1
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
2
|
Pangilinan C, Klionsky DJ, Liang C. Emerging dimensions of autophagy in melanoma. Autophagy 2024; 20:1700-1711. [PMID: 38497492 PMCID: PMC11262229 DOI: 10.1080/15548627.2024.2330261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
Macroautophagy/autophagy has previously been regarded as simply a way for cells to deal with nutrient emergency. But explosive work in the last 15 years has given increasingly new knowledge to our understanding of this process. Many of the functions of autophagy that are unveiled from recent studies, however, cannot be reconciled with this conventional view of cell survival but, instead, point to autophagy being integrally involved at a deeper level of cell biology, playing a critical role in maintaining homeostasis and promoting an integrated stress/immune response. The new appreciation of the role of autophagy in the evolutionary trajectory of cancer and cancer interaction with the immune system provides a mechanistic framework for understanding the clinical benefits of autophagy-based therapies. Here, we examine current knowledge of the mechanisms and functions of autophagy in highly plastic and aggressive melanoma as a model disease of human malignancy, while highlighting emerging dimensions indicating that autophagy is at play beyond its classical face.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; ATG: autophagy related; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CAFs: cancer-associated fibroblasts; CCL5: C-C motif chemokine ligand 5; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; CTLA4: cytotoxic T-lymphocyte associated protein 4; CTL: cytotoxic T lymphocyte; DAMPs: danger/damage-associated molecular patterns; EGFR: epidermal growth factor receptor; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FITM2: fat storage inducing transmembrane protein 2; HCQ: hydroxychloroquine; ICB: immune checkpoint blockade; ICD: immunogenic cell death; LDH: lactate dehydrogenase; MAPK: mitogen-activated protein kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NDP52: nuclear dot protein 52; NFKB/NF-κ B: nuclear factor kappa B; NBR1: the neighbor of BRCA1; NK: natural killer; NRF1: nuclear respiratory factor 1; NSCLC: non-small-cell lung cancer; OPTN: optineurin; PDAC: pancreatic ductal adenocarcinoma; PDCD1/PD-1: programmed cell death 1; PPT1: palmitoyl-protein thioesterase 1; PTEN: phosphatase and tensin homolog; PTK2/FAK1: protein tyrosine kinase 2; RAS: rat sarcoma; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGFB/TGF-β: transforming growth factor beta; TMB: tumor mutational burden; TME: tumor microenvironment; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
3
|
Zhi HT, Lu Z, Chen L, Wu JQ, Li L, Hu J, Chen WH. Anticancer efficacy triggered by synergistically modulating the homeostasis of anions and iron: Design, synthesis and biological evaluation of dual-functional squaramide-hydroxamic acid conjugates. Bioorg Chem 2024; 147:107421. [PMID: 38714118 DOI: 10.1016/j.bioorg.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.
Collapse
Affiliation(s)
- Hai-Tao Zhi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Zhonghui Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Li Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jia-Qiang Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Lanqing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jinhui Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
4
|
Charousova M, Kudlickova Peskova M, Takacsova P, Kapolkova K, Haddad Y, Bilek J, Sivak L, Bartejs T, Heger Z, Pekarik V. Engineered human H-chain ferritin with reversed charge of the internal cavity exhibits RNA-mediated spongelike effect for loading RNA/DNA-binding molecules. Biomater Sci 2024; 12:1249-1262. [PMID: 38247338 DOI: 10.1039/d3bm01257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Ferritins are globular proteins with an internal cavity that enables the encapsulation of a plethora of low-mass compounds. Unfortunately, the overall negative surface charge of ferritin's internal cavity hampers efficient loading of negatively charged molecules. Therefore, we produced a genetically engineered human H-chain ferritin containing a cationic RKRK domain, reversing the natural net charge of the cavity to positive, thus allowing for efficient encapsulation of negatively charged siRNA. Due to the reversed, positive charge mediated by RKRK domains, the recombinant ferritin produced in E. coli inherently carries a load of bacterial RNA inside its cavity, turning the protein into an effective sponge possessing high affinity for DNA/RNA-binding substances that can be loaded with markedly higher efficiency compared to the wildtype protein. Using doxorubicin as payload, we show that due to its loading through the RNA sponge, doxorubicin is released in a sustained manner, with a cytotoxicity profile similar to the free drug. In summary, this is the first report demonstrating a ferritin/nucleic acid hybrid delivery vehicle with a broad spectrum of properties exploitable in various fields of biomedical applications.
Collapse
Affiliation(s)
- Marketa Charousova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Marie Kudlickova Peskova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-625 00, Czechia.
| | - Paulina Takacsova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Katerina Kapolkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Jan Bilek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Tomas Bartejs
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-625 00, Czechia.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
| | - Vladimir Pekarik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czechia.
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-625 00, Czechia.
| |
Collapse
|
5
|
Gao M, Deng H, Zhang Y, Wang H, Liu R, Hou W, Zhang W. Hyaluronan nanogel co-loaded with chloroquine to enhance intracellular cisplatin delivery through lysosomal permeabilization and lysophagy inhibition. Carbohydr Polym 2024; 323:121415. [PMID: 37940248 DOI: 10.1016/j.carbpol.2023.121415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 11/10/2023]
Abstract
Hyaluronan (HA) has been widely used to construct nanocarriers for cancer-targeted drug delivery, due to its excellent biocompatibility and intrinsic affinity towards CD44 that is overexpressed in most cancer types. However, the HA-based nanocarriers are prone to trapping in lysosomes following the HA-mediated endocytosis, which limited the delivered drug to access its pharmacological action sites and subsequently compromised the therapeutic efficacy. To overcome this intracellular obstacle, here we demonstrated the co-loading of chloroquine (CQ) in HA nanogel could efficiently promote the intracellular delivery of cisplatin. The cisplatin coordination with HA generated the nanogel that could also co-encapsulate CQ (HA/Cis/CQ nanogel). Compared with cisplatin-loaded HA nanogel (HA/Cis), HA/Cis/CQ significantly promoted the lysosomal escape of cisplatin as well as enhanced tumor inhibition in the triple-negative breast cancer model. Mechanism studies suggested that co-delivery of CQ not only induced the lysosomal membrane permeabilization but also inhibited the lysophagy, which collectively contributed to the lysosomal instability and cisplatin escape. This HA/Cis/CQ nanogel elicited less toxicity compared with the combination of free Cis and CQ, thus suggesting a promising HA nanocarrier to boost the cisplatin delivery towards cancer-targeted therapy.
Collapse
Affiliation(s)
- Menghan Gao
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Huimin Wang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Runmeng Liu
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Wei Hou
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Weiqi Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
6
|
Kim HG, Ro MH, Lee M. Atg5 knockout induces alternative autophagy via the downregulation of Akt expression. Toxicol Res 2023; 39:637-647. [PMID: 37779593 PMCID: PMC10541375 DOI: 10.1007/s43188-023-00191-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Autophagy play contradictory roles in cellular transformation. We previously found that the knockout (KO) of autophagy-related 5 (Atg5), which is essential for autophagy, leads to the malignant transformation of NIH 3T3 cells. In this study, we explored the mechanism by which autophagy contributes to this malignant transformation using two transformed cell lines, Atg5 KO and Ras-NIH 3T3. Monomeric red fluorescent protein-green fluorescent protein-light chain 3 reporter and Cyto-ID staining revealed that Ras-NIH 3T3 cells exhibited higher basal autophagy activity than NIH 3T3 cells. Additionally, transformed cells, regardless of their Atg5 KO status, were more sensitive to autophagy inhibitors (SBI-0206965, chloroquine, and obatoclax) than the untransformed NIH 3T3 cells, suggesting that the transformed cells are more autophagy-dependent than the normal cells. Loss of Atg5 improved the cell viability and mobility, especially in Ras-NIH 3T3 cells. Furthermore, we discovered that autophagy was alternatively induced in a Rab9-dependent manner in Ras-NIH 3T3 and NIH 3T3/Atg5 KO cells. In particular, Atg5 KO cells showed reduced mTOR-mediated phosphorylation of Akt (pAkt S473), indicating the mTOR-independent occurrence of alternative autophagy in Atg5 KO cells. Therefore, our study provides evidence that alternative autophagy may contribute to tumorigenesis in cells with an impaired Atg5-dependent autophagy pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00191-3.
