1
|
Zhang X, Li J, He J, Li Y, Sun D, Zhang W. Glutathion peroxidase 4 (GPX4) and Ribosomal Protein L40 (RPL40) participate in arsenic induced progression of renal cell carcinoma by regulating the NLRP3 mediated classic pyroptosis pathway. Int J Biol Macromol 2025; 310:143129. [PMID: 40239794 DOI: 10.1016/j.ijbiomac.2025.143129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Epidemiological studies have demonstrated that long-term exposure to high‑arsenic water increases the risk of kidney cancer. Kidney dysfunction can lead to the accumulation of metabolic waste and chronic inflammation, with the latter being a significant factor in tumor development. Therefore, it is crucial to investigate how environmental arsenic exposure affects renal function and inflammation, as well as its potential influence on the progression of renal carcinoma. Additionally, pyroptosis plays an essential role in immune responses and the maintenance of cellular homeostasis. However, the role and mechanisms of pyroptosis in arsenic-induced kidney cancer progression remain unexplored. Our findings indicated that low-dose arsenic exposure reduces pyroptosis and promotes abnormal proliferation of renal tubular epithelial cells, while high-dose exposure enhances pyroptosis and damages renal tissue structure in mouse models. Mechanistically, in vitro studies confirmed that low-dose arsenic exposure promotes the progression of renal cell carcinoma by downregulating NLRP3 and inhibiting pyroptosis, whereas high-dose exposure has the opposite effect. Proteomics analysis identified GPX4 and RPL40 as key proteins mediating pyroptosis induced by low and high doses of arsenic, respectively. Furthermore, GPX4 and RPL40 were shown to regulate the malignant progression of renal cell carcinoma through their effects on NLRP3-mediated pyroptosis. This study reveals that arsenic exposure induces pyroptosis via NLRP3, leading to renal injury and influencing the malignant progression of renal cancer. Notably, GPX4 and RPL40 regulate this progression under low and high-dose arsenic exposure, respectively.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Jinyu Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Jing He
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Yuanyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China.
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China.
| |
Collapse
|
2
|
Liu J, Feng L, Jia Q, Meng J, Zhao Y, Ren L, Yan Z, Wang M, Qin J. A comprehensive bioinformatics analysis identifies mitophagy biomarkers and potential Molecular mechanisms in hypertensive nephropathy. J Biomol Struct Dyn 2025; 43:3204-3223. [PMID: 38334110 DOI: 10.1080/07391102.2024.2311344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/05/2023] [Indexed: 02/10/2024]
Abstract
Mitophagy, the selective removal of damaged mitochondria, plays a critical role in kidney diseases, but its involvement in hypertensive nephropathy (HTN) is not well understood. To address this gap, we investigated mitophagy-related genes in HTN, identifying potential biomarkers for diagnosis and treatment. Transcriptome datasets from the Gene Expression Omnibus database were analyzed, resulting in the identification of seven mitophagy related differentially expressed genes (MR-DEGs), namely PINK1, ULK1, SQSTM1, ATG5, ATG12, MFN2, and UBA52. Further, we explored the correlation between MR-DEGs, immune cells, and inflammatory factors. The identified genes demonstrated a strong correlation with Mast cells, T-cells, TGFβ3, IL13, and CSF3. Machine learning techniques were employed to screen important genes, construct diagnostic models, and evaluate their accuracy. Consensus clustering divided the HTN patients into two mitophagy subgroups, with Subgroup 2 showing higher levels of immune cell infiltration and inflammatory factors. The functions of their proteins primarily involve complement, coagulation, lipids, and vascular smooth muscle contraction. Single-cell RNA sequencing revealed that mitophagy was most significant in proximal tubule cells (PTC) in HTN patients. Pseudotime analysis of PTC confirmed the expression changes observed in the transcriptome. Intercellular communication analysis suggested that mitophagy might regulate PTC's participation in intercellular crosstalk. Notably, specific transcription factors such as HNF4A, PPARA, and STAT3 showed strong correlations with mitophagy-related genes in PTC, indicating their potential role in modulating PTC function and influencing the onset and progression of HTN. This study offers a comprehensive analysis of mitophagy in HTN, enhancing our understanding of the pathogenesis, diagnosis, and treatment of HTN.
Collapse
Affiliation(s)
- Jiayou Liu
- The Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Luda Feng
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Meng
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yun Zhao
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Ren
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziming Yan
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Manrui Wang
- The Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jianguo Qin
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Tong L, Zheng X, Wang T, Gu W, Shen T, Yuan W, Wang S, Xing S, Liu X, Zhang C, Zhang C. Inhibition of UBA52 induces autophagy via EMC6 to suppress hepatocellular carcinoma tumorigenesis and progression. J Cell Mol Med 2024; 28:e18164. [PMID: 38445807 PMCID: PMC10915828 DOI: 10.1111/jcmm.18164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Ubiquitin A-52 residue ribosomal protein fusion product 1 (UBA52) has a role in the occurrence and development of tumours. However, the mechanism by which UBA52 regulates hepatocellular carcinoma (HCC) tumorigenesis and progression remains poorly understood. By using the Cell Counting Kit (CCK-8), colony formation, wound healing and Transwell assays, we assessed the effects of UBA52 knockdown and overexpression on the proliferation and migration of HCC cells in vitro. By establishing subcutaneous and metastatic tumour models in nude mice, we evaluated the effects of UBA52 on HCC cell proliferation and migration in vivo. Through bioinformatic analysis of data from the Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) databases, we discovered that UBA52 is associated with autophagy. In addition, we discovered that HCC tissues with high UBA52 expression had a poor prognosis in patients. Moreover, knockdown of UBA52 reduced HCC cell growth and metastasis both in vitro and in vivo. Mechanistically, knockdown of UBA52 induced autophagy through EMC6 in HCC cells. These findings suggest that UBA52 promoted the proliferation and migration of HCC cells through autophagy regulation via EMC6 and imply that UBA52 may be a viable novel treatment target for HCC patients.
