1
|
Dominado N, Ye R, Casagranda F, Heaney J, Siddall NA, Abud HE, Hime GR. Alternate Grainy head isoforms regulate Drosophila midgut intestinal stem cell differentiation. Cell Death Discov 2025; 11:206. [PMID: 40295491 PMCID: PMC12037896 DOI: 10.1038/s41420-025-02496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Regeneration of the Drosophila midgut epithelium depends upon differential expression of transcription factors in intestinal stem cells and their progeny. The grainy head locus produces multiple splice forms that result in production of two classes of transcription factor, designated Grh.O and Grh.N. grainy head expression is associated with epithelial tissue and has roles in epidermal development and regeneration but had not been examined for a function in the midgut epithelium. Here we show that null mutant clones had a limited effect on intestinal stem cell (ISC) maintenance and proliferation but surprisingly specific loss of all Grh.O isoforms results in loss of ISCs from the epithelium. This was confirmed by generation of a new Grh.O class mutant to control for genetic background effects. Grh.O mutant ISCs were not lost due to cell death but were forced to differentiate. Ectopic expression of a Grh.N isoform also resulted in ISC differentiation similar to loss of Grh.O function. Grh.O expression must be tightly regulated as high level ectopic expression of a member of this isoform class in enteroblasts, but not ISCs, resulted in cells with confused identity and promoted excess proliferation in the epithelium. Thus, midgut regeneration is not only dependent upon signalling pathways that regulate transcription factor expression, but also upon regulated mRNA splicing of these genes.
Collapse
Affiliation(s)
- Nicole Dominado
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Rachel Ye
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - James Heaney
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Liang H, Wang Y, Li J, Zhang K. Crotonylation deficiency of S100A7 K49 promotes psoriatic keratinocyte proliferation through enhanced interaction with RAGE. Sci Rep 2025; 15:14678. [PMID: 40287453 PMCID: PMC12033245 DOI: 10.1038/s41598-025-96874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Psoriasis is a chronic inflammatory dermatosis characterized by the hyperproliferative of keratinocytes. S100A7 plays a pivotal role in the pathogenesis of psoriasis. Lysine crotonylation of proteins is a newly identified modification that impacts diverse biological processes and its dysregulation has been implicated in autoimmune diseases. To investigate the profile of lysine crotonylation and its pathogenic role in psoriasis, we conducted a comparative analysis of crotonylation-modified proteins in psoriatic lesions versus healthy controls. Mutant keratinocytes with crotonylation deficiency of S100A7 were generated to explore its functional effects in psoriasis. Our omic analysis revealed a unique lysine crotonylation profile in psoriatic lesions, with a notable downregulation of crotonylation at lysine 49 (K49) of S100A7. In vitro studies demonstrated that S100A7-K49A crotonylation deficiency exhibited enhanced cell viability, augmented glycolytic metabolism, and upregulated expression of key metabolic enzymes. Furthermore, co-immunoprecipitation assays demonstrated that the K49 crotonylation-deficient form of S100A7 strengthens its interaction with RAGE, leading to enhanced phosphorylation of AKT and mTOR. Our findings suggest that S100A7 K49 crotonylation deficiency plays a pivotal role in promoting keratinocytes proliferation and metabolic reprogramming in psoriasis, and targeting abnormal S100A7 crotonylation as a potential therapeutic strategy for intervention in psoriasis-related pathologies.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Ying Wang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| |
Collapse
|
3
|
Pan J, Chen S, Chen X, Song Y, Cheng H. Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective. Clin Rev Allergy Immunol 2025; 68:6. [PMID: 39871086 DOI: 10.1007/s12016-024-09014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/29/2025]
Abstract
In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis. A deeper understanding of these epigenetic mechanisms not only helps unveil the molecular mechanisms underlying the initiation and progression of psoriasis but may also provide new insights into diagnostic and therapeutic strategies. Given the unique roles and significant contributions of various cell types involved in the process of psoriasis, a thorough analysis of specific epigenetic patterns in different cell types becomes a key entry point for elucidating the mechanisms of disease development. Although epigenetic modifications encompass multiple complex layers, this review will focus on histone modifications and DNA methylation, describing how they function in different cell types and subsequently impact the pathophysiological processes of psoriasis. Finally, we will summarize the current problems in research concerning histone modifications and DNA methylation in psoriasis and discuss the clinical application prospects and challenges of targeting epigenetic modifications as therapeutic strategies for psoriasis.
Collapse
Affiliation(s)
- Jing Pan
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siji Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Chen T, Zhang B, Xie H, Huang C, Wu Q. GRHL2 regulates keratinocyte EMT-MET dynamics and scar formation during cutaneous wound healing. Cell Death Dis 2024; 15:748. [PMID: 39402063 PMCID: PMC11473813 DOI: 10.1038/s41419-024-07121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024]
Abstract
After cutaneous wounds successfully heal, keratinocytes that underwent the epithelial-mesenchymal transition (EMT) regain their epithelial characteristics, while in scar tissue, epidermal cells persist in a mesenchymal state. However, the regulatory mechanisms governing this reversion are poorly understood, and the impact of persistent mesenchymal-like epidermal cells in scar tissue remains unclear. In the present study, we found that during wound healing, the regulatory factor GRHL2 is highly expressed in normal epidermal cells, downregulated in EMT epidermal cells, and upregulated again during the process of mesenchymal-epithelial transition (MET). We further demonstrated that interfering with GRHL2 expression in epidermal cells can effectively induce the EMT. Conversely, the overexpression of GRHL2 in EMT epidermal cells resulted in partial reversion of the EMT to an epithelial state. To investigate the effects of failed MET in epidermal cells on skin wound healing, we interfered with GRHL2 expression in epidermal cells surrounding the cutaneous wound. The results demonstrated that the persistence of epidermal cells in the mesenchymal state promoted fibrosis in scar tissue, manifested by increased thickness of scar tissue, deposition of collagen and fibronectin, as well as the activation of myofibroblasts. Furthermore, the miR-200s/Zeb1 axis was perturbed in GRHL2 knockdown keratinocytes, and transfection with miR-200s analogs promoted the reversion of EMT in epidermal cells, which indicates that they mediate the EMT process in keratinocytes. These results suggest that restoration of the epithelial state in epidermal cells following the EMT is essential to wound healing, providing potential therapeutic targets for preventing scar formation.
Collapse
Affiliation(s)
- Tianying Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hanqi Xie
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chenyu Huang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Czerwińska J, Owczarczyk-Saczonek A. The Impact of Disease Severity on the Serum Levels of Significant Neutrophil Extracellular Trap (NET) Proteins in Patients with Psoriasis. Int J Mol Sci 2024; 25:10671. [PMID: 39409000 PMCID: PMC11476744 DOI: 10.3390/ijms251910671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Psoriasis is an inflammatory skin disease with various symptoms of differing severities and with the reported prominent involvement of neutrophil extracellular traps (NETs). The excitation of neutrophils, e.g., by interleukin 8 (IL-8) or lipopolysaccharide (LPS), leads to the citrullination of histones and the release of protein-DNA complexes into the extracellular space, where they are digested by DNases. Our aim was to explore data on the levels of protein-complexed DNAs neutrophil elastase-DNA (NE-DNA) and myeloperoxidase-DNA (MPO-DNA), citrullinated histones (citH2, citH3, citH4), and NET-degrading enzyme DNase I in the serum of psoriatic patients with varying severities of clinical symptoms assessed with the Psoriasis Area Severity Index (PASI), Body Surface Area (BSA), and Dermatology Life Quality Index (DLQI) scores. The levels of factors were detected in 52 patients with psoriasis and 22 healthy volunteers by the enzyme-linked immunosorbent assay (ELISA). The results showed the elevated levels of NE-DNA, MPO-DNA, citH3, and DNase I in the patients with psoriasis compared to healthy volunteers (p < 0.05). Additionally, changes were noticed in the levels of NE-DNA, citH3, and DNase I, depending on the severity of symptoms (p < 0.05). In mild psoriasis (PASI < 10, BSA < 10, DLQI < 10), the suppressing activity of the enzyme caused the impaired ability to remove the physiological level of NETs, whereas in moderate to severe psoriasis (PASI ≥ 10, BSA ≥ 10, DLQI ≥ 10), the enhanced activity of DNase I failed to remove NETs due to the observed overexpression. It may, thus, be concluded that the mechanism of action of NETs, which play an undeniable role in psoriatic diseases, seem to follow two different paths depending on the severity of disease, which may be crucial in selecting potential anti-NET treatment methods.
Collapse
Affiliation(s)
- Joanna Czerwińska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Agnieszka Owczarczyk-Saczonek
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Clinical Immunology; The University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| |
Collapse
|
6
|
Li X, Chen RY, Shi JJ, Li CY, Liu YJ, Gao C, Gao MR, Zhang S, Lu JF, Cao JF, Yang GJ, Chen J. Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases. J Pharm Anal 2024; 14:100978. [PMID: 39315124 PMCID: PMC11417268 DOI: 10.1016/j.jpha.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ming-Rong Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315211, China
- China Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
7
|
Sandoval-Velasco M, Dudchenko O, Rodríguez JA, Pérez Estrada C, Dehasque M, Fontsere C, Mak SST, Khan R, Contessoto VG, Oliveira Junior AB, Kalluchi A, Zubillaga Herrera BJ, Jeong J, Roy RP, Christopher I, Weisz D, Omer AD, Batra SS, Shamim MS, Durand NC, O'Connell B, Roca AL, Plikus MV, Kusliy MA, Romanenko SA, Lemskaya NA, Serdyukova NA, Modina SA, Perelman PL, Kizilova EA, Baiborodin SI, Rubtsov NB, Machol G, Rath K, Mahajan R, Kaur P, Gnirke A, Garcia-Treviño I, Coke R, Flanagan JP, Pletch K, Ruiz-Herrera A, Plotnikov V, Pavlov IS, Pavlova NI, Protopopov AV, Di Pierro M, Graphodatsky AS, Lander ES, Rowley MJ, Wolynes PG, Onuchic JN, Dalén L, Marti-Renom MA, Gilbert MTP, Aiden EL. Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample. Cell 2024; 187:3541-3562.e51. [PMID: 38996487 DOI: 10.1016/j.cell.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.
Collapse
Affiliation(s)
| | - Olga Dudchenko
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA.
| | - Juan Antonio Rodríguez
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain
| | - Cynthia Pérez Estrada
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Marianne Dehasque
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Ruqayya Khan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bernardo J Zubillaga Herrera
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | - Jiyun Jeong
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Renata P Roy
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Departments of Biology and Physics, Texas Southern University, Houston, TX 77004, USA
| | - Ishawnia Christopher
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjit S Batra
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neva C Durand
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan O'Connell
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alfred L Roca
- Department of Animal Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mariya A Kusliy
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Svetlana A Modina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Elena A Kizilova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | - Nikolai B Rubtsov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Gur Machol
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krisha Rath
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ragini Mahajan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Rob Coke
- San Antonio Zoo, San Antonio, TX 78212, USA
| | | | | | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia and Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | - Naryya I Pavlova
- Institute of Biological Problems of Cryolitezone SB RAS, Yakutsk 677000, Russia
| | - Albert V Protopopov
- Academy of Sciences of Sakha Republic, Yakutsk 677000, Russia; North-Eastern Federal University, Yakutsk 677027, Russia
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - Love Dalén
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marc A Marti-Renom
- Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain.
