1
|
Lee M, Jeong D, Yoon K, Jin J, Back YW, Jang IT, Kim HJ, Kim BJ, Bae SM. Inactivated mycobacterium paragordonae delivered via microneedle patches as a novel tuberculosis booster vaccine. Hum Vaccin Immunother 2025; 21:2507473. [PMID: 40405740 PMCID: PMC12118391 DOI: 10.1080/21645515.2025.2507473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge with approximately 8.2 million new cases reported in 2023, despite the century-old Bacillus Calmette-Guérin (BCG) vaccine. BCG's protective efficacy diminishes over time, especially against pulmonary TB in adults. This study evaluates ethanol-inactivated Mycobacterium paragordonae (M.pg) delivered via Microneedle Array Patches (MAPs) as a novel booster strategy to enhance BCG vaccination efficacy. Various inactivation methods including heat treatment, formalin, and ethanol were compared, with ethanol-inactivated M.pg selected for optimal preservation of morphology and immunologically significant proteins. MAPs were fabricated using the droplet extension technique (DEN). Immunological assessment was conducted in a mouse model receiving either BCG alone or BCG followed by one or two administrations of inactivated M.pg MAP. Protective efficacy was evaluated through M. tuberculosis H37Rv challenge. Ethanol inactivation uniquely preserved morphology and maintained protein integrity, particularly Ag85B. Two administrations of inactivated M.pg following BCG priming significantly enhanced protective immune responses compared to BCG alone, inducing strong Th1-polarized immunity characterized by elevated IFN-γ, TNF-α, and IL-2 production in both CD4+ and CD8+ T cells. This vaccination strategy effectively generated effector memory T cells in lung and spleen, contributing to significant reduction in bacterial burden following challenge, with the BCG+Inactivated M.pg2nd group demonstrating the greatest reduction. Inactivated M.pg delivered via microneedle patches represents an effective booster strategy for enhancing BCG-induced protection against tuberculosis, with a two-dose schedule demonstrating optimal efficacy. This approach combines the safety advantages of an inactivated vaccine with the practical benefits of MAPs, addressing key limitations of tuberculosis vaccination strategies.
Collapse
Affiliation(s)
- Moonsu Lee
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Kiyoung Yoon
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Juyoung Jin
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Yong Woo Back
- R&D Center, Myco-Rapha Inc, Daejeon, Republic of Korea
| | - In-Taek Jang
- R&D Center, Myco-Rapha Inc, Daejeon, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung Min Bae
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| |
Collapse
|
2
|
Shao T, Yang L, Wu G, Lu X, Zheng R. Identification of immune phenotypes and diagnostic biomarkers in active and latent tuberculosis infections. Sci Rep 2025; 15:14986. [PMID: 40301426 PMCID: PMC12041371 DOI: 10.1038/s41598-025-98152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/09/2025] [Indexed: 05/01/2025] Open
Abstract
The diagnosis and treatment of tuberculosis rely on a deep understanding of the pathobiology and immune responses. This study aimed to identify potential immune response mechanisms by integrating gene expression analysis with immune cell distribution profiling to characterize the immune phenotypes of active tuberculosis (ATB) and latent tuberculosis infection (LTB). Differentially expressed genes (DEGs) between ATB or LTB and controls were identified using the GSE19491 and GSE107994 datasets. A total of 273 and 105 immune-related DEGs were identified in ATB and LTB through ImmProt database, respectively. Immune-related DEGs specific to LTB were mainly enriched in the MAPK signaling pathway, Ras signaling pathway. Furthermore, random forest analysis identified HLA-DRB5 and IRF1 as showing diagnostic potential in ATB, LCN10, SHC1, IKBKG, RETN, and SOS1 showed importance in LTB. Flow cytometry detected significantly higher levels of macrophages M0 in ATB compared to LTB and controls, while other types of immune cells showed significant increases in LTB. The levels of marker genes were validated by RT-qPCR and Western blot, as well as single-cell data in ATB and LTB. The findings of this study provide potential biomarkers for the diagnosis of tuberculosis and may facilitate the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Tongtong Shao
- Liver Disease Center of Infectious Disease, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China
| | - Li Yang
- Liver Disease Center of Infectious Disease, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China
| | - Ge Wu
- Tumor Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China
| | - Xiaobo Lu
- Liver Disease Center of Infectious Disease, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China.
| | - Rongjiong Zheng
- Liver Disease Center of Infectious Disease, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China.
- State Key Laboratory for the Cause and Control of High Incidence in Central Asia Jointly Constructed by the Ministry and the Province, No. 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
3
|
Darwish R, Tama M, Sharief S, Zeidan O, Rady SMA, Chacko KS, Nair B, Bhojaraja VS, Shetty JK. The Role of Salivary Diagnostic Techniques in Screening for Active Pulmonary Tuberculosis: A Systematic Review and Meta-Analysis. Microorganisms 2025; 13:973. [PMID: 40431146 PMCID: PMC12114365 DOI: 10.3390/microorganisms13050973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
Since the World Health Organization (WHO) issued guidelines for developing a non-sputum test for active tuberculosis (TB) diagnosis that exhibits similar performance characteristics to sputum-based diagnosis, salivary diagnostic techniques have gained prominence as potential screening tools or adjuncts to existing diagnostics. We searched online databases for studies that looked at salivary diagnostic techniques. Afterwards, duplicates were removed, titles and abstracts were screened, and full-text studies were assessed for eligibility based on inclusion and exclusion criteria. The studies chosen for final analysis underwent a rigorous quality assessment following a QUADAS-2 template, and data were extracted. The primary outcome assessed the difference in mean levels of interleukins between TB+ patients and TB-controls (Hedges' g). We then conducted two subgroup analyses: the first segregated the control group into healthy patients, and those with other respiratory diseases (ORD), and the second addressed three different interleukins separately (IL-6, IL-5, IL-17). The secondary outcome involved comparing salivary molecular diagnostic assays to WHO guidelines. This study is registered with PROSPERO, CRD42024536884. A total of 17 studies, out of an initial 1010, were chosen for the final analysis, but one was then excluded for being of poor quality. Our meta-analyses for the primary outcome revealed minimal diagnostic potential for interleukins. Our first subgroup analysis showed that interleukins were incapable of differentiating active TB patients from both healthy controls and ORD patients. Our second subgroup analysis showed that IL-17 was reduced in active TB patients. Assessment of the secondary outcome revealed that most studies relied on a GeneXpert MTB/RIF assay on saliva, but none fulfilled WHO guidelines for a non-sputum test. Individual biomarkers currently lack sufficient discriminatory power to definitively distinguish active tuberculosis from healthy individuals or those with other respiratory diseases (ORD), reinforcing the need for multi-biomarker panels. Interleukins may be alternatively used as markers for prognosis, severity, or treatment response. Our findings also suggest that assays are unable to meet WHO guidelines.
Collapse
Affiliation(s)
- Radwan Darwish
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain (RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
| | - Maya Tama
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain (RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
| | - Sidra Sharief
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain (RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
| | - Osama Zeidan
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain (RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
| | - Sara Mohammed Ahmed Rady
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain (RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
| | - Kareeza Selby Chacko
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain (RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
| | - Bindhu Nair
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain (RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
- Library and Learning Resource Centre, Royal College of Surgeons in Ireland-Bahrain (RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
| | - Vijayalakshmi S. Bhojaraja
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain (RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
- Department of Anatomy and Biochemistry, Royal College of Surgeons in Ireland-Bahrain-(RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
| | - Jeevan K. Shetty
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain (RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
- Department of Anatomy and Biochemistry, Royal College of Surgeons in Ireland-Bahrain-(RCSI-Bahrain), Busaiteen P.O. Box 15503, Bahrain
| |
Collapse
|
4
|
Torres T, Brembilla NC, Langley RG, Warren RB, Thaçi D, Kolios AGA, Prinz JC, Londono-Garcia A, Nast A, Santin M, Goletti D, Abreu M, Spuls P, Boehncke WH, Puig L. Treatment of psoriasis with biologic and non-biologic targeted therapies in patients with latent tuberculosis infection or at risk for tuberculosis disease progression: Recommendations from a SPIN-FRT expert consensus. J Eur Acad Dermatol Venereol 2025; 39:52-69. [PMID: 39149807 DOI: 10.1111/jdv.20287] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a significant global health problem. In immunocompetent individuals, the microorganism can remain in a latent, non-contagious form, however, it may become active under conditions of immunosuppression. Tumour necrosis factor (TNF) inhibitors, which are frequently used for the management of immune-mediated disorders like psoriasis, have been associated with a significantly increased risk of reactivating latent TB. Consequently, international guidelines recommend TB screening and preventive treatment before starting anti-TNF therapy. These recommendations have extended to IL-12/23, IL-17, IL-23 and TYK2 inhibitors under a caution principle, despite their different mechanisms of action. However, current evidence suggests that some of these agents are arguably not associated with an increased risk of TB reactivation or development of TB disease after infection, which calls for a critical reassessment of these guidelines. We have conducted a literature search evaluating the risk of TB reactivation associated with these innovative therapies, integrating findings from both randomized clinical trials and real-world evidence. The identified evidence is limited but the low number of identified cases of reactivation with IL-17 and IL-23 inhibitors prompts reconsidering the need for preventive treatment for latent TB in all cases, regardless of biologic class or individual patient's risk of TB reactivation or drug toxicity. This review, along with the clinical insight of a panel of experts on behalf of the SPIN-FRT, led to the development of these consensus recommendations for managing psoriasis treatment in patients with latent TB infection or at risk of TB infection, who are receiving or are intended to receive biologic and non-biologic targeted therapies. These recommendations highlight the need for updates to the existing guidelines, aiming to provide a more differentiated approach that reflects the evolving landscape of psoriasis treatment and its implications for TB management.