Collapse
Affiliation(s)
- Hye-Gyo Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Republic of Korea
| | - Myeong-Han Ro
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Republic of Korea
| | - Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
7
|
Chen R, Qiu K, Han G, Kundu BK, Ding G, Sun Y, Diao J. Quantifying cell viability through organelle ratiometric probing. Chem Sci 2023; 14:10236-10248. [PMID: 37772119 PMCID: PMC10530868 DOI: 10.1039/d3sc01537h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Detecting cell viability is crucial in research involving the precancerous discovery of abnormal cells, the evaluation of treatments, and drug toxicity testing. Although conventional methods afford cumulative results regarding cell viability based on a great number of cells, they do not permit investigating cell viability at the single-cell level. In response, we rationally designed and synthesized a fluorescent probe, PCV-1, to visualize cell viability under the super-resolution technology of structured illumination microscopy. Given its sensitivity to mitochondrial membrane potential and affinity to DNA, PCV-1's ability to stain mitochondria and nucleoli was observed in live and dead cells, respectively. During cell injury induced by drug treatment, PCV-1's migration from mitochondria to the nucleolus was dynamically visualized at the single-cell level. By extension, harnessing PCV-1's excellent photostability and signal-to-noise ratio and by comparing the fluorescence intensity of the two organelles, mitochondria and nucleoli, we developed a powerful analytical assay named organelle ratiometric probing (ORP) that we applied to quantitatively analyze and efficiently assess the viability of individual cells, thereby enabling deeper insights into the potential mechanisms of cell death. In ORP analysis with PCV-1, we identified 0.3 as the cutoff point for assessing whether adding a given drug will cause apparent cytotoxicity, which greatly expands the probe's applicability. To the best of our knowledge, PCV-1 is the first probe to allow visualizing cell death and cell injury under super-resolution imaging, and our proposed analytical assay using it paves the way for quantifying cell viability at the single-cell level.
Collapse
Affiliation(s)
- Rui Chen
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Kangqiang Qiu
- Department of Cancer Biology, College of Medicine, University of Cincinnati Cincinnati OH 45267 USA
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Guodong Ding
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Jiajie Diao
- Department of Cancer Biology, College of Medicine, University of Cincinnati Cincinnati OH 45267 USA
| |
Collapse
|
8
|
Chen Q, Liao Y, Liu Y, Song Y, Jiang J, Zhang Z, Li A, Zheng M, Chen X, Zhao T, Gu J, Tan Y, Liu X, Jiang Y, Wang K, Yi H, Xiao J, Hu S. Identification of Fangjihuangqi Decoction as a late-stage autophagy inhibitor with an adjuvant anti-tumor effect against non-small cell lung cancer. Chin Med 2023; 18:68. [PMID: 37287052 DOI: 10.1186/s13020-023-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Clinically, although chemotherapy is one of the most commonly used methods of treating tumors, chemotherapeutic drugs can induce autophagic flux and increase tumor cell resistance, leading to drug tolerance. Therefore, theoretically, inhibiting autophagy may improve the efficacy of chemotherapy. The discovery of autophagy regulators and their potential application as adjuvant anti-cancer drugs is of substantial importance. In this study, we clarified that Fangjihuangqi Decoction (FJHQ, traditional Chinese medicine) is an autophagy inhibitor, which can synergistically enhance the effect of cisplatin and paclitaxel on non-small cell lung cancer (NSCLC) cells. METHODS We observed the changes of autophagy level in NSCLC cells under the effect of FJHQ, and verified the level of the autophagy marker protein and cathepsin. Apoptosis was detected after the combination of FJHQ with cisplatin or paclitaxel, and NAC (ROS scavenger) was further used to verify the activation of ROS-MAPK pathway by FJHQ. RESULTS We observed that FJHQ induced autophagosomes in NSCLC cells and increased the levels of P62 and LC3-II protein expression in a concentration- and time-gradient-dependent manner, indicating that autophagic flux was inhibited. Co-localization experiments further showed that while FJHQ did not inhibit autophagosome and lysosome fusion, it affected the maturation of cathepsin and thus inhibited the autophagic pathway. Finally, we found that the combination of FJHQ with cisplatin or paclitaxel increased the apoptosis rate of NSCLC cells, due to increased ROS accumulation and further activation of the ROS-MAPK pathway. This synergistic effect could be reversed by NAC. CONCLUSION Collectively, these results demonstrate that FJHQ is a novel late-stage autophagy inhibitor that can amplify the anti-tumor effect of cisplatin and paclitaxel against NSCLC cells.
Collapse
Affiliation(s)
- Qiugu Chen
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuan Liao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yujiao Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Song
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Junbo Jiang
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhen Zhang
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Anqi Li
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Mengyi Zheng
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyi Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tingxiu Zhao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiangyong Gu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuhui Tan
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyi Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Kun Wang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hua Yi
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianyong Xiao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shan Hu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Kim HJ, Lee Y, Lee S, Park B. HCMV-encoded viral protein US12 promotes autophagy by inducing autophagy flux. Biochem Biophys Res Commun 2023; 654:94-101. [PMID: 36898229 DOI: 10.1016/j.bbrc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The human cytomegalovirus (HCMV)-encoded US12 gene family is a group of ten predicted seven-transmembrane domain proteins that are structurally similar to G-protein-coupled receptors or transmembrane Bax inhibitor-1 motif-containing proteins; however, the roles of US12 family proteins in virus-host interactions remain to be discovered. Here, we suggest a new function of the US12 protein in regulating cellular autophagy. US12 is predominantly located to the lysosome and interacts with the lysosomal membrane protein 2 (LAMP2). A liquid chromatography-mass spectrometry (MS)/MS-based targeted proteomics analysis shows that US12 is tightly correlated with autophagy. US12 induces autophagy via upregulating ULK1 phosphorylation and subsequent LC3-II conversion, thereby accelerating autophagic flux. Moreover, HeLa cells overexpressing US12 displays intense LC3-specific staining and autolysosome formation even under nutrient-sufficient conditions. Furthermore, the physical interaction of p62/SQSTM1 with US12 is involved in the resistance to the degradation of p62/SQSTM1 by autophagy, despite the induction of both autolysosome formation and autophagic flux. Although the effect of US12 expression in HCMV infection on autophagy remains undetermined, these findings provide new insights into the viral drivers of host autophagy during HCMV evolution and pathogenesis.
Collapse
Affiliation(s)
- Hyung Jin Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Yoora Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sungwook Lee
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
10
|
Chen R, Qiu K, Han G, Kundu BK, Ding G, Sun Y, Diao J. Quantifying cell viability through organelle ratiometric probing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538448. [PMID: 37163053 PMCID: PMC10168353 DOI: 10.1101/2023.04.26.538448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Detecting cell viability is crucial in research involving the precancerous discovery of abnormal cells, the evaluation of treatments, and drug toxicity testing. Although conventional methods afford cumulative results regarding cell viability based on a great number of cells, they do not permit investigating cell viability at the single-cell level. In response, we rationally designed and synthesized a fluorescent probe, PCV-1, to visualize cell viability under the super-resolution technology of structured illumination microscopy. Given its sensitivity to mitochondrial membrane potential and affinity to DNA, PCV-1's ability to stain mitochondria and nucleoli was observed in live and dead cells, respectively. During cell injury induced by drug treatment, PCV-1's migration from mitochondria to the nucleolus was dynamically visualized at the single-cell level. By extension, harnessing PCV-1's excellent photostability and signal-to-noise ratio and by comparing the fluorescence intensity of the two organelles, mitochondria and nucleoli, we developed a powerful analytical assay named organelle ratiometric probing (ORP) that we applied to quantitatively analyze and efficiently assess the viability of individual cells, thereby enabling deeper insights into the potential mechanisms of cell death. In ORP analysis with PCV-1, we identified 0.3 as the cutoff point for assessing whether adding a given drug will cause apparent cytotoxicity, which greatly expands the probe's applicability. To the best of our knowledge, PCV-1 is the first probe to allow visualizing cell death and cell injury under super-resolution imaging, and our proposed analytical assay using it paves the way for quantifying cell viability at the single-cell level.