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; University Museum NTNU, 7012 Trondheim, Norway.
| | - Erez Lieberman Aiden
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Cho J, Bejaoui M, Tominaga K, Isoda H. Comparative Analysis of Olive-Derived Phenolic Compounds' Pro-Melanogenesis Effects on B16F10 Cells and Epidermal Human Melanocytes. Int J Mol Sci 2024; 25:4479. [PMID: 38674064 PMCID: PMC11050296 DOI: 10.3390/ijms25084479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.
Collapse
Affiliation(s)
- Juhee Cho
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Kenichi Tominaga
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
9
|
Huber LT, Kraus JM, Ezić J, Wanli A, Groth M, Laban S, Hoffmann TK, Wollenberg B, Kestler HA, Brunner C. Liquid biopsy: an examination of platelet RNA obtained from head and neck squamous cell carcinoma patients for predictive molecular tumor markers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:422-446. [PMID: 37455825 PMCID: PMC10344902 DOI: 10.37349/etat.2023.00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2023] [Indexed: 07/18/2023] Open
Abstract
Aim Recently, a tumor cell-platelet interaction was identified in different tumor entities, resulting in a transfer of tumor-derived RNA into platelets, named further "tumor-educated platelets (TEP)". The present pilot study aims to investigate whether such a tumor-platelet transfer of RNA occurs also in patients suffering from head and neck squamous cell carcinoma (HNSCC). Methods Sequencing analysis of RNA derived from platelets of tumor patients (TPs) and healthy donors (HDs) were performed. Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used for verification of differentially expressed genes in platelets from TPs and HDs in a second cohort of patients and HDs. Data were analyzed by applying bioinformatic tools. Results Sequencing of RNA derived from the tumor as well as from platelets of TPs and HDs revealed 426 significantly differentially existing RNA, at which 406 RNA were more and 20 RNA less abundant in platelets from TPs in comparison to that of HDs. In TPs' platelets, abundantly existing RNA coding for 49 genes were detected, characteristically expressed in epithelial cells and RNA, the products of which are involved in tumor progression. Applying bioinformatic tools and verification on a second TP/HD cohort, collagen type I alpha 1 chain (COL1A1) and zinc finger protein 750 (ZNF750) were identified as the strongest potentially platelet-RNA-sequencing (RNA-seq)-based biomarkers for HNSCC. Conclusions These results indicate a transfer of tumor-derived messenger RNA (mRNA) into platelets of HNSCC patients. Therefore, analyses of a patient's platelet RNA could be an efficient option for liquid biopsy in order to diagnose HNSCC or to monitor tumorigenesis as well as therapeutic responses at any time and in real time.
Collapse
Affiliation(s)
- Lisa T. Huber
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Jasmin Ezić
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Amin Wanli
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Marco Groth
- Leibniz Institute of Aging – Fritz Lipmann Institute, CF DNA sequencing, 07745 Jena, Germany
| | - Simon Laban
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Thomas K. Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - Barbara Wollenberg
- Clinic for Otorhinolaryngology, Head and Neck Surgery, Technical University of Munich, 80333 Munich, Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| |
Collapse
|
10
|
Boudra R, Patenall BL, King S, Wang D, Best SA, Ko JY, Xu S, Padilla MG, Schmults CD, Barthel SR, Lian CG, Ramsey MR. PRMT1 Inhibition Selectively Targets BNC1-Dependent Proliferation, but not Migration in Squamous Cell Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.533164. [PMID: 37034732 PMCID: PMC10081292 DOI: 10.1101/2023.03.27.533164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Squamous Cell Carcinoma (SCC) develops in stratified epithelial tissues and demonstrates frequent alterations in transcriptional regulators. We sought to discover SCC-specific transcriptional programs and identified the transcription factor Basonuclin 1 (BNC1) as highly expressed in SCC compared to other tumor types. RNA-seq and ChIP-seq analysis identified pro-proliferative genes activated by BNC1 in SCC cells and keratinocytes. Inhibition of BNC1 in SCC cells suppressed proliferation and increased migration via FRA1. In contrast, BNC1 reduction in keratinocytes caused differentiation, which was abrogated by IRF6 knockdown, leading to increased migration. Protein interactome analysis identified PRMT1 as a co-activator of BNC1-dependent proliferative genes. Inhibition of PRMT1 resulted in a dose-dependent reduction in SCC cell proliferation without increasing migration. Importantly, therapeutic inhibition of PRMT1 in SCC xenografts significantly reduced tumor size, resembling functional effects of BNC1 knockdown. Together, we identify BNC1-PRMT1 as an SCC-lineage specific transcriptional axis that promotes cancer growth, which can be therapeutically targeted to inhibit SCC tumorigenesis.
Collapse
|
11
|
Lin Y, Qiu T, Wei G, Que Y, Wang W, Kong Y, Xie T, Chen X. Role of Histone Post-Translational Modifications in Inflammatory Diseases. Front Immunol 2022; 13:852272. [PMID: 35280995 PMCID: PMC8908311 DOI: 10.3389/fimmu.2022.852272] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a defensive reaction for external stimuli to the human body and generally accompanied by immune responses, which is associated with multiple diseases such as atherosclerosis, type 2 diabetes, Alzheimer’s disease, psoriasis, asthma, chronic lung diseases, inflammatory bowel disease, and multiple virus-associated diseases. Epigenetic mechanisms have been demonstrated to play a key role in the regulation of inflammation. Common epigenetic regulations are DNA methylation, histone modifications, and non-coding RNA expression; among these, histone modifications embrace various post-modifications including acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation. This review focuses on the significant role of histone modifications in the progression of inflammatory diseases, providing the potential target for clinical therapy of inflammation-associated diseases.
Collapse
Affiliation(s)
- Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
12
|
Gasperoni JG, Fuller JN, Darido C, Wilanowski T, Dworkin S. Grainyhead-like (Grhl) Target Genes in Development and Cancer. Int J Mol Sci 2022; 23:ijms23052735. [PMID: 35269877 PMCID: PMC8911041 DOI: 10.3390/ijms23052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Grainyhead-like (GRHL) factors are essential, highly conserved transcription factors (TFs) that regulate processes common to both natural cellular behaviours during embryogenesis, and de-regulation of growth and survival pathways in cancer. Serving to drive the transcription, and therefore activation of multiple co-ordinating pathways, the three GRHL family members (GRHL1-3) are a critical conduit for modulating the molecular landscape that guides cellular decision-making processes during proliferation, epithelial-mesenchymal transition (EMT) and migration. Animal models and in vitro approaches harbouring GRHL loss or gain-of-function are key research tools to understanding gene function, which gives confidence that resultant phenotypes and cellular behaviours may be translatable to humans. Critically, identifying and characterising the target genes to which these factors bind is also essential, as they allow us to discover and understand novel genetic pathways that could ultimately be used as targets for disease diagnosis, drug discovery and therapeutic strategies. GRHL1-3 and their transcriptional targets have been shown to drive comparable cellular processes in Drosophila, C. elegans, zebrafish and mice, and have recently also been implicated in the aetiology and/or progression of a number of human congenital disorders and cancers of epithelial origin. In this review, we will summarise the state of knowledge pertaining to the role of the GRHL family target genes in both development and cancer, primarily through understanding the genetic pathways transcriptionally regulated by these factors across disparate disease contexts.
Collapse
Affiliation(s)
- Jemma G. Gasperoni
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Jarrad N. Fuller
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Charbel Darido
- The Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
- Correspondence:
| |
Collapse
|
13
|
Kotarba G, Taracha-Wisniewska A, Miller M, Dabrowski M, Wilanowski T. Transcription factors Krüppel-like factor 4 and paired box 5 regulate the expression of the Grainyhead-like genes. PLoS One 2021; 16:e0257977. [PMID: 34570823 PMCID: PMC8476022 DOI: 10.1371/journal.pone.0257977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Genes from the Grainyhead-like (GRHL) family code for transcription factors necessary for the development and maintenance of various epithelia. These genes are also very important in the development of many types of cancer. However, little is known about the regulation of expression of GRHL genes. Previously, there were no systematic analyses of the promoters of GRHL genes or transcription factors that bind to these promoters. Here we report that the Krüppel-like factor 4 (KLF4) and the paired box 5 factor (PAX5) bind to the regulatory regions of the GRHL genes and regulate their expression. Ectopic expression of KLF4 or PAX5 alters the expression of GRHL genes. In KLF4-overexpressing HEK293 cells, the expression of GRHL1 and GRHL3 genes was upregulated by 32% and 60%, respectively, whereas the mRNA level of GRHL2 gene was lowered by 28% when compared to the respective controls. The levels of GRHL1 and GRHL3 expression were decreased by 30% or 33% in PAX5-overexpressing HEK293 cells. The presence of minor frequency allele of single nucleotide polymorphism rs115898376 in the promoter of the GRHL1 gene affected the binding of KLF4 to this site. The evidence presented here suggests an important role of KLF4 and PAX5 in the regulation of expression of GRHL1-3 genes.
