1
|
Gupta MK, Gouda G, Moazzam-Jazi M, Vadde R, Nagaraju GP, El-Rayes BF. CRISPR/Cas9-directed epigenetic editing in colorectal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189338. [PMID: 40315964 DOI: 10.1016/j.bbcan.2025.189338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/21/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related illness and death worldwide, arising from a complex interplay of genetic predisposition, environmental influences, and epigenetic dysregulation. Among these factors, epigenetic modifications-reversible and heritable changes in gene expression-serve as crucial regulators of CRC progression. Understanding these modifications is essential for identifying potential biomarkers for early diagnosis and developing targeted therapeutic strategies. Epigenetic drugs (epidrugs) such as DNA methyltransferase inhibitors (e.g., decitabine) and bromodomain inhibitors (e.g., JQ1) have shown promise in modulating aberrant epigenetic changes in CRC. However, challenges such as drug specificity, delivery, and safety concerns limit their clinical application. Advances in CRISPR-Cas9-based epigenetic editing offer a more precise approach to modifying specific epigenetic markers, presenting a potential breakthrough in CRC treatment. Despite its promise, CRISPR-based epigenome editing may result in unintended genetic modifications, necessitating stringent regulations and safety assessments. Beyond pharmacological interventions, lifestyle factors-including diet and gut microbiome composition-play a significant role in shaping the epigenetic landscape of CRC. Nutritional and microbiome-based interventions have shown potential in preventing CRC development by maintaining intestinal homeostasis and reducing tumor-promoting epigenetic changes. This review provides a comprehensive overview of epigenetic alterations in CRC, exploring their implications for diagnosis, prevention, and treatment. By integrating multi-omics approaches, single-cell technologies, and model organism studies, future research can enhance the specificity and efficacy of epigenetic-based therapies. Shortly, a combination of advanced gene-editing technologies, targeted epidrugs, and lifestyle interventions may pave the way for more effective and personalized CRC treatment strategies.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack 753 006, Odisha, India
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Division of Hematology & Oncology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Division of Hematology & Oncology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
2
|
Boraschi D, Penton-Rol G, Amodu O, Blomberg MT. Editorial: Women in cytokines and soluble mediators in immunity. Front Immunol 2024; 15:1395165. [PMID: 38550586 PMCID: PMC10973138 DOI: 10.3389/fimmu.2024.1395165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Affiliation(s)
- Diana Boraschi
- Laboratory Inflammation and Vaccines, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giselle Penton-Rol
- Center for Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
- Department of Physiological Sciences, Professor of Immunology at the Latin American School of Medicine (ELAM), Havana, Cuba
| | - Olukemi Amodu
- Genetics and Molecular Sciences Unit, Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Marita Troye Blomberg
- Department Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Lumpp T, Stößer S, Fischer F, Hartwig A, Köberle B. Role of Epigenetics for the Efficacy of Cisplatin. Int J Mol Sci 2024; 25:1130. [PMID: 38256203 PMCID: PMC10816946 DOI: 10.3390/ijms25021130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The clinical utility of the chemotherapeutic agent cisplatin is restricted by cancer drug resistance, which is either intrinsic to the tumor or acquired during therapy. Epigenetics is increasingly recognized as a factor contributing to cisplatin resistance and hence influences drug efficacy and clinical outcomes. In particular, epigenetics regulates gene expression without changing the DNA sequence. Common types of epigenetic modifications linked to chemoresistance are DNA methylation, histone modification, and non-coding RNAs. This review provides an overview of the current findings of various epigenetic modifications related to cisplatin efficacy in cell lines in vitro and in clinical tumor samples. Furthermore, it discusses whether epigenetic alterations might be used as predictors of the platinum agent response in order to prevent avoidable side effects in patients with resistant malignancies. In addition, epigenetic targeting therapies are described as a possible strategy to render cancer cells more susceptible to platinum drugs.
Collapse
Affiliation(s)
| | | | | | | | - Beate Köberle
- Department Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (T.L.); (S.S.); (F.F.); (A.H.)
| |
Collapse
|
4
|
Grypioti E, Richard H, Kryovrysanaki N, Jaubert M, Falciatore A, Verret F, Kalantidis K. Dicer-dependent heterochromatic small RNAs in the model diatom species Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:811-826. [PMID: 38044751 DOI: 10.1111/nph.19429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Diatoms are eukaryotic microalgae responsible for nearly half of the marine productivity. RNA interference (RNAi) is a mechanism of regulation of gene expression mediated by small RNAs (sRNAs) processed by the endoribonuclease Dicer (DCR). To date, the mechanism and physiological role of RNAi in diatoms are unknown. We mined diatom genomes and transcriptomes for key RNAi effectors and retraced their phylogenetic history. We generated DCR knockout lines in the model diatom species Phaeodactylum tricornutum and analyzed their mRNA and sRNA populations, repression-associated histone marks, and acclimatory response to nitrogen starvation. Diatoms presented a diversification of key RNAi effectors whose distribution across species suggests the presence of distinct RNAi pathways. P. tricornutum DCR was found to process 26-31-nt-long double-stranded sRNAs originating mostly from transposons covered by repression-associated epigenetic marks. In parallel, P. tricornutum DCR was necessary for the maintenance of the repression-associated histone marks H3K9me2/3 and H3K27me3. Finally, PtDCR-KO lines presented a compromised recovery post nitrogen starvation suggesting a role for P. tricornutum DCR in the acclimation to nutrient stress. Our study characterized the molecular function of the single DCR homolog of P. tricornutum suggesting an association between RNAi and heterochromatin maintenance in this model diatom species.
Collapse
Affiliation(s)
- Emilia Grypioti
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Institute of Marine Biology and Aquaculture, Hellenic Center for Marine Research, 71500, Gournes, Crete, Greece
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
| | - Hugues Richard
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Bioinformatics Unit, Genome Competence Center (MF1), Robert Koch Institute, 13353, Berlin, Germany
| | - Nikoleta Kryovrysanaki
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
| | - Marianne Jaubert
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005, Paris, France
| | - Angela Falciatore
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005, Paris, France
| | - Frédéric Verret
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Institute of Marine Biology and Aquaculture, Hellenic Center for Marine Research, 71500, Gournes, Crete, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
| |
Collapse
|
5
|
Mattick JS. A Kuhnian revolution in molecular biology: Most genes in complex organisms express regulatory RNAs. Bioessays 2023; 45:e2300080. [PMID: 37318305 DOI: 10.1002/bies.202300080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Thomas Kuhn described the progress of science as comprising occasional paradigm shifts separated by interludes of 'normal science'. The paradigm that has held sway since the inception of molecular biology is that genes (mainly) encode proteins. In parallel, theoreticians posited that mutation is random, inferred that most of the genome in complex organisms is non-functional, and asserted that somatic information is not communicated to the germline. However, many anomalies appeared, particularly in plants and animals: the strange genetic phenomena of paramutation and transvection; introns; repetitive sequences; a complex epigenome; lack of scaling of (protein-coding) genes and increase in 'noncoding' sequences with developmental complexity; genetic loci termed 'enhancers' that control spatiotemporal gene expression patterns during development; and a plethora of 'intergenic', overlapping, antisense and intronic transcripts. These observations suggest that the original conception of genetic information was deficient and that most genes in complex organisms specify regulatory RNAs, some of which convey intergenerational information. Also see the video abstract here: https://youtu.be/qxeGwahBANw.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Podder A, Ahmed FF, Suman MZH, Mim AY, Hasan K. Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory element analyses in sunflower (Helianthus annuus). PLoS One 2023; 18:e0286994. [PMID: 37294803 PMCID: PMC10256174 DOI: 10.1371/journal.pone.0286994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/27/2023] [Indexed: 06/11/2023] Open
Abstract
RNA interference (RNAi) regulates a variety of eukaryotic gene expressions that are engaged in response to stress, growth, and the conservation of genomic stability during developmental phases. It is also intimately connected to the post-transcriptional gene silencing (PTGS) process and chromatin modification levels. The entire process of RNA interference (RNAi) pathway gene families mediates RNA silencing. The main factors of RNA silencing are the Dicer-Like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) gene families. To the best of our knowledge, genome-wide identification of RNAi gene families like DCL, AGO, and RDR in sunflower (Helianthus annuus) has not yet been studied despite being discovered in some species. So, the goal of this study is to find the RNAi gene families like DCL, AGO, and RDR in sunflower based on bioinformatics approaches. Therefore, we accomplished an inclusive in silico investigation for genome-wide identification of RNAi pathway gene families DCL, AGO, and RDR through bioinformatics approaches such as (sequence homogeneity, phylogenetic relationship, gene structure, chromosomal localization, PPIs, GO, sub-cellular localization). In this study, we have identified five DCL (HaDCLs), fifteen AGO (HaAGOs), and ten RDR (HaRDRs) in the sunflower genome database corresponding to the RNAi genes of model plant Arabidopsis thaliana based on genome-wide analysis and a phylogenetic method. The analysis of the gene structure that contains exon-intron numbers, conserved domain, and motif composition analyses for all HaDCL, HaAGO, and HaRDR gene families indicated almost homogeneity among the same gene family. The protein-protein interaction (PPI) network analysis illustrated that there exists interconnection among identified three gene families. The analysis of the Gene Ontology (GO) enrichment showed that the detected genes directly contribute to the RNA gene-silencing and were involved in crucial pathways. It was observed that the cis-acting regulatory components connected to the identified genes were shown to be responsive to hormone, light, stress, and other functions. That was found in HaDCL, HaAGO, and HaRDR genes associated with the development and growth of plants. Finally, we are able to provide some essential information about the components of sunflower RNA silencing through our genome-wide comparison and integrated bioinformatics analysis, which open the door for further research into the functional mechanisms of the identified genes and their regulatory elements.
