockfish (Sebastes carnatus), a nearshore rockfish of importance for commercial and recreational fisheries in the northeastern Pacific Ocean, to understand how food limitation impacts Igf regulation of muscle growth pathways. Rockfish were either fed or fasted for 14 d, after which a subset of fish from each group was treated with recombinant Igf1 from sea bream (Sparus aurata). Fish that were fasted lost body mass and had lower body condition, reduced hepatosomatic index, and lower plasma Igf1 concentrations, as well as a decreased abundance of igf1 gene transcripts in the liver, increased hepatic mRNAs for Igf binding proteins igfbp1a, igfbp1b, and igfbp3a, and decreased mRNA abundances for igfbp2b and a putative Igf acid labile subunit (igfals) gene. In skeletal muscle, fasted fish showed a reduced abundance of intramuscular igf1 mRNAs but elevated gene transcripts encoding Igf1 receptors A (igf1ra) and B (igf1rb), which also showed downregulation by Igf1. Fasting increased skeletal muscle mRNAs for myogenin and myostatin1, as well as ubiquitin ligase F-box only protein 32 (fbxo32) and muscle RING-finger protein-1 (murf1) genes involved in muscle atrophy, while concurrently downregulating mRNAs for myoblast determination protein 2 (myod2), myostatin2, and myogenic factors 5 (myf5) and 6 (myf6 encoding Mrf4). Treatment with Igf1 downregulated muscle myostatin1 and fbxo32 under both feeding conditions, but showed feeding-dependent effects on murf1, myf5, and myf6/Mrf4 gene expression indicating that Igf1 effects on muscle growth and atrophy pathways is contingent on recent food consumption experience.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - E Kate Saenger
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA, 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
26
|
Liu C, Wu X, Vulugundam G, Gokulnath P, Li G, Xiao J. Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope. SPORTS MEDICINE - OPEN 2023; 9:27. [PMID: 37149504 PMCID: PMC10164224 DOI: 10.1186/s40798-023-00573-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Exercise has well-recognized beneficial effects on the whole body. Previous studies suggest that exercise could promote tissue regeneration and repair in various organs. In this review, we have summarized the major effects of exercise on tissue regeneration primarily mediated by stem cells and progenitor cells in skeletal muscle, nervous system, and vascular system. The protective function of exercise-induced stem cell activation under pathological conditions and aging in different organs have also been discussed in detail. Moreover, we have described the primary molecular mechanisms involved in exercise-induced tissue regeneration, including the roles of growth factors, signaling pathways, oxidative stress, metabolic factors, and non-coding RNAs. We have also summarized therapeutic approaches that target crucial signaling pathways and molecules responsible for exercise-induced tissue regeneration, such as IGF1, PI3K, and microRNAs. Collectively, the comprehensive understanding of exercise-induced tissue regeneration will facilitate the discovery of novel drug targets and therapeutic strategies.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinying Wu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | | | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
27
|
Khan J, Pernicova I, Nisar K, Korbonits M. Mechanisms of ageing: growth hormone, dietary restriction, and metformin. Lancet Diabetes Endocrinol 2023; 11:261-281. [PMID: 36848915 DOI: 10.1016/s2213-8587(23)00001-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
Tackling the mechanisms underlying ageing is desirable to help to extend the duration and improve the quality of life. Life extension has been achieved in animal models by suppressing the growth hormone-insulin-like growth factor 1 (IGF-1) axis and also via dietary restriction. Metformin has become the focus of increased interest as a possible anti-ageing drug. There is some overlap in the postulated mechanisms of how these three approaches could produce anti-ageing effects, with convergence on common downstream pathways. In this Review, we draw on evidence from both animal models and human studies to assess the effects of suppression of the growth hormone-IGF-1 axis, dietary restriction, and metformin on ageing.
Collapse
Affiliation(s)
- Jansher Khan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Endocrinology and Metabolic Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kiran Nisar
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
28
|
Chen Z, Nilsson E, Lindholm B, Heimbürger O, Barany P, Stenvinkel P, Qureshi AR, Chen J. Low-Plasma Insulin-Like Growth Factor-1 Associates With Increased Mortality in Chronic Kidney Disease Patients With Reduced Muscle Strength. J Ren Nutr 2023; 33:298-306. [PMID: 35792256 DOI: 10.1053/j.jrn.2022.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/25/2022] [Accepted: 06/18/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Chronic kidney disease (CKD) leads to metabolic and nutritional abnormalities including resistance to insulin-like growth factor-1 (IGF-1) action, and reduced muscle mass and strength. Low IGF-1 as well as low hand-grip muscle strength (HGS) are independent predictors of increased mortality in CKD patients. METHODS In 685 patients (CKD Stage 3-5, median age 58 years; 62% men), baseline measurements of IGF-1, HGS, subjective global assessment (SGA), lean body mass index (LBMI), and metabolic and inflammatory biomarkers potentially linked to IGF-1 were analyzed in relation to mortality during 5 years of follow-up. We compared survival in 4 groups with high or low (cut-offs defined by receiver operating characteristic curve analysis) levels of IGF-1 and HGS. RESULTS Patients with low IGF-1 were older; had lower BMI, HGS, and LBMI, were more likely to have diabetes, cardiovascular disease (CVD), and malnutrition (SGA >1); and had high-sensitivity C-reactive protein levels. During 5 years of follow-up, 208 patients died. The mortality rate was highest among patients with Low IGF-1 + Low HGS. In competing-risk regression analysis, Low IGF-1 + Low HGS was independently associated with 2.8 times higher all-cause mortality risk than Low IGF-1 + High HGS, after adjusting for Framingham's CVD risk score, presence of CVD, SGA, dialysis status, high-sensitivity C-reactive protein, albumin, LBMI, and sample time in freezer. CONCLUSION Low IGF-1 was associated with increased all-cause mortality in patients who also had low HGS but not in those with high HGS, suggesting that the association of IGF-1 with survival in CKD patients depends on nutritional status.