Collapse
Affiliation(s)
- T Torres
- Department of Dermatology, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - N C Brembilla
- Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - R G Langley
- Division of Clinical Dermatology & Cutaneous Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - R B Warren
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - D Thaçi
- Institute and Comprehensive Center for Inflammation Medicine, University of Lübeck, Lü beck, Germany
| | - A G A Kolios
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - J C Prinz
- University Hospital, Department of Dermatology and Allergy, Ludwig-Maximilian-University Munich, Munich, Germany
| | | | - A Nast
- Division of Evidence-Based Medicine, Department of Dermatology, Venereology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - M Santin
- Tuberculosis Unit, Department of Infectious Diseases, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - D Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - M Abreu
- UMIB-Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, Universit of Porto, Porto, Portugal
- Department of Infectious Diseases, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - P Spuls
- Department of Dermatology, Amsterdam University Medical Centre, Amsterdam Public Health, Infection and Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - W H Boehncke
- Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - L Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
5
|
Doghish AS, Abulsoud AI, Nassar YA, Nasr SM, Mohammed OA, Abdel-Reheim MA, Rizk NI, Lutfy RH, Abdel Mageed SS, Ismail MA, Abd-Elhalim HM, Awad FA, Fayez SZ, Elimam H, Mansour RM. Harnessing miRNAs: A Novel Approach to Diagnosis and Treatment of Tuberculosis. J Biochem Mol Toxicol 2025; 39:e70119. [PMID: 39799557 DOI: 10.1002/jbt.70119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities. This has resulted in increased interest in miRNAs as prospective diagnostic indicators for TB, especially in differentiating active infection from latent or inactive stages. Variations in miRNA expression during Mtb infection indicate disease progression and offer insights into the immune response. Furthermore, miRNAs present potential as therapeutic targets in host-directed therapy (HDT) techniques for TB infection. This work examines the function of miRNAs in TB pathogenesis, with the objective of identifying particular miRNAs that regulate the immune response to the Mtb complex, evaluating their diagnostic value and exploring their therapeutic implications in host-directed therapy for TB infection. The objective is to enhance comprehension of how miRNAs can facilitate improved diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Yara A Nassar
- Department of Botany, Biotechnology and Its Application Program, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Menattallah A Ismail
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Haytham M Abd-Elhalim
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
- Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Salma Zaki Fayez
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| |
Collapse
|
6
|
Zhang S, Luo C, Li K, Wang J, Wang H, Zhong R, Chen L, Ma Q, Zhang H. Baicalin alleviates intestinal inflammation and microbial disturbances by regulating Th17/Treg balance and enhancing Lactobacillus colonization in piglets. J Anim Sci Biotechnol 2024; 15:172. [PMID: 39707535 DOI: 10.1186/s40104-024-01126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Intestinal inflammation is a common and serious health problem in piglet production, especially enteritis caused by pathogenic Escherichia coli (E. coli). This condition often leads to high mortality, slow weight gain, and significant economic losses. RESULTS In this study, we isolated an E. coli strain, SKLAN202302, from the colon of diarrheal piglets to create an intestinal inflammation model for evaluating the protective effects of baicalin. Piglets infected with E. coli exhibited significant reductions in body weight, feed intake, small intestine length, and ileal goblet cell count (P < 0.05), along with deteriorated ileal morphology. However, baicalin supplementation resulted in body weights, feed intake, and intestinal morphology similar to those of the control group. Notably, there was a significant increase in the colonization of Lactobacillus species, particularly Lactobacillus_reuteri, Lactobacillus_amylovorus, and Lactobacillus_johnii, compared to the E. coli group (P < 0.05). At the metabolic and transcriptional levels, E. coli infection increased inflammatory mediators, including eicosanoids (leukotriene F4, prostaglandin F1a, leukotriene E4, thromboxane B2, prostaglandin G2, and PGH2), monosaccharides, and TCA cycle intermediates (oxoglutaric acid, glutaric acid, adipic acid, citric acid, and isocitric acid) in the ileum. It also promoted the expression of genes related to autoimmune diseases and the Th17 differentiation signaling pathway (CTLA4, IFN-ALPHA-8, IL12RB2, TRAV3, TRAV16, FOS, and VEGFA), as well as inflammatory factors. Conversely, baicalin supplementation not only counteracted these effects but also enhanced the presence of metabolites such as phospholipids [including lysoPC (P-18:1(9Z)/0:0), PC (17:0/0:0), lysoPC (16:1(9Z)/0:0), PC (18:0/0:0), lysoPC (18:0/0:0), PA (10:0/i-16:0), and PA (10:0/8:0)] and amino acids. It also regulated genes within the IL-17 signaling pathway (IL4, CCL17, CXCL10, IFNG, and CXCL2), suggesting a mechanism by which baicalin mitigates E. coli-induced intestinal and microbial disturbances. Subsequent flow cytometry analysis showed that E. coli infection increased the numbers of CD3+ and Foxp3+ cells, decreased IL-17A+ cells, and reduced Th17/Treg ratios. Baicalin supplementation restored these parameters to control levels. CONCLUSIONS Baicalin supplementation effectively alleviates E. coli-induced intestinal inflammation and microbial disturbances in piglets by enhancing beneficial Lactobacillus colonization, counteracting inflammatory mediators, and regulating immune-related gene expression and the Th17/Treg balance. These findings highlight baicalin's potential in alleviating intestinal inflammation.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chengzeng Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kai Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junhong Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huixin Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiugang Ma
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
7
|
Lei Q, Fu H, Yao Z, Zhou Z, Wang Y, Lin X, Yuan Y, Ouyang Q, Xu X, Cao J, Gan M, Fan X. Early introduction of IL-10 weakens BCG revaccination's protection by suppressing CD4 +Th1 cell responses. J Transl Med 2024; 22:1103. [PMID: 39633471 PMCID: PMC11616166 DOI: 10.1186/s12967-024-05683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/04/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The Bacillus Calmette-Guérin (BCG) vaccine, currently the sole authorized vaccine against tuberculosis (TB), demonstrates limited effectiveness in safeguarding adolescents and adults from active TB, even when administered as a booster with either BCG itself or heterologous vaccine candidates. To effectively control the persistent epidemic of adult TB, it is imperative to investigate the mechanisms responsible for the suboptimal efficacy of the BCG prime-boosting strategy against primary Mycobacterium tuberculosis (M.tb) infection. METHODS C57BL/6J mice were immunized with the BCG vaccine either once or twice, followed by analysis of lung tissue to assess changes in cytokine levels. Additionally, varying intervals between vaccinations and detection times were examined to study IL-10 expression across different organs. IL-10-expressing cells in the lungs, spleen, and lymph nodes were analyzed through FACS and intracellular cytokine staining (ICS). BCG-revaccinated IL-10-/- mutant mice were compared with wild-type mice to evaluate antigen-specific IgG antibody and T cell responses. Protection against M.tb aerosol challenge was evaluated in BCG-revaccinated mice, either untreated or treated with anti-IL-10R monoclonal antibody. RESULTS IL-10 was significantly upregulated in the lungs of BCG-revaccinated mice shortly after the booster immunization. IL-10 expression peaked in the lungs 3-6 weeks post-revaccination and was also detected in lymph nodes and spleen as early as 2 weeks following the booster dose, regardless of the intervals between the prime and booster vaccinations. The primary sources of IL-10 in these tissues were identified as macrophages and dendritic cells. Blocking IL-10 signaling in BCG-revaccinated mice-either by using IL-10-/- mutant mice or administering anti-IL-10R monoclonal antibody increased levels of antigen-specific IFN-γ+ or IL-2+ CD4+ T cells, enhanced central and effector memory CD4+ T cell responses, and provided better protection against aerosol infection with 300 CFUs of M.tb. CONCLUSION Our findings are crucial for formulating effective immunization strategies related to the BCG vaccine and for developing efficacious adult TB vaccines.
Collapse
Affiliation(s)
- Qing Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Zongjie Yao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Zijie Zhou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
- Departement of Infectious Disease, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Yueqing Wang
- Department of Laboratory Medicine, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Yuan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyue Xu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Yang X, Jiao W, Zeng X, Yu J, Xiao J, Jiang T, Tang H, Bi J, Chen Y, Li X, Chen W, Chen Y, Shen A, Sun L. Assessment of lower respiratory tract microbiota associated with pulmonary tuberculosis in children. Pediatr Pulmonol 2024; 59:3550-3559. [PMID: 39282716 DOI: 10.1002/ppul.27253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND The respiratory microbiota plays a crucial role in the development of tuberculosis (TB). While existing research has underscored imbalances in the respiratory microbiota of adult patients with TB, information regarding the lower respiratory tract (LRT) microbiota in pediatric patients with TB remains scarce. METHODS We employed 16S rRNA gene sequencing technology to investigate the LRT microbial communities of 85 children of different ages with active TB of different severities, 33 children with infectious diseases other than TB, and 48 sex- and age-matched healthy children. RESULTS A marked imbalance in the respiratory microbiota was observed in children with TB, highlighted by reduced alpha diversity and a distinct microbial community structure. Comparative analysis indicated that patients with severe TB exhibited lower Neisseria levels than those with non-severe TB (1.01% vs. 3.93%, respectively; p = .02). Streptococcus and Gemella levels were lower in bacteriologically confirmed TB cases compared with clinically diagnosed cases, and higher in healthy children younger than 10 years old than in the older group. Spearman correlation analysis demonstrated significant associations between the microbiota of the LRT and cytokine concentrations in the sputum of children with TB (e.g., an inverse correlation between Veillonella and interleukin-17A). CONCLUSIONS TB induced significant dysbiosis in the LRT microbiota of children that was associated with disease severity and the immunological response in the respiratory tract. Our findings may offer a deeper understanding of the role of the respiratory microbiome in TB pathogenesis and progression.
Collapse
Affiliation(s)
- Xuemei Yang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Weiwei Jiao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xi Zeng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jie Yu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jing Xiao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tingting Jiang
- Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding, China
| | - He Tang
- Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding, China
| | - Jing Bi
- Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding, China
| | - Yiyi Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoxue Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wanning Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yu Chen
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Shenyang, Liaoning, China
| | - Adong Shen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Lin Sun
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
9
|
Qi X, Yang Q, Cai J, Wu J, Gao Y, Ruan Q, Shao L, Liu J, Zhou X, Zhang W, Jiang N, Wang S. Transcriptional profiling of human peripheral blood mononuclear cells in household contacts of pulmonary tuberculosis patients provides insights into mechanisms of Mycobacterium tuberculosis control and elimination. Emerg Microbes Infect 2024; 13:2295387. [PMID: 38088554 PMCID: PMC10763880 DOI: 10.1080/22221751.2023.2295387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/12/2023] [Indexed: 12/31/2023]
Abstract
Household contacts (HHCs) of patients with active tuberculosis (ATB) are at higher risk of Mycobacterium tuberculosis (M. tuberculosis) infection. However, the immune factors responsible for different defense responses in HHCs are unknown. Hence, we aimed to evaluate transcriptome signatures in human peripheral blood mononuclear cells (PBMCs) of HHCs to aid risk stratification. We recruited 112 HHCs of ATB patients and followed them for 6 years. Among the HHCs, only 2 developed ATB, while the remaining HHCs were classified into three groups: (1) HHC-1 group (n = 23): HHCs with consistently positive T-SPOT.TB test, negative chest radiograph, and no clinical symptoms or evidence of ATB during the 6-year follow-up period; (2) HHC-2 group (n = 15): HHCs with an initial positive T-SPOT result that later became negative without evidence of ATB; (3) HHC-3 group (n = 14): HHCs with a consistently negative T-SPOT.TB test and no clinical or radiological evidence of ATB. HHC-2 and HHC-3 were combined as HHC-23 group for analysis. RNA sequencing (RNA-seq) in PBMCs, with and without purified protein derivative (PPD) stimulation, identified significant differences in gene signatures between HHC-1 and HHC-23. Gene ontology analysis revealed functions related to bacterial pathogens, leukocyte chemotaxis, and inflammatory and cytokine responses. Modules associated with clinical features in the HHC-23 group were linked to the IL-17 signaling pathway, ferroptosis, complement and coagulation cascades, and the TNF signaling pathway. Validation using real-time PCR confirmed key genes like ATG-7, CXCL-3, and TNFRSF1B associated with infection outcomes in HHCs. Our research enhances understanding of disease mechanisms in HHCs. HHCs with persistent latent tuberculosis infection (HHC-1) showed significantly different gene expression compared to HHCs with no M. tuberculosis infection (HHC-23). These findings can help identify HHCs at risk of developing ATB and guide targeted public health interventions.
Collapse
Affiliation(s)
- Xiao Qi
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Qingluan Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Infectious Diseases, Jing'an District Central Hospital, Shanghai, People’s Republic of China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yan Gao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jun Liu
- Department of Laboratory medicine, Department of Infectious Diseases, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Xueshi Zhou
- Department of Laboratory medicine, Department of Infectious Diseases, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai, People’s Republic of China
| | - Ning Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Laboratory medicine, Department of Infectious Diseases, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Xu Y, Wu J, Yao Q, Liu Q, Chen H, Zhang B, Liu Y, Wang S, Shao L, Zhang W, Ou Q, Gao Y. The diagnostic value and validation of IL-22 combimed with sCD40L in tuberculosis pleural effusion. BMC Immunol 2024; 25:66. [PMID: 39385103 PMCID: PMC11463108 DOI: 10.1186/s12865-024-00652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND There is substantial evidence indicating that cytokines play a role in the immune defense against tuberculosis. This study aims to evaluate the levels of various cytokines in pleural effusion to ditinguish between tuberculosis pleurisy and malignant pleurisy. METHODS A total of 82 participants with pleural effusion were included in the training cohort, and 76 participants were included in the validation cohort. The individuals were divided into tuberculosis and malignant pleurisy groups. The concentrations of interleukin-1β (IL-1β), IL-4, IL-6, IL-10, IL-17 A, IL-17 F, IL-21, IL-22, IL-25, IL-31, IL-33, interferon-γ (IFN-γ), soluble CD40 ligand (sCD40L) and tumor necrosis factor-α (TNF-α) in pleural effusion were measured using a multiplex cytokine assay. The threshold values were calculated according to the receiver operating characteristic (ROC) curve analysis to aid in diagnosing tuberculosis pleurisy. Furthermore, the combined measure was validated in the validation cohort. RESULTS The levels of all 14 cytokines in pleural effusion were significantly higher in participants with tuberculosis compared to those with malignant pleurisy (all P < 0.05). The area under the curve (AUC) was ≥ 0.920 for the IL-22, sCD40L, IFN-γ, TNF-α and IL-31, which were significantly increased in tuberculous pleural effusion (TPE) compared to MPE in the training cohort. Threshold values of 95.80 pg/mL for IFN-γ, 41.80 pg/mL for IL-31, and 18.87 pg/mL for IL-22 provided ≥ 90% sensitivity and specificity in distinguishing between tuberculosis pleurisy and malignant pleurisy in the training cohort. Among these, IL-22 combined with sCD40L showed the best sensitivity and specificity (94.0% and 96.9%) for diagnosing tuberculosis pleurisy, and this finding was validated in the validation cohort. CONCLUSION We demonstrated that the levels of IL-1β, IL-4, IL-6, IL-10, IL-17 A, IL-17 F, IL-21, IL-22, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α in pleural effusion had significant difference between tuberculosis pleurisy and malignant pleurisy. Specifically, IL-22 ≥ 18.87 pg/mL and sCD40L ≥ 53.08 pg/mL can be clinically utilized as an efficient diagnostic strategy for distinguishing tuberculosis pleurisy from malignant pleurisy.