Collapse
|
11
|
Antinarelli LMR, Midlej V, da Silva EDS, Coelho EAF, da Silva AD, Coimbra ES. Exploring the repositioning of the amodiaquine as potential drug against visceral leishmaniasis: The in vitro effect against Leishmania infantum is associated with multiple mechanisms, involving mitochondria dysfunction, oxidative stress and loss of cell cycle control. Chem Biol Interact 2023; 371:110333. [PMID: 36592711 DOI: 10.1016/j.cbi.2022.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Visceral leishmaniasis (VL) is a progressive, debilitating, and potentially fatal disease if left untreated. As a neglected tropical disease (NTD), the available treatment is restricted to a few drugs, which typically must be administered over a long period but are associated with serious adverse effects and have variability in efficacy. In this sense, drug repositioning has been considered an excellent strategy in the search for alternative treatments, especially in reducing the time and cost of the research. In this work, the repositioning potential of amodiaquine (AQ), a well-known antimalarial drug, was investigated for the treatment of VL. AQ showed significant and selective activity against promastigotes (IC50 = 11.6 μg/mL) and intracellular amastigotes (IC50 = 2.4 μg/mL) of L. infantum, being 10 times more destructive to the intracellular parasites than the host cell. In addition, pre-treatment of macrophages with AQ caused a significant reduction in the infection index, indicating a prophylactic effect of this drug. SEM images showed that AQ induces strong shape alterations of the promastigotes with an increase in cell volume with rounding and ribbing (vertical ridges), as well as a shortened flagellum. In addition, AQ induced depolarization of the ΔΨm, an increase in ROS and neutral lipids levels, and changes in the cell cycle in promastigotes, without alterations to the permeability of the parasite plasma membrane. L. infantum-infected macrophages treated with AQ induced the activation of oxidative mechanisms by infected host cells, with an increase in ROS and NO levels. Finally, in vitro interactions between AQ and miltefosine were found to have an additive effect in both biological stages of the parasite, with the ∑FIC50 values ranging from 0.74 to 1.16 μg/mL and 0.54-1.11 μg/mL for promastigotes and intracellular amastigotes, respectively. Overall, these data highlight the utility of drug repurposing and indicate future preclinical testing for AQ itself or in combination as a potential VL treatment.
Collapse
Affiliation(s)
- Luciana M Ribeiro Antinarelli
- Department of Parasitology, Microbiology, and Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Minas Gerais, 36.036-900, Brazil; Postgraduation Program in Health Sciences, Infectology and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Victor Midlej
- Laboratory of Cellular and Ultrastructure, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | | | - Eduardo Antônio Ferraz Coelho
- Postgraduation Program in Health Sciences, Infectology and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, 30130-100, Brazil; Department of Clinical Pathology, COLTEC, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adilson David da Silva
- Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Minas Gerais, 36.036-900, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology, and Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Minas Gerais, 36.036-900, Brazil.
| |
Collapse
|
12
|
Pangilinan C, Xu X, Herlyn M, Liang C. Autophagy Paradox: Strategizing Treatment Modality in Melanoma. Curr Treat Options Oncol 2023; 24:130-145. [PMID: 36670319 PMCID: PMC9883356 DOI: 10.1007/s11864-023-01053-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/22/2023]
Abstract
OPINION STATEMENT The primordial autophagy process, originally identified as a starvation response in baker's yeast, has since been shown to have a wide spectrum of functions other than survival. In many cases, it is accepted that autophagy operates as a key tumor suppressor mechanism that protects cells from adverse environmental cues by enforcing homeostasis and maintaining the functional and structural integrity of organelles. Paradoxically, heightened states of autophagy are also seen in some cancers, leading to the prevailing view that the pro-survival aspect of autophagy might be hijacked by some tumors to promote their fitness and pathogenesis. Notably, recent studies have revealed a broad range of cell-autonomous autophagy in reshaping tumor microenvironment and maintaining lineage integrity and immune homeostasis, calling for a renewed understanding of autophagy beyond its classical roles in cell survival. Here, we evaluate the increasing body of literature that argues the "double-edged" consequences of autophagy manipulation in cancer therapy, with a particular focus on highly plastic and mutagenic melanoma. We also discuss the caveats that must be considered when evaluating whether autophagy blockade is the effector mechanism of some anti-cancer therapy particularly associated with lysosomotropic agents. If autophagy proteins are to be properly exploited as targets for anticancer drugs, their diverse and complex roles should also be considered.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
The marine natural product mimic MPM-1 is cytolytic and induces DAMP release from human cancer cell lines. Sci Rep 2022; 12:15586. [PMID: 36114339 PMCID: PMC9481558 DOI: 10.1038/s41598-022-19597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/31/2022] [Indexed: 12/09/2022] Open
Abstract
Bioprospecting contributes to the discovery of new molecules with anticancer properties. Compounds with cytolytic activity and the ability to induce immunogenic cell death can be administered as intratumoral injections with the aim to activate anti-tumor immune responses by causing the release of tumor antigens as well as damage-associated molecular patterns (DAMPs) from dying cancer cells. In the present study, we report the cytolytic and DAMP-releasing effects of a new natural product mimic termed MPM-1 that was inspired by the marine Eusynstyelamides. We found that MPM-1 rapidly killed cancer cells in vitro by inducing a necrosis-like death, which was accompanied by lysosomal swelling and perturbation of autophagy in HSC-3 (human oral squamous cell carcinoma) cells. MPM-1 also induced release of the DAMPs adenosine triphosphate (ATP) and high mobility group box 1 (HMGB1) from Ramos (B-cell lymphoma) and HSC-3 cells, as well as cell surface expression of calreticulin in HSC-3 cells. This indicates that MPM-1 has the ability to induce immunogenic cell death, further suggesting that it may have potential as a novel anticancer compound.
Collapse
|
14
|
Mitochondrial hyperfusion via metabolic sensing of regulatory amino acids. Cell Rep 2022; 40:111198. [PMID: 35977476 DOI: 10.1016/j.celrep.2022.111198] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/06/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
The relationship between nutrient starvation and mitochondrial dynamics is poorly understood. We find that cells facing amino acid starvation display clear mitochondrial fusion as a means to evade mitophagy. Surprisingly, further supplementation of glutamine (Q), leucine (L), and arginine (R) did not reverse, but produced stronger mitochondrial hyperfusion. Interestingly, the hyperfusion response to Q + L + R was dependent upon mitochondrial fusion proteins Mfn1 and Opa1 but was independent of MTORC1. Metabolite profiling indicates that Q + L + R addback replenishes amino acid and nucleotide pools. Inhibition of fumarate hydratase, glutaminolysis, or inosine monophosphate dehydrogenase all block Q + L + R-dependent mitochondrial hyperfusion, which suggests critical roles for the tricarboxylic acid (TCA) cycle and purine biosynthesis in this response. Metabolic tracer analyses further support the idea that supplemented Q promotes purine biosynthesis by serving as a donor of amine groups. We thus describe a metabolic mechanism for direct sensing of cellular amino acids to control mitochondrial fusion and cell fate.