Collapse
Affiliation(s)
- Zhimin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Nilsson
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Olof Heimbürger
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Barany
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China.
| |
Collapse
|
29
|
Kim-Muller JY, Song L, LaCarubba Paulhus B, Pashos E, Li X, Rinaldi A, Joaquim S, Stansfield JC, Zhang J, Robertson A, Pang J, Opsahl A, Boucher M, Breen D, Hales K, Sheikh A, Wu Z, Zhang BB. GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia. Cell Rep 2023; 42:111947. [PMID: 36640326 DOI: 10.1016/j.celrep.2022.111947] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Cancer cachexia is a disorder characterized by involuntary weight loss and impaired physical performance. Decline in physical performance of patients with cachexia is associated with poor quality of life, and currently there are no effective pharmacological interventions that restore physical performance. Here we examine the effect of GDF15 neutralization in a mouse model of cancer-induced cachexia (TOV21G) that manifests weight loss and muscle function impairments. With comprehensive assessments, our results demonstrate that cachectic mice treated with the anti-GDF15 antibody mAB2 exhibit body weight gain with near-complete restoration of muscle mass and markedly improved muscle function and physical performance. Mechanistically, the improvements induced by GDF15 neutralization are primarily attributed to increased caloric intake, while altered gene expression in cachectic muscles is restored in caloric-intake-dependent and -independent manners. The findings indicate potential of GDF15 neutralization as an effective therapy to enhance physical performance of patients with cachexia.
Collapse
Affiliation(s)
- Ja Young Kim-Muller
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - LouJin Song
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Brianna LaCarubba Paulhus
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Evanthia Pashos
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Xiangping Li
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Anthony Rinaldi
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Stephanie Joaquim
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - John C Stansfield
- Biostatistics, Early Clinical Development, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Jiangwei Zhang
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 10777 Science Center Dr., San Diego, CA, USA
| | - Andrew Robertson
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 445 Eastern Point Rd., Groton, CT, USA
| | - Jincheng Pang
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Alan Opsahl
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 445 Eastern Point Rd., Groton, CT, USA
| | - Magalie Boucher
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 445 Eastern Point Rd., Groton, CT, USA
| | - Danna Breen
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Katherine Hales
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Abdul Sheikh
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA
| | - Bei B Zhang
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, USA.
| |
Collapse
|
30
|
Khattri RB, Puglise J, Ryan TE, Walter GA, Merritt ME, Barton ER. Isolated murine skeletal muscles utilize pyruvate over glucose for oxidation. Metabolomics 2022; 18:105. [PMID: 36480060 PMCID: PMC9732067 DOI: 10.1007/s11306-022-01948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/29/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Fuel sources for skeletal muscle tissue include carbohydrates and fatty acids, and utilization depends upon fiber type, workload, and substrate availability. The use of isotopically labeled substrate tracers combined with nuclear magnetic resonance (NMR) enables a deeper examination of not only utilization of substrates by a given tissue, but also their contribution to tricarboxylic acid (TCA) cycle intermediates. OBJECTIVES The goal of this study was to determine the differential utilization of substrates in isolated murine skeletal muscle, and to evaluate how isopotomer anlaysis provided insight into skeletal muscle metabolism. METHODS Isolated C57BL/6 mouse hind limb muscles were incubated in oxygenated solution containing uniformly labeled 13C6 glucose, 13C3 pyruvate, or 13C2 acetate at room temperature. Isotopomer analysis of 13C labeled glutamate was performed on pooled extracts of isolated soleus and extensor digitorum longus (EDL) muscles. RESULTS Pyruvate and acetate were more avidly consumed than glucose with resultant increases in glutamate labeling in both muscle groups. Glucose incubation resulted in glutamate labeling, but with high anaplerotic flux in contrast to the labeling by pyruvate. Muscle fiber type distinctions were evident by differences in lactate enrichment and extent of substrate oxidation. CONCLUSION Isotope tracing experiments in isolated muscles reveal that pyruvate and acetate are avidly oxidized by isolated soleus and EDL muscles, whereas glucose labeling of glutamate is accompanied by high anaplerotic flux. We believe our results may set the stage for future examination of metabolic signatures of skeletal muscles from pre-clinical models of aging, type-2 diabetes and neuromuscular disease.
Collapse
Affiliation(s)
- Ram B Khattri
- Department of Applied Physiology and Kinesiology, College of Health & Human Performance, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL, 32611, USA
| | - Jason Puglise
- Department of Applied Physiology and Kinesiology, College of Health & Human Performance, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL, 32611, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, College of Health & Human Performance, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL, 32611, USA
- Myology Institute, University of Florida, Gainesville, USA
- Center for Exercise Science, University of Florida, Gainesville, FL, USA
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, USA
- Myology Institute, University of Florida, Gainesville, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health & Human Performance, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL, 32611, USA.
- Myology Institute, University of Florida, Gainesville, USA.
- Center for Exercise Science, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Grosman-Rimon L, Vadasz B, Bondi M, Cohen M, Santos S, Katz J, Clarke H, Singh S, Rimon J, Kumbhare D, Eilat-Adar S. Potential Role of Insulin-Like Growth Factors in Myofascial Pain Syndrome: A Narrative Review. Am J Phys Med Rehabil 2022; 101:1175-1182. [PMID: 35067552 DOI: 10.1097/phm.0000000000001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT Insulin-like growth factors have diverse functions in skeletal muscles by acting through multiple signaling pathways, including growth regulation and differentiation, anti-inflammation, and antioxidation. Insulin-like growth factors have anti-inflammatory effects and also play roles in nociceptive pathways, determining pain sensitivity, in addition to their protective role against ischemic injury in both the nervous system and skeletal muscle. In skeletal muscle, insulin-like growth factors maintain homeostasis, playing key roles in maintenance, accelerating muscle regeneration, and repair processes. As part of their maintenance role, increased levels of insulin-like growth factors may be required for the repair mechanisms after exercise. Although the role of insulin-like growth factors in myofascial pain syndrome is not completely understood, there is evidence from a recent study that insulin-like growth factor 2 levels in patients with myofascial pain syndrome are lower than those of healthy individuals and are associated with increased levels of inflammatory biomarkers. Importantly, higher insulin-like growth factor 2 levels are associated with increased pain severity in myofascial pain syndrome patients. This may suggest that too low or high insulin-like growth factor levels may contribute to musculoskeletal disorder process, whereas a midrange levels may optimize healing without contributing to pain hypersensitivity. Future studies are required to address the mechanisms of insulin-like growth factor 2 in myofascial pain syndrome and the optimal level as a therapeutic agent.