Collapse
Affiliation(s)
- Yuzhen Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Medical College, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, People's Republic of China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Medical College, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, People's Republic of China
| | - Qiuju Yao
- Department of Respiratory Medicine, No. 905 Hospital of PLA Navy, Shanghai, People's Republic of China
| | - Qianqian Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Medical College, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, People's Republic of China
| | - Huaxin Chen
- Department of Tuberculosis Diseases, Wuxi No.5 People's Hospital, Jiangsu, Wuxi, 214000, People's Republic of China
| | - Bingyan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Medical College, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, People's Republic of China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Medical College, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, People's Republic of China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Medical College, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, People's Republic of China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Medical College, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, People's Republic of China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Medical College, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, People's Republic of China
- Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Huashen Institute of Microbes and Infection, NO.6 Lane 1220 Huashan Rd, Shanghai, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qinfang Ou
- Department of Tuberculosis Diseases, Wuxi No.5 People's Hospital, Jiangsu, Wuxi, 214000, People's Republic of China.
| | - Yan Gao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Medical College, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
11
|
Ji X, Huang G, Peng Y, Wang J, Cai X, Yang E, Zhu L, Wu Y, Sha W, Wang F, Shen L, Shen H. CD137 expression and signal function drive pleiotropic γδ T-cell effector functions that inhibit intracellular M. tuberculosis growth. Clin Immunol 2024; 266:110331. [PMID: 39067675 DOI: 10.1016/j.clim.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Co-activation signal that induces/sustains pleiotropic effector functions of antigen-specific γδ T cells remains unknown. Here, Mycobacteria tuberculosis (Mtb) tuberculin administration during tuberculosis (TB) skin test resulted in rapid expression of co-activation signal molecules CD137 and CD107a by fast-acting Vγ2Vδ2 T cells in TB-resistant subjects (Resisters), but not patients with active TB. And, anti-CD137 agonistic antibody treatment experiments showed that CD137 signaling enabled Vγ2Vδ2 T cells to produce more effector cytokines and inhibit intracellular Mtb growth in macrophages (Mɸ). Consistently, Mtb antigen (Ag) HMBPP stimulation induced sustainable high-level CD137 expression in fresh and activated Vγ2Vδ2 T cells from uninfected subjects, but not TB patients. CD137+Vγ2Vδ2 T-cell subtype predominantly displayed central memory phenotype and mounted better proliferative responses than CD137-Vγ2Vδ2 T-cells. In response to HMBPP, CD137+Vγ2Vδ2 T-cell subtype rapidly differentiated into greater numbers of pleiotropic effector cells producing anti-Mtb cytokines compared to CD137-Vγ2Vδ2 T subtype, with the non-canonical NF-κB pathway involved. CD137 expression in Vγ2Vδ2 T cells appeared to signal anti-Mtb effector functions leading to intracellular Mtb growth inhibition in Mɸ, and active TB disrupted such CD137-driven anti-Mtb effector functions. CD137+Vγ2Vδ2 T-cells subtype exhibited an epigenetic-driven high-level expression of GM-CSF and de novo production of GM-CSF critical for Vγ2Vδ2 T-cell controlling of Mtb growth in Mϕ. Concurrently, exosomes produced by CD137+Vγ2Vδ2 T cells potently inhibited intracellular mycobacterial growth. Furthermore, adoptive transfer of human CD137+Vγ2Vδ2 T cells to Mtb-infected SCID mice conferred protective immunity against Mtb infection. Thus, our data suggest that CD137 expression/signaling drives pleiotropic γδ T-cell effector functions that inhibit intracellular Mtb growth.
Collapse
MESH Headings
- Adult
- Animals
- Female
- Humans
- Male
- Mice
- Antigens, Bacterial/immunology
- Cytokines/metabolism
- Cytokines/immunology
- Lymphocyte Activation/immunology
- Macrophages/immunology
- Mice, SCID
- Mycobacterium tuberculosis/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction/immunology
- Tuberculosis/immunology
- Tuberculosis/microbiology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
Collapse
Affiliation(s)
- Xuejiao Ji
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Guixian Huang
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Ying Peng
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Juechu Wang
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Enzhuo Yang
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Liying Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Sha
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China..
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China..
| | - Ling Shen
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA..
| | - Hongbo Shen
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China.; Shanghai Sci-Tech inno Center for Infection and Immunity, Shanghai, China.
| |
Collapse
|
12
|
Derrick SC, Yang A, Cowley S. Enhanced efficacy of BCG vaccine formulated in adjuvant is dependent on IL-17A expression. Tuberculosis (Edinb) 2024; 148:102540. [PMID: 39002310 DOI: 10.1016/j.tube.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
A new, more effective vaccine against tuberculosis (TB) is urgently needed to curtail the current TB problem. The only licensed vaccine, BCG, has been shown to have highly variable protective efficacy in several clinical trials ranging from zero to 80 % against TB disease. We have previously reported that BCG formulated in dimethyl dioctadecyl-ammonium bromide (DDA) with D-(+)-Trehalose 6,6'-Dibehenate (TDB) adjuvant (BCG + Adj) is significantly more protective than BCG alone following murine aerosol Mycobacterium tuberculosis infection. Here we investigate the immunological basis for this improved efficacy by examining expression of different immune markers and cytokines in the lungs of vaccinated mice after M. tuberculosis aerosol challenge. We found significantly greater numbers of pulmonary IL-17A-expressing CD4+ T cells in mice immunized with BCG+Adj as compared to nonvaccinated and BCG-immunized mice at one-month post-challenge and that the enhanced protection was abrogated in IL-17A-deficient mice. Furthermore, we found significantly higher levels of IL-17A, IL-12p40 and IL-33 expression in the lungs of BCG + Adj immunized animals relative to nonvaccinated mice after M. tuberculosis challenge. These results demonstrate that the DDA/TDB adjuvant increases expression of IL-17A in response to the BCG vaccine and that these augmented IL-17A levels enhance control of M. tuberculosis infection.
Collapse
Affiliation(s)
- Steven C Derrick
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.
| | - Amy Yang
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Siobhan Cowley
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
13
|
Feng F, Xu W, Lian C, Wang L, Wang Z, Chen H, Wang X, Wang H, Zhang J. Tuberculosis to lung cancer: application of tuberculosis signatures in identification of lung adenocarcinoma subtypes and marker screening. J Cancer 2024; 15:5329-5350. [PMID: 39247607 PMCID: PMC11375533 DOI: 10.7150/jca.97898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/21/2024] [Indexed: 09/10/2024] Open
Abstract
Background: There is an association between LUAD and TB, and TB increases the risk of lung adenocarcinogenesis. However, the role of TB in the development of lung adenocarcinoma has not been clarified. Methods: DEGs from TB and LUAD lung samples were obtained to identify TB-LUAD-shared DEGs. Consensus Clustering was performed on the TCGA cohort to characterize unique changes in TB transcriptome-derived lung adenocarcinoma subtypes. Prognostic models were constructed based on TB signatures to explore the characterization of subgroups. Finally, experimental validation and single-cell analysis of potential markers were performed. Results: We characterized three molecular subtypes with unique clinical features, cellular infiltration, and pathway change manifestations. We constructed and validated TB-related Signature in six cohorts. TB-related Signature has characteristic alterations, and can be used as an effective predictor of immunotherapy response. Prognostically relevant novel markers KRT80, C1QTNF6, and TRPA1 were validated by RT-qPCR. The association between KRT80 and lung adenocarcinoma disease progression was verified in Bulk transcriptome and single-cell transcriptome. Conclusion: For the first time, a comprehensive bioinformatics analysis of tuberculosis signatures was used to identify subtypes of lung adenocarcinoma. The TB-related Signature predicted prognosis and identified potential markers. This result reveals a potential pathogenic association of tuberculosis in the progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Fan Feng
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, China
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
| | - Wanjie Xu
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, 233030, China
| | - Luyao Wang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, 233030, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, 233030, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of IHM, First Affiliated Hospital, Bengbu Medical University, Bengbu, 233030, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| |
Collapse
|
14
|
Bhat SA, Parveen A, Gormley E, Meade KG. Extensive differential DNA methylation between tuberculosis skin test positive and skin test negative cattle. BMC Genomics 2024; 25:762. [PMID: 39107682 PMCID: PMC11301934 DOI: 10.1186/s12864-024-10574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), represents a significant problem for the agriculture industry as well as posing a risk for human health. Current diagnostic tests for bTB target the cell-mediated immune (CMI) response to infection with M. bovis, primarily through screening of animals with the tuberculin skin test. Epigenetic modifications have been shown to alter the course of the immune response and differentially methylated regions (DMRs) might also influence the outcome of the skin test in cattle. Whole Genome Bisulphite Sequencing (WGBS) was used to profile DNA methylation levels from peripheral blood of a group of cattle identified as test positive for M. bovis (positive for the single intradermal comparative tuberculin test (SICTT) and/or the interferon-γ release assay compared to a test negative control group [n = 8/group, total of 16 WGBS libraries]. Although global methylation profiles were similar for both groups across the genome, 223 DMRs and 159 Differentially Promoter Methylated Genes (DPMGs) were identified between groups with an excess of hypermethylated sites in SICTT positive cattle (threshold > 15% differential methylation). Genes located within these DMRs included the Interleukin 1 receptor (IL1R1) and MHC related genes (BOLA and BOLA-DQB). KEGG pathway analysis identified enrichment of genes involved in Calcium and MAPK signalling, as well as metabolism pathways. Analysis of DMRs in a subset of SICTT negative cattle that were IFN-γ positive showed differential methylation of genes including Interleukin 10 Receptor, alpha (IL10RA), Interleukin 17 F (IL17F) and host defence peptides (DEFB and BDEF109). This study has identified a number of immune gene loci at which differential methylation is associated with SICTT test results and the degree of methylation could influence effective host immune responses.
Collapse
Affiliation(s)
- Sajad A Bhat
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Alia Parveen
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Eamonn Gormley
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Kieran G Meade
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin, C15 PW93, Ireland.
| |
Collapse
|
15
|
Abbasnia S, Hashem Asnaashari AM, Sharebiani H, Soleimanpour S, Mosavat A, Rezaee SA. Mycobacterium tuberculosis and host interactions in the manifestation of tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 36:100458. [PMID: 38983441 PMCID: PMC11231606 DOI: 10.1016/j.jctube.2024.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The final step of epigenetic processes is changing the gene expression in a new microenvironment in the body, such as neuroendocrine changes, active infections, oncogenes, or chemical agents. The case of tuberculosis (TB) is an outcome of Mycobacterium tuberculosis (M.tb) and host interaction in the manifestation of active and latent TB or clearance. This comprehensive review explains and interprets the epigenetics findings regarding gene expressions on the host-pathogen interactions in the development and progression of tuberculosis. This review introduces novel insights into the complicated host-pathogen interactions, discusses the challengeable results, and shows the gaps in the clear understanding of M.tb behavior. Focusing on the biological phenomena of host-pathogen interactions, the epigenetic changes, and their outcomes provides a promising future for developing effective TB immunotherapies when converting gene expression toward appropriate host immune responses gradually becomes attainable. Overall, this review may shed light on the dark sides of TB pathogenesis as a life-threatening disease. Therefore, it may support effective planning and implementation of epigenetics approaches for introducing proper therapies or effective vaccines.
Collapse
Affiliation(s)
- Shadi Abbasnia
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Saleemi MA, Zhang Y, Zhang G. Current Progress in the Science of Novel Adjuvant Nano-Vaccine-Induced Protective Immune Responses. Pathogens 2024; 13:441. [PMID: 38921739 PMCID: PMC11206999 DOI: 10.3390/pathogens13060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Vaccinations are vital as they protect us from various illness-causing agents. Despite all the advancements in vaccine-related research, developing improved and safer vaccines against devastating infectious diseases including Ebola, tuberculosis and acquired immune deficiency syndrome (AIDS) remains a significant challenge. In addition, some of the current human vaccines can cause adverse reactions in some individuals, which limits their use for massive vaccination program. Therefore, it is necessary to design optimal vaccine candidates that can elicit appropriate immune responses but do not induce side effects. Subunit vaccines are relatively safe for the vaccination of humans, but they are unable to trigger an optimal protective immune response without an adjuvant. Although different types of adjuvants have been used for the formulation of vaccines to fight pathogens that have high antigenic diversity, due to the toxicity and safety issues associated with human-specific adjuvants, there are only a few adjuvants that have been approved for the formulation of human vaccines. Recently, nanoparticles (NPs) have gain specific attention and are commonly used as adjuvants for vaccine development as well as for drug delivery due to their excellent immune modulation properties. This review will focus on the current state of adjuvants in vaccine development, the mechanisms of human-compatible adjuvants and future research directions. We hope this review will provide valuable information to discovery novel adjuvants and drug delivery systems for developing novel vaccines and treatments.
Collapse
Affiliation(s)
| | | | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, College of Sciences, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.A.S.); (Y.Z.)
| |
Collapse
|
17
|
Han M, Wang X, Zhang J, Su L, Ishaq HM, Li D, Cui J, Zhao H, Yang F. Gut bacterial and fungal dysbiosis in tuberculosis patients. BMC Microbiol 2024; 24:141. [PMID: 38658829 PMCID: PMC11044546 DOI: 10.1186/s12866-024-03275-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Recent studies have more focused on gut microbial alteration in tuberculosis (TB) patients. However, no detailed study on gut fungi modification has been reported till now. So, current research explores the characteristics of gut microbiota (bacteria)- and mycobiota (fungi)-dysbiosis in TB patients and also assesses the correlation between the gut microbiome and serum cytokines. It may help to screen the potential diagnostic biomarker for TB. RESULTS The results show that the alpha diversity of the gut microbiome (including bacteria and fungi) decreased and altered the gut microbiome composition of TB patients. The bacterial genera Bacteroides and Prevotella were significantly increased, and Blautia and Bifidobacterium decreased in the TB patients group. The fungi genus Saccharomyces was increased while decreased levels of Aspergillus in TB patients. It indicates that gut microbial equilibrium between bacteria and fungi has been altered in TB patients. The fungal-to-bacterial species ratio was significantly decreased, and the bacterial-fungal trans-kingdom interactions have been reduced in TB patients. A set model including Bacteroides, Blautia, Eubacterium_hallii_group, Apiotrichum, Penicillium, and Saccharomyces may provide a better TB diagnostics option than using single bacterial or fungi sets. Also, gut microbial dysbiosis has a strong correlation with the alteration of IL-17 and IFN-γ. CONCLUSIONS Our results demonstrate that TB patients exhibit the gut bacterial and fungal dysbiosis. In the clinics, some gut microbes may be considered as potential biomarkers for auxiliary TB diagnosis.