Collapse
Affiliation(s)
- Li Tong
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xiaofei Zheng
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Tianqi Wang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wang Gu
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Tingting Shen
- Department of PathologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wenkang Yuan
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Siyu Wang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Songlin Xing
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xiaoying Liu
- College of Life Sciences of Anhui Medical UniversityHefeiChina
| | - Chong Zhang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Chao Zhang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
4
|
Lee SO, Kelliher JL, Song W, Tengler K, Sarkar A, Dray E, Leung JWC. UBA80 and UBA52 fine-tune RNF168-dependent histone ubiquitination and DNA repair. J Biol Chem 2023; 299:105043. [PMID: 37451480 PMCID: PMC10413357 DOI: 10.1016/j.jbc.2023.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The ubiquitin signaling pathway is crucial for the DNA damage response pathway. More specifically, RNF168 is integral in regulating DNA repair proteins at damaged chromatin. However, the detailed mechanism by which RNF168 is regulated in cells is not fully understood. Here, we identify the ubiquitin-ribosomal fusion proteins UBA80 (also known as RPS27A) and UBA52 (also known as RPL40) as interacting proteins for H2A/H2AX histones and RNF168. Both UBA80 and UBA52 are recruited to laser-induced micro-irradiation DNA damage sites and are required for DNA repair. Ectopic expression of UBA80 and UBA52 inhibits RNF168-mediated H2A/H2AX ubiquitination at K13/15 and impairs 53BP1 recruitment to DNA lesions. Mechanistically, the C-terminal ribosomal fragments of UBA80 and UBA52, S27A and L40, respectively, limit RNF168-nucleosome engagement by masking the regulatory acidic residues at E143/E144 and the nucleosome acidic patch. Together, our results reveal that UBA80 and UBA52 antagonize the ubiquitination signaling pathway and fine-tune the spatiotemporal regulation of DNA repair proteins at DNA damage sites.
Collapse
Affiliation(s)
- Seong-Ok Lee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jessica L Kelliher
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Wan Song
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Kyle Tengler
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Aradhan Sarkar
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Justin W C Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
5
|
Bramlett C, Eerdeng J, Jiang D, Lee Y, Garcia I, Vergel-Rodriguez M, Condie P, Nogalska A, Lu R. RNA splicing factor Rbm25 underlies heterogeneous preleukemic clonal expansion in mice. Blood 2023; 141:2961-2972. [PMID: 36947858 PMCID: PMC10315624 DOI: 10.1182/blood.2023019620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Clonal expansion sets the stage for cancer genesis by allowing for the accumulation of molecular alterations. Although genetic mutations such as Tet2 that induce clonal expansion and malignancy have been identified, these mutations are also frequently found in healthy individuals. Here, we tracked preleukemic clonal expansion using genetic barcoding in an inducible Tet2 knockout mouse model and found that only a small fraction of hematopoietic stem cells (HSCs) expanded excessively upon Tet2 knockout. These overexpanded HSCs expressed significantly lower levels of genes associated with leukemia and RNA splicing than nonoverexpanded Tet2 knockout HSCs. Knocking down Rbm25, an identified RNA splicing factor, accelerated the expansion of Tet2-knockout hematopoietic cells in vitro and in vivo. Our data suggest that mutations of an epigenetic factor Tet2 induce variability in the expression of an RNA splicing factor Rbm25, which subsequently drives heterogeneous preleukemic clonal expansion. This heterogeneous clonal expansion could contribute to the variable disease risks across individuals.
Collapse
Affiliation(s)
- Charles Bramlett
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jiya Eerdeng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Du Jiang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yeachan Lee
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ivon Garcia
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Mary Vergel-Rodriguez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Patrick Condie
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Anna Nogalska
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
6
|
Eastham MJ, Pelava A, Wells GR, Watkins NJ, Schneider C. RPS27a and RPL40, Which Are Produced as Ubiquitin Fusion Proteins, Are Not Essential for p53 Signalling. Biomolecules 2023; 13:898. [PMID: 37371478 DOI: 10.3390/biom13060898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Two of the four human ubiquitin-encoding genes express ubiquitin as an N-terminal fusion precursor polypeptide, with either ribosomal protein (RP) RPS27a or RPL40 at the C-terminus. RPS27a and RPL40 have been proposed to be important for the induction of the tumour suppressor p53 in response to defects in ribosome biogenesis, suggesting that they may play a role in the coordination of ribosome production, ubiquitin levels and p53 signalling. Here, we report that RPS27a is cleaved from the ubiquitin-RP precursor in a process that appears independent of ribosome biogenesis. In contrast to other RPs, the knockdown of either RPS27a or RPL40 did not stabilise the tumour suppressor p53 in U2OS cells. Knockdown of neither protein blocked p53 stabilisation following inhibition of ribosome biogenesis by actinomycin D, indicating that they are not needed for p53 signalling in these cells. However, the knockdown of both RPS27a and RPL40 in MCF7 and LNCaP cells robustly induced p53, consistent with observations made with the majority of other RPs. Importantly, RPS27a and RPL40 are needed for rRNA production in all cell lines tested. Our data suggest that the role of RPS27a and RPL40 in p53 signalling, but not their importance in ribosome biogenesis, differs between cell types.