Collapse
Affiliation(s)
- Liza Grosman-Rimon
- From the Academic College at Wingate, Wingate Institute, Netanya, Israel (LG-R, SE-A); Toronto Rehabilitation Institute, University Health Network, University of Toronto Centre for the Study of Pain, Toronto, Canada (LG-R, S. Santos, HC, DK); Department of Pathology McGaw Medical Center of Northwestern University, Chicago, IL (BV); Department of Neurological Rehabilitation, The Chaim Sheba Medical Center, Tel Hashomer, Israel (MB); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (MB); The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (MC); Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, Canada (JK, HC); Department of Psychology, Faculty of Health, York University, Toronto, Canada (JK, JR); and Royal College of Surgeons in Ireland, Dublin, Ireland (S. Singh)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
He Y, Yuen LY, Ma RCW, Catalano PM, Tam WH. The roles of newborn anthropometrics in the association between maternal weight gain and childhood cardiovascular risks. Obesity (Silver Spring) 2022; 30:2450-2458. [PMID: 36285831 PMCID: PMC9691555 DOI: 10.1002/oby.23569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The aim was to study the association between newborn anthropometrics and childhood cardiovascular risks and whether newborn anthropometrics mediate the effect of maternal gestational weight gain (GWG) on childhood risks. METHODS Data of 926 mother-child dyads from the Hyperglycemia and Adverse Pregnancy Outcomes study were analyzed. Newborn anthropometrics were treated as predictors and mediators by using a regression model and causal mediation model, respectively. RESULTS Newborn sum of skinfolds (SSF) was associated with childhood diastolic blood pressure (DBP) and pulse wave velocity (coefficients [95% CI]: 0.13 [0.06 to 0.20]; 0.08 [0.004 to 0.15]), whereas newborn ponderal index (PI) was inversely associated with childhood systolic blood pressure (SBP), DBP, and pulse wave velocity (-0.08 [-0.15 to -0.01]; -0.08 [-0.14 to -0.008]; -0.09 [-0.16 to -0.03]). Newborn SSF mediated the effects of maternal excessive GWG on childhood SSF and DBP (proportion of total effect 9% and 8%, respectively). In contrast, a significant negative mediation through newborn PI was found for the effect of maternal excessive GWG on childhood DBP (-8%) and its effect on childhood SBP through birth weight (-27%). CONCLUSIONS Childhood cardiovascular risks are positively associated with newborn SSF but inversely associated with newborn PI. Newborn SSF mediates the impact of excessive maternal GWG on childhood BP, but birth weight and newborn PI negatively mediate it.
Collapse
Affiliation(s)
- Yuanying He
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lai Yuk Yuen
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick M. Catalano
- Department of Obstetrics and Gynaecology, Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
33
|
Zhang L, Koller J, Gopalasingam G, Herzog H. NPFF signalling is critical for thermosensory and dietary regulation of thermogenesis. Neuropeptides 2022; 96:102292. [PMID: 36155087 DOI: 10.1016/j.npep.2022.102292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Thermogenesis is a centrally regulated physiological process integral for thermoregulation and energy homeostasis. However, the mechanisms and pathways involved remain poorly understood. Importantly, in this study we uncovered that in an environment of 28 °C that is within the mouse thermoneutral zone, lack of NPFF signalling leads to significant increases in energy expenditure, resting metabolic rate and brown adipose tissue (BAT) thermogenesis, which is associated with decreased body weight gain and lean tissue mass. Interestingly, when exposed to a high-fat diet (HFD) at 28 °C, Npff-/- mice lost the high energy expenditure phenotype observed under chow condition and exhibited an impaired diet-induced thermogenesis. On the other hand, under conditions of increasing levels of thermal demands, Npff-/- mice exhibited an elevated BAT thermogenesis at mild cold condition (22 °C), but initiated comparable BAT thermogenic responses as WT mice when thermal demand increased, such as an exposure to 4 °C. Together, these results reveal NPFF signalling as a novel and critical player in the control of thermogenesis, where it regulates thermosensory thermogenesis at warm condition and adjusts thermoregulation under positive energy balance to regulate diet-induced thermogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW SYDNEY, NSW 2052, Australia.
| | - Julia Koller
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW SYDNEY, NSW 2052, Australia
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW SYDNEY, NSW 2052, Australia
| |
Collapse
|
34
|
Cardaci TD, Machek SB, Wilburn DT, Heileson JL, Harris DR, Cintineo HP, Willoughby DS. LGD-4033 and MK-677 use impacts body composition, circulating biomarkers, and skeletal muscle androgenic hormone and receptor content: A case report. Exp Physiol 2022; 107:1467-1476. [PMID: 36303408 DOI: 10.1113/ep090741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the main observation in this case? Co-administration of LGD-4033 and MK-677 increased body mass, lean mass and fat mass, while negatively impacting bone, serum lipids, liver enzymes, testosterone (total and free) and, probably, follicle-stimulating hormone. What insights does it reveal? Our cross-sectional data imply that these compounds might alter intramuscular androgenic hormone and receptor concentrations along with promoting muscular strength, when compared with previously published data from trained males. ABSTRACT LGD-4033, a selective androgen receptor modulator, and MK-677, a growth hormone secretagogue, are being used increasingly amongst recreationally active demographics. However, limited data exist describing their effects on health- and androgen-related biomarkers. The purpose of this case study was to determine changes in body composition and biomarkers during and after continued co-administration of LGD-4033 and MK-677. We also aimed to examine muscular strength and intramuscular androgen-associated biomarkers relative to non-users. A 25-year-old male ingested LGD-4033 (10 mg) and MK-677 (15 mg) daily for 5 weeks. Blood and body composition metrics were obtained pre-, on- and post-cycle. One-repetition maximum leg and bench press, in addition to intramuscular androgens and androgen receptor content, were analysed on-cycle. We observed pre- to on-cycle changes in body composition (body mass, +6.0%; total lean body mass, +3.1%; trunk lean body mass, +6.6%; appendicular lean body mass, +4.3%; total fat mass, +15.4%; trunk fat mass, +2.8%; and appendicular fat mass, +14.8%), bone (bone mineral content, -3.60%; area, -1.1%; and bone mineral density, -2.1%), serum lipid-associated biomarkers (cholesterol, +14.8%; triglycerides, +39.2%; low-density lipoprotein-cholesterol, +40.0%; and high-density lipoprotein-cholesterol, -36.4%), liver-associated biomarkers (aspartate aminotransferase, +95.8%; and alanine aminotransferase, +205.0%) and androgen-associated biomarkers (free testosterone, -85.7%; total testosterone, -62.3%; and sex hormone-binding globulin, -79.6%); however, all variables returned to pre-cycle values post-cycle, apart from total fat mass, appendicular fat mass, bone area, total cholesterol and low-density lipoprotein-cholesterol. Follicle-stimulating hormone was below clinical reference values on- (1.2 IU/L) and post-cycle (1.3 IU/L). Intramuscular androgen receptor (-44.6%), testosterone (+47.8%) and dihydrotestosterone (+34.4%), in addition to one-repetition maximum leg press and bench press (+39.2 and +32.0%, respectively), were different in the case subject compared with non-users. These data demonstrate that LGD-4033 and MK-677 increase several body composition parameters, whilst negatively impacting bone and several serum biomarkers. Given the sparsity of data in recreationally using demographics, further research is warranted to elucidate the acute and chronic physiological effects of these anabolic agents.