Collapse
Affiliation(s)
- MeiQing Han
- Department Four of Tuberculosis Medicine, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Xia Wang
- Department Four of Tuberculosis Medicine, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - JiaMin Zhang
- Department Four of Tuberculosis Medicine, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Lin Su
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Hafiz Muhammad Ishaq
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Duan Li
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - JunWei Cui
- Department Four of Tuberculosis Medicine, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - HuaJie Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China.
| | - Fan Yang
- Department Four of Tuberculosis Medicine, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
18
|
Ogongo P, Tran A, Marzan F, Gingrich D, Krone M, Aweeka F, Lindestam Arlehamn CS, Martin JN, Deeks SG, Hunt PW, Ernst JD. High-parameter phenotypic characterization reveals a subset of human Th17 cells that preferentially produce IL-17 against M. tuberculosis antigen. Front Immunol 2024; 15:1378040. [PMID: 38698866 PMCID: PMC11064812 DOI: 10.3389/fimmu.2024.1378040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Background Interleukin-17-producing CD4 T cells contribute to the control of Mycobacterium tuberculosis (Mtb) infection in humans; whether infection with human immunodeficiency virus (HIV) disproportionately affects distinct Th17-cell subsets that respond to Mtb is incompletely defined. Methods We performed high-definition characterization of circulating Mtb-specific Th17 cells by spectral flow cytometry in people with latent TB and treated HIV (HIV-ART). We also measured kynurenine pathway activity by liquid chromatography-mass spectrometry (LC/MS) on plasma and tested the hypothesis that tryptophan catabolism influences Th17-cell frequencies in this context. Results We identified two subsets of Th17 cells: subset 1 defined as CD4+Vα7.2-CD161+CD26+and subset 2 defined as CD4+Vα7.2-CCR6+CXCR3-cells of which subset 1 was significantly reduced in latent tuberculosis infection (LTBI) with HIV-ART, yet Mtb-responsive IL-17-producing CD4 T cells were preserved; we found that IL-17-producing CD4 T cells dominate the response to Mtb antigen but not cytomegalovirus (CMV) antigen or staphylococcal enterotoxin B (SEB), and tryptophan catabolism negatively correlates with both subset 1 and subset 2 Th17-cell frequencies. Conclusions We found differential effects of ART-suppressed HIV on distinct subsets of Th17 cells, that IL-17-producing CD4 T cells dominate responses to Mtb but not CMV antigen or SEB, and that kynurenine pathway activity is associated with decreases of circulating Th17 cells that may contribute to tuberculosis immunity.
Collapse
Affiliation(s)
- Paul Ogongo
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Anthony Tran
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Florence Marzan
- Drug Research Unit, Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - David Gingrich
- Drug Research Unit, Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Francesca Aweeka
- Drug Research Unit, Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | | | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Joel D. Ernst
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
19
|
Sharma S, Kumar N, Rouse BT, Sharma K, Chaubey KK, Singh S, Kumar P, Kumar P. The role, relevance and management of immune exhaustion in bovine infectious diseases. Heliyon 2024; 10:e28663. [PMID: 38596123 PMCID: PMC11002068 DOI: 10.1016/j.heliyon.2024.e28663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Immune exhaustion is a state of immune cell dysfunction that occurs most commonly following chronic exposure to an antigen which persists after the immune response fails to remove it. Exhaustion has been studied most thoroughly with several cancers, but has also been observed in several chronic infectious diseases. The topic has mainly been studied with CD8+ T cells, but it can also occur with CD4+ T cells and other immune cell types too. Exhaustion is characterized by a hierarchical loss of effector cell functions, up-regulation of immuno-inhibitory receptors, disruption of metabolic activities, and altered chromatin landscapes. Exhaustion has received minimal attention so far in diseases of veterinary significance and this review's purpose is to describe examples where immune exhaustion is occurring in several bovine disease situations. We also describe methodology to evaluate immune exhaustion as well as the prospects of controlling exhaustion and achieving a more suitable outcome of therapy in some chronic disease scenarios.
Collapse
Affiliation(s)
- Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Naveen Kumar
- National Center for Veterinary Type Cultures, ICAR-NRC on Equines, Sirsa Road, Hisar, Haryana, 125001, India
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996-0845, USA
| | - Khushbu Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Kundan Kumar Chaubey
- Department of Biotechnology, School of Basic and Applied Sciences, Sanskriti University, Mathura, Uttar Pradesh, 281 401, India
| | - ShoorVir Singh
- Department of Bio-technology, GLA University, Post-Chaumuhan, Dist. Mathura, Uttar Pradesh, 281 406, India
| | - Praveen Kumar
- Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Pradeep Kumar
- Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| |
Collapse
|
20
|
He CX, Wu C, Zhang L, Jin HZ. Interleukin-17A Inhibitors in Patients with Psoriasis and Tuberculosis Infection: A 2-Year Prospective Study on Safety Without Preventive Treatment. Dermatol Ther (Heidelb) 2024; 14:893-906. [PMID: 38483777 PMCID: PMC11052946 DOI: 10.1007/s13555-024-01130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 04/29/2024] Open
Abstract
INTRODUCTION The necessity for tuberculosis preventive treatment (TPT) and routine T-SPOT.TB monitoring in patients with psoriasis and tuberculosis infection (TBI) undergoing interleukin (IL)-17A inhibitor therapy remains uncertain. This study aims to evaluate the long-term safety of IL-17A inhibitors administered without TPT and analyze changes in T-SPOT.TB among these patients. It also identifies risk factors for TBI in patients with psoriasis. METHODS This single-center prospective study enrolled adult patients with plaque psoriasis and TBI receiving IL-17A inhibitors. TBI was defined as positive T-SPOT.TB results (≥ 6 spots) without symptoms or evidence of active tuberculosis (ATB). TPT administration was based on contraindications, tuberculosis risk factors, and patient preferences. The primary endpoint was the incidence of ATB over 2 years. Secondary outcomes included T-SPOT.TB changes and TBI risk factors. RESULTS Of the 129 patients with psoriasis and TBI enrolled in the study, 97 (75.2%) did not receive TPT, while 32 (24.8%) did. Among them, 109 patients (84.5%) completed the 2-year follow-up. During the 235 person-years of observation, no ATB cases were identified. Median T-SPOT.TB values showed no significant changes from baseline to year 2 in both the non-TPT (20 vs. 17 spots, p = 0.975) and TPT groups (55 vs. 58 spots, p = 0.830). T-SPOT.TB reversed in 14 patients (12.8%), mostly in the non-TPT group. Moreover, for TBI risk factor analysis, a cohort of 212 patients with psoriasis with negative baseline T-SPOT.TB was evaluated, revealing a TBI prevalence of 37.8%. Logistic regression analysis highlighted age ≥ 45 years (odds ratio [OR] 2.44, 95% confidence interval [CI] 1.50-3.99, p < 0.001) and body mass index (BMI) < 24.0 kg/m2 (OR 2.12, 95% CI 1.27-3.54, p = 0.004) as independent risk factors for TBI. CONCLUSION IL-17A inhibitors do not appear to reactivate tuberculosis in patients with psoriasis and TBI, potentially reducing the need for routine TBI screening and preventive treatment. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2100045823.
Collapse
Affiliation(s)
- Chun-Xia He
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Chao Wu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Li Zhang
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Zhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
21
|
Ogongo P, Tran A, Marzan F, Gingrich D, Krone M, Aweeka F, Lindestam Arlehamn CS, Martin JN, Deeks SG, Hunt PW, Ernst JD. High-parameter phenotypic characterization reveals a subset of human Th17 cells that preferentially produce IL17 against M. tuberculosis antigen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.06.523027. [PMID: 36711855 PMCID: PMC9881994 DOI: 10.1101/2023.01.06.523027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Interleukin 17 producing CD4 T cells contribute to the control of Mycobacterium tuberculosis (Mtb) infection in humans; whether infection with Human Immunodeficiency Virus (HIV) disproportionately affects distinct Th17 cell subsets that respond to Mtb is incompletely defined. Methods We performed high-definition characterization of circulating Mtb-specific Th17 cells by spectral flow cytometry in people with latent TB and treated HIV (HIV-ART). We also measured kynurenine pathway activity by LC/MS on plasma and tested the hypothesis that tryptophan catabolism influences Th17 cell frequencies in this context. Results We identified two subsets of Th17 cells: subset 1 defined as CD4+Vα7.2-CD161+CD26+ and subset 2 defined as CD4+Vα7.2-CCR6+CXCR3- cells of which subset 1 was significantly reduced in LTBI with HIV-ART, yet Mtb-responsive IL17-producing CD4 T cells were preserved; we found that IL17-producing CD4 T cells dominate the response to Mtb antigen but not CMV antigen or staphylococcal enterotoxin B (SEB); and tryptophan catabolism negatively correlates with both subset 1 and subset 2 Th17 cell frequencies. Conclusions We found differential effects of ART-suppressed HIV on distinct subsets of Th17 cells, that IL17-producing CD4 T cells dominate responses to Mtb but not CMV antigen or SEB, and that kynurenine pathway activity is associated with decreases of circulating Th17 cells that may contribute to tuberculosis immunity.
Collapse
Affiliation(s)
- Paul Ogongo
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Anthony Tran
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Florence Marzan
- Drug Research Unit, Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, CA, USA
| | - David Gingrich
- Drug Research Unit, Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, CA, USA
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Francesca Aweeka
- Drug Research Unit, Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, CA, USA
| | | | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Joel D. Ernst
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Kamolratanakul S, Ariyanon W, Udompornpitak K, Bhunyakarnjanarat T, Leelahavanichkul A, Dhitavat J, Wilairatana P, Chancharoenthana W. Comparison of the Single Cell Immune Landscape between Subjects with High Mycobacterium tuberculosis Bacillary Loads during Active Pulmonary Tuberculosis and Household Members with Latent Tuberculosis Infection. Cells 2024; 13:362. [PMID: 38391975 PMCID: PMC10887672 DOI: 10.3390/cells13040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
It is unclear how the immune system controls the transition from latent tuberculosis (TB) infection (LTBI) to active pulmonary infection (PTB). Here, we applied mass spectrometry cytometry time-of-flight (CyTOF) analysis of peripheral blood mononuclear cells to compare the immunological landscapes in patients with high tuberculous bacillary load PTB infections and LTBI. A total of 32 subjects (PTB [n = 12], LTBI [n = 17], healthy volunteers [n = 3]) were included. Participants with active PTBs were phlebotomized before administering antituberculosis treatment, whereas participants with LTBI progressed to PTB at the time of household screening. In the present study, CyTOF analysis identified significantly higher percentages of mucosal-associated invariant natural killer T (MAIT NKT) cells in subjects with LTBI than in those with active PTB and healthy controls. Moreover, 6 of 17 (35%) subjects with LTBI progressed to active PTB (LTBI progression) and had higher proportions of MAIT NKT cells and early NKT cells than those without progression (LTBI non-progression). Subjects with LTBI progression also showed a tendency toward low B cell levels relative to other subject groups. In conclusion, MAIT NKT cells were substantially more prevalent in subjects with LTBI, particularly those with progression to active PTB.
Collapse
Affiliation(s)
- Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wassawon Ariyanon
- Department of Medicine, Banphaeo General Hospital (BGH), Samutsakhon 74120, Thailand;
| | - Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thansita Bhunyakarnjanarat
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jittima Dhitavat
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
| | - Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
23
|
Li J, Lu Z, Xu L, Wang J, Qian S, Hu Q, Ge Y. Poly(ethylenimine)-Cyclodextrin-Based Cationic Polymer Mediated HIF-1α Gene Delivery for Hindlimb Ischemia Treatment. ACS APPLIED BIO MATERIALS 2024; 7:1081-1094. [PMID: 38294873 DOI: 10.1021/acsabm.3c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Hindlimb ischemia is a common disease worldwide featured by the sudden decrease in limb perfusion, which usually causes a potential threat to limb viability and even amputation or death. Revascularization has been defined as the gold-standard therapy for hindlimb ischemia. Considering that vascular injury recovery requires cellular adaptation to the hypoxia, hypoxia-inducible factor 1 α (HIF-1α) is a potential gene for tissue restoration and angiogenesis. In this manuscript, effective gene delivery vector PEI-β-CD (PC) was reported for the first application in the hindlimb ischemia treatment to deliver HIF-1α plasmid in vitro and in vivo. Our in vitro finding demonstrated that PC/HIF-1α-pDNA could be successfully entered into the cells and mediated efficient gene transfection with good biocompatibility. More importantly, under hypoxic conditions, PC/HIF-1α-pDNA could up-regulate the HUEVC cell viability. In addition, the mRNA levels of VEGF, Ang-1, and PDGF were upregulated, and transcriptome results also demonstrated that the cell-related function of response to hypoxia was enhanced. The therapeutic effect of PC/HIF-1α-pDNA was further estimated in a murine acute hindlimb ischemia model, which demonstrated that intramuscular injection of PC/HIF-1α-pDNA resulted in significantly increased blood perfusion and alleviation in tissue damage, such as tissue fibrosis and inflammation. The results provide a rationale that HIF-1α-mediated gene therapy might be a practical strategy for the treatment of limb ischemia.