Collapse
Affiliation(s)
- Anamika Podder
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Zahid Hasan Suman
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Afsana Yeasmin Mim
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Khadiza Hasan
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
7
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 923] [Impact Index Per Article: 461.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Ahmed FF, Hossen MI, Sarkar MAR, Konak JN, Zohra FT, Shoyeb M, Mondal S. Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory elements analyses in banana (Musa acuminata). PLoS One 2021; 16:e0256873. [PMID: 34473743 PMCID: PMC8412350 DOI: 10.1371/journal.pone.0256873] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
RNA silencing is mediated through RNA interference (RNAi) pathway gene families, i.e., Dicer-Like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) and their cis-acting regulatory elements. The RNAi pathway is also directly connected with the post-transcriptional gene silencing (PTGS) mechanism, and the pathway controls eukaryotic gene regulation during growth, development, and stress response. Nevertheless, genome-wide identification of RNAi pathway gene families such as DCL, AGO, and RDR and their regulatory network analyses related to transcription factors have not been studied in many fruit crop species, including banana (Musa acuminata). In this study, we studied in silico genome-wide identification and characterization of DCL, AGO, and RDR genes in bananas thoroughly via integrated bioinformatics approaches. A genome-wide analysis identified 3 MaDCL, 13 MaAGO, and 5 MaRDR candidate genes based on multiple sequence alignment and phylogenetic tree related to the RNAi pathway in banana genomes. These genes correspond to the Arabidopsis thaliana RNAi silencing genes. The analysis of the conserved domain, motif, and gene structure (exon-intron numbers) for MaDCL, MaAGO, and MaRDR genes showed higher homogeneity within the same gene family. The Gene Ontology (GO) enrichment analysis exhibited that the identified RNAi genes could be involved in RNA silencing and associated metabolic pathways. A number of important transcription factors (TFs), e.g., ERF, Dof, C2H2, TCP, GATA and MIKC_MADS families, were identified by network and sub-network analyses between TFs and candidate RNAi gene families. Furthermore, the cis-acting regulatory elements related to light-responsive (LR), stress-responsive (SR), hormone-responsive (HR), and other activities (OT) functions were identified in candidate MaDCL, MaAGO, and MaRDR genes. These genome-wide analyses of these RNAi gene families provide valuable information related to RNA silencing, which would shed light on further characterization of RNAi genes, their regulatory elements, and functional roles, which might be helpful for banana improvement in the breeding program.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
- * E-mail:
| | - Md. Imran Hossen
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Faculty of Biological Science and Technology, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Jesmin Naher Konak
- Faculty of Life Science, Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Fatema Tuz Zohra
- Faculty of Agriculture, Laboratory of Fruit Science, Saga University, Honjo-machi, Saga, Japan
| | - Md. Shoyeb
- Faculty of Biological Science and Technology, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Samiran Mondal
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
9
|
Hereme R, Galleguillos C, Morales-Navarro S, Molina-Montenegro MA. What if the cold days return? Epigenetic mechanisms in plants to cold tolerance. PLANTA 2021; 254:46. [PMID: 34370110 DOI: 10.1007/s00425-021-03694-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The epigenetic could be an important, but seldom assessed, mechanisms in plants inhabiting cold ecosystems. Thus, this review could help to fill a gap in the current literature. Low temperatures are one of the most critical environmental conditions that negatively affect the growth, development, and geographic distribution of plants. Exposure to low temperatures results in a suit of physiological, biochemical and molecular modifications through the reprogramming of the expression of genes and transcription factors. Scientific evidence shows that the average annual temperature has increased in recent years worldwide, with cold ecosystems (polar and high mountain) being among the most sensitive to these changes. However, scientific evidence also indicates that there would be specific events of low temperatures, due it is highly relevant to know the capacity for adaptation, regulation and epigenetic memory in the face of these events, by plants. Epigenetic regulation has been described to play an important role in the face of environmental stimuli, especially in response to abiotic stress. Several studies on epigenetic mechanisms have focused on responses to stress as drought and/or salinity; however, there is a gap in the current literature considering those related to low temperatures. In this review, we focus on systematizing the information published to date, related to the regulation of epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA-dependent silencing mechanisms, in the face of plant´s stress due to low temperatures. Finally, we present a schematic model about the potential responses by plants taking in count their epigenetic memory; considering a global warming scenario and with the presence or absence of extreme specific events of low temperatures.
Collapse
Affiliation(s)
- Rasme Hereme
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile
| | | | | | - Marco A Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile.
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile.
- Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
10
|
A structure-based approach for the development of a bicyclic peptide acting as a miniaturized anti-CD55 antibody. Int J Biol Macromol 2021; 182:1455-1462. [PMID: 34015405 DOI: 10.1016/j.ijbiomac.2021.05.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/20/2023]
Abstract
CD55 is a major regulator of the complement system, a complex network of proteins that cooperate to clear tissue and blood pathogens from the organism. Indeed, overexpression of CD55 is associated with many diseases and is connected to the resistance mechanisms exhibited by several cancers towards immunotherapy approaches. High level of CD55 expression on tumour cells renders it a good target for both imaging and immunotherapy. Indeed, a conceivable approach to tackle disease is to interfere with CD55-mediated complement regulation with the use of CD55-targeting antibodies. However, the large size and poor tissue penetration together with to the high costs of antibodies often limits their widespread therapeutic use. Here, we employed bioinformatic and chemical approaches to design and synthesize molecules of small dimensions able to mimic a CD55 blocking antibody. As a result, a bicyclic peptide, named as miniAB55, proved to bind CD55 with nanomolar affinity. This molecule represents an attracting chemical scaffold for CD55-directed diagnostic tools in diseases associated with CD55 overproduction. To further support the applicative potential of miniAB55, we prove that the miniAB55 binds CD55 on the same region involved in inactivation of the complement C3 and C5 convertases, thus opening promising scenarios for the development of complement-modulating tools.
Collapse
|
11
|
Liao Z, Nie H, Wang Y, Luo J, Zhou J, Ou C. The Emerging Landscape of Long Non-Coding RNAs in Colorectal Cancer Metastasis. Front Oncol 2021; 11:641343. [PMID: 33718238 PMCID: PMC7947863 DOI: 10.3389/fonc.2021.641343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers, with extremely high rates of morbidity and mortality. The main cause of death in CRC is distant metastasis; it affects patient prognosis and survival and is one of the key challenges in the treatment of CRC. Long non-coding RNAs (lncRNAs) are a group of non-coding RNA molecules with more than 200 nucleotides. Abnormal lncRNA expression is closely related to the occurrence and progression of several diseases, including cancer. Recent studies have shown that numerous lncRNAs play pivotal roles in the CRC metastasis, and reversing the expression of these lncRNAs through artificial means can reduce the malignant phenotype of metastatic CRC to some extent. This review summarizes the major mechanisms of lncRNAs in CRC metastasis and proposes lncRNAs as potential therapeutic targets for CRC and molecular markers for early diagnosis.