Collapse
Affiliation(s)
- Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Steven B Machek
- Kinesiology Department, College of Health Sciences and Human Services, California State University, Monterey Bay, California, USA
| | - Dylan T Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, USA
| | - Jeffery L Heileson
- Nutrition Services Division, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Dillon R Harris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, USA
| | - Harry P Cintineo
- Department of Kinesiology, Lindenwood University, St. Charles, Missouri, USA
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Harden-Baylor, Belton, Texas, USA
| |
Collapse
|
35
|
Bouredji Z, Argaw A, Frenette J. The inflammatory response, a mixed blessing for muscle homeostasis and plasticity. Front Physiol 2022; 13:1032450. [PMID: 36505042 PMCID: PMC9726740 DOI: 10.3389/fphys.2022.1032450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle makes up almost half the body weight of heathy individuals and is involved in several vital functions, including breathing, thermogenesis, metabolism, and locomotion. Skeletal muscle exhibits enormous plasticity with its capacity to adapt to stimuli such as changes in mechanical loading, nutritional interventions, or environmental factors (oxidative stress, inflammation, and endocrine changes). Satellite cells and timely recruited inflammatory cells are key actors in muscle homeostasis, injury, and repair processes. Conversely, uncontrolled recruitment of inflammatory cells or chronic inflammatory processes leads to muscle atrophy, fibrosis and, ultimately, impairment of muscle function. Muscle atrophy and loss of function are reported to occur either in physiological situations such as aging, cast immobilization, and prolonged bed rest, as well as in many pathological situations, including cancers, muscular dystrophies, and several other chronic illnesses. In this review, we highlight recent discoveries with respect to the molecular mechanisms leading to muscle atrophy caused by modified mechanical loading, aging, and diseases. We also summarize current perspectives suggesting that the inflammatory process in muscle homeostasis and repair is a double-edged sword. Lastly, we review recent therapeutic approaches for treating muscle wasting disorders, with a focus on the RANK/RANKL/OPG pathway and its involvement in muscle inflammation, protection and regeneration processes.
Collapse
Affiliation(s)
- Zineb Bouredji
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CRCHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CRCHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CRCHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada,Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC, Canada,*Correspondence: Jérôme Frenette,
| |
Collapse
|
36
|
Santos HO, Cerqueira HS, Tinsley GM. The Effects of Dietary Supplements, Nutraceutical Agents, and Physical Exercise on Myostatin Levels: Hope or Hype? Metabolites 2022; 12:1146. [PMID: 36422286 PMCID: PMC9695935 DOI: 10.3390/metabo12111146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 09/12/2024] Open
Abstract
Myostatin, a secreted growth factor belonging to the transforming growth factor β (TGF-β) family, performs a role in hindering muscle growth by inhibiting protein kinase B (Akt) phosphorylation and the associated activation of hypertrophy pathways (e.g., IGF-1/PI3K/Akt/mTOR pathway). In addition to pharmacological agents, some supplements and nutraceutical agents have demonstrated modulatory effects on myostatin levels; however, the clinical magnitude must be appraised with skepticism before translating the mechanistic effects into muscle hypertrophy outcomes. Here, we review the effects of dietary supplements, nutraceutical agents, and physical exercise on myostatin levels, addressing the promise and pitfalls of relevant randomized clinical trials (RCTs) to draw clinical conclusions. RCTs involving both clinical and sports populations were considered, along with wasting muscle disorders (e.g., sarcopenia) and resistance training-induced muscle hypertrophy, irrespective of disease status. Animal models were considered only to expand the mechanisms of action, and observational data were consulted to elucidate potential cutoff values. Collectively, the effects of dietary supplements, nutraceutical agents, and physical exercise on myostatin mRNA expression in skeletal muscle and serum myostatin levels are not uniform, and there may be reductions, increases, or neutral effects. Large amounts of research using resistance protocols shows that supplements or functional foods do not clearly outperform placebo for modulating myostatin levels. Thus, despite some biological hope in using supplements or certain functional foods to decrease myostatin levels, caution must be exercised not to propagate the hope of the food supplement market, select health professionals, and laypeople.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | | | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
37
|
Yeh TS, Lei TH, Barnes MJ, Zhang L. Astragalosides Supplementation Enhances Intrinsic Muscle Repair Capacity Following Eccentric Exercise-Induced Injury. Nutrients 2022; 14:4339. [PMID: 36297022 PMCID: PMC9608496 DOI: 10.3390/nu14204339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 10/26/2023] Open
Abstract
Astragalosides have been shown to enhance endurance exercise capacity in vivo and promote muscular hypertrophy in vitro. However, it remains unknown whether astragalosides supplementation can alter inflammatory response and enhance muscle recovery after damage in humans. We therefore aimed to evaluate the effect of astragalosides supplementation on muscle's intrinsic capacity to regenerate and repair itself after exercise-induced damage. Using a randomized double-blind placebo-controlled cross-over design, eleven male participants underwent 7 days of astragalosides supplementation (in total containing 4 mg of astragalosides per day) or a placebo control, following an eccentric exercise protocol. Serum blood samples and variables related to muscle function were collected prior to and immediately following the muscle damage protocol and also at 2 h, and 1, 2, 3, 5, and 7 days of the recovery period, to assess the pro-inflammatory cytokine response, the secretion of muscle regenerative factors, and muscular strength. Astragalosides supplementation reduced biomarkers of skeletal muscle damage (serum CK, LDH, and Mb), when compared to the placebo, at 1, 2, and 3 days following the muscle damage protocol. Astragalosides supplementation suppressed the secretion of IL-6 and TNF-α, whilst increasing the release of IGF-1 during the initial stages of muscle recovery. Furthermore, following astragaloside supplementation, muscular strength returned to baseline 2 days earlier than the placebo. Astragalosides supplementation shortens the duration of inflammation, enhances the regeneration process and restores muscle strength following eccentric exercise-induced injury.