Collapse
Affiliation(s)
- Jingyu Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuoting Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Wang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 314408, China
| | - Shaojie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 314408, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yunfen Ge
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 314408, China
| |
Collapse
|
24
|
Liu P, Li L, Kuang Y, Zhu W, Li J, Chen X, Peng C. The CD147 expression in CD4 + T cells is a novel biomarker for predicting efficacy of IL-17A inhibitor and psoriasis recurrence. Clin Transl Med 2024; 14:e1568. [PMID: 38303607 PMCID: PMC10835189 DOI: 10.1002/ctm2.1568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
- Panpan Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Furong LaboratoryChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Lei Li
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Furong LaboratoryChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yehong Kuang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Furong LaboratoryChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wu Zhu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Furong LaboratoryChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Li
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Furong LaboratoryChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiang Chen
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Furong LaboratoryChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Cong Peng
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Furong LaboratoryChangshaHunanChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
25
|
Winchell CG, Nyquist SK, Chao MC, Maiello P, Myers AJ, Hopkins F, Chase M, Gideon HP, Patel KV, Bromley JD, Simonson AW, Floyd-O’Sullivan R, Wadsworth M, Rosenberg JM, Uddin R, Hughes T, Kelly RJ, Griffo J, Tomko J, Klein E, Berger B, Scanga CA, Mattila J, Fortune SM, Shalek AK, Lin PL, Flynn JL. CD8+ lymphocytes are critical for early control of tuberculosis in macaques. J Exp Med 2023; 220:e20230707. [PMID: 37843832 PMCID: PMC10579699 DOI: 10.1084/jem.20230707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
The functional role of CD8+ lymphocytes in tuberculosis remains poorly understood. We depleted innate and/or adaptive CD8+ lymphocytes in macaques and showed that loss of all CD8α+ cells (using anti-CD8α antibody) significantly impaired early control of Mycobacterium tuberculosis (Mtb) infection, leading to increased granulomas, lung inflammation, and bacterial burden. Analysis of barcoded Mtb from infected macaques demonstrated that depletion of all CD8+ lymphocytes allowed increased establishment of Mtb in lungs and dissemination within lungs and to lymph nodes, while depletion of only adaptive CD8+ T cells (with anti-CD8β antibody) worsened bacterial control in lymph nodes. Flow cytometry and single-cell RNA sequencing revealed polyfunctional cytotoxic CD8+ lymphocytes in control granulomas, while CD8-depleted animals were unexpectedly enriched in CD4 and γδ T cells adopting incomplete cytotoxic signatures. Ligand-receptor analyses identified IL-15 signaling in granulomas as a driver of cytotoxic T cells. These data support that CD8+ lymphocytes are required for early protection against Mtb and suggest polyfunctional cytotoxic responses as a vaccine target.
Collapse
Affiliation(s)
- Caylin G. Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah K. Nyquist
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, MIT, Cambridge, MA, USA
| | - Michael C. Chao
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy J. Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Forrest Hopkins
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Michael Chase
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Hannah P. Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kush V. Patel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua D. Bromley
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, MIT, Cambridge, MA, USA
| | - Andrew W. Simonson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roisin Floyd-O’Sullivan
- Broad Institute, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Marc Wadsworth
- Broad Institute, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jacob M. Rosenberg
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rockib Uddin
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Travis Hughes
- Broad Institute, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Ryan J. Kelly
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Josephine Griffo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bonnie Berger
- Broad Institute, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, MIT, Cambridge, MA, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua Mattila
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah M. Fortune
- Broad Institute, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Alex K. Shalek
- Broad Institute, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Wang Y, He X, Zheng D, He Q, Sun L, Jin J. Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarkers Involved in Pulmonary Tuberculosis and Pulmonary Tuberculosis-Complicated Diabetes. Microbiol Spectr 2023; 11:e0057723. [PMID: 37522815 PMCID: PMC10434036 DOI: 10.1128/spectrum.00577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/07/2023] [Indexed: 08/01/2023] Open
Abstract
Pulmonary tuberculosis (PTB) and diabetes mellitus (DM) are common chronic diseases that threaten human health. Patients with DM are susceptible to PTB, an important factor that aggravates the complications of diabetes. However, the molecular regulatory mechanism underlying the susceptibility of patients with DM to PTB infection remains unknown. In this study, healthy subjects, patients with primary PTB, and patients with primary PTB complicated by DM were recruited according to inclusion and exclusion criteria. Peripheral whole blood was collected, and alteration profiles and potential molecular mechanisms were further analyzed using integrated bioinformatics analysis of metabolomics and transcriptomics. Transcriptional data revealed that lipocalin 2 (LCN2), defensin alpha 1 (DEFA1), peptidoglycan recognition protein 1 (PGLYRP1), and integrin subunit alpha 2b (ITGA2B) were significantly upregulated, while chloride intracellular channel 3 (CLIC3) was significantly downregulated in the group with PTB and DM (PTB_DM) in contrast to the healthy control (HC) group. Additionally, the interleukin 17 (IL-17), phosphatidylinositol 3-kinase (PI3K)-AKT, and peroxisome proliferator-activated receptor (PPAR) signaling pathways are important for PTB infection and regulation of PTB-complicated diabetes. Metabolomic data showed that glycerophospholipid metabolism, carbon metabolism, and fat digestion and absorption processes were enriched in the differential metabolic analysis. Finally, integrated analysis of both metabolomic and transcriptomic data indicated that the NOTCH1/JAK/STAT signaling pathway is important in PTB complicated by DM. In conclusion, PTB infection altered the transcriptional and metabolic profiles of patients with DM. Metabolomic and transcriptomic changes were highly correlated in PTB patients with DM. Peripheral metabolite levels may be used as biomarkers for PTB management in patients with DM. IMPORTANCE The comorbidity of diabetes mellitus (DM) significantly increases the risk of tuberculosis infection and adverse tuberculosis treatment outcomes. Most previous studies have focused on the relationship between the effect of blood glucose control and the outcome of antituberculosis treatment in pulmonary tuberculosis (PTB) with DM (PTB_DM); however, early prediction and the underlying molecular mechanism of susceptibility to PTB infection in patients with DM remain unclear. In this study, transcriptome sequencing and untargeted metabolomics were performed to elucidate the key molecules and signaling pathways involved in PTB infection and the susceptibility of patients with diabetes to PTB. Our findings contribute to the development of vital diagnostic biomarkers for PTB or PTB_DM and provide a comprehensive understanding of molecular regulation during disease progression.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xinxin He
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Danna Zheng
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| | - Lifang Sun
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Juan Jin
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
27
|
Kim JY, Rosenberger MG, Rutledge NS, Esser-Kahn AP. Next-Generation Adjuvants: Applying Engineering Methods to Create and Evaluate Novel Immunological Responses. Pharmaceutics 2023; 15:1687. [PMID: 37376133 PMCID: PMC10300703 DOI: 10.3390/pharmaceutics15061687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Adjuvants are a critical component of vaccines. Adjuvants typically target receptors that activate innate immune signaling pathways. Historically, adjuvant development has been laborious and slow, but has begun to accelerate over the past decade. Current adjuvant development consists of screening for an activating molecule, formulating lead molecules with an antigen, and testing this combination in an animal model. There are very few adjuvants approved for use in vaccines, however, as new candidates often fail due to poor clinical efficacy, intolerable side effects, or formulation limitations. Here, we consider new approaches using tools from engineering to improve next-generation adjuvant discovery and development. These approaches will create new immunological outcomes that will be evaluated with novel diagnostic tools. Potential improved immunological outcomes include reduced vaccine reactogenicity, tunable adaptive responses, and enhanced adjuvant delivery. Evaluations of these outcomes can leverage computational approaches to interpret "big data" obtained from experimentation. Applying engineering concepts and solutions will provide alternative perspectives, further accelerating the field of adjuvant discovery.
Collapse
Affiliation(s)
| | | | | | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA; (J.Y.K.); (M.G.R.); (N.S.R.)
| |
Collapse
|
28
|
Misra DP, Singh K, Sharma A, Agarwal V. Arterial wall fibrosis in Takayasu arteritis and its potential for therapeutic modulation. Front Immunol 2023; 14:1174249. [PMID: 37256147 PMCID: PMC10225504 DOI: 10.3389/fimmu.2023.1174249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Arterial wall damage in Takayasu arteritis (TAK) can progress despite immunosuppressive therapy. Vascular fibrosis is more prominent in TAK than in giant cell arteritis (GCA). The inflamed arterial wall in TAK is infiltrated by M1 macrophages [which secrete interleukin-6 (IL-6)], which transition to M2 macrophages once the inflammation settles. M2 macrophages secrete transforming growth factor beta (TGF-β) and glycoprotein non-metastatic melanoma protein B (GPNMB), both of which can activate fibroblasts in the arterial wall adventitia. Mast cells in the arterial wall of TAK also activate resting adventitial fibroblasts. Th17 lymphocytes play a role in both TAK and GCA. Sub-populations of Th17 lymphocytes, Th17.1 lymphocytes [which secrete interferon gamma (IFN-γ) in addition to interleukin-17 (IL-17)] and programmed cell death 1 (PD1)-expressing Th17 (which secrete TGF-β), have been described in TAK but not in GCA. IL-6 and IL-17 also drive fibroblast activation in the arterial wall. The Th17 and Th1 lymphocytes in TAK demonstrate an activation of mammalian target organ of rapamycin 1 (mTORC1) driven by Notch-1 upregulation. A recent study reported that the enhanced liver fibrosis score (derived from serum hyaluronic acid, tissue inhibitor of metalloproteinase 1, and pro-collagen III amino-terminal pro-peptide) had a moderate-to-strong correlation with clinically assessed and angiographically assessed vascular damage. In vitro experiments suggest the potential to target arterial wall fibrosis in TAK with leflunomide, tofacitinib, baricitinib, or mTORC1 inhibitors. Since arterial wall inflammation is followed by fibrosis, a strategy of combining immunosuppressive agents with drugs that have an antifibrotic effect merits exploration in future clinical trials of TAK.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Kritika Singh
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Aman Sharma
- Clinical Immunology and Rheumatology Services, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
29
|
Kim CH, Kim HJ, Park JE, Lee YH, Choi SH, Seo H, Yoo SS, Lee SY, Cha SI, Park JY, Lee J. CyTOF analysis for differential immune cellular profiling between latent tuberculosis infection and active tuberculosis. Tuberculosis (Edinb) 2023; 140:102344. [PMID: 37084568 DOI: 10.1016/j.tube.2023.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Limited data exist about the comparative immune cell population profile determined by cytometry by time-of-flight (CyTOF) analysis between active tuberculosis (TB) and latent TB infection (LTBI). In this study, we performed CyTOF analysis using peripheral blood mononuclear cells (PBMCs) to compare the differential immune cellular profile between active TB and LTBI. A total of 51 subjects (active TB [n = 34] and LTBI [n = 17]) were included. CyTOF analysis of 16 subjects (active TB [n = 8] and LTBI [n = 8]) identified a significantly higher Th17-like cell population in active TB than in LTBI. This finding was validated in the remaining 35 subjects (active TB [n = 26] and LTBI [n = 9]) using flow cytometry analysis, which consistently reveals a higher percentage of Th17 cell population in active TB (p = 0.032). The Th1/Th17 ratio represented good ability to discriminate between active TB and LTBI (AUC = 0.812). Among patients with active TB, the Th17 cell percentage was found to be lower in more advanced forms of the disease. Additionally, Th17 cell percentage positively correlated with the levels of IL-6 and neutrophil-lymphocyte ratio, respectively. In conclusion, CyTOF analysis of PBMCs showed a significantly higher percentage of Th17 cells in active TB although fairly similar immune cell populations between active TB and LTBI were observed.