Collapse
Affiliation(s)
- Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Luo
- Teaching and Research Room of Biochemistry and Molecular Biology, Medical School of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Epigenetic reprogramming during prostate cancer progression: A perspective from development. Semin Cancer Biol 2021; 83:136-151. [PMID: 33545340 DOI: 10.1016/j.semcancer.2021.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Conrad Waddington's theory of epigenetic landscape epitomize the process of cell fate and cellular decision-making during development. Wherein the epigenetic code maintains patterns of gene expression in pluripotent and differentiated cellular states during embryonic development and differentiation. Over the years disruption or reprogramming of the epigenetic landscape has been extensively studied in the course of cancer progression. Cellular dedifferentiation being a key hallmark of cancer allow us to take cues from the biological processes involved during development. Here, we discuss the role of epigenetic landscape and its modifiers in cell-fate determination, differentiation and prostate cancer progression. Lately, the emergence of RNA-modifications has also furthered our understanding of epigenetics in cancer. The overview of the epigenetic code regulating androgen signalling, and progression to aggressive neuroendocrine stage of PCa reinforces its gene regulatory functions during the development of prostate gland as well as cancer progression. Additionally, we also highlight the clinical implications of cancer cell epigenome, and discuss the recent advancements in the therapeutic strategies targeting the advanced stage disease.
Collapse
|
13
|
Mendenhall AR, Martin GM, Kaeberlein M, Anderson RM. Cell-to-cell variation in gene expression and the aging process. GeroScience 2021; 43:181-196. [PMID: 33595768 PMCID: PMC8050212 DOI: 10.1007/s11357-021-00339-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
There is tremendous variation in biological traits, and much of it is not accounted for by variation in DNA sequence, including human diseases and lifespan. Emerging evidence points to differences in the execution of the genetic program as a key source of variation, be it stochastic variation or programmed variation. Here we discuss variation in gene expression as an intrinsic property and how it could contribute to variation in traits, including the rate of aging. The review is divided into sections describing the historical context and evidence to date for nongenetic variation, the different approaches that may be used to detect nongenetic variation, and recent findings showing that the amount of variation in gene expression can be both genetically programmed and epigenetically controlled. Finally, we present evidence that changes in cell-to-cell variation in gene expression emerge as part of the aging process and may be linked to disease vulnerability as a function of age. These emerging concepts are likely to be important across the spectrum of biomedical research and may well underpin what we understand as biological aging.
Collapse
Affiliation(s)
- Alexander R Mendenhall
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA.
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA.
| | - George M Martin
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin and Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
14
|
Mosharaf MP, Rahman H, Ahsan MA, Akond Z, Ahmed FF, Islam MM, Moni MA, Mollah MNH. In silico identification and characterization of AGO, DCL and RDR gene families and their associated regulatory elements in sweet orange (Citrus sinensis L.). PLoS One 2020; 15:e0228233. [PMID: 33347517 PMCID: PMC7751981 DOI: 10.1371/journal.pone.0228233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
RNA interference (RNAi) plays key roles in post-transcriptional and chromatin modification levels as well as regulates various eukaryotic gene expressions which are involved in stress responses, development and maintenance of genome integrity during developmental stages. The whole mechanism of RNAi pathway is directly involved with the gene-silencing process by the interaction of Dicer-Like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) gene families and their regulatory elements. However, these RNAi gene families and their sub-cellular locations, functional pathways and regulatory components were not extensively investigated in the case of economically and nutritionally important fruit plant sweet orange (Citrus sinensis L.). Therefore, in silico characterization, gene diversity and regulatory factor analysis of RNA silencing genes in C. sinensis were conducted by using the integrated bioinformatics approaches. Genome-wide comparison analysis based on phylogenetic tree approach detected 4 CsDCL, 8 CsAGO and 4 CsRDR as RNAi candidate genes in C. sinensis corresponding to the RNAi genes of model plant Arabidopsis thaliana. The domain and motif composition and gene structure analyses for all three gene families exhibited almost homogeneity within the same group members. The Gene Ontology enrichment analysis clearly indicated that the predicted genes have direct involvement into the gene-silencing and other important pathways. The key regulatory transcription factors (TFs) MYB, Dof, ERF, NAC, MIKC_MADS, WRKY and bZIP were identified by their interaction network analysis with the predicted genes. The cis-acting regulatory elements associated with the predicted genes were detected as responsive to light, stress and hormone functions. Furthermore, the expressed sequence tag (EST) analysis showed that these RNAi candidate genes were highly expressed in fruit and leaves indicating their organ specific functions. Our genome-wide comparison and integrated bioinformatics analyses provided some necessary information about sweet orange RNA silencing components that would pave a ground for further investigation of functional mechanism of the predicted genes and their regulatory factors.
Collapse
Affiliation(s)
- Md. Parvez Mosharaf
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Hafizur Rahman
- Department of Microbiology, Rajshahi Institute of Biosciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Asif Ahsan
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Zobaer Akond
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Institute of Environmental Science, University of Rajshahi, Rajshahi, Bangladesh
- Agricultural Statistics and ICT Division, Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh
| | - Fee Faysal Ahmed
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Mazharul Islam
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammad Ali Moni
- The University of Sydney, Sydney Medical School, School of Medical Sciences, Discipline of Biomedical Science, Sydney, New South Wales, Australia
| | - Md. Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail:
| |
Collapse
|
15
|
Tsurumi A, Li WX. Aging mechanisms-A perspective mostly from Drosophila. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10026. [PMID: 36619249 PMCID: PMC9744567 DOI: 10.1002/ggn2.10026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/11/2023]
Abstract
A mechanistic understanding of the natural aging process, which is distinct from aging-related disease mechanisms, is essential for developing interventions to extend lifespan or healthspan. Here, we discuss current trends in aging research and address conceptual and experimental challenges in the field. We examine various molecular markers implicated in aging with an emphasis on the role of heterochromatin and epigenetic changes. Studies in model organisms have been advantageous in elucidating conserved genetic and epigenetic mechanisms and assessing interventions that affect aging. We highlight the use of Drosophila, which allows controlled studies for evaluating genetic and environmental contributors to aging conveniently. Finally, we propose the use of novel methodologies and future strategies using Drosophila in aging research.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of SurgeryMassachusetts General Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Microbiology and ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Hospitals for Children‐Boston®BostonMassachusettsUSA
| | - Willis X. Li
- Department of MedicineUniversity of California at San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
16
|
Yadav RP, Mäkelä JA, Hyssälä H, Cisneros-Montalvo S, Kotaja N. DICER regulates the expression of major satellite repeat transcripts and meiotic chromosome segregation during spermatogenesis. Nucleic Acids Res 2020; 48:7135-7153. [PMID: 32484548 PMCID: PMC7367195 DOI: 10.1093/nar/gkaa460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/23/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Constitutive heterochromatin at the pericentric regions of chromosomes undergoes dynamic changes in its epigenetic and spatial organization during spermatogenesis. Accurate control of pericentric heterochromatin is required for meiotic cell divisions and production of fertile and epigenetically intact spermatozoa. In this study, we demonstrate that pericentric heterochromatin is expressed during mouse spermatogenesis to produce major satellite repeat (MSR) transcripts. We show that the endonuclease DICER localizes to the pericentric heterochromatin in the testis. Furthermore, DICER forms complexes with MSR transcripts, and their processing into small RNAs is compromised in Dicer1 knockout mice leading to an elevated level of MSR transcripts in meiotic cells. We also show that defective MSR forward transcript processing in Dicer1 cKO germ cells is accompanied with reduced recruitment of SUV39H2 and H3K9me3 to the pericentric heterochromatin and meiotic chromosome missegregation. Altogether, our results indicate that the physiological role of DICER in maintenance of male fertility extends to the regulation of pericentric heterochromatin through direct targeting of MSR transcripts.