Collapse
Affiliation(s)
- Matthew John Eastham
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andria Pelava
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Graeme Raymond Wells
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas James Watkins
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claudia Schneider
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
7
|
Luo J, Zhao H, Chen L, Liu M. Multifaceted functions of RPS27a: An unconventional ribosomal protein. J Cell Physiol 2023; 238:485-497. [PMID: 36580426 DOI: 10.1002/jcp.30941] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
The ribosomal protein S27a (RPS27a) is cleaved from the fusion protein ubiquitin-RPS27a (Ub-RPS27a). Generally, Ub and RPS27a are coexpressed as a fusion protein but function independently after Ub is cleaved from RPS27a by a deubiquitinating enzyme. As an RP, RPS27a assembles into ribosomes, but it also functions independently of ribosomes. RPS27a is involved in the development and poor prognosis of various cancers, such as colorectal cancer, liver cancer, chronic myeloid leukemia, and renal carcinoma, and is associated with poor prognosis. Notably, the murine double minute 2/P53 axis is a major pathway through which RPS27a regulates cancer development. Moreover, RPS27a maintains sperm motility, regulates winged aphid indirect flight muscle degeneration, and facilitates plant growth. Additionally, RPS27a is a metalloprotein and mercury (Hg) biomarker. In the present review, we described the origin, structure, and biological functions of RPS27a.
Collapse
Affiliation(s)
- Jingshun Luo
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Zhao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Nursing College, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Meiqing Liu
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Cleavage of AUF1 by Coxsackievirus B Affects DDX5 Regulatory on Viral Replication through iTRAQ Proteomics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8610467. [PMID: 36246972 PMCID: PMC9560859 DOI: 10.1155/2022/8610467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Coxsackievirus B (CVB) 3C protease (3Cpro) plays a specific cleavage role on AU-rich binding factor (AUF1, also called hnRNP D), which consequently disputes the regulation of AUF1 on downstream molecules. In our study, the iTRAQ approach was first used to quantify the differentially expressed cellular proteins in AUF1-overexpressing HeLa cells, which provides straightforward insight into the role of AUF1 during viral infection. A total of 1,290 differentially expressed proteins (DEPs), including 882 upregulated and 408 downregulated proteins, were identified. The DEPs are involved in a variety of cellular processes via GO terms, protein–protein interactions, and a series of further bioinformatics analyses. Among the DEPs, some demonstrated important roles in cellular metabolism. In particular, DDX5 was further verified to be negatively regulated by AUF1 and increased in CVB-infected cells, which in turn promoted CVB replication. These findings provide potential novel ideas for exploring new antiviral therapy targets.
Collapse
|
9
|
Wang J, Qiu X, Huang J, Zhuo Z, Chen H, Zeng R, Wu H, Guo K, Yang Q, Ye H, Huang W, Luo Y. Development and validation of a novel mitophagy-related gene prognostic signature for glioblastoma multiforme. BMC Cancer 2022; 22:644. [PMID: 35692054 PMCID: PMC9190154 DOI: 10.1186/s12885-022-09707-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is one of the most malignant tumors in brain with high morbidity and mortality. Mitophagy plays a significant role in carcinogenesis, metastasis, and invasion. In our study, we aim to construct a mitophagy-related risk model to predict prognosis in GBM. Methods RNA-seq data combined with clinical information were downloaded from TCGA. The 4-gene risk model and nomograph was then constructed and validated in external cohort. Evaluation of immune infiltration, functional enrichment and tumor microenvironment (TME) were then performed. Result A mitophagy-related risk model was established and patients in TCGA and CGGA were classified into low-risk and high-risk groups. In both cohorts, patients in low-risk group had improved survival, while high-risk group had poor prognosis. Also, the risk model was identified as an independent factor for predicting overall survival via Cox regression. Furthermore, a prognostic nomogram including mitophagy signatures was established with excellent predictive performance. In addition, the risk model was closely associated with regulation of immune infiltration as well as TME. Conclusion In conclusion, our study constructed a mitophagy-related risk model, which can be utilized for the clinical prognostic prediction in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09707-w.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xinqi Qiu
- Zhuguang Community Healthcare Center, Guangzhou, 510080, China
| | - Jiayu Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Huizhou Municipal Central People's Hospital, Huizhou, 516001, People's Republic of China
| | - Zewei Zhuo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China.,Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Huihuan Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China.,Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Huiling Ye
- Department of General Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
10
|
He RQ, Li JD, He WY, Chen G, Huang ZG, Li MF, Wu WZ, Chen JT, Pan YQ, Jiang H, Dang YW, Yang LH. Prognosis prediction ability and prospective biological mechanisms of WDHD1 in hepatocellular carcinoma tissues. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Bordoni V, Sanna L, Lyu W, Avitabile E, Zoroddu S, Medici S, Kelvin DJ, Bagella L. Silver Nanoparticles Derived by Artemisia arborescens Reveal Anticancer and Apoptosis-Inducing Effects. Int J Mol Sci 2021; 22:ijms22168621. [PMID: 34445327 PMCID: PMC8395306 DOI: 10.3390/ijms22168621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023] Open
Abstract
The fight against cancer is one of the main challenges for medical research. Recently, nanotechnology has made significant progress, providing possibilities for developing innovative nanomaterials to overcome the common limitations of current therapies. In this context, silver nanoparticles (AgNPs) represent a promising nano-tool able to offer interesting applications for cancer research. Following this path, we combined the silver proprieties with Artemisia arborescens characteristics, producing novel nanoparticles called Artemisia-AgNPs. A "green" synthesis method was performed to produce Artemisia-AgNPs, using Artemisia arborescens extracts. This kind of photosynthesis is an eco-friendly, inexpensive, and fast approach. Moreover, the bioorganic molecules of plant extracts improved the biocompatibility and efficacy of Artemisia-AgNPs. The Artemisia-AgNPs were fully characterized and tested to compare their effects on various cancer cell lines, in particular HeLa and MCF-7. Artemisia-AgNPs treatment showed dose-dependent growth inhibition of cancer cells. Moreover, we evaluated their impact on the cell cycle, observing a G1 arrest mediated by Artemisia-AgNPs treatment. Using a clonogenic assay after treatment, we observed a complete lack of cell colonies, which demonstrated cell reproducibility death. To have a broader overview on gene expression impact, we performed RNA-sequencing, which demonstrated the potential of Artemisia-AgNPs as a suitable candidate tool in cancer research.