Collapse
Affiliation(s)
- Chang Ho Kim
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Ha-Jeong Kim
- Department of Physiology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Tumor Heterogeneity and Network (THEN) Research Center, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Ji Eun Park
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Sun Ha Choi
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Hyewon Seo
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Jae Yong Park
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
30
|
The Protective Role of Interleukin 17A in Acinetobacter baumannii Pneumonia Is Associated with Candida albicans in the Airway. Infect Immun 2023; 91:e0037822. [PMID: 36602381 PMCID: PMC9872622 DOI: 10.1128/iai.00378-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies have found that the coexistence of fungi and bacteria in the airway may increase the risk of infection, contribute to the development of pneumonia, and increase the severity of disease. Interleukin 17A (IL-17A) plays important roles in host resistance to bacterial and fungal infections. The objective of this study was to determine the effects of IL-17A on Acinetobacter baumannii-infected rats with a previous Candida albicans airway inoculation. The incidence of A. baumannii pneumonia was higher in rats with C. albicans in the airway than in noninoculated rats, and it decreased when amphotericin B was used to clear C. albicans, which influenced IL-17A levels. IL-17A had a protective effect in A. baumannii pneumonia associated with C. albicans in the airway. Compared with A. baumannii-infected rats with C. albicans in the airway that did not receive IL-17A, recombinant IL-17A (rIL-17A) supplementation decreased the incidence of A. baumannii pneumonia (10/15 versus 5/17; P = 0.013) and the proportion of neutrophils in the lung (84 ± 3.5 versus 74 ± 4.3%; P = 0.033), reduced tissue destruction and inflammation, and decreased levels of myeloperoxidase (MPO) (1.267 ± 0.15 versus 0.233 ± 0.06 U/g; P = 0.0004), reactive oxygen species (ROS) (132,333 ± 7,505 versus 64,667 ± 10,115 AU; P = 0.0007) and lactate dehydrogenase (LDH) (2.736 ± 0.05 versus 2.1816 ± 0.29 U/g; P = 0.0313). In vitro experiments revealed that IL-17A had no significant effect on the direct migration ability and bactericidal capability of neutrophils. However, IL-17A restrained lysis cell death and increased apoptosis of neutrophils (2.9 ± 1.14 versus 7 ± 0.5%; P = 0.0048). Taken together, our results suggest that C. albicans can depress IL-17A levels, which when supplemented may have a regulatory function that limits the accumulation of neutrophils in inflammatory areas, providing inflammatory response homeostasis.
Collapse
|
31
|
Yu Z, Shen X, Wang A, Hu C, Chen J. The gut microbiome: A line of defense against tuberculosis development. Front Cell Infect Microbiol 2023; 13:1149679. [PMID: 37143744 PMCID: PMC10152471 DOI: 10.3389/fcimb.2023.1149679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
The tuberculosis (TB) burden remains a significant global public health concern, especially in less developed countries. While pulmonary tuberculosis (PTB) is the most common form of the disease, extrapulmonary tuberculosis, particularly intestinal TB (ITB), which is mostly secondary to PTB, is also a significant issue. With the development of sequencing technologies, recent studies have investigated the potential role of the gut microbiome in TB development. In this review, we summarized studies investigating the gut microbiome in both PTB and ITB patients (secondary to PTB) compared with healthy controls. Both PTB and ITB patients show reduced gut microbiome diversity characterized by reduced Firmicutes and elevated opportunistic pathogens colonization; Bacteroides and Prevotella were reported with opposite alteration in PTB and ITB patients. The alteration reported in TB patients may lead to a disequilibrium in metabolites such as short-chain fatty acid (SCFA) production, which may recast the lung microbiome and immunity via the "gut-lung axis". These findings may also shed light on the colonization of Mycobacterium tuberculosis in the gastrointestinal tract and the development of ITB in PTB patients. The findings highlight the crucial role of the gut microbiome in TB, particularly in ITB development, and suggest that probiotics and postbiotics might be useful supplements in shaping a balanced gut microbiome during TB treatment.
Collapse
Affiliation(s)
- Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Aiyao Wang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- *Correspondence: Jianyong Chen,
| |
Collapse
|
32
|
Mittereder LR, Swoboda J, De Pascalis R, Elkins KL. IL-12p40 is essential but not sufficient for Francisella tularensis LVS clearance in chronically infected mice. PLoS One 2023; 18:e0283161. [PMID: 36972230 PMCID: PMC10042368 DOI: 10.1371/journal.pone.0283161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
IL-12p40 plays an important role in F. tularensis Live Vaccine Strain (LVS) clearance that is independent of its functions as a part of the heterodimeric cytokines IL-12p70 or IL-23. In contrast to WT, p35, or p19 knockout (KO) mice, p40 KO mice infected with LVS develop a chronic infection that does not resolve. Here, we further evaluated the role of IL-12p40 in F. tularensis clearance. Despite reduced IFN-γ production, primed splenocytes from p40 KO and p35 KO mice appeared functionally similar to those from WT mice during in vitro co-culture assays of intramacrophage bacterial growth control. Gene expression analysis revealed a subset of genes that were upregulated in re-stimulated WT and p35 KO splenocytes, but not p40 KO splenocytes, and thus are candidates for involvement in F. tularensis clearance. To directly evaluate a potential mechanism for p40 in F. tularensis clearance, we reconstituted protein levels in LVS-infected p40 KO mice using either intermittent injections of p40 homodimer (p80) or treatment with a p40-producing lentivirus construct. Although both delivery strategies yielded readily detectable levels of p40 in sera and spleens, neither treatment had a measurable impact on LVS clearance by p40 KO mice. Taken together, these studies demonstrate that clearance of F. tularensis infection depends on p40, but p40 monomers and/or dimers alone are not sufficient.
Collapse
Affiliation(s)
- Lara R Mittereder
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jonathan Swoboda
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Roberto De Pascalis
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
33
|
Kumar A, Singh R, Sharma RK, Sharma SP, Agarwal A, Gupta V, Singh R, Katoch D, Singh N. Correlation of angiogenic growth factors and inflammatory cytokines with the clinical phenotype of ocular tuberculosis. Graefes Arch Clin Exp Ophthalmol 2022; 261:1369-1380. [PMID: 36547708 DOI: 10.1007/s00417-022-05943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To determine the correlation of angiogenic growth factors and inflammatory cytokines with the clinical phenotype of ocular tuberculosis (OTB). METHODS Vitreous fluid was analysed for cytokines in patients with OTB and non-OTB uveitis using multiplex fluorescent bead-based flow cytometric assay. The clinical phenotypes were recorded and correlated with vitreous biomarkers. RESULTS Vitreous humour from OTB patients had elevated levels of interleukin-10 (IL-10), IL-17-A, interferon-gamma (IFN-γ), and tumour necrosis factor-alpha (TNF-α). Angiopoietin (Ang-2) levels were higher in the panuveitis phenotype. OTB posterior uveitis phenotype had relatively higher vascular endothelial growth factor (VEGF) levels and lower fibroblast growth factor (FGF) levels. Additionally, eyes with choroiditis and vasculitis had elevated levels of VEGF and Ang-2 with FGF downregulation. Both IFN-γ and IL-10 were upregulated in the choroiditis phenotype of OTB. CONCLUSION Angiogenic growth factors and inflammatory cytokines were altered in the vitreous humour of OTB patients. IFN-γ, VEGF, and IL-10 levels are increased in choroiditis and vasculitis phenotypes. Receiver operating characteristic (ROC) curve analysis further emphasized the importance of the IFN-γ assay in the diagnosis of OTB.
Collapse
|
34
|
Weng S, Zhang J, Ma H, Zhou J, Jia L, Wan Y, Cui P, Ruan Q, Shao L, Wu J, Wang H, Zhang W, Xu Y. B21 DNA vaccine expressing ag85b, rv2029c, and rv1738 confers a robust therapeutic effect against latent Mycobacterium tuberculosis infection. Front Immunol 2022; 13:1025931. [PMID: 36569899 PMCID: PMC9768437 DOI: 10.3389/fimmu.2022.1025931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Latent tuberculosis infection (LTBI) treatment is known to accelerate the decline in TB incidence, especially in high-risk populations. Mycobacterium tuberculosis (M. tb) expression profiles differ at different growth periods, and vaccines protective and therapeutic effects may increase when they include antigenic compositions from different periods. To develop a post-exposure vaccine that targets LTBI, we constructed four therapeutic DNA vaccines (A39, B37, B31, and B21) using different combinations of antigens from the proliferation phase (Ag85A, Ag85B), PE/PPE family (Rv3425), and latent phase (Rv2029c, Rv1813c, Rv1738). We compared the immunogenicity of the four DNA vaccines in C57BL/6j mice. The B21 vaccine stimulated the strongest cellular immune responses, namely Th1/Th17 and CD8+ cytotoxic T lymphocyte responses. It also induced the generation of strengthened effector memory and central memory T cells. In latently infected mice, the B21 vaccine significantly reduced bacterial loads in the spleens and lungs and decreased lung pathology. In conclusion, the B21 DNA vaccine can enhance T cell responses and control the reactivation of LTBI.
Collapse
Affiliation(s)
- Shufeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jinyi Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Huixia Ma
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jingyu Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Liqiu Jia
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanmin Wan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Cui
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Ying Xu, ; Wenhong Zhang,
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Shanghai Huashen Institute of Microbes and Infections, Shanghai, China,*Correspondence: Ying Xu, ; Wenhong Zhang,
| |
Collapse
|
35
|
Li HM, Wang LJ, Huang Q, Pan HF, Zhang TP. Exploring the association between Th17 pathway gene polymorphisms and pulmonary tuberculosis. Front Immunol 2022; 13:994247. [PMID: 36483566 PMCID: PMC9723456 DOI: 10.3389/fimmu.2022.994247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Th17 cells play a key role in immunity against Mycobacterium tuberculosis (MTB), and this study aimed to explore the association of Th17 pathway gene polymorphisms with pulmonary tuberculosis (PTB) susceptibility in a Chinese population. A total of 10 single nucleotide polymorphisms in Th17 pathway genes (IL-17A gene rs2275913, rs3748067, rs8193036, rs3819024, IL-17F gene rs7741835, rs763780, IL-21 gene rs907715, rs2055979, IL-23R gene rs11805303, and rs7518660) were genotyped in 456 PTB patients and 466 controls using SNPscan technique. The IL-23R rs11805303 CC genotype, C allele frequencies were significantly lower in PTB patients than in controls, and the rs11805303 variant was significantly associated with the reduced risk of PTB in a recessive model. There were no significant associations between IL-17A, IL-17F, and IL-21 gene variations and PTB risk. In IL-17A gene, rs2275913, rs3748067, and rs3819024 variants were associated with drug resistance in PTB patients. In IL-17F gene, rs7741835 variant affected drug resistance, and rs763780 variant was associated with hypoproteinemia in PTB patients. In addition, the lower frequencies of the TT genotype, T allele of rs2055979 were found in PTB patients with drug-induced liver injury. Haplotype analysis showed that IL-23R CG haplotype frequency was significantly lower in PTB patients than in controls, while the TG haplotype frequency was higher. In conclusion, IL-23R rs11805303 polymorphism may contribute to the genetic underpinnings of PTB in the Chinese population, and the IL-17A, IL-17F, and IL-21 genetic variations are associated with several clinical manifestations of PTB patients.
Collapse
Affiliation(s)
- Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Jun Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qian Huang
- Department of Public Health, Medical Department, Qinghai University, Xining, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,*Correspondence: Tian-Ping Zhang, ; Hai-Feng Pan,
| | - Tian-Ping Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Tian-Ping Zhang, ; Hai-Feng Pan,
| |
Collapse
|
36
|
Immunological Interactions between Intestinal Helminth Infections and Tuberculosis. Diagnostics (Basel) 2022; 12:diagnostics12112676. [PMID: 36359526 PMCID: PMC9689268 DOI: 10.3390/diagnostics12112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Helminth infections are among the neglected tropical diseases affecting billions of people globally, predominantly in developing countries. Helminths’ effects are augmented by coincident tuberculosis disease, which infects a third of the world’s population. The role of helminth infections on the pathogenesis and pathology of active tuberculosis (T.B.) remains controversial. Parasite-induced suppression of the efficacy of Bacille Calmette-Guerin (BCG) has been widely reported in helminth-endemic areas worldwide. T.B. immune response is predominantly proinflammatory T-helper type 1 (Th1)-dependent. On the other hand, helminth infections induce an opposing anti-inflammatory Th2 and Th3 immune-regulatory response. This review summarizes the literature focusing on host immune response profiles during single-helminth, T.B. and dual infections. It also aims to necessitate investigations into the complexity of immunity in helminth/T.B. coinfected patients since the research data are limited and contradictory. Helminths overlap geographically with T.B., particularly in Sub-Saharan Africa. Each disease elicits a response which may skew the immune responses. However, these effects are helminth species-dependent, where some parasites have no impact on the immune responses to concurrent T.B. The implications for the complex immunological interactions that occur during coinfection are highlighted to inform government treatment policies and encourage the development of high-efficacy T.B. vaccines in areas where helminths are prevalent.