Collapse
Affiliation(s)
- Ram Prakash Yadav
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Juho-Antti Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Hanna Hyssälä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Sheyla Cisneros-Montalvo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Noora Kotaja
- To whom correspondence should be addressed. Tel: +358 44 2539225;
| |
Collapse
|
17
|
Soleimani S, Valizadeh Arshad Z, Moradi S, Ahmadi A, Davarpanah SJ, Azimzadeh Jamalkandi S. Small regulatory noncoding RNAs in Drosophila melanogaster: biogenesis and biological functions. Brief Funct Genomics 2020; 19:309-323. [PMID: 32219422 DOI: 10.1093/bfgp/elaa005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
RNA interference (RNAi) is an important phenomenon that has diverse genetic regulatory functions at the pre- and posttranscriptional levels. The major trigger for the RNAi pathway is double-stranded RNA (dsRNA). dsRNA is processed to generate various types of major small noncoding RNAs (ncRNAs) that include microRNAs (miRNAs), small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) in Drosophila melanogaster (D. melanogaster). Functionally, these small ncRNAs play critical roles in virtually all biological systems and developmental pathways. Identification and processing of dsRNAs and activation of RNAi machinery are the three major academic interests that surround RNAi research. Mechanistically, some of the important biological functions of RNAi are achieved through: (i) supporting genomic stability via degradation of foreign viral genomes; (ii) suppressing the movement of transposable elements and, most importantly, (iii) post-transcriptional regulation of gene expression by miRNAs that contribute to regulation of epigenetic modifications such as heterochromatin formation and genome imprinting. Here, we review various routes of small ncRNA biogenesis, as well as different RNAi-mediated pathways in D. melanogaster with a particular focus on signaling pathways. In addition, a critical discussion of the most relevant and latest findings that concern the significant contribution of small ncRNAs to the regulation of D. melanogaster physiology and pathophysiology is presented.
Collapse
|
18
|
Pereira AL, Malcher SM, Nagamachi CY, de Souza ACP, Pieczarka JC. Karyotypic diversity within the genus Makalata (Echimyidae: Echimyinae) of Brazilian Amazon: Chromosomal evidence for multiple species. PLoS One 2020; 15:e0235788. [PMID: 32634157 PMCID: PMC7340305 DOI: 10.1371/journal.pone.0235788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
The genus Makalata is a taxonomically complex group of rodents on which few cytogenetic studies have been performed. Most of the published karyotypes were described based only on conventional chromosome staining. Here, we studied the karyotypes of Makalata from two Brazilian Amazonian states, Amapá and Pará, by Giemsa-staining, G- and C-banding, AgNO3-staining and FISH with 18S rDNA and telomeric sequences probes. We observed 2n = 66/FN = 124 in the Pará state population in Makalata sp; and 2n = 72/FN = 128 in the Amapá state population in M. didelphoides. Multiple chromosome rearrangements may have given rise to these karyotypes, which differ significantly from each other and from those reported in the literature. The chromosomal differences among the described Makalata karyotypes can act as a barrier to gene flow; since they are also associated with geographic barriers (e.g., rivers) and numerous molecular differences, they could be seen as evidence for reproductive isolation of populations from genus Makalata. Our data suggest that the genus is chromosomally diverse and the karyotypes may belong to different species. These karyotypes may prove useful as taxonomic markers for these rodents.
Collapse
Affiliation(s)
- Adenilson Leão Pereira
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Stella Miranda Malcher
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- * E-mail:
| |
Collapse
|
19
|
Heinemann JA. Should dsRNA treatments applied in outdoor environments be regulated? ENVIRONMENT INTERNATIONAL 2019; 132:104856. [PMID: 31174887 DOI: 10.1016/j.envint.2019.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The New Zealand Environmental Protection Authority (EPA) issued a Decision that makes the use of externally applied double-stranded (ds)RNA molecules on eukaryotic cells or organisms technically out of scope of legislation on new organisms, making risk assessments of such treatments in the open environment unnecessary. The Decision was based on its view that the treatment does not create new or genetically modified organisms and rests on the EPA's conclusions that dsRNA is not heritable and is not a mutagen. For these reasons EPA decided that treatments using dsRNA do not modify genes or other genetic material. I found from an independent review of the literature on the topic indicated, however, that each of the major scientific justifications relied upon by the EPA was based on either an inaccurate interpretation of evidence or failure to consult the research literature pertaining to additional types of eukaryotes. The Decision also did not take into account the unknown and unique eukaryotic biodiversity of New Zealand. The safe use of RNA-based technology holds promise for addressing complex and persistent challenges in public health, agriculture and conservation. However, by failing to restrict the source or means of modifying the dsRNA, the EPA removed regulatory oversight that could prevent unintended consequences of this new technology such as suppression of genes other than those selected for suppression or the release of viral genes or genomes by failing to restrict the source or means of modifying the dsRNA.
Collapse
Affiliation(s)
- Jack A Heinemann
- School of Biological Sciences, Centre for Integrative Research in Biosafety, Centre for Integrative Ecology, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
20
|
Sabbione A, Daurelio L, Vegetti A, Talón M, Tadeo F, Dotto M. Genome-wide analysis of AGO, DCL and RDR gene families reveals RNA-directed DNA methylation is involved in fruit abscission in Citrus sinensis. BMC PLANT BIOLOGY 2019; 19:401. [PMID: 31510935 PMCID: PMC6739940 DOI: 10.1186/s12870-019-1998-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/29/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Small RNAs regulate a wide variety of processes in plants, from organ development to both biotic and abiotic stress response. Being master regulators in genetic networks, their biogenesis and action is a fundamental aspect to characterize in order to understand plant growth and development. Three main gene families are critical components of RNA silencing: DICER-LIKE (DCL), ARGONAUTE (AGO) and RNA-DEPENDENT RNA POLYMERASE (RDR). Even though they have been characterized in other plant species, there is no information about these gene families in Citrus sinensis, one of the most important fruit species from both economical and nutritional reasons. While small RNAs have been implicated in the regulation of multiple aspects of plant growth and development, their role in the abscission process has not been characterized yet. RESULTS Using genome-wide analysis and a phylogenetic approach, we identified a total of 13 AGO, 5 DCL and 7 RDR genes. We characterized their expression patterns in root, leaf, flesh, peel and embryo samples using RNA-seq data. Moreover, we studied their role in fruit abscission through gene expression analysis in fruit rind compared to abscission zone from samples obtained by laser capture microdissection. Interestingly, we determined that the expression of several RNA silencing factors are down-regulated in fruit abscission zone, being particularly represented gene components of the RNA-dependent DNA Methylation pathway, indicating that repression of this process is necessary for fruit abscission to take place in Citrus sinensis. CONCLUSIONS The members of these 3 families present characteristic conserved domains and distinct expression patterns. We provide a detailed analysis of the members of these families and improved the annotation of some of these genes based on RNA-seq data. Our data suggests that the RNA-dependent DNA Methylation pathway is involved in the important fruit abscission process in C. sinensis.
Collapse
Affiliation(s)
- Agustín Sabbione
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucas Daurelio
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Abelardo Vegetti
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Manuel Talón
- Centre de Genómica, Institut Valencià d’Investigacions Agràries (IVIA), Montcada, València, Spain
| | - Francisco Tadeo
- Centre de Genómica, Institut Valencià d’Investigacions Agràries (IVIA), Montcada, València, Spain
| | - Marcela Dotto
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
21
|
Yurkevich OY, Samatadze TE, Levinskikh MA, Zoshchuk SA, Signalova OB, Surzhikov SA, Sychev VN, Amosova AV, Muravenko OV. Molecular Cytogenetics of Pisum sativum L. Grown under Spaceflight-Related Stress. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4549294. [PMID: 30627557 PMCID: PMC6304655 DOI: 10.1155/2018/4549294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 11/17/2022]
Abstract
The ontogenesis and reproduction of plants cultivated aboard a spacecraft occur inside the unique closed ecological system wherein plants are subjected to serious abiotic stresses. For the first time, a comparative molecular cytogenetic analysis of Pisum sativum L. (Fabaceae) grown on board the RS ISS during the Expedition-14 and Expedition-16 and also plants of their succeeding (F1 and F2) generations cultivated on Earth was performed in order to reveal possible structural chromosome changes in the pea genome. The karyotypes of these plants were studied by multicolour fluorescence in situ hybridization (FISH) with five different repeated DNA sequences (45S rDNA, 5S rDNA, PisTR-B/1, microsatellite motifs (AG)12, and (GAA)9) as probes. A chromosome aberration was revealed in one F1 plant. Significant changes in distribution of the examined repeated DNAs in karyotypes of the "space grown" pea plants as well as in F1 and F2 plants cultivated on Earth were not observed if compared with control plants. Additional oligo-(GAA)9 sites were detected on chromosomes 6 and 7 in karyotypes of F1 and F2 plants. The detected changes might be related to intraspecific genomic polymorphism or plant cell adaptive responses to spaceflight-related stress factors. Our findings suggest that, despite gradual total trace contamination of the atmosphere on board the ISS associated with the extension of the space station operating life, exposure to the space environment did not induce serious chromosome reorganizations in genomes of the "space grown" pea plants and generations of these plants cultivated on Earth.