Collapse
Affiliation(s)
- Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
| | - Weidong Lyu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou 515011, China;
| | - Elisabetta Avitabile
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100 Sassari, Italy;
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou 515011, China;
- Department of Microbiology and Immunology, Dalhousie University, 6299 South St, Halifax, NS B3H 4R2, Canada
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
- Centre for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| |
Collapse
|
12
|
Quantitative ubiquitylomics reveals the ubiquitination regulation landscape in oral adenoid cystic carcinoma. Biosci Rep 2021; 41:229447. [PMID: 34350460 PMCID: PMC8385350 DOI: 10.1042/bsr20211532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/04/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is an extremely rare salivary gland tumor with a poor prognosis and needs attention on molecular mechanisms. Protein ubiquitination is an evolutionarily conserved post-translational modification (PTM) for substrates degradation and controls diverse cellular functions. The broad cellular function of ubiquitination network holds great promise to detect potential targets and identify respective receptors. Novel technologies are discovered for in-depth research and characterization of the precise and dynamic regulation of ubiquitylomics in multiple cellular processes during cancer initiation, progression and treatment. In the present study, 4D label-free quantitative techniques of ubiquitination proteomics were used and we identified a total of 4152 ubiquitination sites in 1993 proteins. We also performed a systematic bioinformatics analysis for differential modified proteins and peptides containing quantitative information through the comparation between oral ACC (OACC) tumor with adjacent normal tissues, as well as the identification of eight protein clusters with motif analysis. Our findings offered an important reference of potential biomarkers and effective therapeutic targets for ACC.
Collapse
|
13
|
Yu Z, Zhao C, Hu S, Zhang H, Li W, Zhang R, Luo Q, Yang H. MALDI-MS-based biomarker analysis of extracellular vesicles from human lung carcinoma cells. RSC Adv 2021; 11:25375-25380. [PMID: 35478925 PMCID: PMC9037017 DOI: 10.1039/d1ra04305f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are actively secreted by mammalian cells. They are increasingly recognized as promising circulating biomarkers of disease progression. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is currently one of the most powerful techniques for the rapid analysis of biological samples, especially for discovering biomarkers for disease diagnosis and prognosis. It is unclear what cell culture medium components and EV isolation methods are suitable for MALDI-TOF MS analysis. Using a human lung carcinoma cell line (A549), we investigated and optimized the critical experimental conditions for EVs' protein profiling by combining differential ultracentrifugation and MALDI-TOF MS. The results demonstrated that medium components and ultracentrifugation procedures to extract EVs played important roles in MS detection. Compared with EV-depleted serum and normal serum medium, conditioned medium with 2% fetal bovine serum in this study maintained cell proliferation and displayed significant protein profiling of EVs. RPS27A (ribosomal protein), which plays an essential role in mRNA translation and ribosome assembly for the differentiation of cancer cells, was detected from the EVs of lung cancer cells associated with cancer cell migration and invasion. We also found the known tumor diagnosis marker, which is S100A10_S100 calcium-binding protein A10. Therefore, MALDI-TOF MS-based EV analysis with optimized experimental protocols can contribute to future development of rapid screening techniques of protein biomarkers associated with early cancer diagnosis.
Collapse
Affiliation(s)
- Zitong Yu
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Shi Hu
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Huitao Zhang
- Research Center for Medical Artificial Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Wenbo Li
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Renjie Zhang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Qian Luo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Hui Yang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
14
|
Li W, Shih A, Freudenberg-Hua Y, Fury W, Yang Y. Beyond standard pipeline and p < 0.05 in pathway enrichment analyses. Comput Biol Chem 2021; 92:107455. [PMID: 33774420 PMCID: PMC9179938 DOI: 10.1016/j.compbiolchem.2021.107455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
A standard pathway/gene-set enrichment analysis, the over-representation analysis, is based on four values: the size of two gene-sets, size of their overlap, and size of the gene universe from which the gene-sets are chosen. The standard result of such an analysis is based on the p-value of a statistical test. We supplement this standard pipeline by six cautions: (1) any p-value threshold to distinguish enriched gene-sets from not-enriched ones is to certain degree arbitrary; (2) genes in a gene-set may be correlated, which potentially overcount the gene-set size; (3) any attempt to impose multiple testing correction will increase the false negative rate; (4) gene-sets in a gene-set database may be correlated, potentially overcount the factor for multiple testing correction; (5) the discrete nature of the data make it possible that a minimum change in counts may lead to a quantum change in the p-value threshold-based conclusion; (6) the two gene-sets may not be chosen from the universe of all human genes, but in fact from a subset of that universe, or even two different subsets of all genes. Careful reconsideration of these issues can have an impact on an enrichment analysis conclusion. Part of our cautions mirror the call from statistician that reaching conclusion from data is not a simple matter of p-value smaller than 0.05, but a thoughtful process with due diligences.
Collapse
Affiliation(s)
- Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Andrew Shih
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Yun Freudenberg-Hua
- Litwin-Zucker Center for the study of Alzheimer's Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Division of Geriatric Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - Wen Fury
- Regeneron Pharmaceutical Inc., Tarrytown, NY, USA
| | - Yaning Yang
- Department of Statistics and Finance, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
15
|
Lafranchi L, Schlesinger D, Kimler KJ, Elsässer SJ. Universal Single-Residue Terminal Labels for Fluorescent Live Cell Imaging of Microproteins. J Am Chem Soc 2020; 142:20080-20087. [PMID: 33175524 DOI: 10.1021/jacs.0c09574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetically encoded fluorescent tags for visualization of proteins in living cells add six to several hundred amino acids to the protein of interest. While suitable for most proteins, common tags easily match and exceed the size of microproteins of 60 amino acids or less. The added molecular weight and structure of such fluorescent tag may thus significantly affect in vivo biophysical and biochemical properties of microproteins. Here, we develop single-residue terminal labeling (STELLA) tags that introduce a single noncanonical amino acid either at the N- or C-terminus of a protein or microprotein of interest for subsequent specific fluorescent labeling. Efficient terminal noncanonical amino acid mutagenesis is achieved using a precursor tag that is tracelessly cleaved. Subsequent selective bioorthogonal reaction with a cell-permeable organic dye enables live cell imaging of microproteins with minimal perturbation of their native sequence. The use of terminal residues for labeling provides a universally applicable and easily scalable strategy, which avoids alteration of the core sequence of the microprotein.