Collapse
Affiliation(s)
- Tzu-Shao Yeh
- School of Public Health, Nantong University, Nantong 226019, China
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi 435002, China
| | - Matthew J. Barnes
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North 4410, New Zealand
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
38
|
Zhao M, Banhos Danneskiold-Samsøe N, Ulicna L, Nguyen Q, Voilquin L, Lee DE, White JP, Jiang Z, Cuthbert N, Paramasivam S, Bielczyk-Maczynska E, Van Rechem C, Svensson KJ. Phosphoproteomic mapping reveals distinct signaling actions and activation of muscle protein synthesis by Isthmin-1. eLife 2022; 11:e80014. [PMID: 36169399 PMCID: PMC9592085 DOI: 10.7554/elife.80014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
The secreted protein isthmin-1 (Ism1) mitigates diabetes by increasing adipocyte and skeletal muscle glucose uptake by activating the PI3K-Akt pathway. However, while both Ism1 and insulin converge on these common targets, Ism1 has distinct cellular actions suggesting divergence in downstream intracellular signaling pathways. To understand the biological complexity of Ism1 signaling, we performed phosphoproteomic analysis after acute exposure, revealing overlapping and distinct pathways of Ism1 and insulin. We identify a 53% overlap between Ism1 and insulin signaling and Ism1-mediated phosphoproteome-wide alterations in ~450 proteins that are not shared with insulin. Interestingly, we find several unknown phosphorylation sites on proteins related to protein translation, mTOR pathway, and, unexpectedly, muscle function in the Ism1 signaling network. Physiologically, Ism1 ablation in mice results in altered proteostasis, including lower muscle protein levels under fed and fasted conditions, reduced amino acid incorporation into proteins, and reduced phosphorylation of the key protein synthesis effectors Akt and downstream mTORC1 targets. As metabolic disorders such as diabetes are associated with accelerated loss of skeletal muscle protein content, these studies define a non-canonical mechanism by which this antidiabetic circulating protein controls muscle biology.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
| | | | - Livia Ulicna
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Quennie Nguyen
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Laetitia Voilquin
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
| | - David E Lee
- Duke Molecular Physiology Institute, Duke University School of MedicineDurhamUnited States
- Department of Medicine, Duke University School of MedicineDurhamUnited States
| | - James P White
- Duke Molecular Physiology Institute, Duke University School of MedicineDurhamUnited States
- Department of Medicine, Duke University School of MedicineDurhamUnited States
- Duke Center for the Study of Aging and Human Development, Duke University School of MedicineDurhamUnited States
| | - Zewen Jiang
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Department of Laboratory Medicine, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Nickeisha Cuthbert
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Shrika Paramasivam
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Ewa Bielczyk-Maczynska
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of MedicineStanfordUnited States
| | - Capucine Van Rechem
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
39
|
Abdel Rahman AN, Elshopakey GE, Behairy A, Altohamy DE, Ahmed AI, Farroh KY, Alkafafy M, Shahin SA, Ibrahim RE. Chitosan-Ocimum basilicum nanocomposite as a dietary additive in Oreochromis niloticus: Effects on immune-antioxidant response, head kidney gene expression, intestinal architecture, and growth. FISH & SHELLFISH IMMUNOLOGY 2022; 128:425-435. [PMID: 35985625 DOI: 10.1016/j.fsi.2022.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Several studies have looked into the use of basil, Ocimum basilicum (L.) in aquaculture as a dietary additive; however, more research is needed to see the possibility of it's including in nanocarriers in aquafeeds. An experiment was undertaken to highlight the efficacy chitosan-Ocimum basilicum nanocomposite (COBN), for the first time, on Nile tilapia (Oreochromis niloticus) growth, stress and antioxidant status, immune-related parameters, and gene expression. For 60 days, fish (average weight: 23.55 ± 0.08 g) were fed diets provided with different concentrations of COBN (g/kg): 0 g [COBN0], 1 g [COBN1], 2 g [COBN2], and 3 g [COBN3], where COBN0 was kept as control diet. Following the trial, the fish were challenged with pathogenic bacteria (Aeromonas sobria) and yeast (Candida albicans) infection. In comparison to the control (COBN0), a notable increase in growth parameters (weight gain, feed intake, and specific growth rate) and intestinal morphometric indices (average intestinal goblet cells count, villous width, and length) in all COBN groups was observed, where COBN2 and COBN3 groups had the highest values. The COBN diets significantly (p < 0.05) declined levels of serum triglycerides, glucose, cholesterol, and hepatic malondialdehyde. Moreover, the higher levels of serum biochemical biomarkers (growth hormone, total protein, globulin, and albumin), immunological parameters (phagocytic activity%, nitric oxide, and lysozyme), and hepatic antioxidant parameters (superoxide dismutase, total antioxidant capacity, and glutathione peroxidase) were obvious in the COBN2 and COBN3 groups followed by COBN1. The immune-antioxidant genes (TNF-α, IL-10, IL-1β, TGF-β, GPx, and SOD) were found to be considerably up-regulated in all COBN groups (COBN2 and COBN3 followed by COBN1). Fifteen days post-challenge with A. sobria and C. albicans, the highest survival rate was recorded in the COBN2 group (83.33 and 91.67%) followed by the COBN3 group (75 and 83.33%), respectively. The findings showed that a dietary intervention with COBN can promote growth, intestinal architecture, immunity, and antioxidant markers as well as protect O. niloticus against A. sobria and C. albicans infection. As a result, the COBN at a dose of 2 g/kg could be used as a food additive for the sustainable aquaculture industry.