Collapse
|
15
|
Balmori‐Cedeno J, Pham PH, Liu J, Misk E, Ryerse I, Renshaw S, Nowlan JP, Lumsden JJ, Lumsden JS. Autophagy‐related gene regulation in liver and muscle of rainbow trout (
Oncorhynchus mykiss
) upon exposure to chloroquine, deoxynivalenol and nutrient restriction. AQUACULTURE RESEARCH 2022; 53:3927-3938. [DOI: 10.1111/are.15896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/13/2022] [Indexed: 01/04/2025]
Affiliation(s)
- Jaramar Balmori‐Cedeno
- Department of Pathobiology University of Guelph Guelph ON Canada
- MOWI Canada West Campbell River BC Canada
| | - Phuc H. Pham
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Juan‐Ting Liu
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Ehab Misk
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Ian Ryerse
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Sam Renshaw
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Joseph P. Nowlan
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - John J. Lumsden
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - John S. Lumsden
- Department of Pathobiology University of Guelph Guelph ON Canada
| |
Collapse
|
16
|
Račková L, Csekes E. Redox aspects of cytotoxicity and anti-neuroinflammatory profile of chloroquine and hydroxychloroquine in serum-starved BV-2 microglia. Toxicol Appl Pharmacol 2022; 447:116084. [PMID: 35618033 DOI: 10.1016/j.taap.2022.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have long been used worldwide to treat and prevent human malarias. However, these 4-aminoquinolines have also shown promising potential in treating chronic illnesses with an inflammatory component, including neurological diseases. Given the current demand for serum avoidance during pharmacological testing and modeling of some pathologies, we compared cytotoxicities of CQ and HCQ in both serum-deprived and -fed murine BV-2 microglia. Furthermore, we assessed the anti-neuroinflammatory potential of both compounds in serum-deprived cells. Under both conditions, CQ showed higher cytotoxicity than HCQ. However, the comparable MTT-assay-derived data measured under different serum conditions were associated with disparate cytotoxic mechanisms of CQ and HCQ. In particular, under serum starvation, CQ mildly enhanced secondary ROS, mitochondrial hyperpolarization, and decreased phagocytosis. However, CQ promoted G1 phase cell cycle arrest and mitochondrial depolarization in serum-fed cells. Under both conditions, CQ fostered early apoptosis. Additionally, we confirmed that both compounds could exert anti-inflammatory effects in microglia through interference with MAPK signaling under nutrient-deprivation-related stress. Nevertheless, unlike HCQ, CQ is more likely to exaggerate intracellular prooxidant processes in activated starved microglia, which are inefficiently buffered by Nrf2/HO-1 signaling pathway activation. These outcomes also show HCQ as a promising anti-neuroinflammatory drug devoid of CQ-mediated cytotoxicity.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic.
| | - Erika Csekes
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
17
|
The Secrets of Alternative Autophagy. Cells 2021; 10:cells10113241. [PMID: 34831462 PMCID: PMC8623506 DOI: 10.3390/cells10113241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
For many years, it was thought that ATG5 and ATG7 played a pivotal role in autophagy, and that the knockdown of one of these genes would result in its inhibition. However, cells with ATG5 or ATG7 depletion still generate autophagic vacuoles with mainly trans-Golgi-originated isolation membranes and do not die. This indicates that autophagy can occur via ATG5/ATG7-independent alternative autophagy. Its molecular mechanism differs from that of the canonical pathway, including inter alia the phosphorylation of ULK1, and lack of LC3 modifications. As the alternative autophagy pathway has only recently been described, little is known of its precise role; however, a considerable body of evidence suggests that alternative autophagy participates in mitochondrion removal. This review summarizes the latest progress made in research on alternative autophagy and describes its possible molecular mechanism, roles and methods of detection, and possible modulators. There is a need for further research focused on types of autophagy, as this can elucidate the functioning of various cell types and the pathogenesis of human and animal diseases.
Collapse
|
18
|
Raudenska M, Balvan J, Masarik M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol Cancer 2021; 20:140. [PMID: 34706732 PMCID: PMC8549397 DOI: 10.1186/s12943-021-01423-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is best known for its role in organelle and protein turnover, cell quality control, and metabolism. The autophagic machinery has, however, also adapted to enable protein trafficking and unconventional secretory pathways so that organelles (such as autophagosomes and multivesicular bodies) delivering cargo to lysosomes for degradation can change their mission from fusion with lysosomes to fusion with the plasma membrane, followed by secretion of the cargo from the cell. Some factors with key signalling functions do not enter the conventional secretory pathway but can be secreted in an autophagy-mediated manner.Positive clinical results of some autophagy inhibitors are encouraging. Nevertheless, it is becoming clear that autophagy inhibition, even within the same cancer type, can affect cancer progression differently. Even next-generation inhibitors of autophagy can have significant non-specific effects, such as impacts on endosome-related secretory pathways and secretion of extracellular vesicles (EVs). Many studies suggest that cancer cells release higher amounts of EVs compared to non-malignant cells, which makes the effect of autophagy inhibitors on EVs secretion highly important and attractive for anticancer therapy. In this review article, we discuss how different inhibitors of autophagy may influence the secretion of EVs and summarize the non-specific effects of autophagy inhibitors with a focus on endosome-related secretory pathways. Modulation of autophagy significantly impacts not only the quantity of EVs but also their content, which can have a deep impact on the resulting pro-tumourigenic or anticancer effect of autophagy inhibitors used in the antineoplastic treatment of solid cancers.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, CZ-166 28, Prague, Czech Republic.
| |
Collapse
|
19
|
Drača D, Marković M, Gozzi M, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Ruthenacarborane and Quinoline: A Promising Combination for the Treatment of Brain Tumors. Molecules 2021; 26:molecules26133801. [PMID: 34206482 PMCID: PMC8270330 DOI: 10.3390/molecules26133801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
Gliomas and glioblastomas are very aggressive forms of brain tumors, prone to the development of a multitude of resistance mechanisms to therapeutic treatments, including cytoprotective autophagy. In this work, we investigated the role and mechanism of action of the combination of a ruthenacarborane derivative with 8-hydroxyquinoline (8-HQ), linked via an ester bond (complex 2), in rat astrocytoma C6 and human glioma U251 cells, in comparison with the two compounds alone, i.e., the free carboxylic acid (complex 1) and 8-HQ, and their non-covalent combination ([1 + 8-HQ], in 1:1 molar ratio). We found that only complex 2 was able to significantly affect cellular viability in glioma U251 cells (IC50 11.4 μM) via inhibition of the autophagic machinery, most likely acting at the early stages of the autophagic cascade. Contrary to 8-HQ alone, complex 2 was also able to impair cellular viability under conditions of glucose deprivation. We thus suggest different mechanisms of action of ruthenacarborane complex 2 than purely organic quinoline-based drugs, making complex 2 a very attractive candidate for evading the known resistances of brain tumors to chloroquine-based therapies.
Collapse
Affiliation(s)
- Dijana Drača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
| | - Milan Marković
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
| | - Marta Gozzi
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany;
- Medical Faculty, Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
- Correspondence: (S.M.); (D.M.-I.); (E.H.-H.); Tel.: +381-11-2078-452 (S.M. & D.M.-I.); Tel.: +49-341-9736151 (E.H.-H.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
- Correspondence: (S.M.); (D.M.-I.); (E.H.-H.); Tel.: +381-11-2078-452 (S.M. & D.M.-I.); Tel.: +49-341-9736151 (E.H.-H.)