Collapse
Affiliation(s)
- Lorenzo Lafranchi
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Dörte Schlesinger
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Kyle J Kimler
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| |
Collapse
|
16
|
Júnior LA, Cucielo MS, Domeniconi RF, dos Santos LD, Silveira HS, da Silva Nunes I, Martinez M, Martinez FE, Fávaro WJ, Chuffa LGDA. P-MAPA and IL-12 Differentially Regulate Proteins Associated with Ovarian Cancer Progression: A Proteomic Study. ACS OMEGA 2019; 4:21761-21777. [PMID: 31891054 PMCID: PMC6933580 DOI: 10.1021/acsomega.9b02512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/27/2019] [Indexed: 05/04/2023]
Abstract
To investigate the potential role of immunotherapies in the cellular and molecular mechanisms associated with ovarian cancer (OC), we applied a comparative proteomic toll using protein identification combined with mass spectrometry. Herein, the effects of the protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride, known as P-MAPA, and the human recombinant interleukin-12 (hrIL-12) were tested alone or in combination in human SKOV-3 cells. The doses and period were defined based on a previous study, which showed that 25 μg/mL P-MAPA and 1 ng/mL IL-12 are sufficient to reduce cell metabolism after 48 h. Indeed, among 2,881 proteins modulated by the treatments, 532 of them were strictly concordant and common. P-MAPA therapy upregulated proteins involved in tight junction, focal adhesion, ribosome constitution, GTP hydrolysis, semaphorin interactions, and expression of SLIT and ROBO, whereas it downregulated ERBB4 signaling, toll-like receptor signaling, regulation of NOTCH 4, and the ubiquitin proteasome pathway. In addition, IL-12 therapy led to upregulation of leukocyte migration, tight junction, and cell signaling, while cell communication, cell metabolism, and Wnt signaling were significantly downregulated in OC cells. A clear majority of proteins that were overexpressed by the combination of P-MAPA with IL-12 are involved in tight junction, focal adhesion, DNA methylation, metabolism of RNA, and ribosomal function; only a small number of downregulated proteins were involved in cell signaling, energy and mitochondrial processes, cell oxidation and senescence, and Wnt signaling. These findings suggest that P-MAPA and IL-12 efficiently regulated important proteins associated with OC progression; these altered proteins may represent potential targets for OC treatment in addition to its immunoadjuvant effects.
Collapse
Affiliation(s)
- Luiz Antonio
Lupi Júnior
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Maira Smaniotto Cucielo
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Raquel Fantin Domeniconi
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Lucilene Delazari dos Santos
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Henrique Spaulonci Silveira
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | | | - Marcelo Martinez
- Department
of Morphology and Pathology, Federal University
of São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Francisco Eduardo Martinez
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Wagner José Fávaro
- Department
of Structural and Functional Biology, UNICAMP—University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Luiz Gustavo de Almeida Chuffa
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
- E-mail: . Phone: +55 (14) 3880-0027
| |
Collapse
|
17
|
Xue J, Jiang W, Li J, Xiong W, Tian Z, Zhang Q, Li S, Liu C, Huang K, Wang Q. Toxoplasma gondii RPL40 is a circulating antigen with immune protection effect. Folia Parasitol (Praha) 2019; 66. [PMID: 31592775 DOI: 10.14411/fp.2019.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
Screening and identification of protective antigens are essential for the prevention of infections with Toxoplasma gondii (Nicolle et Manceaux, 1908). In our previous study, T. gondii ribosomal-ubiquitin protein L40 (TgRPL40) was identified as a circulating antigen. However, the function and protective value of TgRPL40 was unknown. In the current study, recombinant TgRPL40 was expressed in Escherichia coli BL21 and antibody was prepared. Western blotting analysis indicated that TgRPL40 was present in circulating antigens and excretory/secretary antigens (ESA). Immunofluorescence and immunoelectron microscopy analysis revealed that TgRPL40 protein is widely distributed in the tachyzoites. Immunisation with recombinant TgRPL40 prolonged the survival of mice infected with tachyzoites. Quantitative real-time polymerase chain reaction analysis showed that immunisation with recombinant TgRPL40 reduced the parasite burden in blood, liver, spleen and brain of mice infected with tachyzoites. These observations indicate that TgRPL40 is a circulating antigen and is an effector of immune protection against acute T. gondii infection.
Collapse
Affiliation(s)
- Junxin Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China.,Shanghai Customs, Shanghai, P. R. China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China
| | - Jian Li
- Shanghai Customs, Shanghai, P. R. China
| | - Wei Xiong
- Shanghai Customs, Shanghai, P. R. China
| | | | | | | | | | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China
| |
Collapse
|
18
|
El Magraoui F, Brinkmeier R, Mastalski T, Hupperich A, Strehl C, Schwerter D, Girzalsky W, Meyer HE, Warscheid B, Erdmann R, Platta HW. The deubiquitination of the PTS1-import receptor Pex5p is required for peroxisomal matrix protein import. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:199-213. [PMID: 30408545 DOI: 10.1016/j.bbamcr.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/13/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Peroxisomal biogenesis depends on the correct import of matrix proteins into the lumen of the organelle. Most peroxisomal matrix proteins harbor the peroxisomal targeting-type 1 (PTS1), which is recognized by the soluble PTS1-receptor Pex5p in the cytosol. Pex5p ferries the PTS1-proteins to the peroxisomal membrane and releases them into the lumen. Finally, the PTS1-receptor is monoubiquitinated on the conserved cysteine 6 in Saccharomyces cerevisiae. The monoubiquitinated Pex5p is recognized by the peroxisomal export machinery and is retrotranslocated into the cytosol for further rounds of protein import. However, the functional relevance of deubiquitination has not yet been addressed. In this study, we have analyzed a Pex5p-truncation lacking Cys6 [(Δ6)Pex5p], a construct with a ubiquitin-moiety genetically fused to the truncation [Ub-(Δ6)Pex5p], as well as a construct with a reduced susceptibility to deubiquitination [Ub(G75/76A)-(Δ6)Pex5p]. While the (Δ6)Pex5p-truncation is not functional, the Ub-(Δ6)Pex5p chimeric protein can facilitate matrix protein import. In contrast, the Ub(G75/76A)-(Δ6)Pex5p chimera exhibits a complete PTS1-import defect. The data show for the first time that not only ubiquitination but also deubiquitination rates are tightly regulated and that efficient deubiquitination of Pex5p is essential for peroxisomal biogenesis.