Collapse
|
37
|
Zhang Y, Song H, Wang J, Xi X, Cefalo P, Wood LJ, Luo X, Wang QM. Multiplex array analysis of serum cytokines offers minimal predictive value for cognitive function in the subacute phase after stroke. Front Neurol 2022; 13:886018. [PMID: 36330425 PMCID: PMC9622930 DOI: 10.3389/fneur.2022.886018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/29/2022] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE The effects of inflammation on post-stroke cognitive function are still unclear. This study investigated the correlation between the Th17-related cytokines in peripheral blood and post-stroke cognitive function after ischemic stroke in the subacute phase. DESIGN A retrospective cohort study. SETTING Academic acute inpatient rehabilitation facility. PARTICIPANTS One hundred and fourteen patients with first ischemic stroke were categorized as the poor cognitive recovery group (n = 58) or good cognitive recovery group (n = 56) based on their cognitive MRFS efficiency. INTERVENTIONS All subjects received routine physical, occupational, and speech-language pathology therapy. MAIN OUTCOME MEASURES Serum cytokines/chemokine (IL-1 β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17A, IL-17E, IL-17F, IL-21, IL-22, IL-23, IL-27, IL-28A, IL-31, IL-33, GM-CSF, IFN-γ, MIP-3 α, TNF-α, and TNF-β) levels were measured in duplicate using Human Th17 magnetic bead panel and multiplex array analysis (Luminex-200 system). The primary functional outcome was a gain in functional independence measure (FIM) cognitive subscore at discharge. The secondary outcome measures were FIM total score at discharge, length of stay in the hospital, and discharge destination. Cognitive Montebello Rehabilitation Factor Score (MRFS) and cognitive MRFS efficiency were calculated. Demographic and clinical characteristics were obtained from the medical record. RESULTS The good cognitive recovery group had an interesting trend of higher IL-13 than the poor cognitive recovery group (good cognitive recovery group 257.82 ± 268.76 vs. poor cognitive recovery group 191.67 ± 201.82, p = 0.049, unit: pg/ml). However, Pearson's correlation analysis showed no significant correlation between cytokine levels and gain of cognition, cognitive MRFS, or cognitive MRFS efficiency. Receiver operating characteristic (ROC) analysis of cytokines also suggested a low accuracy of prediction as a predictor for post-stroke cognitive recovery improvement. CONCLUSION Our preliminary findings suggested that the level of serum cytokines had minimal predictive value for the recovery of cognitive function during the subacute inpatient rehabilitation after stroke.
Collapse
Affiliation(s)
- Yuling Zhang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Haixin Song
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
- Rehabilitation Department, Sir Run Run Show Hospital, Hangzhou, China
| | - Jun Wang
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiao Xi
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Philip Cefalo
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
| | - Lisa J. Wood
- William F. Connell School of Nursing at Boston College, Boston, MA, United States
| | - Xun Luo
- School of Medicine, Shenzhen University, Shenzhen, China
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
38
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate T cells that recognize bacterial metabolites and secrete cytokines and cytolytic enzymes to destroy infected target cells. This makes MAIT cells promising targets for immunotherapy to combat bacterial infections. Here, we analyzed the effects of an immunotherapeutic agent, the IL-15 superagonist N-803, on MAIT cell activation, trafficking, and cytolytic function in macaques. We found that N-803 could activate MAIT cells in vitro and increase their ability to produce IFN-γ in response to bacterial stimulation. To expand upon this, we examined the phenotypes and functions of MAIT cells present in samples collected from PBMC, airways (bronchoalveolar lavage [BAL] fluid), and lymph nodes (LN) from rhesus macaques that were treated in vivo with N-803. N-803 treatment led to a transient 6 to 7-fold decrease in the total number of MAIT cells in the peripheral blood, relative to pre N-803 time points. Concurrent with the decrease in cells in the peripheral blood, we observed a rapid decline in the frequency of CXCR3+CCR6+ MAITs. This corresponded with an increase in the frequency of CCR6+ MAITs in the BAL fluid, and higher frequencies of ki-67+ and granzyme B+ MAITs in the blood, LN, and BAL fluid. Finally, N-803 improved the ability of MAIT cells collected from PBMC and airways to produce IFN-γ in response to bacterial stimulation. Overall, N-803 shows the potential to transiently alter the phenotypes and functions of MAIT cells, which could be combined with other strategies to combat bacterial infections.
Collapse
|
39
|
Gupta A, Sharma K, Sharma V, Singh J, Nada R, Saikia B, Minz RW, Anand S, Kumar M. Comparative evaluation of interleukin-10, transforming growth factor-β, and interleukin-17 in gastrointestinal tuberculosis and crohn's disease. Int J Mycobacteriol 2022; 11:384-388. [PMID: 36510922 DOI: 10.4103/ijmy.ijmy_131_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gastrointestinal tuberculosis (GITB) and Crohn's disease (CD) are close mimickers and difficult to discriminate. Recent work has focused on the immunological differences between GITB and CD based on cytokines related to T-regulatory cells and Th17 cells. In the present cross-sectional study, suspected cases of GITB or CD underwent extensive clinical, radiological, endoscopic, histological, and microbiological assessment. The diagnosis was based on standard criteria and response to antitubercular therapy endoscopically. METHODS Interleukin (IL)-10, transforming growth factor-β (TGF-β), and IL-17 were measured and compared between GITB and CD along with other parameters. Fisher's exact test and Mann-Whitney U test were used as per the data type. RESULTS Of the 27 patients, 11 had CD, 9 had GITB, and 7 had other conditions. Chronic diarrhea, involvement of left and long segments of the colon, and aphthous ulcers were significantly more frequent in CD; however, transverse ulcers were in GITB. IL-10 was reduced in both GITB (median-interquartile range [IQR] 9.54 [3.65-24.04]) and CD (median-IQR 13.28 [6.91-22.50]) compared to control (median-IQR 26.72 [10.34-35.43]). TGF-β showed little variation, but IL-17 was below the detection limit in most cases. None of these cytokines were significantly different between CD and GITB. The sensitivity and specificity of multiplex Mycobacterium tuberculosis-polymerase chain reaction were 44.44% and 100%, respectively. CONCLUSION Serum cytokine profiling (IL-10, IL-17, and TGF-β) could not significantly differentiate GITB and CD. Moreover, extensive molecular, transcriptomic, chemokines, and cytokine analyses may shed light on these aspects.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kusum Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jagdeep Singh
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shashi Anand
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mahendra Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
40
|
Gaffney E, Murphy D, Walsh A, Connolly S, Basdeo SA, Keane J, Phelan JJ. Defining the role of neutrophils in the lung during infection: Implications for tuberculosis disease. Front Immunol 2022; 13:984293. [PMID: 36203565 PMCID: PMC9531133 DOI: 10.3389/fimmu.2022.984293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Neutrophils are implicated in the pathogenesis of many diseases involving inflammation. Neutrophils are also critical to host defence and have a key role in the innate immune response to infection. Despite their efficiencies against a wide range of pathogens however, their ability to contain and combat Mycobacterium tuberculosis (Mtb) in the lung remains uncertain and contentious. The host response to Mtb infection is very complex, involving the secretion of various cytokines and chemokines from a wide variety of immune cells, including neutrophils, macrophages, monocytes, T cells, B cells, NK cells and dendritic cells. Considering the contributing role neutrophils play in the advancement of many diseases, understanding how an inflammatory microenvironment affects neutrophils, and how neutrophils interact with other immune cells, particularly in the context of the infected lung, may aid the design of immunomodulatory therapies. In the current review, we provide a brief overview of the mechanisms that underpin pathogen clearance by neutrophils and discuss their role in the context of Mtb and non-Mtb infection. Next, we examine the current evidence demonstrating how neutrophils interact with a range of human and non-human immune cells and how these interactions can differentially prime, activate and alter a repertoire of neutrophil effector functions. Furthermore, we discuss the metabolic pathways employed by neutrophils in modulating their response to activation, pathogen stimulation and infection. To conclude, we highlight knowledge gaps in the field and discuss plausible novel drug treatments that target host neutrophil metabolism and function which could hold therapeutic potential for people suffering from respiratory infections.
Collapse
|
41
|
Acen EL, Kateete DP, Worodria W, Olum R, Joloba ML, Bbuye M, Biraro IA. Evaluation of circulating serum cathelicidin levels as a potential biomarker to discriminate between active and latent tuberculosis in Uganda. PLoS One 2022; 17:e0272788. [PMID: 36018845 PMCID: PMC9416991 DOI: 10.1371/journal.pone.0272788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/26/2022] [Indexed: 01/08/2023] Open
Abstract
Background
Tuberculosis remains a major public health problem worldwide accounting for 1.4 million deaths annually. LL-37 is an effector molecule involved in immunity with both antimicrobial and immunomodulatory properties. The purpose of this study was to compare LL-37 circulatory levels among participants with active and latent tuberculosis and to determine its ability to discriminate between the two infectious states.
Methods
A cross-sectional study was performed among 56 active tuberculosis patients, 49 latent tuberculosis individuals, and 43 individuals without tuberculosis infection. The enzyme-linked immunosorbent assay was used to assess LL-37 levels. Data analysis was performed using STATA software and Graph pad Prism version 8. Mann-Whitney U test was used for correlation between variables with two categories and the Kruskal-Wallis test for three or more categories.
Results
The study had more female participants than males, with similar median ages across the three groups, 29.5, 25.0, and 23.0 years respectively. Active tuberculosis patients had significantly higher LL-37 levels compared to those with latent tuberculosis and without tuberculosis. The median/interquartile ranges were 318.8 ng/ml (157.9–547.1), 242.2 ng/ml (136.2–579.3), 170.9 ng/ml (129.3–228.3); p = 0.002 respectively. Higher LL-37 was found in the male participant with median/interquartile range, 424.8 ng/ml (226.2–666.8) compared to the females 237.7 ng/ml (129.6–466.6); p = 0.045. LL-37 had better discriminatory potential between active tuberculosis and no tuberculosis (AUC = 0.71, sensitivity 71.4% specificity = 69.8%) than with latent tuberculosis (AUC = 0.55, sensitivity = 71.4%, specificity = 44.9%). There was moderate differentiation between latent tuberculosis and no tuberculosis (AUC = 0.63, sensitivity = 44.9% specificity = 90.7%).
Conclusion
Significantly higher LL-37 levels were observed among active tuberculosis patients than those without tuberculosis infection and were, therefore able to discriminate between active tuberculosis and other tuberculosis infectious states, especially with no tuberculosis. Further assessment of this biomarker as a screening tool to exclude tuberculosis is required.
Collapse
Affiliation(s)
- Ester Lilian Acen
- Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- * E-mail:
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - William Worodria
- Pulmonary Division, Department of Medicine, Mulago National Referral Hospital, Kampala, Uganda
| | - Ronald Olum
- Department of Medicine, School of Medicine, College of Health Sciences Unit, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Mudarshiru Bbuye
- Makerere Lung Institute College of Health Sciences, Makerere University, Kampala, Uganda
| | - Irene Andia Biraro
- Department of Medicine, School of Medicine, College of Health Sciences Unit, Makerere University, Kampala, Uganda
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| |
Collapse
|
42
|
Ojuawo O, Allen R, Hagan G, Piracha S. Disseminated tuberculosis associated with deficient interleukin-23/tyrosine kinase 2 signalling. BMJ Case Rep 2022; 15:e250479. [PMID: 35999022 PMCID: PMC9403147 DOI: 10.1136/bcr-2022-250479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Tuberculosis (TB) remains a significant cause of morbidity and mortality globally. The disseminated form of the disease has a worse prognosis and is commonly associated with primary and acquired immunodeficiency states such as HIV/AIDS, post-organ transplant and malnutrition. However, disseminated TB in the context of isolated impaired cellular responses to interleukin (IL)-23 due to tyrosine kinase 2 (TYK2) deficiency has been rarely reported. We highlight the case of a young woman with pulmonary and central nervous system TB associated with previously undiagnosed IL-23/TYK2 signalling defects causing impaired response to IL-23. A significant clinical improvement was observed after introduction of adjunctive interferon-gamma therapy to her anti-tuberculous medications. This case emphasises the need to broadly evaluate for potential immune deficiencies in poorly responding patients with fully sensitive TB as well as the potential benefits of interferon-gamma therapy in patients with certain immune defects.
Collapse
Affiliation(s)
- Olutobi Ojuawo
- Respiratory Medicine, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Ryan Allen
- Respiratory Medicine, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Guy Hagan
- Respiratory Medicine, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Shahbaz Piracha
- Respiratory Medicine, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| |
Collapse
|
43
|
Misra DP, Agarwal V. Th17.1 lymphocytes: emerging players in the orchestra of immune-mediated inflammatory diseases. Clin Rheumatol 2022; 41:2297-2308. [PMID: 35546376 DOI: 10.1007/s10067-022-06202-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
It is now well established that Th17 lymphocytes associate with myriad immune-mediated inflammatory diseases. Over the past one and a half decades, a subset of Th17 lymphocytes viz. Th17.1 lymphocytes has been identified in pre-clinical and clinical models of inflammatory rheumatic diseases. These lymphocytes secrete IL-17A (signature cytokine of Th17 lymphocytes) as well as IFN-γ (the signature cytokine of Th1 lymphocytes). They express the chemokine markers for Th1 (CXCR3) as well as Th17 (CCR6) lymphocytes. Th17.1 lymphocytes also express the drug efflux protein p-glycoprotein, which associates with resistance to corticosteroids and other immunosuppressive drugs. This narrative review overviews the evidence regarding Th17.1 lymphocytes in different inflammatory rheumatic diseases. It is now recognized that Th17.1 lymphocytes are increased in the synovial fluid of affected joints in rheumatoid arthritis (RA) and associate with poor treatment response to abatacept. Th17.1 lymphocytes from synovial fluid of RA are less responsive to immunosuppression than those from the peripheral blood. In sarcoidosis, Th17.1 lymphocytes are concentrated in mediastinal lymph nodes and alveolar lining. Such Th17.1 lymphocytes in sarcoidosis are the predominant source of IFN-γ in the sarcoid lung. Th17.1 lymphocytes are elevated in lupus and Takayasu arteritis and associate with disease activity. Future studies should evaluate isolated Th17.1 lymphocytes from peripheral blood or sites of pathology such as synovial fluid and assess their modulation with immunosuppressive therapy in vitro. The analysis of gene expression signature of isolated Th17.1 lymphocytes might enable the identification of newer therapeutic strategies specifically targeting these cell populations in inflammatory rheumatic diseases. Key Points • Th17.1 lymphocytes are a subset of Th17 lymphocytes secreting both IFN-γ and IL-17 • Th17.1 lymphocytes drive neutrophilic inflammation, granuloma formation, and corticosteroid resistance • Th17.1 lymphocytes are elevated in rheumatoid arthritis and sarcoidosis at sites of inflammation • Increased circulating Th17.1 lymphocytes have been identified in lupus and Takayasu arteritis and associate with active disease.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India.