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany;
- Correspondence: (S.M.); (D.M.-I.); (E.H.-H.); Tel.: +381-11-2078-452 (S.M. & D.M.-I.); Tel.: +49-341-9736151 (E.H.-H.)
| |
Collapse
|
20
|
Collins KP, Witta S, Coy JW, Pang Y, Gustafson DL. Lysosomal Biogenesis and Implications for Hydroxychloroquine Disposition. J Pharmacol Exp Ther 2021; 376:294-305. [PMID: 33172973 PMCID: PMC7841421 DOI: 10.1124/jpet.120.000309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022] Open
Abstract
Lysosomes act as a cellular drug sink for weakly basic, lipophilic (lysosomotropic) xenobiotics, with many instances of lysosomal trapping associated with multiple drug resistance. Lysosomotropic agents have also been shown to activate master lysosomal biogenesis transcription factor EB (TFEB) and ultimately lysosomal biogenesis. We investigated the role of lysosomal biogenesis in the disposition of hydroxychloroquine (HCQ), a hallmark lysosomotropic agent, and observed that modulating the lysosomal volume of human breast cancer cell lines can account for differences in disposition of HCQ. Through use of an in vitro pharmacokinetic (PK) model, we characterized total cellular uptake of HCQ within the duration of static equilibrium (1 hour), as well as extended exposure to HCQ that is subject to dynamic equilibrium (>1 hour), wherein HCQ increases the size of the lysosomal compartment through swelling and TFEB-induced lysosomal biogenesis. In addition, we observe that pretreatment of cell lines with TFEB-activating agent Torin1 contributed to an increase of whole-cell HCQ concentrations by 1.4- to 1.6-fold, which were also characterized by the in vitro PK model. This investigation into the role of lysosomal volume dynamics in lysosomotropic drug disposition, including the ability of HCQ to modify its own disposition, advances our understanding of how chemically similar agents may distribute on the cellular level and examines a key area of lysosomal-mediated multiple drug resistance and drug-drug interaction. SIGNIFICANCE STATEMENT: Hydroxychloroquine is able to modulate its own cellular pharmacokinetic uptake by increasing the cellular lysosomal volume fraction through activation of lysosomal biogenesis master transcription factor EB and through lysosomal swelling. This concept can be applied to many other lysosomotropic drugs that activate transcription factor EB, such as doxorubicin and other tyrosine kinase inhibitor drugs, as these drugs may actively increase their own sequestration within the lysosome to further exacerbate multiple drug resistance and lead to potential acquired resistance.
Collapse
Affiliation(s)
- Keagan P Collins
- Colorado State University, School of Biomedical Engineering (K.P.C., S.W., D.L.G.) and Department of Clinical Sciences (D.L.G., J.W.C.), Colorado State University, Fort Collins, Colorado; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado (D.L.G.); and University of Akron, Department of Chemistry, Akron, Ohio (Y.P.)
| | - Sandra Witta
- Colorado State University, School of Biomedical Engineering (K.P.C., S.W., D.L.G.) and Department of Clinical Sciences (D.L.G., J.W.C.), Colorado State University, Fort Collins, Colorado; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado (D.L.G.); and University of Akron, Department of Chemistry, Akron, Ohio (Y.P.)
| | - Jonathan W Coy
- Colorado State University, School of Biomedical Engineering (K.P.C., S.W., D.L.G.) and Department of Clinical Sciences (D.L.G., J.W.C.), Colorado State University, Fort Collins, Colorado; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado (D.L.G.); and University of Akron, Department of Chemistry, Akron, Ohio (Y.P.)
| | - Yi Pang
- Colorado State University, School of Biomedical Engineering (K.P.C., S.W., D.L.G.) and Department of Clinical Sciences (D.L.G., J.W.C.), Colorado State University, Fort Collins, Colorado; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado (D.L.G.); and University of Akron, Department of Chemistry, Akron, Ohio (Y.P.)
| | - Daniel L Gustafson
- Colorado State University, School of Biomedical Engineering (K.P.C., S.W., D.L.G.) and Department of Clinical Sciences (D.L.G., J.W.C.), Colorado State University, Fort Collins, Colorado; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado (D.L.G.); and University of Akron, Department of Chemistry, Akron, Ohio (Y.P.)
| |
Collapse
|
21
|
Paunovic V, Kosic M, Misirkic-Marjanovic M, Trajkovic V, Harhaji-Trajkovic L. Dual targeting of tumor cell energy metabolism and lysosomes as an anticancer strategy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118944. [PMID: 33383091 DOI: 10.1016/j.bbamcr.2020.118944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
To sustain their proliferative and metastatic capacity, tumor cells increase the activity of energy-producing pathways and lysosomal compartment, resorting to autophagolysosomal degradation when nutrients are scarce. Consequently, large fragile lysosomes and enhanced energy metabolism may serve as targets for anticancer therapy. A simultaneous induction of energy stress (by caloric restriction and inhibition of glycolysis, oxidative phosphorylation, Krebs cycle, or amino acid/fatty acid metabolism) and lysosomal stress (by lysosomotropic detergents, vacuolar ATPase inhibitors, or cationic amphiphilic drugs) is an efficient anti-cancer strategy demonstrated in a number of studies. However, the mechanisms of lysosomal/energy stress co-amplification, apart from the protective autophagy inhibition, are poorly understood. We here summarize the established and suggest potential mechanisms and candidates for anticancer therapy based on the dual targeting of lysosomes and energy metabolism.
Collapse
Affiliation(s)
- Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Maja Misirkic-Marjanovic
- Department of Neurophysiology, Institute for Biological Research, "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research, "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| |
Collapse
|
22
|
Webb BA, Aloisio FM, Charafeddine RA, Cook J, Wittmann T, Barber DL. pHLARE: a new biosensor reveals decreased lysosome pH in cancer cells. Mol Biol Cell 2020; 32:131-142. [PMID: 33237838 PMCID: PMC8120692 DOI: 10.1091/mbc.e20-06-0383] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many lysosome functions are determined by a lumenal pH of ∼5.0, including the activity of resident acid-activated hydrolases. Lysosome pH (pHlys) is often increased in neurodegenerative disorders and predicted to be decreased in cancers, making it a potential target for therapeutics to limit the progression of these diseases. Accurately measuring pHlys, however, is limited by currently used dyes that accumulate in multiple intracellular compartments and cannot be propagated in clonal cells for longitudinal studies or used for in vivo determinations. To resolve this limitation, we developed a genetically encoded ratiometric pHlys biosensor, pHLARE (pHLysosomal Activity REporter), which localizes predominantly in lysosomes, has a dynamic range of pH 4.0 to 6.5, and can be stably expressed in cells. Using pHLARE we show decreased pHlys with inhibiting activity of the mammalian target of rapamycin complex 1 (mTORC1). Also, cancer cells from different tissue origins have a lower pHlys than untransformed cells, and stably expressing oncogenic RasV12 in untransformed cells is sufficient to decrease pHlys. pHLARE is a new tool to accurately measure pHlys for improved understanding of lysosome dynamics, which is increasingly considered a therapeutic target.
Collapse
Affiliation(s)
- Bradley A Webb
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| | - Francesca M Aloisio
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| | - Rabab A Charafeddine
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| | - Jessica Cook
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| |
Collapse
|
23
|
Different Sensitivity of Macrophages to Phospholipidosis Induction by Amphiphilic Cationic Drugs. Int J Mol Sci 2020; 21:ijms21218391. [PMID: 33182310 PMCID: PMC7664898 DOI: 10.3390/ijms21218391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Phospholipidosis (PLD), the intracellular accumulation of phospholipids, is an adaptive response to toxic stimuli and serves as an important parameter in the biological assessment of compounds. Cationic amphiphilic drugs are the main inducers of PLD and may impair the function of alveolar macrophages. In vivo and in vitro models are used for PLD screening but the choice of the cellular model may be important because PLD develops in a cell- and species-specific manner. In this study, a panel of different staining (LysoSensor, Acridine Orange, Nile Red, HCS LipidTOX, LysoID) was evaluated in murine (DMBM-2, J774, RAW264.7) and human (THP-1, monocyte-derived macrophages from peripheral blood) cells to identify the most sensitive and easy to analyze staining method and to detect species-specific differences in the reaction pattern. Amiodarone and chloroquine served as inducers of PLD. High content screening was used to compare number, area, and intensity of the staining. Due to the fast staining protocol and the sensitivity of the detection, LysoID proved to be the most suitable dye of the testing. The lower induction of PLD by chloroquine reported in vivo was also seen in this study. THP-1 macrophages, followed by DMBM-2 cells, produced the most similar reaction pattern to human monocyte-derived macrophages.