Collapse
Affiliation(s)
- Fouzi El Magraoui
- Biomedizinische Forschung, Leibniz-Insitute for Analytische Wissenschaften - ISAS e.V. - (ISAS e.V.), 44139 Dortmund, Germany; Systembiochemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Rebecca Brinkmeier
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Mastalski
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Alexander Hupperich
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Christofer Strehl
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | | | - Helmut E Meyer
- Biomedizinische Forschung, Leibniz-Insitute for Analytische Wissenschaften - ISAS e.V. - (ISAS e.V.), 44139 Dortmund, Germany
| | - Bettina Warscheid
- Functional Proteomics, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Ralf Erdmann
- Systembiochemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| |
Collapse
|
19
|
Kobayashi M, Oshima S, Maeyashiki C, Nibe Y, Otsubo K, Matsuzawa Y, Nemoto Y, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Watanabe M. The ubiquitin hybrid gene UBA52 regulates ubiquitination of ribosome and sustains embryonic development. Sci Rep 2016; 6:36780. [PMID: 27829658 PMCID: PMC5103194 DOI: 10.1038/srep36780] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/20/2016] [Indexed: 01/23/2023] Open
Abstract
Ubiquitination is a crucial post-translational modification; however, the functions of ubiquitin-coding genes remain unclear. UBA52 encodes a fusion protein comprising ubiquitin at the N-terminus and ribosomal protein L40 (RPL40) at the C-terminus. Here we showed that Uba52-deficient mice die during embryogenesis. UBA52-deficient cells exhibited normal levels of total ubiquitin. However, UBA52-deficient cells displayed decreased protein synthesis and cell-cycle arrest. The overexpression of UBA52 ameliorated the cell-cycle arrest caused by UBA52 deficiency. Surprisingly, RPL40 expression itself is insufficient to regulate cyclin D expression. The cleavage of RPL40 from UBA52 was required for maintaining protein synthesis. Furthermore, we found that RPL40 formed a ribosomal complex with ubiquitin cleaved from UBA52. UBA52 supplies RPL40 and ubiquitin simultaneously to the ribosome. Our study demonstrated that the ubiquitin-coding gene UBA52 is not just an ubiquitin supplier to the ubiquitin pool but is also a regulator of the ribosomal protein complex. These findings provide novel insights into the regulation of ubiquitin-dependent translation and embryonic development.
Collapse
Affiliation(s)
- Masanori Kobayashi
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Chiaki Maeyashiki
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yoichi Nibe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kana Otsubo
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yu Matsuzawa
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Takashi Nagaishi
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Tetsuya Nakamura
- Department of Advanced Therapeutics for GI Diseases, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
20
|
Magangane P, Sookhayi R, Govender D, Naidoo R. Determining protein biomarkers for DLBCL using FFPE tissues from HIV negative and HIV positive patients. J Mol Histol 2016; 47:565-577. [PMID: 27696080 DOI: 10.1007/s10735-016-9695-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/08/2016] [Indexed: 01/27/2023]
Abstract
DLBCL is the most common lymphoma subtype occurring in older populations as well as in younger HIV infected patients. The current treatment options for DLBCL are effective for most patients yet the relapse rate is high. While many biomarkers for DLBCL exist, they are not in clinical use due to low sensitivity and specificity. In addition, these biomarkers have not been studied in the HIV context. Therefore, the identification of new biomarkers for HIV negative and HIV positive DLBCL, may lead to a better understanding of the disease pathology and better therapeutic design. Protein biomarkers for DLBCL were determined using MALDI imaging mass spectrometry (IMS) and characterised using LC-MS. The expression of one of the biomarkers, heat shock protein (Hsp) 70, was confirmed on a separate cohort of samples using immunohistochemistry. The biomarkers identified in the study consisted of four protein clusters including glycolytic enzymes, ribosomal proteins, histones and collagen. These proteins could differentiate between control and tumour tissue, and the DLBCL immunohistochemical subtypes in both cohorts. The majority (41/52) of samples in the confirmation cohort were negative for Hsp70 expression. The HIV positive DLBCL cases had a higher percentage of cases expressing Hsp70 than their HIV negative counterparts. The non-GC subtype also frequently overexpressed Hsp70, confirming MALDI IMS data. The expression of Hsp70 did not correlate with survival in both the HIV negative and HIV positive cohort. This study identified potential biomarkers for HIV negative and HIV positive DLBCL from FFPE tissue sections. These may be used as diagnostic and prognostic markers complementary to current clinical management programmes for DLBCL.