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, P.O. Box 35516, Mansoura, Dakahlia, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Dalia E Altohamy
- Department of Pharmacology, Central Laboratory, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Amany I Ahmed
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center (ARC), P.O. Box 12619, Giza, Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Shimaa A Shahin
- Animal and Fish Production Department, Faculty of Agriculture- Saba Basha, Alexandria University, Egypt
| | - Rowida E Ibrahim
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
40
|
Initiation of muscle protein synthesis was unrelated to simultaneously upregulated local production of IGF-1 by amino acids in non-proliferating L6 muscle cells. PLoS One 2022; 17:e0270927. [PMID: 35802556 PMCID: PMC9269383 DOI: 10.1371/journal.pone.0270927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Background
IGF-1 is considered an important regulator of muscle protein synthesis. However, its role in stimulation of muscle protein synthesis by amino acids (AA) is not clear, despite pronounced alterations in IGF-1 mRNA expression and signaling in muscle tissues by feeding. This study evaluates the role of locally produced IGF-1 and IGF-1 signaling when skeletal muscle protein synthesis is activated by increased amino acid availability in confluent, non-proliferating cells.
Methods
L6 skeletal muscle cells were subjected to amino acid starvation (24 h, 0.14 mM) followed by 18 h amino acid refeeding in Low AA (0.28 mM) or High AA concentrations (9 mM). Protein synthesis rates were estimated by L-[U-14C]-phenylalanine incorporation into cellular proteins. IGF-1 and IGF-1 receptor mRNA expression were quantified by real time PCR. SiRNA knockdown, antibodies and chemical inhibitors were used to attenuate muscle IGF-1 production and signaling.
Results
High AA concentrations (9mM) increased IGF-1 mRNA expression (+ 30%, p<0.05) and increased L-[U-14C]-phenylalanine incorporation compared to Low AA in confluent, non-proliferating muscle cells. Blocking IGF-1 signaling by chemical inhibitors reduced IGF-1 mRNA upregulation (~50%, p< 0.01), without decrease of protein synthesis. SiRNA knockdown of IGF-1 reduced protein synthesis, mainly explained by reduced cell proliferation. High AA or IGF-1 inhibitors did not change IGF-1 receptor mRNA expressions.
Conclusion
Amino acids increased IGF-1 mRNA expression and stimulated muscle protein synthesis. However, simultaneous upregulation of IGF-1 mRNA did not relate to increased protein synthesis by amino acids. The results indicate that increased IGF-1 mRNA expression is rather a covariate to amino acid initiation of protein synthesis in non-proliferating muscle cells; effects that may be related to unrecognized metabolic activities, such as transport of amino acids.
Collapse
|
41
|
Ma XY, Liu HM, Lv WQ, Qiu C, Xiao HM, Deng HW. A bi-directional Mendelian randomization study of the sarcopenia-related traits and osteoporosis. Aging (Albany NY) 2022; 14:5681-5698. [PMID: 35780076 PMCID: PMC9365559 DOI: 10.18632/aging.204145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022]
Abstract
Both sarcopenia and osteoporosis are common geriatric diseases causing huge socioeconomic burdens, and clinically, they often occur simultaneously. Observational studies have found a controversial correlation between sarcopenia and osteoporosis and their causal relationship is not clear. Therefore, we performed a bi-directional two-sample Mendelian randomization (MR) analysis to assess the potential causal relationship between sarcopenia-related traits (hand grip strength, lean mass, walking pace) and osteoporosis. Our analysis was performed by applying genetic variants obtained from the UK Biobank and the GEnetic Factors for OSteoporosis (GEFOS) datasets. We used inverse-variance weighted (IVW) and several sensitivity analyses to estimate and cross-validate the potential causal relationship in this study. We found that bone mineral density (BMD) was causally positively associated with left-hand grip strength (β = 0.017, p-value = 0.001), fat-free mass (FFM; right leg FFM, β = 0.014, p-value = 0.003; left arm FFM, β = 0.014, p-value = 0.005), but not walking pace. Higher hand grip strength was potentially causally associated with increased LS-BMD (right-hand grip strength, β = 0.318, p-value = 0.001; left-hand grip strength, β = 0.358, p-value = 3.97 × 10-4). In conclusion, osteoporosis may be a risk factor for sarcopenia-related traits and muscle strength may have a site-specific effect on BMD.