Collapse
|
24
|
Zhou W, Wang H, Yang Y, Chen ZS, Zou C, Zhang J. Chloroquine against malaria, cancers and viral diseases. Drug Discov Today 2020; 25:2012-2022. [PMID: 32947043 PMCID: PMC7492153 DOI: 10.1016/j.drudis.2020.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Quinoline (QN) derivatives are often used for the prophylaxis and treatment of malaria. Chloroquine (CQ), a protonated, weakly basic drug, exerts its antimalarial effect mainly by increasing pH and accumulating in the food vacuole of the parasites. Repurposing CQ is an emerging strategy for new indications. Given the inhibition of autophagy and its immunomodulatory action, CQ shows positive efficacy against cancer and viral diseases, including Coronavirus 2019 (COVID-19). Here, we review the underlying mechanisms behind the antimalarial, anticancer and antiviral effects of CQ. We also discuss the clinical evidence for the use of CQ and hydroxychloroquine (HCQ) against COVID-19.
Collapse
Affiliation(s)
- Wenmin Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hui Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China; The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China
| | - Yuqi Yang
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA.
| | - Chang Zou
- The Second Clinical Medical College of Jinan University, Shenzhen, 518020, PR China.
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China; The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China.
| |
Collapse
|
25
|
Patel NH, Sohal SS, Manjili MH, Harrell JC, Gewirtz DA. The Roles of Autophagy and Senescence in the Tumor Cell Response to Radiation. Radiat Res 2020; 194:103-115. [PMID: 32845995 PMCID: PMC7482104 DOI: 10.1667/rade-20-00009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/15/2020] [Indexed: 01/10/2023]
Abstract
Radiation is a critical pillar in cancer therapeutics, exerting its anti-tumor DNA-damaging effects through various direct and indirect mechanisms. Radiation has served as an effective mode of treatment for a number of cancer types, providing both curative and palliative treatment; however, resistance to therapy persists as a fundamental limitation. While cancer cell death is the ideal outcome of any anti-tumor treatment, radiation induces several responses, including apoptotic cell death, mitotic catastrophe, autophagy and senescence, where autophagy and senescence may promote cell survival. In most cases, autophagy, a conventionally cytoprotective mechanism, is a "first" responder to damage incurred from chemotherapy and radiation treatment. The paradigm developed on the premise that autophagy is cytoprotective in nature has provided the rationale for current clinical trials designed with the goal of radiosensitizing cancer cells through the use of autophagy inhibitors; however, these have failed to produce consistent results. Delving further into pre-clinical studies, autophagy has actually been shown to take diverse, sometimes opposing, forms, such as acting in a cytotoxic or nonprotective fashion, which may be partially responsible for the inconsistency of clinical outcomes. Furthermore, autophagy can have both pro- and anti-tumorigenic effects, while also having an important immune modulatory function. Senescence often occurs in tandem with autophagy, which is also the case with radiation. Radiation-induced senescence is frequently followed by a phase of proliferative recovery in a subset of cells and has been proposed as a tumor dormancy model, which can contribute to resistance to therapy and possibly also disease recurrence. Senescence induction is often accompanied by a unique secretory phenotype that can either promote or suppress immune functions, depending on the expression profile of cytokines and chemokines. Novel therapeutics selectively cytotoxic to senescent cells (senolytics) may prove to prolong remission by delaying disease recurrence in patients. Accurate assessment of primary responses to radiation may provide potential targets that can be manipulated for therapeutic benefit to sensitize cancer cells to radiotherapy, while sparing normal tissue.
Collapse
Affiliation(s)
- Nipa H. Patel
- Departments of Pharmacology and Toxicology, Richmond, Virginia 23298
| | - Sahib S. Sohal
- Departments of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Masoud H Manjili
- Departments of Microbiology and Immunology, Massey Cancer Center, Richmond, Virginia 23298
| | - J. Chuck Harrell
- Departments of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - David A. Gewirtz
- Departments of Pharmacology and Toxicology, Richmond, Virginia 23298
| |
Collapse
|
26
|
Sachdev U, Ferrari R, Cui X, Pius A, Sahu A, Reynolds M, Liao H, Sun P, Shinde S, Ambrosio F, Shiva S, Loughran P, Scott M. Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine. Mol Med 2020; 26:69. [PMID: 32641037 PMCID: PMC7341481 DOI: 10.1186/s10020-020-00190-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We previously showed that the autophagy inhibitor chloroquine (CQ) increases inflammatory cleaved caspase-1 activity in myocytes, and that caspase-1/11 is protective in sterile liver injury. However, the role of caspase-1/11 in the recovery of muscle from ischemia caused by peripheral arterial disease is unknown. We hypothesized that caspase-1/11 mediates recovery in muscle via effects on autophagy and this is modulated by CQ. METHODS C57Bl/6 J (WT) and caspase-1/11 double-knockout (KO) mice underwent femoral artery ligation (a model of hind-limb ischemia) with or without CQ (50 mg/kg IP every 2nd day). CQ effects on autophagosome formation, microtubule associated protein 1A/1B-light chain 3 (LC3), and caspase-1 expression was measured using electron microscopy and immunofluorescence. Laser Doppler perfusion imaging documented perfusion every 7 days. After 21 days, in situ physiologic testing in tibialis anterior muscle assessed peak force contraction, and myocyte size and fibrosis was also measured. Muscle satellite cell (MuSC) oxygen consumption rate (OCR) and extracellular acidification rate was measured. Caspase-1 and glycolytic enzyme expression was detected by Western blot. RESULTS CQ increased autophagosomes, LC3 consolidation, total caspase-1 expression and cleaved caspase-1 in muscle. Perfusion, fibrosis, myofiber regeneration, muscle contraction, MuSC fusion, OCR, ECAR and glycolytic enzyme expression was variably affected by CQ depending on presence of caspase-1/11. CQ decreased perfusion recovery, fibrosis and myofiber size in WT but not caspase-1/11KO mice. CQ diminished peak force in whole muscle, and myocyte fusion in MuSC and these effects were exacerbated in caspase-1/11KO mice. CQ reductions in maximal respiration and ATP production were reduced in caspase-1/11KO mice. Caspase-1/11KO MuSC had significant increases in protein kinase isoforms and aldolase with decreased ECAR. CONCLUSION Caspase-1/11 signaling affects the response to ischemia in muscle and effects are variably modulated by CQ. This may be critically important for disease treated with CQ and its derivatives, including novel viral diseases (e.g. COVID-19) that are expected to affect patients with comorbidities like cardiovascular disease.
Collapse
Affiliation(s)
- Ulka Sachdev
- Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - Ricardo Ferrari
- Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Xiangdong Cui
- Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Abish Pius
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA
| | - Amrita Sahu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA
| | - Michael Reynolds
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Biomedical Sciences Towe, Pittsburgh, PA, 15213, USA
| | - Hong Liao
- Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Surgery 11/20/2018-11/19/202, Visiting scholar, University of Pittsburgh, Pittsburgh, USA
| | - Sunita Shinde
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Biomedical Sciences Towe, Pittsburgh, PA, 15213, USA
| | - Patricia Loughran
- Center for Biologic Imaging (CBI), University of Pittsburgh Medical Center, Biomedical Sciences Tower, Pittsburgh, PA, 15213, USA
| | - Melanie Scott
- Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|
27
|
Li IH, Shih JH, Yeh TY, Lin HC, Chen MH, Huang YS. Lysosomal Dysfunction and Autophagy Blockade Contribute to MDMA-Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. Chem Res Toxicol 2020; 33:903-914. [PMID: 32186374 DOI: 10.1021/acs.chemrestox.9b00437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylenedioxymethamphetamine (MDMA) is a psychostimulant with high abuse potential and severe neurotoxicity. According to our previous study, MDMA promotes autophagosome accumulation and contributes to cell death in cultured cortical and serotonergic neurons. However, the detailed mechanism underlying autophagy dysfunction remains unclear. Lysosomes play an important role in autophagic degradation. The present study aimed to examine the role of lysosomal function in autophagic flux in neuronal cultures exposed to MDMA. We showed that MDMA induced enlarged vesicles that accumulate in SH-SY5Y neuroblastoma cells. In addition, we demonstrated that MDMA stimulated dynamin-dependent but clathrin-independent endocytosis, which might contribute to vacuole expansion. Morphological and Western blot analyses revealed that MDMA induced lysosomal swelling, whereas the activity of the lysosomal hydrolytic enzymes cathepsin B and cathepsin D was decreased in SH-SY5Y and cultured cortical neurons, which might lead to autophagosome accumulation and autophagic degradation blockage. Intriguingly, inactivation of cathepsins B and D led to cell death and autophagy-lysosomal dysregulation, which mimicked MDMA-induced neurotoxicity. Consequently, impairment of lysosomal proteolysis and blockage of autophagy degradation contributed to MDMA-induced neurotoxicity in neuronal cultures.