Collapse
Affiliation(s)
- Grzegorz Kotarba
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | | | - Michal Miller
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wilanowski
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
14
|
Zhao B, Luo H, He J, Huang X, Chen S, Fu X, Zeng W, Tian Y, Liu S, Li CJ, Liu GE, Fang L, Zhang S, Tian K. Comprehensive transcriptome and methylome analysis delineates the biological basis of hair follicle development and wool-related traits in Merino sheep. BMC Biol 2021; 19:197. [PMID: 34503498 PMCID: PMC8427949 DOI: 10.1186/s12915-021-01127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Characterization of the molecular mechanisms underlying hair follicle development is of paramount importance in the genetic improvement of wool-related traits in sheep and skin-related traits in humans. The Merino is the most important breed of fine-wooled sheep in the world. In this study, we systematically investigated the complexity of sheep hair follicle development by integrating transcriptome and methylome datasets from Merino sheep skin. Results We analysed 72 sequence datasets, including DNA methylome and the whole transcriptome of four gene types, i.e. protein-coding genes (PCGs), lncRNAs, circRNAs, and miRNAs, across four embryonic days (E65, E85, E105, and E135) and two postnatal days (P7 and P30) from the skin tissue of 18 Merino sheep. We revealed distinct expression profiles of these four gene types across six hair follicle developmental stages, and demonstrated their complex interactions with DNA methylation. PCGs with stage-specific expression or regulated by stage-specific lncRNAs, circRNAs, and miRNAs were significantly enriched in epithelial differentiation and hair follicle morphogenesis. Regulatory network and gene co-expression analyses identified key transcripts controlling hair follicle development. We further predicted transcriptional factors (e.g. KLF4, LEF1, HOXC13, RBPJ, VDR, RARA, and STAT3) with stage-specific involvement in hair follicle morphogenesis. Through integrating these stage-specific genomic features with results from genome-wide association studies (GWAS) of five wool-related traits in 7135 Merino sheep, we detected developmental stages and genes that were relevant with wool-related traits in sheep. For instance, genes that were specifically upregulated at E105 were significantly associated with most of wool-related traits. A phenome-wide association study (PheWAS) demonstrated that candidate genes of wool-related traits (e.g. SPHK1, GHR, PPP1R27, CSRP2, EEF1A2, and PTPN1) in sheep were also significantly associated with dermatological, metabolic, and immune traits in humans. Conclusions Our study provides novel insights into the molecular basis of hair follicle morphogenesis and will serve as a foundation to improve breeding for wool traits in sheep. It also indicates the importance of studying gene expression in the normal development of organs in understanding the genetic architecture of economically important traits in livestock. The datasets generated here are useful resources for functionally annotating the sheep genome, and for elucidating early skin development in mammals, including humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01127-9.
Collapse
Affiliation(s)
- Bingru Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hanpeng Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junmin He
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Siqian Chen
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Weidan Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yuezhen Tian
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Shuli Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Shengli Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
15
|
H3K27Ac modification and gene expression in psoriasis. J Dermatol Sci 2021; 103:93-100. [PMID: 34281744 DOI: 10.1016/j.jdermsci.2021.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Numerous alterations in gene expression have been described in psoriatic lesions compared to uninvolved or healthy skin. However, the mechanisms which induce this altered expression remain unclear. Epigenetic modifications play a key role in regulating genes' expression. Only three studies compared the whole-genome DNA methylation of psoriasis versus healthy skin. The present is the first study of genome-wide comparison of histone modifications between psoriatic to healthy skins. OBJECTIVE Our objective was to explore the pattern of H3K27Ac modifications in psoriatic lesions compared to uninvolved psoriatic and healthy skin, in order to identify new genes involved in the pathogenesis of psoriasis. METHOD Using ChIP-seq with anti H3K27Ac we compared the acetylation of lysine 27 on histone 3 (H3K27Ac) modification between psoriatic to healthy skins, combined with mRNA array. RESULTS We found a differential H3K27Ac pattern between psoriatic compared to uninvolved or healthy skins. We found that many of the overexpressed and H3K27Ac enriched genes in psoriasis, harbor a putative GRHL transcription factor-binding site. CONCLUSIONS In the most overexpressed genes in psoriasis, there is an enrichment of H3K27Ac. However, the loss of H3K27 acetylation modification does not correlate with decreased gene expression. GRHL appears to play an important role in the pathogenesis of psoriasis and therefore, might be a new target for psoriasis therapeutics.
Collapse
|
16
|
Deng Z, Cangkrama M, Butt T, Jane SM, Carpinelli MR. Grainyhead-like transcription factors: guardians of the skin barrier. Vet Dermatol 2021; 32:553-e152. [PMID: 33843098 DOI: 10.1111/vde.12956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
There has been selective pressure to maintain a skin barrier since terrestrial animals evolved 360 million years ago. These animals acquired an unique integumentary system with a keratinized, stratified, squamous epithelium surface barrier. The barrier protects against dehydration and entry of microbes and toxins. The skin barrier centres on the stratum corneum layer of the epidermis and consists of cornified envelopes cemented by the intercorneocyte lipid matrix. Multiple components of the barrier undergo cross-linking by transglutaminase (TGM) enzymes, while keratins provide additional mechanical strength. Cellular tight junctions also are crucial for barrier integrity. The grainyhead-like (GRHL) transcription factors regulate the formation and maintenance of the integument in diverse species. GRHL3 is essential for formation of the skin barrier during embryonic development, whereas GRHL1 maintains the skin barrier postnatally. This is achieved by transactivation of Tgm1 and Tgm5, respectively. In addition to its barrier function, GRHL3 plays key roles in wound repair and as an epidermal tumour suppressor. In its former role, GRHL3 activates the planar cell polarity signalling pathway to mediate wound healing by providing directional migration cues. In squamous epithelium, GRHL3 regulates the balance between proliferation and differentiation, and its loss induces squamous cell carcinoma (SCC). In the skin, this is mediated through increased expression of MIR21, which reduces the expression levels of GRHL3 and its direct target, PTEN, leading to activation of the PI3K-AKT signalling pathway. These data position the GRHL family as master regulators of epidermal homeostasis across a vast gulf of evolutionary history.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tariq Butt
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Marina R Carpinelli
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
EZH2-dependent epigenetic modulation of histone H3 lysine-27 contributes to psoriasis by promoting keratinocyte proliferation. Cell Death Dis 2020; 11:826. [PMID: 33011750 PMCID: PMC7532974 DOI: 10.1038/s41419-020-03028-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
Psoriasis is characterized by keratinocyte hyperproliferation. While significant progress has been made in understanding the molecular mechanism regulating the proliferation of keratinocytes, little is known about the epigenetic factors that control this process. EZH2 and EZH2 mediated trimethylation of histone H3 lysine 27 (H3K27me3) was previously shown ectopically expressed in carcinoma and mediated proliferation, thereby we sought to clarify the role of EZH2–H3K27me3 in the proliferation of psoriatic keratinocyte. Interestingly, we found that EZH2 and H3K27me3 were both overexpressed in the epidermis of psoriatic lesional skin compared to normal skin. In vitro, the expression of EZH2 and H3K27me3 was stimulated in human keratinocytes treated with mixture of psoriasis-related cytokines pool (TNF-α, IFN-γ, IL-17A, and IL-22). Knockdown of EZH2 significantly reduced keratinocyte proliferative activity. Results from mRNA microarray analysis suggested that Kallikrein-8 (KLK8) might be the target gene of EZH2 in psoriatic keratinocytes. Overexpression or knockdown KLK8 could partially reverse the abnormal proliferation of keratinocytes caused by knockdown or overexpression of EZH2. In vivo, the inhibitor of EZH2, GSK126 could ameliorate the imiquimod-induced psoriasiform lesion. These results suggest that EZH2 might be a therapeutic target for the treatment of psoriasis.
Collapse
|
18
|
Sundararajan V, Pang QY, Choolani M, Huang RYJ. Spotlight on the Granules (Grainyhead-Like Proteins) - From an Evolutionary Conserved Controller of Epithelial Trait to Pioneering the Chromatin Landscape. Front Mol Biosci 2020; 7:213. [PMID: 32974388 PMCID: PMC7471608 DOI: 10.3389/fmolb.2020.00213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Among the transcription factors that are conserved across phylogeny, the grainyhead family holds vital roles in driving the epithelial cell fate. In Drosophila, the function of grainyhead (grh) gene is essential during developmental processes such as epithelial differentiation, tracheal tube formation, maintenance of wing and hair polarity, and epidermal barrier wound repair. Three main mammalian orthologs of grh: Grainyhead-like 1-3 (GRHL1, GRHL2, and GRHL3) are highly conserved in terms of their gene structures and functions. GRHL proteins are essentially associated with the development and maintenance of the epithelial phenotype across diverse physiological conditions such as epidermal differentiation and craniofacial development as well as pathological functions including hearing impairment and neural tube defects. More importantly, through direct chromatin binding and induction of epigenetic alterations, GRHL factors function as potent suppressors of oncogenic cellular dedifferentiation program - epithelial-mesenchymal transition and its associated tumor-promoting phenotypes such as tumor cell migration and invasion. On the contrary, GRHL factors also induce pro-tumorigenic effects such as increased migration and anchorage-independent growth in certain tumor types. Furthermore, investigations focusing on the epithelial-specific activation of grh and GRHL factors have revealed that these factors potentially act as a pioneer factor in establishing a cell-type/cell-state specific accessible chromatin landscape that is exclusive for epithelial gene transcription. In this review, we highlight the essential roles of grh and GRHL factors during embryogenesis and pathogenesis, with a special focus on its emerging pioneering function.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qing You Pang
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Nie Y, Ding Y, Yang M. GRHL2 Upregulation Predicts a Poor Prognosis and Promotes the Resistance of Serous Ovarian Cancer to Cisplatin. Onco Targets Ther 2020; 13:6303-6314. [PMID: 32636649 PMCID: PMC7335298 DOI: 10.2147/ott.s250412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
Background GRHL2 has been shown to function in ovarian carcinogenesis. However, the relationship between GRHL2 and cisplatin (DDP) resistance in serous ovarian cancer (SOC) is not clear. The purpose of this study was to elucidate the function and mechanism of GRHL2 in DDP resistance of SOC. Materials and Methods Immunohistochemistry (IHC) was utilized to identify GRHL2 protein expression in DDP resistant and sensitive SOC tissues. GRHL2 mRNA and protein levels were identified using quantitative real-time PCR (qRT-PCR) and Western blotting in SKOV3/DDP and SKOV3 cell lines. We conducted loss- and gain-of-function experiments to uncover the consequence of GRHL2 knockdown or overexpression on the sensitivity of ovarian cancer cells to DDP in vitro and in vivo and the underlying mechanism. Results It was observed that expression of GRHL2 was higher in DDP resistant SOC tissues relative to DDP sensitive SOC tissues. In addition, the increased expression of GRHL2 led to shorter progression-free survival (PFS) and overall survival (OS). Meanwhile, the GRHL2 transcript and protein levels in SKOV3/DDP were also higher than SKOV3. Small hairpin RNA (shRNA)-facilitated GRHL2 gene knockdown considerably heightened the sensitivity of SKOV3/DDP cells to DDP by inhibiting proliferation and promoting apoptosis, while up-regulation of GRHL2 significantly reduced the sensitivity of SKOV3 cells to DDP by promoting proliferation and decreasing apoptosis. In addition, GRHL2 promotes DDP resistance of SOC through activation of ERK/MAPK signaling pathways. Conclusion Our results suggest that GRHL2 up-regulation predicts a poor prognosis and promotes the resistance of SOC to DDP. Therefore, GRHL2 may be a possible treatment target for cisplatin-resistant serous ovarian cancer.