Collapse
Affiliation(s)
- Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga B. Signalova
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir N. Sychev
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
22
|
Shaping Plant Adaptability, Genome Structure and Gene Expression through Transposable Element Epigenetic Control: Focus on Methylation. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8090180] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In plants, transposable elements (TEs) represent a large fraction of the genome, with potential to alter gene expression and produce genomic rearrangements. Epigenetic control of TEs is often used to stop unrestricted movement of TEs that would result in detrimental effects due to insertion in essential genes. The current review focuses on the effects of methylation on TEs and their genomic context, and how this type of epigenetic control affects plant adaptability when plants are faced with different stresses and changes. TEs mobilize in response to stress elicitors, including biotic and abiotic cues, but also developmental transitions and ‘genome shock’ events like polyploidization. These events transitionally lift TE repression, allowing TEs to move to new genomic locations. When TEs fall close to genes, silencing through methylation can spread to nearby genes, resulting in lower gene expression. The presence of TEs in gene promoter regions can also confer stress inducibility modulated through alternative methylation and demethylation of the TE. Bursts of transposition triggered by events of genomic shock can increase genome size and account for differences seen during polyploidization or species divergence. Finally, TEs have evolved several mechanisms to suppress their own repression, including the use of microRNAs to control genes that promote methylation. The interplay between silencing, transient TE activation, and purifying selection allows the genome to use TEs as a reservoir of potential beneficial modifications but also keeps TEs under control to stop uncontrolled detrimental transposition.
Collapse
|
23
|
Wang C, Zhu B, Xiong J. Recruitment and reinforcement: maintaining epigenetic silencing. SCIENCE CHINA-LIFE SCIENCES 2018; 61:515-522. [PMID: 29564598 DOI: 10.1007/s11427-018-9276-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 01/07/2023]
Abstract
Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant "epigenetic" system to achieve this functionality. "Epigenetics" is referred to as heritable information beyond the DNA sequence, including histone and DNA modifications, ncRNAs and other chromatin-related components. Here, we review the mechanisms of the epigenetic inheritance of a repressive chromatin state, with an emphasis on recent progress in the field. We emphasize that (i) epigenetic information is inherited in a relatively stable but imprecise fashion; (ii) multiple cis and trans factors are involved in the maintenance of epigenetic information during mitosis; and (iii) the maintenance of a repressive epigenetic state requires both recruitment and self-reinforcement mechanisms. These mechanisms crosstalk with each other and form interconnected feedback loops to shape a stable epigenetic system while maintaining certain degrees of flexibility.
Collapse
Affiliation(s)
- Chengzhi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
24
|
Dubey A, Jeon J. Epigenetic regulation of development and pathogenesis in fungal plant pathogens. MOLECULAR PLANT PATHOLOGY 2017; 18:887-898. [PMID: 27749982 PMCID: PMC6638268 DOI: 10.1111/mpp.12499] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 05/08/2023]
Abstract
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis.
Collapse
Affiliation(s)
- Akanksha Dubey
- Department of BiotechnologyCollege of Life and Applied Sciences, Yeungnam UniversityGyeongsanGyeongbuk38541South Korea
| | - Junhyun Jeon
- Department of BiotechnologyCollege of Life and Applied Sciences, Yeungnam UniversityGyeongsanGyeongbuk38541South Korea
| |
Collapse
|
25
|
Kwarteng A, Ahuno ST, Kwakye-Nuako G. The therapeutic landscape of HIV-1 via genome editing. AIDS Res Ther 2017; 14:32. [PMID: 28705213 PMCID: PMC5513397 DOI: 10.1186/s12981-017-0157-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022] Open
Abstract
Current treatment for HIV-1 largely relies on chemotherapy through the administration of antiretroviral drugs. While the search for anti-HIV-1 vaccine remain elusive, the use of highly active antiretroviral therapies (HAART) have been far-reaching and has changed HIV-1 into a manageable chronic infection. There is compelling evidence, including several side-effects of ARTs, suggesting that eradication of HIV-1 cannot depend solely on antiretrovirals. Gene therapy, an expanding treatment strategy, using RNA interference (RNAi) and programmable nucleases such as meganuclease, zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR-Cas9) are transforming the therapeutic landscape of HIV-1. TALENS and ZFNS are structurally similar modular systems, which consist of a FokI endonuclease fused to custom-designed effector proteins but have been largely limited, particularly ZFNs, due to their complexity and cost of protein engineering. However, the newly developed CRISPR-Cas9 system, consists of a single guide RNA (sgRNA), which directs a Cas9 endonuclease to complementary target sites, and serves as a superior alternative to the previous protein-based systems. The techniques have been successfully applied to the development of better HIV-1 models, generation of protective mutations in endogenous/host cells, disruption of HIV-1 genomes and even reactivating latent viruses for better detection and clearance by host immune response. Here, we focus on gene editing-based HIV-1 treatment and research in addition to providing perspectives for refining these techniques.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
| | - Godwin Kwakye-Nuako
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
26
|
Clr4 specificity and catalytic activity beyond H3K9 methylation. Biochimie 2017; 135:83-88. [DOI: 10.1016/j.biochi.2017.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
|
27
|
Vanderstraeten L, Van Der Straeten D. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications. FRONTIERS IN PLANT SCIENCE 2017; 8:38. [PMID: 28174583 PMCID: PMC5258695 DOI: 10.3389/fpls.2017.00038] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/09/2017] [Indexed: 05/18/2023]
Abstract
1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy.
Collapse
|
28
|
Villota-Salazar NA, Mendoza-Mendoza A, González-Prieto JM. Epigenetics: from the past to the present. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1249033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Jerczynski O, Lacroix-Pépin N, Boilard E, Calvo E, Bernet A, Fortier MA, Björkgren I, Sipilä P, Belleannée C. Role of Dicer1-Dependent Factors in the Paracrine Regulation of Epididymal Gene Expression. PLoS One 2016; 11:e0163876. [PMID: 27695046 PMCID: PMC5047620 DOI: 10.1371/journal.pone.0163876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
Dicer1 is an endoribonuclease involved in the biogenesis of functional molecules such as microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs). These small non-coding RNAs are important regulators of post-transcriptional gene expression and participate in the control of male fertility. With the knowledge that 1) Dicer1-dependent factors are required for proper sperm maturation in the epididymis, and that 2) miRNAs are potent mediators of intercellular communication in most biological systems, we investigated the role of Dicer1-dependent factors produced by the proximal epididymis (initial segment/caput)- including miRNAs- on the regulation of epididymal gene expression in the distal epididymis regions (i.e. corpus and cauda). To this end, we performed comparative microarray and ANOVA analyses on control vs. Defb41iCre/wt;Dicer1fl/fl mice in which functional Dicer1 is absent from the principal cells of the proximal epididymis. We identified 35 and 33 transcripts that displayed significant expression level changes in the corpus and cauda regions (Fold change > 2 or < -2; p < 0.002), respectively. Among these transcripts, Zn-alpha 2-glycoprotein (Azgp1) encodes for a sperm equatorial protein whose expression in the epididymis of Dicer1 cKO mice is significantly increased compared to controls. In addition, 154 miRNAs, including miR-210, miR-672, miR-191 and miR-204, showed significantly impaired biogenesis in the absence of Dicer1 from the principal cells of the proximal epididymis (Fold change > 2 or < -2; p < 0.01). These miRNAs are secreted via extracellular vesicles (EVs) derived from the DC2 epididymal principal cell line, and their expression correlates with target transcripts involved in distinct biological pathways, as evidenced by in silico analysis. Albeit correlative and based on in silico approach, our study proposes that Dicer1-dependent factors trigger- directly or not-significant genes expression changes in distinct regions of this organ. The paracrine control of functions important to post-testicular sperm maturation by Dicer1-dependent factors may open new avenues for the identification of molecular targets important to male fertility control.