Collapse
Affiliation(s)
- Xue-Ying Ma
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Hui-Min Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Wan-Qiang Lv
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Chuan Qiu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
42
|
Lambrianides Y, Epro G, Smith K, Mileva KN, James D, Karamanidis K. Impact of Different Mechanical and Metabolic Stimuli on the Temporal Dynamics of Muscle Strength Adaptation. J Strength Cond Res 2022; 36:3246-3255. [DOI: 10.1519/jsc.0000000000004300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Evans HC, Briggs EF, Burnett RH, Contreras-Correa ZE, Duvic MA, Dysart LM, Gilmore AA, Messman RD, Reid D, Rasit Ugur M, Kaya A, Memili E. Harnessing the value of reproductive hormones in cattle production with considerations to animal welfare and human health. J Anim Sci 2022; 100:6620798. [PMID: 35772763 DOI: 10.1093/jas/skac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/20/2022] [Indexed: 01/02/2023] Open
Abstract
The human population is ever increasing while the quality and quantity of natural resources used for livestock production decline. This calls for improved product efficiency and the development of improved and sustainable cattle production methods to produce higher quality products to satisfy the demands of both the modern and transient world. The goal of this review was to summarize the interactions, challenges, and opportunities in cattle production relating to their endocrine system, and how reproductive hormones and others impact economically important traits, animal welfare, and human health. A comprehensive literature search was conducted with a focus on analysis of natural hormones and the use of exogenous hormone administration for reproduction, growth, and development of beef and dairy cattle. Hormones regulate homeostasis and enhance important traits in cattle, including fertility, growth and development, health, and the production of both meat and milk products. Reproductive hormones such as testosterone, estradiol, progesterone, and related synthetics like trenbolone acetate and zeranol can be strategically utilized in both beef and dairy cattle production systems to enhance their most valuable traits, but the impact of these substances must account for the welfare of the animal as well as the health of the consumer. This scientific review provides a comprehensive analysis of the bovine endocrine system's impact on food animals and product quality which is vital for students, researchers, livestock producers, and consumers. Although important advances have been made in animal science and related technological fields, major gaps still exist in the knowledge base regarding the influence of hormones on the production and welfare of food animals as well as in the public perception of hormone use in food-producing animals. Filling these gaps through transformative and translational research will enhance both fundamental and applied animal science to feed a growing population.
Collapse
Affiliation(s)
- Holly C Evans
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Elanie F Briggs
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Randy H Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Zully E Contreras-Correa
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Morgan A Duvic
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Lacey M Dysart
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Alicia A Gilmore
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Riley D Messman
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dana Reid
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Muhammet Rasit Ugur
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Abdullah Kaya
- Department of Reproduction and Artificial Insemination, Selcuk University, Konya, Turkey.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Erdogan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
44
|
Baig MH, Ahmad K, Moon JS, Park SY, Ho Lim J, Chun HJ, Qadri AF, Hwang YC, Jan AT, Ahmad SS, Ali S, Shaikh S, Lee EJ, Choi I. Myostatin and its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Front Physiol 2022; 13:876078. [PMID: 35812316 PMCID: PMC9259834 DOI: 10.3389/fphys.2022.876078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN. This review delivers an overview of the current state of knowledge about SM and myogenesis with particular emphasis on the structural characteristics and regulatory functions of MSTN during myogenesis and its involvements in various muscle related disorders. In addition, we review the diverse approaches used to inhibit the activity of MSTN, especially in silico approaches to the screening of natural compounds and the design of novel short peptides derived from proteins that typically interact with MSTN.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Afsha Fatima Qadri
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|
45
|
Curiel-Cervantes V, Solis-Sainz JC, Camacho-Barrón M, Aguilar-Galarza A, Valencia ME, Anaya-Loyola MA. Systematic training in master swimmer athletes increases serum insulin growth factor-1 and decreases myostatin and irisin levels. Growth Factors 2022; 40:1-12. [PMID: 35343347 DOI: 10.1080/08977194.2022.2049262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
During ageing, anabolic status is essential to prevent the decrease in quantity and quality of skeletal muscle mass (SMM). Exercise modulates endocrine markers of muscle status. We studied the differences of endocrine markers for muscle status in 62 non-sarcopenic Mexican swimmer adults aged 30-70 y/o, allocated into two groups: the systematic training (ST) group including master athletes with a physical activity level (PAL) >1.6, and the non-systematic training group (NST) composed by subjects with a PAL <1.5. Body composition, diet, biochemical and endocrine markers were analyzed. The ST group showed lower myostatin (MSTN) and irisin (IRI) levels, two strong regulators of SMM. The insulin growth factor-1 (IGF-1) was higher in the ST. This is consistent with most of the evidence in young athletes and resistance training programs, where IGF-1 and IRI seem to play a crucial role in maintaining anabolic status in master athletes.
Collapse
Affiliation(s)
- V Curiel-Cervantes
- Department of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - J C Solis-Sainz
- Departament of Biomedical Research, School of Medicine, Autonomous University of Queretaro, Queretaro, Mexico
| | - M Camacho-Barrón
- Human Nutrition Laboratory, Department of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - A Aguilar-Galarza
- Department of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - M E Valencia
- Department of Chemical-Biological Sciences, University of Sonora, Hermosillo, Sonora, Mexico
| | - M A Anaya-Loyola
- Human Nutrition Laboratory, Department of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| |
Collapse
|
46
|
Metabolic and molecular signatures of improved growth in Atlantic salmon ( Salmo salar) fed surplus levels of methionine, folic acid, vitamin B 6 and B 12 throughout smoltification. Br J Nutr 2022; 127:1289-1302. [PMID: 34176547 DOI: 10.1017/s0007114521002336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A moderate surplus of the one carbon (1C) nutrients methionine, folic acid, vitamin B6 and B12 above dietary recommendations for Atlantic salmon has shown to improve growth and reduce hepatosomatic index in the on-growing saltwater period when fed throughout smoltification. Metabolic properties and molecular mechanisms determining the improved growth are unexplored. Here, we investigate metabolic and transcriptional signatures in skeletal muscle taken before and after smoltification to acquire deeper insight into pathways and possible nutrient–gene interactions. A control feed (Ctrl) or 1C nutrient surplus feed (1C+) were fed to Atlantic salmon 6 weeks prior to smoltification until 3 months after saltwater transfer. Both metabolic and gene expression signatures revealed significant 1C nutrient-dependent changes already at pre-smolt, but differences intensified when analysing post-smolt muscle. Transcriptional differences revealed lower expression of genes related to translation, growth and amino acid metabolisation in post-smolt muscle when fed additional 1C nutrients. The 1C+ group showed less free amino acid and putrescine levels, and higher methionine and glutathione amounts in muscle. For Ctrl muscle, the overall metabolic profile suggests a lower amino acid utilisation for protein synthesis, and increased methionine metabolisation in polyamine and redox homoeostasis, whereas transcription changes are indicative of compensatory growth regulation at local tissue level. These findings point to fine-tuned nutrient–gene interactions fundamental for improved growth capacity through better amino acid utilisation for protein accretion when salmon was fed additional 1C nutrients throughout smoltification. It also highlights potential nutritional programming strategies on improved post-smolt growth through 1C+ supplementation before and throughout smoltification.