Collapse
Affiliation(s)
- Pumza Magangane
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Raveendra Sookhayi
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Richard Naidoo
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
21
|
Ayyadevara S, Balasubramaniam M, Parcon PA, Barger SW, Griffin WST, Alla R, Tackett AJ, Mackintosh SG, Petricoin E, Zhou W, Shmookler Reis RJ. Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer's hippocampus from normal controls. Aging Cell 2016; 15:924-39. [PMID: 27448508 PMCID: PMC5013017 DOI: 10.1111/acel.12501] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are distinguished by characteristic protein aggregates initiated by disease‐specific ‘seed’ proteins; however, roles of other co‐aggregated proteins remain largely unexplored. Compact hippocampal aggregates were purified from Alzheimer's and control‐subject pools using magnetic‐bead immunoaffinity pulldowns. Their components were fractionated by electrophoretic mobility and analyzed by high‐resolution proteomics. Although total detergent‐insoluble aggregates from Alzheimer's and controls had similar protein content, within the fractions isolated by tau or Aβ1–42 pulldown, the protein constituents of Alzheimer‐derived aggregates were more abundant, diverse, and post‐translationally modified than those from controls. Tau‐ and Aβ‐containing aggregates were distinguished by multiple components, and yet shared >90% of their protein constituents, implying similar accretion mechanisms. Alzheimer‐specific protein enrichment in tau‐containing aggregates was corroborated for individuals by three analyses. Five proteins inferred to co‐aggregate with tau were confirmed by precise in situ methods, including proximity ligation amplification that requires co‐localization within 40 nm. Nematode orthologs of 21 proteins, which showed Alzheimer‐specific enrichment in tau‐containing aggregates, were assessed for aggregation‐promoting roles in C. elegans by RNA‐interference ‘knockdown’. Fifteen knockdowns (71%) rescued paralysis of worms expressing muscle Aβ, and 12 (57%) rescued chemotaxis disrupted by neuronal Aβ expression. Proteins identified in compact human aggregates, bound by antibody to total tau, were thus shown to play causal roles in aggregation based on nematode models triggered by Aβ1–42. These observations imply shared mechanisms driving both types of aggregation, and/or aggregate‐mediated cross‐talk between tau and Aβ. Knowledge of protein components that promote protein accrual in diverse aggregate types implicates common mechanisms and identifies novel targets for drug intervention.
Collapse
Affiliation(s)
- Srinivas Ayyadevara
- McClellan Veterans Medical Center Central Arkansas Veterans Healthcare Service Little Rock AR 72205 USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Meenakshisundaram Balasubramaniam
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR 72205 USA
- BioInformatics Program University of Arkansas for Medical Sciences and University of Arkansas at Little Rock Little Rock AR 72205 USA
| | - Paul A. Parcon
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Steven W. Barger
- McClellan Veterans Medical Center Central Arkansas Veterans Healthcare Service Little Rock AR 72205 USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - W. Sue T. Griffin
- McClellan Veterans Medical Center Central Arkansas Veterans Healthcare Service Little Rock AR 72205 USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Ramani Alla
- McClellan Veterans Medical Center Central Arkansas Veterans Healthcare Service Little Rock AR 72205 USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Alan J. Tackett
- Department of Biochemistry & Molecular Biology University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Samuel G. Mackintosh
- Department of Biochemistry & Molecular Biology University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine George Mason University Manassas VA 20110 USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine George Mason University Manassas VA 20110 USA
| | - Robert J. Shmookler Reis
- McClellan Veterans Medical Center Central Arkansas Veterans Healthcare Service Little Rock AR 72205 USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR 72205 USA
- Department of Biochemistry & Molecular Biology University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| |
Collapse
|
22
|
Radulovic M, Baqader NO, Stoeber K, Godovac-Zimmermann J. Spatial Cross-Talk between Oxidative Stress and DNA Replication in Human Fibroblasts. J Proteome Res 2016; 15:1907-38. [PMID: 27142241 DOI: 10.1021/acs.jproteome.6b00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MS-based proteomics has been applied to a differential network analysis of the nuclear-cytoplasmic subcellular distribution of proteins between cell-cycle arrest: (a) at the origin activation checkpoint for DNA replication, or (b) in response to oxidative stress. Significant changes were identified for 401 proteins. Cellular response combines changes in trafficking and in total abundance to vary the local compartmental abundances that are the basis of cellular response. Appreciable changes for both perturbations were observed for 245 proteins, but cross-talk between oxidative stress and DNA replication is dominated by 49 proteins that show strong changes for both. Many nuclear processes are influenced by a spatial switch involving the proteins {KPNA2, KPNB1, PCNA, PTMA, SET} and heme/iron proteins HMOX1 and FTH1. Dynamic spatial distribution data are presented for proteins involved in caveolae, extracellular matrix remodelling, TGFβ signaling, IGF pathways, emerin complexes, mitochondrial protein import complexes, spliceosomes, proteasomes, and so on. The data indicate that for spatially heterogeneous cells cross-compartmental communication is integral to their system biology, that coordinated spatial redistribution for crucial protein networks underlies many functional changes, and that information on dynamic spatial redistribution of proteins is essential to obtain comprehensive pictures of cellular function. We describe how spatial data of the type presented here can provide priorities for further investigation of crucial features of high-level spatial coordination across cells. We suggest that the present data are related to increasing indications that much of subcellular protein transport is constitutive and that perturbation of these constitutive transport processes may be related to cancer and other diseases. A quantitative, spatially resolved nucleus-cytoplasm interaction network is provided for further investigations.