Collapse
Affiliation(s)
- Olivia Jerczynski
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Nicolas Lacroix-Pépin
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Eric Boilard
- Department of Immunity and Infectious Diseases, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Ezequiel Calvo
- Endocrinology unit, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Agathe Bernet
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Michel A. Fortier
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| | - Ida Björkgren
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Petra Sipilä
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Quebec, Canada
| |
Collapse
|
30
|
Abstract
Dicer1 is an RNase III enzyme necessary for microRNA (miRNA) biogenesis, as it cleaves pre-miRNAs into mature miRNAs. miRNAs are important regulators of gene expression. In recent years, several miRNA-independent roles of Dicer1 have been identified. They include the production of endogenous small interfering RNAs, detoxifying retrotransposon-derived transcripts, and binding to new targets; messenger RNAs and long noncoding RNAs. Further, in this review, the functional significance of Dicer1 in the male reproductive tract is discussed. Conditional Dicer1 knock-out mouse models have demonstrated a requisite role for Dicer in male fertility. Deletion of Dicer1 from somatic or germ cells in the testis cause spermatogenic problems rendering male mice infertile. The lack of Dicer1 in the proximal epididymis causes dedifferentiation of the epithelium, with unbalanced sex steroid receptor expression, defects in epithelial lipid homeostasis, and subsequent male infertility. In addition, Dicer1 ablation from the prostate leads to increased apoptosis of the differentiated luminal cells, followed by epithelial hypotrophy of the ventral prostate. However, further studies are needed to clarify which functions of Dicer1 are responsible for the observed phenotypes in the male reproductive tract.
Collapse
Affiliation(s)
| | - Petra Sipilä
- Department of Physiology, Institute of Biomedicine; Laboratory Animal Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
The Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families in Populus trichocarpa: gene structure, gene expression, phylogenetic analysis and evolution. J Genet 2016; 94:317-21. [PMID: 26174682 DOI: 10.1007/s12041-015-0508-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Henrich D, Nau C, Kraft SB, Zollfrank M, Kontradowitz K, Oppermann E, Schultheiss J, Meier S, Frank J, Marzi I, Seebach C. Effect of the harvest procedure and tissue site on the osteogenic function of and gene expression in human mesenchymal stem cells. Int J Mol Med 2016; 37:976-88. [PMID: 26935410 PMCID: PMC4790676 DOI: 10.3892/ijmm.2016.2489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/29/2016] [Indexed: 01/14/2023] Open
Abstract
Evidence has indicated that mesenchymal stem cells (MSCs) harvested with the Reamer/Irrigator/Aspirator (RIA) procedure exhibited an improved osteogenic differentiation capability compared with MSCs obtained by bone marrow aspiration from the iliac crest. In the present study, we hypothesized that the harvest procedure indeed influences the osteogenic activity of human MSCs more than the tissue site itself. Concentration [by colony forming unit-fibroblast (CFU-F) assay], calcification (by von Kossa staining), collagen deposition, gene expression and the gene methylation of the bone morphogenetic protein (BMP)-2 pathway [BMP2, SMAD5 and runt-related transcription factor 2 (RUNX2)], the Wnt pathway [WNT3, dickkopf-1 (DKK1), low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin] and osteogenic genes [alkaline phosphatase (ALP), collagen, type I, alpha 1 (COL1A) and osteocalcin] were analyzed in the MSCs isolated intraoperatively from the iliac crest with a spoon (n=14), from the femur with a spoon (n=7), from the femur with the RIA procedure (n=13) and from the iliac crest by fine-needle aspiration (n=8, controls). A Bonferroni-Holm corrected p-value <0.05 indicated a statistically significant difference. The concentration of CFU-F in the MSCs was increased in the RIA debris in comparison with that in the iliac crest aspirates (trend) and the femur (spoon, significant). Calcium deposition was highest in the femur-derived MSCs (by RIA) and was significantly increased in comparison with that in the iliac crest-derived MSCs (spoon, aspirate). The gene expression of BMP2, SMAD5, RUNX2, osteocalcin, and COL1A was significantly increased in the femur-derived MSCs (spoon) and the iliac crest aspirate derived-MSCs in comparison with that in the femur-derived MSCs (by RIA). There was no significant diversity between the samples obtained using a spoon (from the femur or iliac crest). Calcium deposition and osteogenic gene expression decreased significantly with the increasing passage number in all the samples. The methylation of genes did not correlate with their respective gene expression and inconsistent differences were observed between the groups. Herein, we provide evidence that the harvest procedure is a critical factor in the osteogenesis of MSCs in vitro. The MSCs isolated from the femur and iliac crest using a spoon exhibit no significant differences. The altered gene expression and function of the femur-derived MSCs (by RIA) may be due to the harsh isolation procedure. The variable differentiation ability of the MSCs, which depends on the harvest site and the harvest technique, as well as the rapid loss of the osteogenic differentiation capacity with the increasing culture duration should be taken into consideration when using MSCs as a potential therapeutic application for bone tissue engineering.
Collapse
Affiliation(s)
- Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Christoph Nau
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Saskia Bo Kraft
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Maximilian Zollfrank
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Kerstin Kontradowitz
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Elsie Oppermann
- Department of Visceral and Abdominal Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Judith Schultheiss
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Simon Meier
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Johannes Frank
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Caroline Seebach
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| |
Collapse
|
33
|
Structural, Synaptic, and Epigenetic Dynamics of Enduring Memories. Neural Plast 2016; 2016:3425908. [PMID: 26933513 PMCID: PMC4736770 DOI: 10.1155/2016/3425908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/17/2022] Open
Abstract
Our memories are the records of the experiences we gain in our everyday life. Over time, they slowly transform from an initially unstable state into a long-lasting form. Many studies have been investigating from different aspects how a memory could persist for sometimes up to decades. In this review, we highlight three of the greatly addressed mechanisms that play a central role for a given memory to endure: the allocation of the memory to a given neuronal population and what brain areas are recruited for its storage; the structural changes that underlie memory persistence; and finally the epigenetic control of gene expression that might regulate and support memory perseverance. Examining such key properties of a memory is essential towards a finer understanding of its capacity to last.
Collapse
|
34
|
Ghosh S, Singh G, Sachdev B, Kumar A, Malhotra P, Mukherjee SK, Bhatnagar RK. RNAi Screening in Spodoptera frugiperda. Methods Mol Biol 2016; 1470:199-212. [PMID: 27581295 DOI: 10.1007/978-1-4939-6337-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA interference is a potent and precise reverse genetic approach to carryout large-scale functional genomic studies in a given organism. During the past decade, RNAi has also emerged as an important investigative tool to understand the process of viral pathogenesis. Our laboratory has successfully generated transgenic reporter and RNAi sensor line of Spodoptera frugiperda (Sf21) cells and developed a reversal of silencing assay via siRNA or shRNA guided screening to investigate RNAi factors or viral pathogenic factors with extraordinary fidelity. Here we describe empirical approaches and conceptual understanding to execute successful RNAi screening in Spodoptera frugiperda 21-cell line.