Collapse
Affiliation(s)
- I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei 114, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Jui-Hu Shih
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei 114, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Ting-Yin Yeh
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - Hung-Che Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Hua Chen
- Division of Neurology, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan.,Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
28
|
Singh S, Shukla R. Key Signaling Pathways Engaged in Cancer Management: Current Update. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394714666180904122412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
<P>Background: Till today cancer is still challenging to treat and needs more active therapeutic approaches. Participation of complex multi-pathway cell propagation instrument is a noteworthy issue in creating active anticancer therapeutic methodologies. Immune evasions, metabolic modifications, imperfect apoptotic component, modification in upstream or downstream RAS signaling, altered nuclear factor kappa B actions, imbalanced autophagy design and distortedly controlled angiogenesis are distinguishing features of cancer. </P><P> Methods: On the basis of systemic research and analysis of the current online available database, we analyzed and reported about the key signaling pathway engaged with cancer development outlining the effectiveness of different therapeutic measures and targets that have been created or are being researched to obstruct the cancer development. </P><P> Results: A number of signaling pathways, for example, resistant, metabolism, apoptosis, RAS protein, nuclear factor kappa B, autophagy, and angiogenesis have been perceived as targets for drug treatment to control the advancement, development and administration of cancer. </P><P> Conclusion: A noteworthy challenge for future medication advancement is to detail a synthesis treatment influencing distinctive targets to enhance the treatment of cancer.</P>
Collapse
Affiliation(s)
- Sanjiv Singh
- National Institute of Pharmaceutical Science and Education, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli-229010 (U.P.), India
| | - Rahul Shukla
- National Institute of Pharmaceutical Science and Education, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli-229010 (U.P.), India
| |
Collapse
|
29
|
Fan HN, Chen W, Fan LN, Wu JT, Zhu JS, Zhang J. Macrophages-derived p38α promotes the experimental severe acute pancreatitis by regulating inflammation and autophagy. Int Immunopharmacol 2019; 77:105940. [PMID: 31655340 DOI: 10.1016/j.intimp.2019.105940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a common threat to human health. In the present study, we aimed to investigate the underlying mechanisms by which p38α in macrophages contributes to SAP. We used conditional knockout of p38α in macrophages and p38 MAPK inhibitors to understand the effects of p38α in macrophages on caerulein-induced inflammatory responses in SAP mice models. METHODS AND MATERIALS Wild-type (WT) mice were randomly divided into three groups: a control group, SAP group, and SAP + p38MAPK inhibitor (SB203580) group, and mice with a conditional knockout (KO) of p38α in macrophages were included in a KO + SAP group. We evaluated pancreatic pathology and ultra-structure by hematoxylin and eosin staining and transmission electron microscopy. The pulmonary wet-to-dry weight ratio was calculated. The serum levels of TNF-α and IL-1β were determined by ELISA. The mRNA and protein expression of inflammatory cytokines TNF-α, IL-1β, IL-17, IL-18, MIF, and MCP-1 in pancreatic tissues were tested by qRT-PCR and immunohistochemistry analysis. The protein expression of p38, caspase-1, ULK1, LC3B and p62 in pancreatic tissues was examined by Western blotting. RESULTS The results indicated that the severity of SAP as well as the expression of the cytokines TNF-α, IL-1β, IL-17, IL-18 and MCP-1 were higher in the SAP group than those in the control group, but were lower in the SAP + SB203580 and KO + SAP groups as compared with the SAP group. The protein expression of p38, caspase-1, LC3B and p62 was increased in the SAP group than that in the control group, but this result was reversed in the SAP + SB203580 and KO + SAP groups as compared with the SAP group. In addition, the ULK1 level was significantly lower in the SAP group than that in the control group, but was increased in the SAP + SB203580 and KO + SAP groups as compared with the SAP group. CONCLUSIONS Our findings demonstrated that, macrophage derived p38α promoted the experimental severe acute pancreatitis by regulating inflammation and autophagy.
Collapse
Affiliation(s)
- Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li-Na Fan
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Jing-Tong Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
30
|
Radhi OA, Davidson S, Scott F, Zeng RX, Jones DH, Tomkinson NCO, Yu J, Chan EYW. Inhibition of the ULK1 protein complex suppresses Staphylococcus-induced autophagy and cell death. J Biol Chem 2019; 294:14289-14307. [PMID: 31387948 DOI: 10.1074/jbc.ra119.008923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
Autophagy plays multiple roles in host cells challenged with extracellular pathogens. Here, we aimed to explore whether autophagy inhibition could prevent bacterial infections. We first confirmed widely distinct patterns of autophagy responses in host cells infected with Staphylococcus aureus, as compared with Salmonella Only infection with Staphylococcus produced strong accumulation of lipidated autophagy-related protein LC3B (LC3B-II). Infection with virulent Staphylococcus strains induced formation of p62-positive aggregates, suggestive of accumulated ubiquitinated targets. During Salmonella infection, bacteria remain enclosed by lysosomal-associated membrane protein 2 (LAMP2)-positive lysosomes, whereas virulent Staphylococcus apparently exited from enlarged lysosomes and invaded the cytoplasm. Surprisingly, Staphylococcus appeared to escape from the lysosome without generation of membrane-damage signals as detected by galectin-3 recruitment. In contrast, Salmonella infection produced high levels of lysosomal damage, consistent with a downstream antibacterial xenophagy response. Finally, we studied the Unc-51-like autophagy-activating kinase 1 (ULK1) regulatory complex, including the essential subunit autophagy-related protein 13 (ATG13). Infection of cells with either Staphylococcus or Salmonella led to recruitment of ATG13 to sites of cytosolic bacterial cells to promote autophagosome formation. Of note, genetic targeting of ATG13 suppressed autophagy and the ability of Staphylococcus to infect and kill host cells. Two different ULK1 inhibitors also prevented Staphylococcus intracellular replication and host cell death. Interestingly, inhibition of the ULK1 pathway had the opposite effect on Salmonella, sensitizing cells to the infection. Our results suggest that ULK1 inhibitors may offer a potential strategy to impede cellular infection by S. aureus.