Collapse
Affiliation(s)
- Yanting Nie
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
20
|
Epigenetic factors involved in the pathophysiology of inflammatory skin diseases. J Allergy Clin Immunol 2020; 145:1049-1060. [DOI: 10.1016/j.jaci.2019.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
|
21
|
Zhou B, Zhang X, Li T, Xie R, Zhou J, Luo Y, Yang C. CircZDHHC20 represses the proliferation, migration and invasion in trophoblast cells by miR-144/GRHL2 axis. Cancer Cell Int 2020; 20:19. [PMID: 31956297 PMCID: PMC6958575 DOI: 10.1186/s12935-020-1097-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/04/2020] [Indexed: 12/25/2022] Open
Abstract
Background Preeclampsia (PE) is a prevalent pregnancy disorder that has been one of the leading causes of maternal and perinatal mortality worldwide. Circular RNAs (circRNAs) have recently considered as important regulators in PE pathogenesis. In the current study, we aimed to explore the impact and mechanisms of circRNA zinc finger DHHC-type palmitoyltransferase 20 (circZDHHC20) in PE pathogenesis. Methods RNase R assay and reverse transcription with Oligo(dT)18 primers were performed to confirm that circZDHHC20 was indeed circular transcript. The expression of circZDHHC20, grainyhead-like 2 (GRHL2) and miR-144 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Subcellular localization assay was used to determine whether circZDHHC20 was predominantly present in the cytoplasm. The target correlations between miR-144 and circZDHHC20 or GRHL2 were confirmed using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Cell proliferation, migration, and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetr-azolium (MTS), wound healing and transwell assays, respectively. Western blot was used for the quantification of GRHL2 protein level. Results Our data indicated that circZDHHC20 was up-regulated and miR-144 was down-regulated in PE placenta. CircZDHHC20 sequestered miR-144 by acting as a miR-144 sponge. CircZDHHC20 overexpression repressed trophoblast cell proliferation, migration, and invasion, while its knockdown exerted opposite effects. Moreover, miR-144 mediated the regulation of circZDHHC20 on trophoblast cell behaviors. GRHL2 was directly targeted and inhibited by miR-144. MiR-144 exerted regulatory effects on trophoblast cell proliferation, migration and invasion by GRHL2. Furthermore, circZDHHC20 modulated GRHL2 expression through sponging miR-144. Conclusion Our study suggested that a high level of circZDHHC20 inhibited the proliferation, migration, and invasion in trophoblast cells at least partially through sponging miR-144 and up-regulating GRHL2, providing a novel mechanism of PE pathogenesis.
Collapse
Affiliation(s)
- Bing Zhou
- 1Department of Obstetrics and Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan China
| | - Xia Zhang
- 2Department of Ultrasonography, The Second Affiliated Hospital, University of South China, Hengyang, Hunan China
| | - Ting Li
- 1Department of Obstetrics and Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan China
| | - Rongping Xie
- Department of Obstetrics and Gynecology, Guangdong Maternal and Child Health Hospital, Guangzhou, Guangdong China
| | - Jianbin Zhou
- 1Department of Obstetrics and Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan China
| | - Yu Luo
- 1Department of Obstetrics and Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan China
| | - Chunfen Yang
- 4Department of Obstetrics and Gynecology, The First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001 Hunan China
| |
Collapse
|
22
|
The Transcription Factor Elf3 Is Essential for a Successful Mesenchymal to Epithelial Transition. Cells 2019; 8:cells8080858. [PMID: 31404945 PMCID: PMC6721682 DOI: 10.3390/cells8080858] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/13/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) and the mesenchymal to epithelial transition (MET) are two critical biological processes that are involved in both physiological events such as embryogenesis and development and also pathological events such as tumorigenesis. They present with dramatic changes in cellular morphology and gene expression exhibiting acute changes in E-cadherin expression. Despite the comprehensive understanding of EMT, the regulation of MET is far from being understood. To find novel regulators of MET, we hypothesized that such factors would correlate with Cdh1 expression. Bioinformatics examination of several expression profiles suggested Elf3 as a strong candidate. Depletion of Elf3 at the onset of MET severely impaired the progression to the epithelial state. This MET defect was explained, in part, by the absence of E-cadherin at the plasma membrane. Moreover, during MET, ELF3 interacts with the Grhl3 promoter and activates its expression. Our findings present novel insights into the regulation of MET and reveal ELF3 as an indispensable guardian of the epithelial state. A better understanding of MET will, eventually, lead to better management of metastatic cancers.
Collapse
|
23
|
Chung VY, Tan TZ, Ye J, Huang RL, Lai HC, Kappei D, Wollmann H, Guccione E, Huang RYJ. The role of GRHL2 and epigenetic remodeling in epithelial-mesenchymal plasticity in ovarian cancer cells. Commun Biol 2019; 2:272. [PMID: 31372511 PMCID: PMC6656769 DOI: 10.1038/s42003-019-0506-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells exhibit phenotypic plasticity during epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) involving intermediate states. To study genome-wide epigenetic remodeling associated with EMT plasticity, we integrate the analyses of DNA methylation, ChIP-sequencing of five histone marks (H3K4me1, H3K4me3, H3K27Ac, H3K27me3 and H3K9me3) and transcriptome profiling performed on ovarian cancer cells with different epithelial/mesenchymal states and on a knockdown model of EMT suppressor Grainyhead-like 2 (GRHL2). We have identified differentially methylated CpG sites associated with EMT, found at promoters of epithelial genes and GRHL2 binding sites. GRHL2 knockdown results in CpG methylation gain and nucleosomal remodeling (reduction in permissive marks H3K4me3 and H3K27ac; elevated repressive mark H3K27me3), resembling the changes observed across progressive EMT states. Epigenetic-modifying agents such as 5-azacitidine, GSK126 and mocetinostat further reveal cell state-dependent plasticity upon GRHL2 overexpression. Overall, we demonstrate that epithelial genes are subject to epigenetic control during intermediate phases of EMT/MET involving GRHL2.
Collapse
Affiliation(s)
- Vin Yee Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
| | - Jieru Ye
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, 11031 Taipei, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, 11031 Taipei, Taiwan
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673 Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673 Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
- School of Medicine, College of Medicine, National Taiwan University, 10051 Taipei, Taiwan
| |
Collapse
|
24
|
Reese RM, Harrison MM, Alarid ET. Grainyhead-like Protein 2: The Emerging Role in Hormone-Dependent Cancers and Epigenetics. Endocrinology 2019; 160:1275-1288. [PMID: 30958537 DOI: 10.1210/en.2019-00213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023]
Abstract
In mammals, the grainyhead-like transcription factor (GRHL) family is composed of three nuclear proteins that are responsible for driving epithelial cell fate: GRHL1, GRHL2, and GRHL3. GRHL2 is important in maintaining proper tubulogenesis during development and in suppressing the epithelial-to-mesenchymal transition. Within the last decade, evidence indicates both tumor-suppressive and oncogenic roles for GRHL2 in various types of cancers. Recent studies suggest that GRHL2 may be especially important in hormone-dependent cancers, as correlative relationships exist between GRHL2 and various steroid receptors, such as the androgen and estrogen receptors. Acting as a pioneer factor and coactivator, GRHL2 may directly affect steroid receptor transcriptional activity. This review will highlight recent discoveries of GRHL2 activity in cancer and in maintaining the epithelial state, while also exploring recent literature on the role of GRHL2 in hormone-dependent cancers and epigenetics.
Collapse
Affiliation(s)
- Rebecca M Reese
- Department of Oncology and Carbone Comprehensive Cancer Center, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Elaine T Alarid
- Department of Oncology and Carbone Comprehensive Cancer Center, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
25
|
Li X, Zhu Z, Li W, Wei L, Zhao B, Hao Z. Polymorphism in GRHL2 gene may contribute to noise-induced hearing loss susceptibility: a meta-analysis. Braz J Otorhinolaryngol 2019; 86:370-375. [PMID: 30853467 PMCID: PMC9422585 DOI: 10.1016/j.bjorl.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/07/2018] [Accepted: 01/02/2019] [Indexed: 11/05/2022] Open
Abstract
Instruction Noise-induced hearing loss is a leading occupational disease caused by gene-environment interaction. The Grainy Like 2, GRHL2, is a candidate gene. In this regard, many studies have evaluated the association between GRHL2 and noise-induced hearing loss, although the results are ambiguous and conflicting. Objective The purpose of this study was to identify a precise estimation of the association between rs3735715 polymorphism in GRHL2 gene and susceptibility of noise-induced hearing loss. Methods A comprehensive search was performed to collect data up to July 8, 2018. Finally, 4 eligible articles were included in this meta-analysis comprising 2410 subjects. The pooled odds ratios with 95% confidence intervals were used to evaluate the strength of the association. Results Significant association was found in the overall population in the dominant model (GA/AA vs. GG, odds ratio = 0.707, 95% confidence interval = 0.594–0.841) and allele model (G allele vs. A allele, odds ratio = 1.189, 95% confidence interval = 1.062–1.333). When stratified by source of the subjects, we also found association between rs3735715 and noise-induced hearing loss risk in the dominant model (GA/AA vs. GG, odds ratio = 0.634, 95% confidence interval = 0.514–0.783) and allele model (G allele vs. A allele, odds ratio = 1.206, 95% confidence interval = 1.054–1.379). Conclusion Rs3735715 polymorphism in GRHL2 gene may influence the susceptibility of noise-induced hearing loss. Additional large, well-designed and functional studies are needed to confirm this association in different populations.
Collapse
Affiliation(s)
- Xin Li
- Nanjing Municipal Center for Disease Control and Prevention, Department of HIV/AIDS/STI Prevention and Control, Jiangsu, China
| | - Zhengping Zhu
- Nanjing Municipal Center for Disease Control and Prevention, Department of HIV/AIDS/STI Prevention and Control, Jiangsu, China
| | - Wei Li
- Southeast University, School of Public Health, Department of Epidemiology and Health Statistics, Key Laboratory of Environmental Medicine Engineering, Jiangsu, China
| | - Li Wei
- Nanjing Municipal Center for Disease Control and Prevention, Environmental Health Division, Jiangsu, China
| | - Baocheng Zhao
- Nanjing Zhongyangmen Community Health Service Center, Kang'ai Hospital, Center of Diagnosis and Treatment for Developmental Dysplasia of the Hip, Jiangsu, China
| | - Zheng Hao
- Nanjing Zhongyangmen Community Health Service Center, Kang'ai Hospital, Center of Diagnosis and Treatment for Developmental Dysplasia of the Hip, Jiangsu, China.
| |
Collapse
|
26
|
Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-β signaling pathways. Oncogenesis 2018; 7:38. [PMID: 29735981 PMCID: PMC5938237 DOI: 10.1038/s41389-018-0047-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/25/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-β in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-β signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-β signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-β signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-β signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -β signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-β signaling through the MAPK pathways.