Collapse
Affiliation(s)
- Marko Radulovic
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.,Insitute of Oncology and Radiology , Pasterova 14, 11000 Belgrade, Serbia
| | - Noor O Baqader
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London , University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
23
|
Bianchi M, Giacomini E, Crinelli R, Radici L, Carloni E, Magnani M. Dynamic transcription of ubiquitin genes under basal and stressful conditions and new insights into the multiple UBC transcript variants. Gene 2015; 573:100-9. [DOI: 10.1016/j.gene.2015.07.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 01/16/2023]
|
24
|
Lee JY, Tokumoto M, Fujiwara Y, Satoh M. Involvement of ubiquitin-coding genes in cadmium-induced protein ubiquitination in human proximal tubular cells. J Toxicol Sci 2015; 40:901-8. [DOI: 10.2131/jts.40.901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Maki Tokumoto
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Yasuyuki Fujiwara
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| |
Collapse
|
25
|
Tung PY, Varlakhanova NV, Knoepfler PS. Identification of DPPA4 and DPPA2 as a novel family of pluripotency-related oncogenes. Stem Cells 2014; 31:2330-42. [PMID: 23963736 DOI: 10.1002/stem.1526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/07/2013] [Accepted: 07/07/2013] [Indexed: 11/07/2022]
Abstract
In order to identify novel pluripotency-related oncogenes, an expression screen for oncogenic foci-inducing genes within a retroviral human embryonic stem cell cDNA library was conducted. From this screen, we identified not only known oncogenes but also intriguingly the key pluripotency factor, DPPA4 (developmental pluripotency-associated four) that encodes a DNA binding SAP domain-containing protein. DPPA4 has not been previously identified as an oncogene but is highly expressed in embryonal carcinomas, pluripotent germ cell tumors, and other cancers. DPPA4 is also mutated in some cancers. In direct transformation assays, we validated that DPPA4 is an oncogene in both mouse 3T3 cells and immortalized human dermal fibroblasts. Overexpression of DPPA4 generates oncogenic foci (sarcoma cells) and causes anchorage-independent growth. The in vitro transformed cells also give rise to tumors in immunodeficient mice. Furthermore, functional analyses indicate that both the DNA-binding SAP domain and the histone-binding C-terminal domain are critical for the oncogenic transformation activity of DPPA4. Downregulation of DPPA4 in E14 mouse embryonic stem cells and P19 mouse embryonic carcinoma cells causes decreased cell proliferation in each case. In addition, DPPA4 overexpression induces cell proliferation through genes related to regulation of G1/S transition. Interestingly, we observed similar findings for family member DPPA2. Thus, we have identified a new family of pluripotency-related oncogenes consisting of DPPA2 and DPPA4. Our findings have important implications for stem cell biology and tumorigenesis.
Collapse
Affiliation(s)
- Po-Yuan Tung
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, USA; University of California Davis Genome Center, University of California Davis, Davis, California, USA; UC Davis Comprehensive Cancer Center, Shriners Hospital For Children Northern California, Sacramento, California, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, USA
| | | | | |
Collapse
|
26
|
Hao PP, Lee MJ, Yu GR, Kim IH, Cho YG, Kim DG. Isolation of EpCAM(+)/CD133 (-) hepatic progenitor cells. Mol Cells 2013; 36:424-431. [PMID: 24293012 PMCID: PMC3887933 DOI: 10.1007/s10059-013-0190-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
Progenitor cell-derived hepatocytes are critical for hepatocyte replenishment. Therefore, we established a line of human hepatic progenitor (HNK1) cells and determined their biological characteristics for experimental and therapeutic applications. HNK1 cells, isolated from human noncirrhotic liver samples with septal fibrosis, showed high expression of the hepatic progenitor cell (HPC) markers EpCAM, CK7, CK19, alpha-fetoprotein (AFP), CD90 (Thy1), and EFNA1. Expression of CD133 was very low. Ductular reactions at the periphery of cirrhotic nodules were immunohistochemically positive for these HPC markers, including EFNA1. Sodium butyrate, a differentiation inducer, induced hepatocyte-like morphological changes in HNK1 cells. It resulted in down-regulation of the hepatic progenitor cell markers EpCAM, CK7, CK19, AFP, and EFNA1 and up-regulation of mature hepatocyte markers, including albumin, CK8, and CK18. Furthermore, sodium butyrate treatment and a serial passage of HNK1 cells resulted in enhanced albumin secretion, ureagenesis, and CYP enzyme activity, all of which are indicators of differentiation in hepatocytes. However, HNK1 cells at passage 50 did not exhibit anchorage-independent growth capability and caused no tumors in immunodeficient mice, suggesting that they had no spontaneous malignant transformation ability. From this evidence, HNK1 cells were found to be EpCAM(+)/CD133(-) hepatic progenitor cells without spontaneous malignant transformation ability. We therefore conclude that HNK1 cells could be useful for experimental and therapeutic applications.
Collapse
Affiliation(s)
- Pei-Pei Hao
- Division of Gastroenterology and Hepatology, Departments of Internal Medicine
| | - Mi-Jin Lee
- Division of Gastroenterology and Hepatology, Departments of Internal Medicine
| | - Goung-Ran Yu
- Division of Gastroenterology and Hepatology, Departments of Internal Medicine
| | - In-Hee Kim
- Division of Gastroenterology and Hepatology, Departments of Internal Medicine
| | | | - Dae-Ghon Kim
- Division of Gastroenterology and Hepatology, Departments of Internal Medicine
| |
Collapse
|
27
|
Zhang H, Li F, Cheng C, Jiao D, Zhou Z, Cheng L. The identification and characterisation of a new deltamethrin resistance-associated gene, UBL40, in the diamondback moth, Plutella xylostella (L.). Gene 2013; 530:51-6. [PMID: 23973721 DOI: 10.1016/j.gene.2013.07.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Differential expression of ubiquitin was previously reported between Plutella xylostella strains that are resistant or susceptible to the pesticide deltamethrin (DM). This finding hinted at the potential involvement of ubiquitin in deltamethrin resistance, a theory that demanded further testing. Real-time PCR analyses revealed that one of the ubiquitin genes, UBL40, was overexpressed in the deltamethrin-resistant strain during the fourth instar. To investigate the functional relationship between this gene and deltamethrin resistance, RNA interference (RNAi) and cell transfection were utilised. UBL40 knockdown was observed to significantly reduce the level of resistance in RNAi-treated larvae after 48 h. Conversely, overexpression of UBL40 in Drosophila Kc cells conferred a degree of protection against deltamethrin. These results represent the first evidence that UBL40 plays a role in the regulation of deltamethrin resistance in P. xylostella.
Collapse
Affiliation(s)
- Hong Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | | | | | | | | | | |
Collapse
|