Collapse
Affiliation(s)
- Subhanita Ghosh
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gatikrushna Singh
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,College of Veterinary Medicine, Veterinary Medicine Academic Building, 1900 Coffey Road, Columbus, OH, 43210, USA
| | - Bindiya Sachdev
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajit Kumar
- Centre for Bioinformatics, M.D. University, Rohtak, 124001, India
| | - Pawan Malhotra
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Sunil K Mukherjee
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
35
|
Zhang PY, Li G, Deng ZJ, Liu LY, Chen L, Tang JZ, Wang YQ, Cao ST, Fang YX, Wen F, Xu Y, Chen X, Shi KQ, Li WF, Xie C, Tang KF. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res 2015; 44:3629-42. [PMID: 26704979 PMCID: PMC4856966 DOI: 10.1093/nar/gkv1504] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/10/2015] [Indexed: 01/14/2023] Open
Abstract
Dicer participates in heterochromatin formation in fission yeast and plants. However, whether it has a similar role in mammals remains controversial. Here we showed that the human Dicer protein interacts with SIRT7, an NAD+-dependent H3K18Ac (acetylated lysine 18 of histone H3) deacetylase, and holds a proportion of SIRT7 in the cytoplasm. Dicer knockdown led to an increase of chromatin-associated SIRT7 and simultaneously a decrease of cytoplasmic SIRT7, while its overexpression induced SIRT7 reduction in the chromatin-associated fraction and increment in the cytoplasm. Furthermore, DNA damaging agents promoted Dicer expression, leading to decreased level of chromatin-associated SIRT7 and increased level of H3K18Ac, which can be alleviated by Dicer knockdown. Taken together with that H3K18Ac was exclusively associated with the chromatin, our findings suggest that Dicer induction by DNA damaging treatments prevents H3K18Ac deacetylation, probably by trapping more SIRT7 in the cytoplasm.
Collapse
Affiliation(s)
- Pei-Ying Zhang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Guiling Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Zhu-Jun Deng
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Li-Yuan Liu
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Li Chen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Jun-Zhou Tang
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yu-Qun Wang
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Su-Ting Cao
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Yu-Xiao Fang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Fuping Wen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Yunsheng Xu
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Department of Dermato-Venereology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Xiaoming Chen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Department of Pediatric Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Ke-Qing Shi
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Wen-Feng Li
- Department of Radiation Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Congying Xie
- Department of Radiation Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Kai-Fu Tang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| |
Collapse
|
36
|
|
37
|
Méndez C, Ahlenstiel CL, Kelleher AD. Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. World J Virol 2015; 4:219-244. [PMID: 26279984 PMCID: PMC4534814 DOI: 10.5501/wjv.v4.i3.219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/24/2015] [Accepted: 04/29/2015] [Indexed: 02/05/2023] Open
Abstract
While human immunodeficiency virus 1 (HIV-1) infection is controlled through continuous, life-long use of a combination of drugs targeting different steps of the virus cycle, HIV-1 is never completely eradicated from the body. Despite decades of research there is still no effective vaccine to prevent HIV-1 infection. Therefore, the possibility of an RNA interference (RNAi)-based cure has become an increasingly explored approach. Endogenous gene expression is controlled at both, transcriptional and post-transcriptional levels by non-coding RNAs, which act through diverse molecular mechanisms including RNAi. RNAi has the potential to control the turning on/off of specific genes through transcriptional gene silencing (TGS), as well as fine-tuning their expression through post-transcriptional gene silencing (PTGS). In this review we will describe in detail the canonical RNAi pathways for PTGS and TGS, the relationship of TGS with other silencing mechanisms and will discuss a variety of approaches developed to suppress HIV-1 via manipulation of RNAi. We will briefly compare RNAi strategies against other approaches developed to target the virus, highlighting their potential to overcome the major obstacle to finding a cure, which is the specific targeting of the HIV-1 reservoir within latently infected cells.
Collapse
|
38
|
Foda BM, Singh U. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway. J Biol Chem 2015; 290:21114-21130. [PMID: 26149683 DOI: 10.1074/jbc.m115.647263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 01/02/2023] Open
Abstract
RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica.
Collapse
Affiliation(s)
- Bardees M Foda
- Departments of Internal Medicine, Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305; Department of Molecular Genetics and Enzymology, National Research Centre, Dokki, Egypt
| | - Upinder Singh
- Departments of Internal Medicine, Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305; Departments of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305.
| |
Collapse
|
39
|
Saksouk N, Simboeck E, Déjardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 2015; 8:3. [PMID: 25788984 PMCID: PMC4363358 DOI: 10.1186/1756-8935-8-3] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/16/2014] [Indexed: 12/17/2022] Open
Abstract
Constitutive heterochromatin, mainly formed at the gene-poor regions of pericentromeres, is believed to ensure a condensed and transcriptionally inert chromatin conformation. Pericentromeres consist of repetitive tandem satellite repeats and are crucial chromosomal elements that are responsible for accurate chromosome segregation in mitosis. The repeat sequences are not conserved and can greatly vary between different organisms, suggesting that pericentromeric functions might be controlled epigenetically. In this review, we will discuss how constitutive heterochromatin is formed and maintained at pericentromeres in order to ensure their integrity. We will describe the biogenesis and the function of main epigenetic pathways that are involved and how they are interconnected. Interestingly, recent findings suggest that alternative pathways could substitute for well-established pathways when disrupted, suggesting that constitutive heterochromatin harbors much more plasticity than previously assumed. In addition, despite of the heterochromatic nature of pericentromeres, there is increasing evidence for active and regulated transcription at these loci, in a multitude of organisms and under various biological contexts. Thus, in the second part of this review, we will address this relatively new aspect and discuss putative functions of pericentromeric expression.
Collapse
Affiliation(s)
- Nehmé Saksouk
- INSERM AVENIR Team, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Elisabeth Simboeck
- INSERM AVENIR Team, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Jérôme Déjardin
- INSERM AVENIR Team, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| |
Collapse
|
40
|
Abstract
Recent studies have shown an association between gene alterations by epigenetic mechanisms and suicidal behavior. These epigenetic mechanisms are mitotically, and in some cases meiotically, heritable changes in the genome through non-DNA sequence coding processes that alter gene expression as a result of variable changes in environmental stimuli. Genome-wide association studies have been inconsistent in elucidating the association between genes and suicidal behavior, thereby making the heritability of suicidal behavior is unclear. However, recent epigenetic studies have provided evidence that epigenetic mechanisms could deliver the missing link between the heritability of suicidal behavior and the interaction between environment and the genome. The present review provides an in-depth discussion of epigenetic mechanisms that may regulate gene expression in suicidal behavior. The findings of current epigenetic studies on suicidal behavior will also be discussed considering future epigenome-wide association studies on elucidating the contributions of environment and genome on suicidal behavior.
Collapse
Affiliation(s)
- Ali Bani-Fatemi
- a Group for Suicide Studies, CAMH, Department of Psychiatry , University of Toronto , Toronto , Canada
| | | | | |
Collapse
|
41
|
Sciamanna I, Gualtieri A, Cossetti C, Osimo EF, Ferracin M, Macchia G, Aricò E, Prosseda G, Vitullo P, Misteli T, Spadafora C. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines. Oncotarget 2014; 4:2271-87. [PMID: 24345856 PMCID: PMC3926826 DOI: 10.18632/oncotarget.1403] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the transformed state in tumor cells.
Collapse
Affiliation(s)
- Ilaria Sciamanna
- Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shao F, Lu S. Identification, molecular cloning and expression analysis of five RNA-dependent RNA polymerase genes in Salvia miltiorrhiza. PLoS One 2014; 9:e95117. [PMID: 24733018 PMCID: PMC3986363 DOI: 10.1371/journal.pone.0095117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/27/2014] [Indexed: 12/31/2022] Open
Abstract
RNA-dependent RNA polymerases (RDRs) act as key components of the small RNA biogenesis pathways and play significant roles in post-transcriptional gene silencing (PTGS) and antiviral defense. However, there is no information about the RDR gene family in Salvia miltiorrhiza, an emerging model medicinal plant with great economic value. Through genome-wide predication and subsequent molecular cloning, five full-length S. miltiorrhiza RDR genes, termed SmRDR1–SmRDR5, were identified. The length of SmRDR cDNAs varies between 3,262 (SmRDR5) and 4,130 bp (SmRDR3). The intron number of SmRDR genes varies from 3 (SmRDR1, SmRDR3 and SmRDR4) to 17 (SmRDR5). All of the deduced SmRDR protein sequences contain the conserved RdRp domain. Moreover, SmRDR2 and SmRDR4 have an additional RRM domain. Based on the phylogenetic tree constructed with sixteen RDRs from Arabidopsis, rice and S. miltiorrhiza, plant RDRs may be divided into four groups (RDR1–RDR4). The RDR1 group contains an AtRDR and an OsRDR, while includes two SmRDRs. On the contrary, the RDR3 group contains three AtRDRs and two OsRDRs, but has only one SmRDR. SmRDRs were differentially expressed in flowers, leaves, stems and roots of S. miltiorrhiza and responsive to methyl jasmonate treatment and cucumber mosaic virus infection. The results suggest the involvement of RDRs in S. miltiorrhiza development and response to abiotic and biotic stresses. It provides a foundation for further studying the regulation and biological functions of SmRDRs and the biogenesis pathways of small RNAs in S. miltiorrhiza.