Collapse
|
27
|
Cohen I, Zhao D, Bar C, Valdes VJ, Dauber-Decker KL, Nguyen MB, Nakayama M, Rendl M, Bickmore WA, Koseki H, Zheng D, Ezhkova E. PRC1 Fine-tunes Gene Repression and Activation to Safeguard Skin Development and Stem Cell Specification. Cell Stem Cell 2018; 22:726-739.e7. [PMID: 29727681 PMCID: PMC5944606 DOI: 10.1016/j.stem.2018.04.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/07/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Polycomb repressive complexes (PRCs) 1 and 2 are essential chromatin regulators of cell identity. PRC1, a dominant executer of Polycomb-mediated control, functions as multiple sub-complexes that possess catalytic-dependent H2AK119 mono-ubiquitination (H2AK119ub) and catalytic-independent activities. Here, we show that, despite its well-established repressor functions, PRC1 binds to both silent and active genes. Through in vivo loss-of-function studies, we show that global PRC1 function is essential for skin development and stem cell (SC) specification, whereas PRC1 catalytic activity is dispensable. Further dissection demonstrated that both canonical and non-canonical PRC1 complexes bind to repressed genes, marked by H2AK119ub and PRC2-mediated H3K27me3. Interestingly, loss of canonical PRC1, PRC1 catalytic activity, or PRC2 leads to expansion of mechanosensitive Merkel cells in neonatal skin. Non-canonical PRC1 complexes, however, also bind to and promote expression of genes critical for skin development and SC formation. Together, our findings highlight PRC1's diverse roles in executing a precise developmental program.
Collapse
Affiliation(s)
- Idan Cohen
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Carmit Bar
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Victor J Valdes
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Katherine L Dauber-Decker
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Minh Binh Nguyen
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Manabu Nakayama
- Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Michael Rendl
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS) and CREST, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
28
|
Chen W, Shin KH, Kim S, Shon WJ, Kim RH, Park NH, Kang MK. hTERT peptide fragment GV1001 demonstrates radioprotective and antifibrotic effects through suppression of TGF‑β signaling. Int J Mol Med 2018; 41:3211-3220. [PMID: 29568955 PMCID: PMC5881842 DOI: 10.3892/ijmm.2018.3566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/23/2018] [Indexed: 12/12/2022] Open
Abstract
GV1001 is a 16‑amino acid peptide derived from the human telomerase reverse transcriptase (hTERT) protein (616‑626; EARPALLTSRLRFIPK), which lies within the reverse transcriptase domain. Originally developed as an anticancer vaccine, GV1001 demonstrates diverse cellular effects, including anti‑inflammatory, tumor suppressive and antiviral effects. In the present study, the radioprotective and antifibrotic effects of GV1001 were demonstrated through suppressing transforming growth factor‑β (TGF‑β) signaling. Proliferating human keratinocytes underwent premature senescence upon exposure to ionizing radiation (IR), however, treatment of cells with GV1001 allowed the cells to proliferate and showed a reduction in senescent phenotype. GV1001 treatment notably increased the levels of Grainyhead‑like 2 and phosphorylated (p‑)Akt (Ser473), and reduced the activation of p53 and the level of p21/WAF1 in irradiated keratinocytes. It also markedly suppressed the level of TGF‑β signaling molecules, including p‑small mothers against decapentaplegic (Smad)2/3 and Smad4, and TGF‑β target genes, including zinc finger E‑box binding homeobox 1, fibronectin, N‑cadharin and Snail, in irradiated keratinocytes. Furthermore, GV1001 suppressed TGF‑β signaling in primary human fibroblasts and inhibited myofibroblast differentiation. Chromatin immunoprecipitation revealed that GV1001 suppressed the binding of Smad2 on the promoter regions of collagen type III α1 chain (Col3a1) and Col1a1. In a dermal fibrosis model in vivo, GV1001 treatment notably reduced the thickness of fibrotic lesions and the synthesis of Col3a1. These data indicated that GV1001 ameliorated the IR‑induced senescence phenotype and tissue fibrosis by inhibiting TGF‑β signaling and may have therapeutic effects on radiation‑induced tissue damage.
Collapse
Affiliation(s)
- Wei Chen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | - Won-Jun Shon
- School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Mo K Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Chen W, Shimane T, Kawano S, Alshaikh A, Kim SY, Chung SH, Kim RH, Shin KH, Walentin K, Park NH, Schmidt-Ott KM, Kang MK. Human Papillomavirus 16 E6 Induces FoxM1B in Oral Keratinocytes through GRHL2. J Dent Res 2018; 97:795-802. [PMID: 29443638 DOI: 10.1177/0022034518756071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-risk human papillomavirus (HPV) is a major risk factor for oral and pharyngeal cancers (OPCs), yet the detailed mechanisms by which HPV promotes OPCs are not understood. Forkhead box M1B (FoxM1B) is an oncogene essential for cell cycle progression and tumorigenesis, and it is aberrantly overexpressed in many tumors. We previously showed that FoxM1B was the putative target of an epithelial-specific transcription factor, Grainyhead-like 2 (GRHL2). In the current study, we demonstrate that HPV type 16 (HPV-16) E6 induces FoxM1B in human oral keratinocytes (HOKs) and tonsillar epithelial cells (TECs) in part through GRHL2. FoxM1B was barely detectable in cultured normal human oral keratinocytes (NHOKs) and progressively increased in immortalized HOKs harboring HPV-16 genome (HOK-16B) and tumorigenic HOK-16B/BaP-T cells. Retroviral expression of HPV-16 E6 and/or E7 in NHOKs, TECs, and hypopharyngeal carcinoma cells (FaDu) revealed induction of FoxM1B and GRHL2 by the E6 protein but not E7. Both GRHL2 and FoxM1B were strongly induced in the epidermis of HPV-16 E6 transgenic mice and HPV+ oral squamous cell carcinomas. Ectopic expression of FoxM1B led to acquisition of transformed phenotype in HOK-16B cells. Loss of FoxM1B by lentiviral short hairpin RNA vector or chemical inhibitor led to elimination of tumorigenic characteristics of HOK-16B/BaP-T cells. Luciferase reporter assay revealed that GRHL2 directly bound and regulated the FoxM1B gene promoter activity. Using epithelial-specific Grhl2 conditional knockout mice, we exposed wild-type (WT) and Grhl2 KO mice to 4-nitroquinolin 1-oxide (4-NQO), which led to induction of FoxM1B in the tongue tissues and rampant oral tumor development in the WT mice. However, 4-NQO exposure failed to induce tongue tumors or induction of FoxM1B expression in Grhl2 KO mice. Collectively, these results indicate that HPV-16 induces FoxM1B in part through GRHL2 transcriptional activity and that elevated FoxM1B level is required for oropharyngeal cancer development.
Collapse
Affiliation(s)
- W Chen
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - T Shimane
- 2 Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - S Kawano
- 3 Asahi University School of Dentistry, Gifu, Japan
| | - A Alshaikh
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - S Y Kim
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - S H Chung
- 4 Deptartment of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - R H Kim
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - K H Shin
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - K Walentin
- 6 Max Delbruck Center for Molecular Medicine and Department of Nephrology, Charité Medical University, Berlin, Germany
| | - N H Park
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - K M Schmidt-Ott
- 6 Max Delbruck Center for Molecular Medicine and Department of Nephrology, Charité Medical University, Berlin, Germany
| | - M K Kang
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,5 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
30
|
Lin-Shiao E, Lan Y, Coradin M, Anderson A, Donahue G, Simpson CL, Sen P, Saffie R, Busino L, Garcia BA, Berger SL, Capell BC. KMT2D regulates p63 target enhancers to coordinate epithelial homeostasis. Genes Dev 2018; 32:181-193. [PMID: 29440247 PMCID: PMC5830930 DOI: 10.1101/gad.306241.117] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022]
Abstract
In this study, Lin-Shiao et al. identify a novel role for KMT2D, an epigenetic regulator, in coordinating self-renewal, proliferation, and differentiation, as depletion of KMT2D from undifferentiated epidermal keratinocytes results in reduced proliferation, premature spurious activation of terminal differentiation genes, and disorganized epidermal stratification. Their results reveal a critical role for KMT2D in the control of epithelial enhancers and p63 target gene expression, including the requirement of KMT2D for the maintenance of epithelial progenitor gene expression and the coordination of proper terminal differentiation. Epithelial tissues rely on a highly coordinated balance between self-renewal, proliferation, and differentiation, disruption of which may drive carcinogenesis. The epigenetic regulator KMT2D (MLL4) is one of the most frequently mutated genes in all cancers, particularly epithelial cancers, yet its normal function in these tissues is unknown. Here, we identify a novel role for KMT2D in coordinating this fine balance, as depletion of KMT2D from undifferentiated epidermal keratinocytes results in reduced proliferation, premature spurious activation of terminal differentiation genes, and disorganized epidermal stratification. Genome-wide, KMT2D interacts with p63 and is enriched at its target enhancers. Depletion of KMT2D results in a broad loss of enhancer histone modifications H3 Lys 4 (H3K4) monomethylation (H3K4me1) and H3K27 acetylation (H3K27ac) as well as reduced expression of p63 target genes, including key genes involved in epithelial development and adhesion. Together, these results reveal a critical role for KMT2D in the control of epithelial enhancers and p63 target gene expression, including the requirement of KMT2D for the maintenance of epithelial progenitor gene expression and the coordination of proper terminal differentiation.