Collapse
|
47
|
Mahboub HH, Faggio C, Hendam BM, Algharib SA, Alkafafy M, Abo Hashem M, Mahmoud YK, Khamis T, Abdel-Ghany HM, Masoud SR, Abdel Rahman AN. Immune-antioxidant trait, Aeromonas veronii resistance, growth, intestinal architecture, and splenic cytokines expression of Cyprinus carpio fed Prunus armeniaca kernel-enriched diets. FISH & SHELLFISH IMMUNOLOGY 2022; 124:182-191. [PMID: 35398527 DOI: 10.1016/j.fsi.2022.03.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Currently, the intervention of plant by-products in the fish diet has gained tremendous attention owing to the economic and high nutritious value. The current study is a pioneer attempt to incorporate the apricot, Prunus armeniaca kernel powder (PAKP) into the Common carp, Cyprinus carpio diets, and assess its efficacy on growth, digestion, intestinal morphology, immunity, antioxidant capacity, and splenic cytokines expression, besides the antibacterial role against Aeromonas veronii infection. Apparently healthy fish (N = 120) with an initial body weight of 24.76 ± 0.03g were allotted in 12 glass aquaria (60 L) and randomly distributed into four groups (triplicates, 10 fish/aquarium). The control group (PAKP0) was fed a basal diet without additives. The second, third, and fourth groups were provided PAKP diets with various concentrations (2.5 (PAKP2.5), 5 (PAKP5), and 10 g kg-1 (PAKP10)) respectively. After 60 days (feeding trial), sub-samples of the fish (12 fish/group) were intraperitoneally injected with 1 × 107 CFU mL-1 of A. veronii. Results revealed that body weight gain, feed conversion ratio, and specific growth rates were significantly augmented in the PAKP10 group in comparison to the other groups. The dietary inclusion of PAKP at all concentrations boosted the digestive capacity and maintained the intestinal morphology (average villus length, villus width, and goblet cells count) with a marked improvement in PAKP10. Moreover, fish fed on PAKP10 followed by PAKP5 then PAKP2.5 diets had noticeably elevated values of immunological biomarkers (IgM, antiprotease, and lysozyme activity) and antioxidant capabilities (the total antioxidant capacity, superoxide dismutase, and reduced glutathione) as well as significant up-regulation of immune and antioxidant-related genes (TGF-β2, TLR-2, TNF-α, IL-10, SOD, GPx, and GSS). Fourteen days post-infection with A. veronii, the highest relative percentage survival of fish was observed in PAKP10 (83.33%), followed by PAKP5 (66.67%), and PAKP2.5 (50%). Our results indicated that a dietary intervention with PAKP could promise growth, digestion, immunity, and protect C. carpio against A. veronii infection in a dose-dependent manner. This offers a framework for future application of such seeds as a growth promotor, immune-stimulant, and antioxidant, besides an alternative cheap therapeutic antibacterial agent for sustaining the aquaculture industry.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansura University, P.O. Box 35516, Mansoura, Egypt
| | - Samah Attia Algharib
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, QG, Egypt; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Marwa Abo Hashem
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, P.O. Box 41522, Ismailia, Egypt
| | - Yasmina K Mahmoud
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, P.O. Box 41522, Ismailia, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Heba M Abdel-Ghany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Shimaa R Masoud
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Afaf N Abdel Rahman
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
48
|
JO AL, HAN JW, AN JI, CHO KH, JEOUNG NH. Cuban Policosanol Prevents the Apoptosis and the Mitochondrial Dysfunction Induced by Lipopolysaccharide in C2C12 Myoblast via Activation of Akt and Erk Pathways. J Nutr Sci Vitaminol (Tokyo) 2022; 68:79-86. [DOI: 10.3177/jnsv.68.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ae Lim JO
- Department of Pharmaceutical Engineering, Deagu Catholic University
| | - Ji Won HAN
- Department of Pharmaceutical Engineering, Deagu Catholic University
| | - Ji In AN
- Department of Pharmaceutical Engineering, Deagu Catholic University
| | | | - Nam Ho JEOUNG
- Department of Pharmaceutical Engineering, Deagu Catholic University
| |
Collapse
|
49
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Tran LT, Park S, Kim SK, Lee JS, Kim KW, Kwon O. Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med 2022; 54:358-369. [PMID: 35301430 PMCID: PMC9076616 DOI: 10.1038/s12276-022-00741-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Energy expenditure and energy intake need to be balanced to maintain proper energy homeostasis. Energy homeostasis is tightly regulated by the central nervous system, and the hypothalamus is the primary center for the regulation of energy balance. The hypothalamus exerts its effect through both humoral and neuronal mechanisms, and each hypothalamic area has a distinct role in the regulation of energy expenditure. Recent studies have advanced the understanding of the molecular regulation of energy expenditure and thermogenesis in the hypothalamus with targeted manipulation techniques of the mouse genome and neuronal function. In this review, we elucidate recent progress in understanding the mechanism of how the hypothalamus affects basal metabolism, modulates physical activity, and adapts to environmental temperature and food intake changes. The hypothalamus is a key regulator of metabolism, controlling resting metabolism, activity levels, and responses to external temperature and food intake. The balance between energy intake and expenditure must be tightly controlled, with imbalances resulting in metabolic disorders such as obesity or diabetes. Obin Kwon at Seoul National University College of Medicine and Ki Woo Kim at Yonsei University College of Dentistry, Seoul, both in South Korea, and coworkers reviewed how metabolism is regulated by the hypothalamus, a small hormone-producing brain region. They report that hormonal and neuronal signals from the hypothalamus influence the ratio of lean to fatty tissue, gender-based differences in metabolism, activity levels, and weight gain in response to food intake. They note that further studies to untangle cause-and-effect relationships and other genetic factors will improve our understanding of metabolic regulation.
Collapse
Affiliation(s)
- Le Trung Tran
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sohee Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seul Ki Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Jin Sun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ki Woo Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|