Collapse
Affiliation(s)
- Fenjuan Shao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
43
|
Abstract
Stress response is considered to have adaptive value for organisms faced with stressful condition. Chronic stress however adversely affects the physiology and may lead to neuropsychiatric disorders. Repeated stressful events in animal models have been shown to cause long-lasting changes in neural circuitries at molecular, cellular, and physiological level, leading to disorders of mood as well as cognition. Molecular studies in recent years have implicated diverse epigenetic mechanisms, including histone modifications, DNA methylation, and noncoding RNAs, that underlie dysregulation of genes in the affected neural circuitries in chronic stress-induced pathophysiology. A review of the myriad epigenetic regulatory mechanisms associated with neural and behavioral responses in animal models of stress-induced neuropsychiatric disorders is presented here. The review also deals with clinical evidence of the epigenetic dysregulation of genes in psychiatric disorders where chronic stress appears to underlie the etiopathology.
Collapse
|
44
|
Emmert-Streib F, Dehmer M. Enhancing systems medicine beyond genotype data by dynamic patient signatures: having information and using it too. Front Genet 2013; 4:241. [PMID: 24312119 PMCID: PMC3832803 DOI: 10.3389/fgene.2013.00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
In order to establish systems medicine, based on the results and insights from basic biological research applicable for a medical and a clinical patient care, it is essential to measure patient-based data that represent the molecular and cellular state of the patient's pathology. In this paper, we discuss potential limitations of the sole usage of static genotype data, e.g., from next-generation sequencing, for translational research. The hypothesis advocated in this paper is that dynOmics data, i.e., high-throughput data that are capable of capturing dynamic aspects of the activity of samples from patients, are important for enabling personalized medicine by complementing genotype data.
Collapse
Affiliation(s)
- Frank Emmert-Streib
- Computational Biology and Machine Learning Laboratory, Faculty of Medicine, Health and Life Sciences, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Matthias Dehmer
- Institute for Bioinformatics and Translational Research, UMITHall in Tyrol, Austria
| |
Collapse
|
45
|
Kasuga T, Gijzen M. Epigenetics and the evolution of virulence. Trends Microbiol 2013; 21:575-82. [DOI: 10.1016/j.tim.2013.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
|
46
|
Yandim C, Natisvili T, Festenstein R. Gene regulation and epigenetics in Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:21-42. [PMID: 23859339 DOI: 10.1111/jnc.12254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
This is an exciting time in the study of Friedreich's ataxia. Over the last 10 years much progress has been made in uncovering the mechanisms, whereby the Frataxin gene is silenced by (GAA)n repeat expansions and several of the findings are now ripe for testing in the clinic. The discovery that the Frataxin gene is heterochromatinised and that this can be antagonised in vivo has led to the tantalizing possibility that the disease might be amenable to a more radical therapeutic approach involving epigenetic modifiers. Here, we set out to review progress in the understanding of the fundamental mechanisms whereby genes are regulated at this level and how these findings have been applied to achieve a deeper understanding of the dysregulation that occurs as the primary genetic lesion in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cihangir Yandim
- Gene Control Mechanisms and Disease, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | |
Collapse
|
47
|
Shao F, Lu S. Genome-wide identification, molecular cloning, expression profiling and posttranscriptional regulation analysis of the Argonaute gene family in Salvia miltiorrhiza, an emerging model medicinal plant. BMC Genomics 2013; 14:512. [PMID: 23889895 PMCID: PMC3750313 DOI: 10.1186/1471-2164-14-512] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 07/27/2013] [Indexed: 12/27/2022] Open
Abstract
Background Argonaute (AGO) is the core component of RNA-induced silencing complex. The AGO gene family has been analyzed in various plant species; however, there is no report about AGOs in the well-known Traditional Chinese Medicine (TCM) plant, Salvia miltiorrhiza. Results Through a genome-wide analysis, we identified ten SmAGO genes in S. miltiorrhiza. Full-length cDNAs of all SmAGOs were subsequently cloned and sequenced. These SmAGOs were characterized using a comprehensive approach. Sequence features, gene structures and conserved domains were analyzed by the comparison of SmAGOs and AtAGOs. Phylogenetic relationships among AGO proteins from S. miltiorrhiza, Arabidopsis and rice were revealed. The expression levels of SmAGO genes in various tissues of S. miltiorrhiza were investigated. The results implied that some SmAGOs, such as SmAGO1, SmAGO2, SmAGO3, SmAGO7 and SmAGO10, probably played similar roles as their counterparts in Arabidopsis; whereas the others could be more species-specialized. It suggests the conservation and diversity of AGOs in plants. Additionally, we identified a total of 24 hairpin structures, representing six miRNA gene families, to be miRNA precursors. Using the modified 5′-RACE method, we confirmed that SmAGO1 and SmAGO2 were targeted by S. miltiorrhiza miR168a/b and miR403, respectively. It suggests the conservation of AGO1-miR168 and AGO2-miR403 regulatory modules in S. miltiorrhiza and Arabidopsis. Conclusions This is the first attempt to explore SmAGOs and miRNAs in S. miltiorrhiza. The results provide useful information for further elucidation of gene silencing pathways in S. miltiorrhiza.
Collapse
Affiliation(s)
- Fenjuan Shao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | | |
Collapse
|
48
|
Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20:300-7. [DOI: 10.1038/nsmb.2480] [Citation(s) in RCA: 1087] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022]
|
49
|
Podgornaya O, Gavrilova E, Stephanova V, Demin S, Komissarov A. Large tandem repeats make up the chromosome bar code: a hypothesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:1-30. [PMID: 23582200 DOI: 10.1016/b978-0-12-410523-2.00001-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Much of tandem repeats' functional nature in any genome remains enigmatic because there are only few tools available for dissecting and elucidating the functions of repeated DNA. The large tandem repeat arrays (satellite DNA) found in two mouse whole-genome shotgun assemblies were classified into 4 superfamilies, 8 families, and 62 subfamilies. With the simplified variant of chromosome positioning of different tandem repeats, we noticed the nonuniform distribution instead of the positions reported for mouse major and minor satellites. It is visible that each chromosome possesses a kind of unique code made up of different large tandem repeats. The reference genomes allow marking only internal tandem repeats, and even with such a limited data, the colored "bar code" made up of tandem repeats is visible. We suppose that tandem repeats bare the mechanism for chromosomes to recognize the regions to be associated. The associations, initially established via RNA, become fixed by histone modifications (the histone or chromatin code) and specific proteins. In such a way, associations, being at the beginning flexible and regulated, that is, adjustable, appear as irreversible and inheritable in cell generations. Tandem repeat multiformity tunes the developed nuclei 3D pattern by sequential steps of associations. Tandem repeats-based chromosome bar code could be the carrier of the genome structural information; that is, the order of precise tandem repeat association is the DNA morphogenetic program. Tandem repeats are the cores of the distinct 3D structures postulated in "gene gating" hypothesis.
Collapse
|
50
|
Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 2012; 69:3613-34. [PMID: 22538991 PMCID: PMC3474909 DOI: 10.1007/s00018-012-0990-9] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/28/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
Abstract
There is now compelling evidence that the complexity of higher organisms correlates with the relative amount of non-coding RNA rather than the number of protein-coding genes. Previously dismissed as "junk DNA", it is the non-coding regions of the genome that are responsible for regulation, facilitating complex temporal and spatial gene expression through the combinatorial effect of numerous mechanisms and interactions working together to fine-tune gene expression. The major regions involved in regulation of a particular gene are the 5' and 3' untranslated regions and introns. In addition, pervasive transcription of complex genomes produces a variety of non-coding transcripts that interact with these regions and contribute to regulation. This review discusses recent insights into the regulatory roles of the untranslated gene regions and non-coding RNAs in the control of complex gene expression, as well as the implications of this in terms of organism complexity and evolution.
Collapse
Affiliation(s)
- Lucy W Barrett
- Centre for Neuromuscular and Neurological Disorders (CNND), The University of Western Australia (M518), 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|