Collapse
Affiliation(s)
- Enrique Lin-Shiao
- Penn Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Yemin Lan
- Penn Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Mariel Coradin
- Penn Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Amy Anderson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Greg Donahue
- Penn Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Cory L Simpson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Payel Sen
- Penn Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Rizwan Saffie
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Luca Busino
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A Garcia
- Penn Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Shelley L Berger
- Penn Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA.,Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Brian C Capell
- Penn Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA.,Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
31
|
Satishchandran A, Ambade A, Rao S, Hsueh YC, Iracheta-Vellve A, Tornai D, Lowe P, Gyongyosi B, Li J, Catalano D, Zhong L, Kodys K, Xie J, Bala S, Gao G, Szabo G. MicroRNA 122, Regulated by GRLH2, Protects Livers of Mice and Patients From Ethanol-Induced Liver Disease. Gastroenterology 2018; 154:238-252.e7. [PMID: 28987423 PMCID: PMC5742049 DOI: 10.1053/j.gastro.2017.09.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Chronic, excessive alcohol consumption leads to alcoholic liver disease (ALD) characterized by steatosis, inflammation, and eventually cirrhosis. The hepatocyte specific microRNA 122 (MIR122) regulates hepatocyte differentiation and metabolism. We investigated whether an alcohol-induced decrease in level of MIR122 contributes to development of ALD. METHODS We obtained liver samples from 12 patients with ALD and cirrhosis and 9 healthy individuals (controls) and analyzed them by histology and immunohistochemistry. C57Bl/6 mice were placed on a Lieber-DeCarli liquid diet, in which they were fed ethanol for 8 weeks, as a model of ALD, or a control diet. These mice were also given injections of CCl4, to increase liver fibrosis, for 8 weeks. On day 28, mice with ethanol-induced liver disease and advanced fibrosis, and controls, were given injections of recombinant adeno-associated virus 8 vector that expressed the primary miR-122 transcript (pri-MIR122, to overexpress MIR122 in hepatocytes) or vector (control). Two weeks before ethanol feeding, some mice were given injections of a vector that expressed an anti-MIR122, to knock down its expression. Serum and liver tissues were collected; hepatocytes and liver mononuclear cells were analyzed by histology, immunoblots, and confocal microscopy. We performed in silico analyses to identify targets of MIR122 and chromatin immunoprecipitation quantitative polymerase chain reaction analyses in Huh-7 cells. RESULTS Levels of MIR122 were decreased in liver samples from patients with ALD and mice on the Lieber-DeCarli diet, compared with controls. Transgenic expression of MIR122 in hepatocytes of mice with ethanol-induced liver disease and advanced fibrosis significantly reduced serum levels of alanine aminotransferase (ALT) and liver steatosis and fibrosis, compared with mice given injections of the control vector. Ethanol feeding reduced expression of pri-MIR122 by increasing expression of the spliced form of the transcription factor grainyhead like transcription factor 2 (GRHL2) in liver tissues from mice. Levels of GRHL2 also were increased in liver tissues from patients with ALD, compared with controls; increases correlated with decreases in levels of MIR122 in human liver. Mice given injections of the anti-MIR122 before ethanol feeding had increased steatosis, inflammation, and serum levels of alanine aminotransferase compared with mice given a control vector. Levels of hypoxia-inducible factor 1 alpha (HIF1α) mRNA, a target of MIR122, were increased in liver tissues from patients and mice with ALD, compared with controls. Mice with hepatocyte-specific disruption of Hif1α developed less-severe liver injury following administration of ethanol, injection of anti-MIR122, or both. CONCLUSIONS Levels of MIR122 decrease in livers from patients with ALD and mice with ethanol-induced liver disease, compared with controls. Transcription of MIR122 is inhibited by GRHL2, which is increased in livers of mice and patients with ALD. Expression of an anti-MIR122 worsened the severity of liver damage following ethanol feeding in mice. MIR122 appears to protect the liver from ethanol-induced damage by reducing levels of HIF1α. These processes might be manipulated to reduce the severity of ALD in patients.
Collapse
Affiliation(s)
- Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sitara Rao
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ying-Chao Hsueh
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David Tornai
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Benedek Gyongyosi
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jia Li
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Li Zhong
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jun Xie
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
32
|
Pan X, Zhang R, Xie C, Gan M, Yao S, Yao Y, Jin J, Han T, Huang Y, Gong Y, Wang J, Yu B. GRHL2 suppresses tumor metastasis via regulation of transcriptional activity of RhoG in non-small cell lung cancer. Am J Transl Res 2017; 9:4217-4226. [PMID: 28979695 PMCID: PMC5622264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
The transcription factor, Grainyhead-like 2 (GRHL2), is involved in wound healing, epidermal integrity, and epithelial-to-mesenchymal transition (EMT) in various biological processes; however, the biological function of GRHL2 in non-small cell lung cancer (NSCLC) is unknown. In the current study, we investigated the effect of GRHL2 on cell growth and migration in NSCLC cell lines and clinical tissues. Immunohistochemical analysis of clinical NSCLC specimens revealed that patients with high GRHL2 expression were associated with poor prognosis compared to patients with low GRHL2 expression. GRHL2 overexpression promoted cell growth and colony formation, and simultaneously suppressed cell migration in NSCLC cells. Furthermore, GRHL2 decreased the transcriptional activity of RhoG by directly binding to the RhoG promoter region. These findings confirm that GRHL2 plays an important role in regulating cell proliferation and migration in NSCLC.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi 330006, China
| | - Rong Zhang
- Department of Health, The First Affiliated Hospital of Nanchang UniversityJiangxi 330006, China
| | - Caifeng Xie
- Institute of Translational Medicine, Nanchang UniversityJiangxi 330031, China
| | - Mingxi Gan
- Institute of Translational Medicine, Nanchang UniversityJiangxi 330031, China
| | - Sheng Yao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, China
| | - Yubin Yao
- Jiangxi Provincial Center for Disease Control and PreventionJiangxi 310009, China
| | - Jiangbo Jin
- School of Life Sciences, Nanchang UniversityJiangxi 310031, China
| | - Tianyu Han
- School of Life Sciences, Nanchang UniversityJiangxi 310031, China
| | - Yunhe Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi 330006, China
| | - Yanlong Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi 330006, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Nanchang UniversityJiangxi 330006, China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi 330006, China
| |
Collapse
|
33
|
Gogler-Pigłowska A, Klarzyńska K, Sojka DR, Habryka A, Głowala-Kosińska M, Herok M, Kryj M, Halczok M, Krawczyk Z, Scieglinska D. Novel role for the testis-enriched HSPA2 protein in regulating epidermal keratinocyte differentiation. J Cell Physiol 2017; 233:2629-2644. [PMID: 28786487 DOI: 10.1002/jcp.26142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023]
Abstract
HSPA2, a poorly characterized member of the HSPA (HSP70) chaperone family, is a testis-enriched protein involved in male germ cell differentiation. Previously, we revealed that HSPA2 is present in human stratified epithelia, including epidermis, however the contribution of this protein to epithelial biology remained unknown. Here, we show for the first time that HSPA2 is expressed in basal epidermal keratinocytes, albeit not in keratinocytes exhibiting features attributed to primitive undifferentiated progenitors, and participates in the keratinocyte differentiation process. We found that HSPA2 is dispensable for protection of HaCaT keratinocytes against heat shock-induced cytotoxicity. We also shown that lentiviral-mediated shRNA silencing of HSPA2 expression in HaCaT cells caused a set of phenotypic changes characteristic for keratinocytes committed to terminal differentiation such as reduced clonogenic potential, impaired adhesiveness and increased basal and confluency-induced expression of differentiation markers. Moreover, the fraction of undifferentiated cells that rapidly adhered to collagen IV was less numerous in HSPA2-deficient cells than in the control. In a 3D reconstructed human epidermis model, HSPA2 deficiency resulted in accelerated development of a filaggrin-positive layer. Collectively, our results clearly show a link between HSPA2 expression and maintenance of keratinocytes in an undifferentiated state in the basal layer of the epidermis. It seems that HSPA2 could retain keratinocytes from premature entry into the terminal differentiation process. Overall, HSPA2 appears to be necessary for controlling development of properly stratified epidermis and thus for maintenance of skin homeostasis.
Collapse
Affiliation(s)
- Agnieszka Gogler-Pigłowska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Katarzyna Klarzyńska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.,Department of Molecular Biology and Genetics, Medical University of Silesia in Katowice, Katowice, Poland
| | - Damian R Sojka
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Anna Habryka
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Magdalena Głowala-Kosińska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marcin Herok
- Nencki Institute of Experimental Biology Polish Academy of Science, Warsaw, Poland.,International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Mariusz Kryj
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Monika Halczok
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Zdzisław Krawczyk
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Dorota Scieglinska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
34
|
Frisch SM, Farris JC, Pifer PM. Roles of Grainyhead-like transcription factors in cancer. Oncogene 2017; 36:6067-6073. [PMID: 28714958 DOI: 10.1038/onc.2017.178] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
The mammalian homologs of the D. melanogaster Grainyhead gene, Grainyhead-like 1-3 (GRHL1, GRHL2 and GRHL3), are transcription factors implicated in wound healing, tubulogenesis and cancer. Their induced target genes encode diverse epithelial cell adhesion molecules, while mesenchymal genes involved in cell migration and invasion are repressed. Moreover, GRHL2 suppresses the oncogenic epithelial-mesencyhmal transition, thereby acting as a tumor suppressor. Mechanisms, some involving established cancer-related signaling/transcription factor pathways (for example, Wnt, TGF-β, mir200, ZEB1, OVOL2, p63 and p300) and translational implications of the Grainyhead proteins in cancer are discussed in this review article.
Collapse
Affiliation(s)
- S M Frisch
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - J C Farris
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - P M Pifer
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
35
|
Pawlak M, Kikulska A, Wrzesinski T, Rausch T, Kwias Z, Wilczynski B, Benes V, Wesoly J, Wilanowski T. Potential protective role of Grainyhead-like genes in the development of clear cell renal cell carcinoma. Mol Carcinog 2017; 56:2414-2423. [DOI: 10.1002/mc.22682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/18/2017] [Accepted: 05/19/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Magdalena Pawlak
- Laboratory of Signal Transduction; Department of Cell Biology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Agnieszka Kikulska
- Laboratory of Signal Transduction; Department of Cell Biology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Tomasz Wrzesinski
- Faculty of Biology; Laboratory of High Throughput Technologies; Institute of Molecular Biology and Biotechnology; Adam Mickiewicz University; Poznan Poland
| | - Tobias Rausch
- Genomics Core Facility; European Molecular Biology Laboratory; Heidelberg Germany
| | - Zbigniew Kwias
- Department of Urology and Urological Oncology; Poznan University of Medical Sciences; Poznan Poland
| | - Bartek Wilczynski
- Faculty of Mathematics, Informatics and Mechanics; Institute of Informatics; University of Warsaw; Warsaw Poland
| | - Vladimir Benes
- Genomics Core Facility; European Molecular Biology Laboratory; Heidelberg Germany
| | - Joanna Wesoly
- Faculty of Biology; Laboratory of High Throughput Technologies; Institute of Molecular Biology and Biotechnology; Adam Mickiewicz University; Poznan Poland
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction; Department of Cell Biology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
36
|
Klein RH, Lin Z, Hopkin AS, Gordon W, Tsoi LC, Liang Y, Gudjonsson JE, Andersen B. GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states. PLoS Genet 2017; 13:e1006745. [PMID: 28445475 PMCID: PMC5425218 DOI: 10.1371/journal.pgen.1006745] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/10/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022] Open
Abstract
Transcription factor binding, chromatin modifications and large scale chromatin re-organization underlie progressive, irreversible cell lineage commitments and differentiation. We know little, however, about chromatin changes as cells enter transient, reversible states such as migration. Here we demonstrate that when human progenitor keratinocytes either differentiate or migrate they form complements of typical enhancers and super-enhancers that are unique for each state. Unique super-enhancers for each cellular state link to gene expression that confers functions associated with the respective cell state. These super-enhancers are also enriched for skin disease sequence variants. GRHL3, a transcription factor that promotes both differentiation and migration, binds preferentially to super-enhancers in differentiating keratinocytes, while during migration, it binds preferentially to promoters along with REST, repressing the expression of migration inhibitors. Key epidermal differentiation transcription factor genes, including GRHL3, are located within super-enhancers, and many of these transcription factors in turn bind to and regulate super-enhancers. Furthermore, GRHL3 represses the formation of a number of progenitor and non-keratinocyte super-enhancers in differentiating keratinocytes. Hence, chromatin relocates GRHL3 binding and enhancers to regulate both the irreversible commitment of progenitor keratinocytes to differentiation and their reversible transition to migration.