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India
| |
Collapse
|
44
|
Makatsa MS, Omondi FMA, Bunjun R, Wilkinson RJ, Riou C, Burgers WA. Characterization of Mycobacterium tuberculosis-Specific Th22 Cells and the Effect of Tuberculosis Disease and HIV Coinfection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:446-455. [PMID: 35777848 PMCID: PMC9339498 DOI: 10.4049/jimmunol.2200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 02/03/2023]
Abstract
The development of a highly effective tuberculosis (TB) vaccine is likely dependent on our understanding of what constitutes a protective immune response to TB. Accumulating evidence suggests that CD4+ T cells producing IL-22, a distinct subset termed "Th22" cells, may contribute to protective immunity to TB. Thus, we characterized Mycobacterium tuberculosis-specific Th22 (and Th1 and Th17) cells in 72 people with latent TB infection or TB disease, with and without HIV-1 infection. We investigated the functional properties (IFN-γ, IL-22, and IL-17 production), memory differentiation (CD45RA, CD27, and CCR7), and activation profile (HLA-DR) of M. tuberculosis-specific CD4+ T cells. In HIV-uninfected individuals with latent TB infection, we detected abundant circulating IFN-γ-producing CD4+ T cells (median, 0.93%) and IL-22-producing CD4+ T cells (median, 0.46%) in response to M. tuberculosis The frequency of IL-17-producing CD4+ T cells was much lower, at a median of 0.06%. Consistent with previous studies, IL-22 was produced by a distinct subset of CD4+ T cells and not coexpressed with IL-17. M. tuberculosis-specific IL-22 responses were markedly reduced (median, 0.08%) in individuals with TB disease and HIV coinfection compared with IFN-γ responses. M. tuberculosis-specific Th22 cells exhibited a distinct memory and activation phenotype compared with Th1 and Th17 cells. Furthermore, M. tuberculosis-specific IL-22 was produced by conventional CD4+ T cells that required TCR engagement. In conclusion, we confirm that Th22 cells are a component of the human immune response to TB. Depletion of M. tuberculosis-specific Th22 cells during HIV coinfection may contribute to increased risk of TB disease.
Collapse
Affiliation(s)
- Mohau S Makatsa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - F Millicent A Omondi
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rubina Bunjun
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Imperial College London, London, U.K.; and
- Francis Crick Institute Mill Hill laboratory, London, U.K
| | - Catherine Riou
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa;
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
45
|
Lopez J, Anna F, Authié P, Pawlik A, Ku MW, Blanc C, Souque P, Moncoq F, Noirat A, Hardy D, Sougakoff W, Brosch R, Guinet F, Charneau P, Majlessi L. A lentiviral vector encoding fusion of light invariant chain and mycobacterial antigens induces protective CD4 + T cell immunity. Cell Rep 2022; 40:111142. [PMID: 35905717 DOI: 10.1016/j.celrep.2022.111142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022] Open
Abstract
Lentiviral vectors (LVs) are highly efficient at inducing CD8+ T cell responses. However, LV-encoded antigens are processed inside the cytosol of antigen-presenting cells, which does not directly communicate with the endosomal major histocompatibility complex class II (MHC-II) presentation pathway. LVs are thus poor at inducing CD4+ T cell response. To overcome this limitation, we devised a strategy whereby LV-encoded antigens are extended at their N-terminal end with the MHC-II-associated light invariant chain (li), which contains an endosome-targeting signal sequence. When evaluated with an LV-encoded polyantigen composed of CD4+ T cell targets from Mycobacterium tuberculosis, intranasal vaccination in mice triggers pulmonary polyfunctional CD4+ and CD8+ T cell responses. Adjuvantation of these LVs extends the mucosal immunity to Th17 and Tc17 responses. A systemic prime and an intranasal boost with one of these LV induces protection against M. tuberculosis. This strategy improves the protective power of LVs against infections and cancers, where CD4+ T cell immunity plays an important role.
Collapse
Affiliation(s)
- Jodie Lopez
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - François Anna
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Pierre Authié
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Alexandre Pawlik
- Institut Pasteur, Integrated Mycobacterial Pathogenomics Unit, CNRS UMR 3525, Université Paris Cité, 25 rue du Dr. Roux, 75015 Paris, France
| | - Min-Wen Ku
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Catherine Blanc
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Philippe Souque
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Fanny Moncoq
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Amandine Noirat
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - David Hardy
- Institut Pasteur, Histopathology Platform, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Wladimir Sougakoff
- Sorbonne Universités, UPMC Université Paris 06, CIMI-Paris, AP-HP, Hôpital Pitié-Salpêtrière, CNR-MyRMA, 75013 Paris, France
| | - Roland Brosch
- Institut Pasteur, Integrated Mycobacterial Pathogenomics Unit, CNRS UMR 3525, Université Paris Cité, 25 rue du Dr. Roux, 75015 Paris, France
| | - Françoise Guinet
- Institut Pasteur, Lymphocytes and Immunity Unit, Université Paris Cité, 25 rue du Dr. Roux, 75015 Paris, France
| | - Pierre Charneau
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Laleh Majlessi
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
46
|
Wang J, Geng X, Zhang X, Xiao Y, Wang W. Hepatitis B Virus Reactivation and Mycobacterial Infections Associated With Ustekinumab: A Retrospective Study of an International Pharmacovigilance Database. Front Pharmacol 2022; 13:921084. [PMID: 35860015 PMCID: PMC9289361 DOI: 10.3389/fphar.2022.921084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Reports were recently published on hepatitis B virus reactivation (HBVr), tuberculosis (TB), and atypical mycobacterial infection (AMI) in patients with ustekinumab treatment. However, the literature is limited to case reports and series. The study was aimed to investigate their relationships by using an extensive population-based database. Methods: Using the United States Food and Drug Administration Adverse Event Reporting System (FAERS) database, we collected all cases of HBVr, TB, and AMI between 1 January 2009 and 30 September 2021, for ustekinumab and other drugs. Disproportionality was analyzed using the reporting odds ratio (ROR), which was considered significant when the lower limit of the 95% confidence interval (95% CI) was >1. Results: Of the 18,760,438 adverse cases reported to FAERS for all drugs, 56,581 cases had been exposed to ustekinumab. Adverse events of HBVr, TB, and AMI were reported in 21, 210, and 20 cases, respectively. The ROR for HBVr with ustekinumab was 2.33 (95% CI, 1.52-3.58), for TB was 5.09 (95% CI, 4.44-5.84), and for AMI was 2.09 (95% CI, 1.35-3.24). In the ustekinumab exposure group, no death occurred in patients with HBVr, but one patient experienced life-threatening liver failure. For those with TB, 24 cases experienced hospitalization and 2 deaths occurred. No death occurred in patients with AMI but eight experienced hospitalization. Conclusion: We identified positive signals between ustekinumab exposure and HBVr, TB, and AMI in FAERS. Although these complications are rare, clinicians using ustekinumab should be aware of the risks.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Pediatrics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaozhen Geng
- Department of Infectious Diseases, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xin Zhang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanfeng Xiao
- Department of Pediatrics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenjun Wang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
47
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
48
|
Brito ACD, Oliveira CMMD, Unger DAA, Bittencourt MDJS. Cutaneous tuberculosis: epidemiological, clinical, diagnostic and therapeutic update. An Bras Dermatol 2022; 97:129-144. [PMID: 34996655 PMCID: PMC9073256 DOI: 10.1016/j.abd.2021.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis is certainly one of the diseases considered to be ancient on planet Earth. The etiological agent of tuberculosis is Mycobacterium tuberculosis. This terrible bacterial infection still results in severe socioeconomic consequences to date, and its complete eradication represents a great challenge. It constitutes one of the most important public health problems in developing countries. According to the World Health Organization, this infection results in more than 4,000 deaths daily worldwide, with 10.4 million being affected annually and 1.5 million deaths from TB every year. With the emergence of the HIV/AIDS pandemic, the disease became the main cause of morbidity and mortality in patients infected with the human immunodeficiency virus. Cutaneous tuberculosis is a rare infection that represents 1% to 1.5% of extrapulmonary tuberculosis, whose etiological agents are Mycobacterium tuberculosis, Mycobacterium bovis, and the attenuated form of the bacillus Calmette-Guérin (BCG vaccine). Cutaneous tuberculosis can be exogenous; endogenous: caused by contiguity or autoinoculation and by hematogenous spread; induced by the Calmette-Guérin bacillus and manifest as a tuberculid. The diagnosis of the infection is carried out through the direct test, culture, histopathology, tuberculin skin test, polymerase chain reaction, interferon-gamma release assay, and genotyping. Drugs used comprise isoniazid, rifampicin, pyrazinamide and ethambutol.
Collapse
|
49
|
Firouzi Z, Jaafari MR, Sankian M, Zare S, Tafaghodi M. A novel nanomicelle composed from PEGylated TB di-peptide could be successfully used as a BCG booster. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:223-231. [PMID: 35655599 PMCID: PMC9124544 DOI: 10.22038/ijbms.2022.61373.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/12/2022] [Indexed: 11/06/2022]
Abstract
Objectives Tuberculosis affects one-third of the world's population and leads to a high rate of morbidity and mortality. Bacillus Chalmette-Guerin (BCG) as the only approved vaccine for the Mycobacterium tuberculosis (Mtb) does not show enough protection in the vaccinated population. Materials and Methods The main aim of this study was to prepare a self-assembled nanomicelle composed from a di-block polymer in which, a di-fusion peptide was the hydrophobic block and polyethylene glycol (PEG) was the hydrophilic block. The micelles were characterized in vitro and in vivo as an antigen delivery system/adjuvant both with and without a prime BCG. Results The micellar nanovaccine was able to elicit good dendritic cell maturation. Nanomicelles could efficiently induce systemic cytokines as well as nasal secretory predominant antibody titers (sIgA). The expression pattern of cytokines indicated the superiority of cellular immunity. Nasal administration of two doses of nanomicelles after a prime subcutaneous administration of BCG induced the highest mucosal and systemic immune responses. Conclusion Based on our results PEG-HspX/EsxS self-assembled nanomicelle is highly immunogenic and can be considered a potential vaccine candidate against Mtb to boost BCG efficiency.
Collapse
Affiliation(s)
- Zohreh Firouzi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran, Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran, Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Laboratory, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirwan Zare
- Immunobiochemistry Laboratory, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran, Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Mohsen Tafaghodi. School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-31801337; Fax: +98-51-38823251;
| |
Collapse
|
50
|
Ouyang J, Zaongo SD, Zhang X, Qi M, Hu A, Wu H, Chen Y. Microbiota-Meditated Immunity Abnormalities Facilitate Hepatitis B Virus Co-Infection in People Living With HIV: A Review. Front Immunol 2022; 12:755890. [PMID: 35069530 PMCID: PMC8770824 DOI: 10.3389/fimmu.2021.755890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) co-infection is fairly common in people living with HIV (PLWH) and affects millions of people worldwide. Identical transmission routes and HIV-induced immune suppression have been assumed to be the main factors contributing to this phenomenon. Moreover, convergent evidence has shown that people co-infected with HIV and HBV are more likely to have long-term serious medical problems, suffer more from liver-related diseases, and have higher mortality rates, compared to individuals infected exclusively by either HIV or HBV. However, the precise mechanisms underlying the comorbid infection of HIV and HBV have not been fully elucidated. In recent times, the human gastrointestinal microbiome is progressively being recognized as playing a pivotal role in modulating immune function, and is likely to also contribute significantly to critical processes involving systemic inflammation. Both antiretroviral therapy (ART)-naïve HIV-infected subjects and ART-treated individuals are now known to be characterized by having gut microbiomic dysbiosis, which is associated with a damaged intestinal barrier, impaired mucosal immunological functioning, increased microbial translocation, and long-term immune activation. Altered microbiota-related products in PLWH, such as lipopolysaccharide (LPS) and short-chain fatty acids (SCFA), have been associated with the development of leaky gut syndrome, favoring microbial translocation, which in turn has been associated with a chronically activated underlying host immune response and hence the facilitated pathogenesis of HBV infection. Herein, we critically review the interplay among gut microbiota, immunity, and HIV and HBV infection, thus laying down the groundwork with respect to the future development of effective strategies to efficiently restore normally diversified gut microbiota in PLWH with a dysregulated gut microbiome, and thus potentially reduce the prevalence of HBV infection in this population.
Collapse
Affiliation(s)
- Jing Ouyang
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xue Zhang
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Miaomiao Qi
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Aizhen Hu
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Hao Wu
- Department of Infectious Diseases, You'an Hospital, Capital Medical University, Beijing, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|