Collapse
Affiliation(s)
- Ohood A Radhi
- Strathclyde Institute for Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4-0RE, Scotland, United Kingdom
| | - Scott Davidson
- Strathclyde Institute for Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4-0RE, Scotland, United Kingdom
| | - Fiona Scott
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1-1XL, Scotland, United Kingdom
| | - Run X Zeng
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - D Heulyn Jones
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1-1XL, Scotland, United Kingdom
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1-1XL, Scotland, United Kingdom
| | - Jun Yu
- Strathclyde Institute for Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4-0RE, Scotland, United Kingdom
| | - Edmond Y W Chan
- Strathclyde Institute for Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4-0RE, Scotland, United Kingdom .,Department of Biomedical and Medical Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
31
|
The antimalarial drug amodiaquine stabilizes p53 through ribosome biogenesis stress, independently of its autophagy-inhibitory activity. Cell Death Differ 2019; 27:773-789. [PMID: 31285544 PMCID: PMC7205879 DOI: 10.1038/s41418-019-0387-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/09/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Pharmacological inhibition of ribosome biogenesis is a promising avenue for cancer therapy. Herein, we report a novel activity of the FDA-approved antimalarial drug amodiaquine which inhibits rRNA transcription, a rate-limiting step for ribosome biogenesis, in a dose-dependent manner. Amodiaquine triggers degradation of the catalytic subunit of RNA polymerase I (Pol I), with ensuing RPL5/RPL11-dependent stabilization of p53. Pol I shutdown occurs in the absence of DNA damage and without the subsequent ATM-dependent inhibition of rRNA transcription. RNAseq analysis revealed mechanistic similarities of amodiaquine with BMH-21, the first-in-class Pol I inhibitor, and with chloroquine, the antimalarial analog of amodiaquine, with well-established autophagy-inhibitory activity. Interestingly, autophagy inhibition caused by amodiaquine is not involved in the inhibition of rRNA transcription, suggesting two independent anticancer mechanisms. In vitro, amodiaquine is more efficient than chloroquine in restraining the proliferation of human cell lines derived from colorectal carcinomas, a cancer type with predicted susceptibility to ribosome biogenesis stress. Taken together, our data reveal an unsuspected activity of a drug approved and used in the clinics for over 30 years, and provide rationale for repurposing amodiaquine in cancer therapy.
Collapse
|
32
|
Jin L, Zhou Y. Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett 2019; 17:4213-4221. [PMID: 30944616 DOI: 10.3892/ol.2019.10112] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Interest in cancer metabolism has increased in recent years. The pentose phosphate pathway (PPP) is a major glucose catabolism pathway that directs glucose flux to its oxidative branch and leads to the production of a reduced form of nicotinamide adenine dinucleotide phosphate and nucleic acid. The PPP serves a vital role in regulating cancer cell growth and involves many enzymes. The aim of the present review was to describe the recent discoveries associated with the deregulatory mechanisms of the PPP and glycolysis in malignant tumors, particularly in hepatocellular carcinoma, breast and lung cancer.
Collapse
Affiliation(s)
- Lin Jin
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
33
|
Li Y, Cao F, Li M, Li P, Yu Y, Xiang L, Xu T, Lei J, Tai YY, Zhu J, Yang B, Jiang Y, Zhang X, Duo L, Chen P, Yu X. Hydroxychloroquine induced lung cancer suppression by enhancing chemo-sensitization and promoting the transition of M2-TAMs to M1-like macrophages. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:259. [PMID: 30373678 PMCID: PMC6206903 DOI: 10.1186/s13046-018-0938-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/18/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Lysosome-associated agents have been implicated as possible chemo-sensitizers and immune regulators for cancer chemotherapy. We investigated the potential roles and mechanisms of hydroxychloroquine (HCQ) in combination with chemotherapy in lung cancer treatment. METHODS The effects of combined treatment on non-small cell lung cancer (NSCLC) were investigated using cell viability assays and animal models. The influence of HCQ on lysosomal pH was evaluated by lysosomal sensors and confocal microscopy. The effects of HCQ on the tumour immune microenvironment were analysed by flow cytometry. RESULTS HCQ elevates the lysosomal pH of cancer cells to inactivate P-gp while increasing drug release from the lysosome into the nucleus. Furthermore, single HCQ therapy inhibits lung cancer by inducing macrophage-modulated anti-tumour CD8+ T cell immunity. Moreover, HCQ could promote the transition of M2 tumour-associated macrophages (TAMs) into M1-like macrophages, leading to CD8+ T cell infiltration into the tumour microenvironment. CONCLUSIONS HCQ exerts anti-NSCLC cells effects by reversing the drug sequestration in lysosomes and enhancing the CD8+ T cell immune response. These findings suggest that HCQ could act as a promising chemo-sensitizer and immune regulator for lung cancer chemotherapy in the clinic.
Collapse
Affiliation(s)
- Yong Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China
| | - Fengjun Cao
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China
| | - Mingxing Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pindong Li
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuandong Yu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China.,Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Longchao Xiang
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China
| | - Tao Xu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China
| | - Jinhua Lei
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China
| | - Yun Yan Tai
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China
| | - Jianyong Zhu
- Department of Respiratory Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Bingbing Yang
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China.,Teaching practice base of Oncology, Shiyan Renmin Hospital, Jinzhou Medical University, Shiyan, 442000, China
| | - Yingpin Jiang
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China
| | - Xiufang Zhang
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China.,Teaching practice base of Oncology, Shiyan Renmin Hospital, Jinzhou Medical University, Shiyan, 442000, China
| | - Long Duo
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China
| | - Ping Chen
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China
| | - Xiongjie Yu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang middle Rd, Shiyan, 442000, Hubei, China. .,Institute of Cancer Research, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
34
|
Li L, Wang G, Hu JS, Zhang GQ, Chen HZ, Yuan Y, Li YL, Lv XJ, Tian FY, Pan SH, Bai XW, Sun B. RB1CC1-enhanced autophagy facilitates PSCs activation and pancreatic fibrogenesis in chronic pancreatitis. Cell Death Dis 2018; 9:952. [PMID: 30237496 PMCID: PMC6147947 DOI: 10.1038/s41419-018-0980-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
Chronic pancreatitis (CP) is described as a progressive fibro-inflammatory disorder of the exocrine disease, which eventually leads to damage of the gland. Excessive activation of pancreatic stellate cells (PSCs) is a critical participant in the initiation of CP. Autophagy is involved in multiple degeneration and inflammation in acute pancreatitis and CP. In our study, we report that retinoblastoma coiled coil protein 1 (RB1CC1) expression and the autophagic level are elevated in activated PSCs. RB1CC1 is positively correlated with pancreatic fibrogenesis in tissues and plasma of CP patients. Knockdown of RB1CC1 restrains alpha smooth muscle actin (α-SMA) and collagen expressions, and autophagy in activated PSCs in vitro. Furthermore, we show that RB1CC1 induces PSC activation via binding to ULK1 promoter and the direct interaction with ULK1 protein. These suppress ULK1 expression and its kinase activity. In mice, knockdown of RB1CC1 blocks autophagy and then inhibits the pancreatic duct ligation-induced pancreatic fibrosis. Consequently, our study highlights that RB1CC1-mediated autophagy is a key event for the activation of PSCs. Inhibition of RB1CC1 alleviates autophagy, which plays a critical role in anti-fibrotic activation in PSCs and CP progression. RB1CC1 could be a novel strategy for the treatment of pancreatic fibrosis.
Collapse
Affiliation(s)
- Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ji-Sheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guang-Quan Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong-Ze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Yuan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi-Long Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin-Jian Lv
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng-Yu Tian
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shang-Ha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue-Wei Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
35
|
Agathokleous E, Kitao M, Calabrese EJ. Environmental hormesis and its fundamental biological basis: Rewriting the history of toxicology. ENVIRONMENTAL RESEARCH 2018; 165:274-278. [PMID: 29734028 DOI: 10.1016/j.envres.2018.04.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 05/09/2023]
Abstract
It has long been debated whether a little stress may be "good" for you. Extensive evidence has now sufficiently accumulated demonstrating that low doses of a vast range of chemical and physical agents induce protective/beneficial effects while the opposite occurs at higher doses, a phenomenon known as hormesis. Low doses of environmental agents have recently induced autophagy, a critical adaptive response that protects essentially all cell types, as well as being transgenerational via epigenetic mechanisms. These collective findings highlight a generalized and substantial ongoing dose-response transformation with significant implications for disease biology and clinical applications, challenging the history and practice of toxicology and pharmacology along with an appeal to stake holders to reexamine the process of risk assessment, with the goal of optimizing public health rather than simply avoiding harm.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
36
|
Takanezawa Y, Nakamura R, Kojima Y, Sone Y, Uraguchi S, Kiyono M. Cytochalasin E increased the sensitivity of human lung cancer A549 cells to bortezomib via inhibition of autophagy. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|