Collapse
Affiliation(s)
- Rachel Herndon Klein
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ziguang Lin
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Amelia Soto Hopkin
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - William Gordon
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yun Liang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
37
|
MicroRNA-194 regulates keratinocyte proliferation and differentiation by targeting Grainyhead-like 2 in psoriasis. Pathol Res Pract 2016; 213:89-97. [PMID: 28040329 DOI: 10.1016/j.prp.2016.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are currently emerged as important regulators in psoriasis. Psoriasis is characterized by hyperproliferation and impaired differentiation of keratinocytes in skin lesions. miR-194 is a well-known regulator of cell proliferation and differentiation. However, the role of miR-194 in psoriasis pathogenesis remains unclear. In this study we aimed to investigate the role of miR-194 in keratinocyte hyperproliferation and differentiation. We found that miR-194 was significantly downregulated in psoriasis lesional skin. Overexpression of miR-194 inhibited the proliferation and promoted the differentiation of primary human keratinocytes, whereas miR-194 suppression promoted the proliferation and inhibited their differentiation. Bioinformatic analysis predicted that the Grainyhead-like 2 (GRHL2) was a target gene of miR-194, which we further validated with a dual-luciferase reporter assay, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot analysis. The effect of miR-194 on cell proliferation and differentiation was significantly reversed by overexpression of GRHL2. Moreover, the expression of miR-194 and GRHL2 was inversely correlated in psoriasis lesional skin. Taken together, our results suggest that miR-194 inhibits the proliferation and promotes the differentiation of keratinocytes through targeting GRHL2. The downregulation of miR-194 expression may contribute to the pathogenesis of psoriasis and targeting miR-194 may represent a novel and potential therapeutic strategy for psoriasis.
Collapse
|
38
|
Edwards W, Nantie LB, Raetzman LT. Identification of a novel progenitor cell marker, grainyhead-like 2 in the developing pituitary. Dev Dyn 2016; 245:1097-1106. [PMID: 27564454 DOI: 10.1002/dvdy.24439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pituitary stem/progenitor cells give rise to all of the endocrine cell types within the pituitary gland and are necessary for both development and gland homeostasis. Recent studies have identified several key factors that characterize the progenitor cell population. However, little is known about the factors that regulate progenitor cell differentiation and maintenance. Therefore, it is crucial to identify novel factors that help elucidate mechanisms of progenitor cell function in the developing pituitary. Our studies are the first to characterize the expression of Grainyhead-like 2 (GRHL2), a transcription factor known to regulate progenitor cell plasticity, in the developing pituitary. RESULTS Our studies show GRHL2 expression is highest in the embryonic and early postnatal pituitary and is localized in pituitary progenitor cells. We demonstrate GRHL2 expression is changed in Notch2 cKO and Prop1df/df mice, mouse models that display progenitor cell number defects. In addition, our studies indicate a potential relationship between Notch signaling and GRHL2 expression in the developing pituitary. CONCLUSIONS Taken together, our results indicate GRHL2 as a novel progenitor cell maker in the developing pituitary that may contribute to progenitor cell function and maintenance. Developmental Dynamics 245:1097-1106, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Leah B Nantie
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois.,Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
39
|
Genetic Variation in POU4F3 and GRHL2 Associated with Noise-Induced Hearing Loss in Chinese Population: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060561. [PMID: 27271650 PMCID: PMC4924018 DOI: 10.3390/ijerph13060561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
Abstract
Noise-induced hearing loss (NIHL) is an important occupational disease worldwide resulting from interactions between genetic and environmental factors. The purpose of this study was to examine whether genetic variations in POU4F3 and GRHL2 may influence susceptibility to NIHL in the Chinese population. A matched case-control study was carried out among 293 hearing loss individuals and 293 normal hearing workers drawn from a population of 3790 noise-exposed workers. Ten single-nucleotide polymorphisms (SNPs) in POU4F3 and GRHL2 were selected and genotyped. Logistic regression was performed to analyze the main effects of SNPs and the interactions between noise exposure and SNPs. Moreover, the interactions between predictor haplotypes and noise exposure were also analyzed. Analysis revealed that the CC genotype of rs1981361 in the GRHL2 gene was associated with a higher risk of NIHL (adjusted OR = 1.59; 95% CI: 1.08–2.32, p = 0.018). Additionally, the GG genotype of rs3735715 in the GRHL2 gene was also a risk genotype (adjusted OR = 1.48; 95% CI: 1.01–2.19, p = 0.046). Significant interactions were found between rs3735715, rs1981361 (GRHL2), rs1368402 as well as rs891969 (POU4F3) and noise exposure in the high-level exposure groups. Furthermore, the protective haplotype CA in the POU4F3 gene and the risk haplotype GCCG in the GRHL2 gene were identified combined with noise exposure. These results indicated that GRHL2 might be an NIHL susceptibility gene, but the effect of POU4F3 on NIHL could only be detected when taking noise exposure into account, and their effects were enhanced by higher levels of noise exposure. However, the differences were not significant after the Bonferroni correction was applied. These results should be seen as suggestive.
Collapse
|
40
|
Chen W, Yi JK, Shimane T, Mehrazarin S, Lin YL, Shin KH, Kim RH, Park NH, Kang MK. Grainyhead-like 2 regulates epithelial plasticity and stemness in oral cancer cells. Carcinogenesis 2016; 37:500-10. [PMID: 26933170 PMCID: PMC6118232 DOI: 10.1093/carcin/bgw027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 01/06/2016] [Accepted: 02/20/2016] [Indexed: 12/22/2022] Open
Abstract
Grainyhead-like 2 (GRHL2) is one of the three mammalian homologues of Drosophila Grainyhead involved in epithelial morphogenesis. We recently showed that GRHL2 also controls normal epithelial cell proliferation and differentiation. In this study, we investigated the role of GRHL2 in oral carcinogenesis and the underlying mechanism. GRHL2 expression was elevated in cells and tissues of oral squamous cell carcinomas (OSCCs) compared with normal counterparts. Knockdown of GRHL2 resulted in the loss of in vivo tumorigenicity, cancer stemness and epithelial phenotype of oral cancer cells. GRHL2 loss also inhibited oral cancer cell proliferation and colony formation. GRHL2 regulated the expression of miR-200 family and Octamer-binding transcription factor 4 (Oct-4) genes through direct promoter DNA binding. Overexpression of miR-200 genes in the oral cancer cells depleted of GRHL2 partially restored the epithelial phenotype, proliferative rate and cancer stemness, indicating that miR-200 genes in part mediate the functional effects of GRHL2. Taken together, this study demonstrates a novel connection between GRHL2 and miR-200, and supports protumorigenic effect of GRHL2 on OSCCs.
Collapse
Affiliation(s)
- Wei Chen
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jin Kyu Yi
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, School of Dentistry, Kyung Hee University, Seoul 130-872, Korea
| | - Tetsu Shimane
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Shebli Mehrazarin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Yi-Ling Lin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ki-Hyuk Shin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| | - Reuben H Kim
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| | - No-Hee Park
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Mo K Kang
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| |
Collapse
|
41
|
Wang M, Yue Z, Paus R, Ramot Y. SIRT2 as a new player in epigenetic programming of keratinocyte differentiation and a candidate tumor suppressor. Exp Dermatol 2016; 23:636-8. [PMID: 24814870 DOI: 10.1111/exd.12434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/23/2022]
Abstract
Epidermal keratinocytes undergo a continuous process of terminal differentiation, which is accompanied by a dramatic change in the expression and composition of keratins. This complex and carefully orchestrated process is regulated by a large number of signal transduction events and transcriptional factors as well as by epigenetic regulatory mechanisms, namely by histone methylation/acetylation and DNA methylation. In a recent issue of Exp Dermatol, Ming et al. provide evidence that sirtuin-2 (SIRT2), a NAD+-dependent deacetylase, inhibits the expression of keratin 15 and keratin 19, epidermal stem cell markers, while it stimulates the expression of loricrin, a marker of terminal keratinocyte differentiation. Human skin cancer cells show downregulation of SIRT2, and its deletion increases tumor growth in mice. Overall, these findings suggest that this deacetylase is involved in the epigenetic regulation of keratinocyte differentiation and exerts intracutaneous tumor suppressor functions.
Collapse
Affiliation(s)
- Ming Wang
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | | | | | | |
Collapse
|
42
|
Abhishek S, Palamadai Krishnan S. Epidermal Differentiation Complex: A Review on Its Epigenetic Regulation and Potential Drug Targets. CELL JOURNAL 2016; 18:1-6. [PMID: 27054112 PMCID: PMC4819378 DOI: 10.22074/cellj.2016.3980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/04/2015] [Indexed: 11/24/2022]
Abstract
The primary feature of the mammalian skin includes the hair follicle, inter-follicular epidermis and the sebaceous glands, all of which form pilo-sebaceous units. The epidermal
protective layer undergoes an ordered/programmed process of proliferation and differentiation, ultimately culminating in the formation of a cornified envelope consisting of enucleated corneocytes. These terminally differentiated cells slough off in a cyclic manner and
this process is regulated via induction or repression of epidermal differentiation complex
(EDC) genes. These genes, spanning 2 Mb region of human chromosome 1q21, play a
crucial role in epidermal development, through various mechanisms. Each of these mechanisms employs a unique chromatin re-modelling factor or an epigenetic modifier. These
factors act to regulate epidermal differentiation singly and/or in combination. Diseases like
psoriasis and cancer exhibit aberrations in proliferation and differentiation through, in part,
dysregulation in these epigenetic mechanisms. Knowledge of the existing mechanisms
in the physiological and the aforesaid pathological contexts may not only facilitate drug
development, it also can make refinements to the existing drug delivery systems.
Collapse
Affiliation(s)
- Sinha Abhishek
- School of Bio-Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | | |
Collapse
|
43
|
Na J, Lee K, Na W, Shin JY, Lee MJ, Yune TY, Lee HK, Jung HS, Kim WS, Ju BG. Histone H3K27 Demethylase JMJD3 in Cooperation with NF-κB Regulates Keratinocyte Wound Healing. J Invest Dermatol 2016; 136:847-858. [DOI: 10.1016/j.jid.2015.11.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 01/07/2023]
|
44
|
Hosoya M, Fujioka M, Ogawa K, Okano H. Distinct Expression Patterns Of Causative Genes Responsible For Hereditary Progressive Hearing Loss In Non-Human Primate Cochlea. Sci Rep 2016; 6:22250. [PMID: 26915689 PMCID: PMC4768099 DOI: 10.1038/srep22250] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/10/2016] [Indexed: 12/18/2022] Open
Abstract
Hearing impairment is the most frequent sensory deficit in humans. Deafness genes, which harbor pathogenic mutations that have been identified in families with hereditary hearing loss, are commonly expressed in the auditory end organ or the cochlea and may contribute to normal hearing function, yet some of the mouse models carrying these mutations fail to recapitulate the hearing loss phenotype. In this study, we find that distinct expression patterns of those deafness genes in the cochlea of a non-human primate, the common marmoset (Callithrix jacchus). We examined 20 genes whose expression in the cochlea has already been reported. The deafness genes GJB3, CRYM, GRHL2, DFNA5, and ATP6B1 were expressed in marmoset cochleae in patterns different from those in mouse cochleae. Of note, all those genes are causative for progressive hearing loss in humans, but not in mice. The other tested genes, including the deafness gene COCH, in which mutation recapitulates deafness in mice, were expressed in a similar manner in both species. The result suggests that the discrepancy in the expression between rodents and primates may account for the phenotypic difference. This limitation of the rodent models can be bypassed by using non-human primate models such as the marmoset.
Collapse
Affiliation(s)
- Makoto Hosoya
- Keio University School of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| | - Masato Fujioka
- Keio University School of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| | - Kaoru Ogawa
- Keio University School of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Keio University School of Medicine, Department of Physiology, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| |
Collapse
|
45
|
Ray HJ, Niswander LA. Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure. Development 2016; 143:1192-204. [PMID: 26903501 DOI: 10.1242/dev.129825] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/16/2016] [Indexed: 12/29/2022]
Abstract
The transcription factor grainyhead-like 2 (GRHL2) is expressed in non-neural ectoderm (NNE) and Grhl2 loss results in fully penetrant cranial neural tube defects (NTDs) in mice. GRHL2 activates expression of several epithelial genes; however, additional molecular targets and functional processes regulated by GRHL2 in the NNE remain to be determined, as well as the underlying cause of the NTDs in Grhl2 mutants. Here, we find that Grhl2 loss results in abnormal mesenchymal phenotypes in the NNE, including aberrant vimentin expression and increased cellular dynamics that affects the NNE and neural crest cells. The resulting loss of NNE integrity contributes to an inability of the cranial neural folds to move toward the midline and results in NTD. Further, we identified Esrp1, Sostdc1, Fermt1, Tmprss2 and Lamc2 as novel NNE-expressed genes that are downregulated in Grhl2 mutants. Our in vitro assays show that they act as suppressors of the epithelial-to-mesenchymal transition (EMT). Thus, GRHL2 promotes the epithelial nature of the NNE during the dynamic events of neural tube formation by both activating key epithelial genes and actively suppressing EMT through novel downstream EMT suppressors.
Collapse
Affiliation(s)
- Heather J Ray
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Lee A Niswander
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
46
|
GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep 2016; 6:19943. [PMID: 26887977 PMCID: PMC4757891 DOI: 10.1038/srep19943] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), a biological process by which polarized epithelial cells convert into a mesenchymal phenotype, has been implicated to contribute to the molecular heterogeneity of epithelial ovarian cancer (EOC). Here we report that a transcription factor—Grainyhead-like 2 (GRHL2) maintains the epithelial phenotype. EOC tumours with lower GRHL2 levels are associated with the Mes/Mesenchymal molecular subtype and a poorer overall survival. shRNA-mediated knockdown of GRHL2 in EOC cells with an epithelial phenotype results in EMT changes, with increased cell migration, invasion and motility. By ChIP-sequencing and gene expression microarray, microRNA-200b/a is identified as the direct transcriptional target of GRHL2 and regulates the epithelial status of EOC through ZEB1 and E-cadherin. Our study demonstrates that loss of GRHL2 increases the levels of histone mark H3K27me3 on promoters and GRHL2-binding sites at miR-200b/a and E-cadherin genes. These findings support GRHL2 as a pivotal gatekeeper of EMT in EOC via miR-200-ZEB1.
Collapse
|
47
|
Zhu H, Hou L, Liu J, Li Z. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2. Biochem Biophys Res Commun 2016; 471:169-76. [PMID: 26826389 DOI: 10.1016/j.bbrc.2016.01.157] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/16/2016] [Accepted: 01/25/2016] [Indexed: 11/25/2022]
Abstract
MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2.
Collapse
Affiliation(s)
- Haigang Zhu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Liyue Hou
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jingjing Liu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhiming Li
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
48
|
Riethdorf S, Frey S, Santjer S, Stoupiec M, Otto B, Riethdorf L, Koop C, Wilczak W, Simon R, Sauter G, Pantel K, Assmann V. Diverse expression patterns of the EMT suppressor grainyhead-like 2 (GRHL2) in normal and tumour tissues. Int J Cancer 2015; 138:949-63. [PMID: 26355710 DOI: 10.1002/ijc.29841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/03/2015] [Indexed: 12/16/2022]
Abstract
The transcription factor grainyhead-like 2 (GRHL2) plays a crucial role in various developmental processes. Although GRHL2 recently has attracted considerable interest in that it could be identified as a novel suppressor of the epithelial-to-mesenchymal transition, evidence is emerging that GRHL2 also exhibits tumour-promoting activities. Aim of the present study therefore was to help defining the relevance of GRHL2 for human cancers by performing a comprehensive immunohistochemical analysis of GRHL2 expression in normal (n = 608) and (n = 3,143) tumour tissues using tissue microarrays. Consistent with its accepted role in epithelial morphogenesis, GRHL2 expression preferentially but not exclusively was observed in epithelial cells. Regenerative and proliferating epithelial cells with stem cell features showed a strong GRHL2 expression. Highly complex GRHL2 expression patterns indicative of both reduced and elevated GRHL2 expression in tumours, possibly reflecting potential tumour-suppressing as well as oncogenic functions of GRHL2 in distinct human tumours, were observed. A dysregulation of GRHL2 expression for the first time was found in tumours of non-epithelial origin (e.g., astrocytomas, melanomas). We also report GRHL2 copy number gains which, however, did not necessarily translate into increased GRHL2 expression levels in cancer cells. Results obtained by meta-analysis of gene expression microarray data in conjunction with functional assays demonstrating a direct regulation of HER3 expression further point to a potential therapeutic relevance of GRHL2 in ovarian cancer. Hopefully, the results presented in this study may pave the way for a better understanding of the yet largely unknown function of GRHL2 in the initiation, progression and also therapy of cancers.
Collapse
Affiliation(s)
- Sabine Riethdorf
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Frey
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Santjer
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malgorzata Stoupiec
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Otto
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christina Koop
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Assmann
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Mehrazarin S, Chen W, Oh JE, Liu ZX, Kang KL, Yi JK, Kim RH, Shin KH, Park NH, Kang MK. The p63 Gene Is Regulated by Grainyhead-like 2 (GRHL2) through Reciprocal Feedback and Determines the Epithelial Phenotype in Human Keratinocytes. J Biol Chem 2015; 290:19999-20008. [PMID: 26085095 DOI: 10.1074/jbc.m115.659144] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
In this study, we investigated the effects of p63 modulation in epithelial plasticity in human keratinocytes. The p63 isoforms ΔNp63α, ΔNp63β, and ΔNp63γ were ectopically expressed in normal human epidermal keratinocytes (NHEKs). The epithelial or mesenchymal state was determined by morphological changes and altered expression of various markers, e.g. fibronectin, E-Cadherin, and keratin 14. Overexpression of ΔNp63α and ΔNp63β but not ΔNp63γ isoforms led to morphological changes consistent with epithelial-mesenchymal transition (EMT). However, only ΔNp63α overexpression was able to maintain the morphological changes and molecular phenotype consistent with EMT. Interestingly, knockdown of all p63 isoforms by transfection of p63 siRNA also led to the EMT phenotype, further confirming the role of p63 in regulating the epithelial phenotype in NHEKs. EMT in NHKs accompanied loss of Grainyhead-Like 2 (GHRL2) and miR-200 family gene expression, both of which play crucial roles in determining the epithelial phenotype. Modulation of GRHL2 in NHKs also led to congruent changes in p63 expression. ChIP revealed direct GRHL2 binding to the p63 promoter. GRHL2 knockdown in NHK led to impaired binding of GRHL2 and changes in the histone marks consistent with p63 gene silencing. These data indicate the presence of a reciprocal feedback regulation between p63 and GRHL2 in NHEKs to regulate epithelial plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Kyung L Kang
- From the School of Dentistry, the Kyung Hee University, School of Dentistry, Seoul, 130-701, Korea
| | - Jin K Yi
- From the School of Dentistry, the Kyung Hee University, School of Dentistry, Seoul, 130-701, Korea
| | - Reuben H Kim
- From the School of Dentistry, Jonsson Comprehensive Cancer Center, and
| | - Ki-Hyuk Shin
- From the School of Dentistry, Jonsson Comprehensive Cancer Center, and
| | - No-Hee Park
- From the School of Dentistry, the Kyung Hee University, School of Dentistry, Seoul, 130-701, Korea Jonsson Comprehensive Cancer Center, and David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095 and
| | - Mo K Kang
- From the School of Dentistry, Jonsson Comprehensive Cancer Center, and
| |
Collapse
|
50
|
Mlacki M, Kikulska A, Krzywinska E, Pawlak M, Wilanowski T. Recent discoveries concerning the involvement of transcription factors from the Grainyhead-like family in cancer. Exp Biol Med (Maywood) 2015; 240:1396-401. [PMID: 26069269 DOI: 10.1177/1535370215588924] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/01/2015] [Indexed: 12/17/2022] Open
Abstract
The Grainyhead-like (GRHL) family of transcription factors has three mammalian members, which are currently termed Grainyhead-like 1 (GRHL1), Grainyhead-like 2 (GRHL2), and Grainyhead-like 3 (GRHL3). These factors adopt a DNA-binding immunoglobulin fold homologous to the DNA-binding domain of key tumor suppressor p53. Their patterns of expression are tissue and developmentally specific. Earlier studies of the GRHL proteins focused on their functions in mammalian development. In recent years, these factors have been linked to many different types of cancer: squamous cell carcinoma of the skin, breast cancer, gastric cancer, hepatocellular carcinoma, colorectal cancer, clear cell renal cell carcinoma, neuroblastoma, prostate cancer, and cervical cancer. The roles of GRHL proteins in these various types of cancer are complex, and in some cases appear to be contradictory: they can serve to promote cancer development, or they may act as tumor suppressors, depending on the particular GRHL protein involved and on the cancer type. The reasons for obvious discrepancies in results from different studies remain unclear. At the molecular level, the GRHL transcription factors regulate the expression of genes whose products are involved in cellular proliferation, differentiation, adhesion, and polarity. We herein review the roles of GRHL proteins in cancer development, and we critically examine relevant molecular mechanisms, which were proposed by different authors. We also discuss the significance of recent discoveries implicating the involvement of GRHL transcription factors in cancer and highlight potential future applications of this knowledge in cancer treatment.
Collapse
Affiliation(s)
- Michal Mlacki
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Agnieszka Kikulska
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewa Krzywinska
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Magdalena Pawlak
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|