1
|
Zhu Y, Li X, Wen D, Huang Z, Yan J, Zhang Z, Wang Y, Guo Z. Remote Ischemic Post-conditioning Reduces Cognitive Impairment in Rats Following Subarachnoid Hemorrhage: Possible Involvement in STAT3/STAT5 Phosphorylation and Th17/Treg Cell Homeostasis. Transl Stroke Res 2025; 16:600-611. [PMID: 38356020 DOI: 10.1007/s12975-024-01235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The inflammatory response following subarachnoid hemorrhage (SAH) may lead to Early Brain Injury and subsequently contribute to poor prognosis such as cognitive impairment in patients. Currently, there is a lack of effective strategies for SAH to ameliorate inflammation and improve cognitive impairment in clinical. This study aims to examine the inhibitory impact of remote ischemic post-conditioning (RIPostC) on the body's inflammatory response by regulating Th17/Treg cell homeostasis after SAH. The ultimate goal is to search for potential early treatment targets for SAH. The rat SAH models were made by intravascular puncture of the internal carotid artery. The intervention of RIPostC was administered for three consecutive days immediately after successful modeling. Behavioral experiments including the Morris water maze and Y-maze tests were conducted to assess cognitive functions such as spatial memory, working memory, and learning abilities 2 weeks after successful modeling. The ratio of Th17 cells and Treg cells in the blood was detected using flow cytometry. Immunofluorescence was used to observe the infiltration of neutrophils into the brain. Signal transducers and activators of transcription 5 (STAT5) and signal transducers and activators of transcription 3 (STAT3) phosphorylation levels, receptor-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) levels were detected by Western blot. The levels of anti-inflammatory factors (IL-2, IL-10, IL-5, etc.) and pro-inflammatory factors (IL-6, IL-17, IL-18, TNF-α, IL-14, etc.) in blood were detected using Luminex Liquid Suspension Chip Assay. RIPostC significantly improved the cognitive impairment caused by SAH in rats. The results showed that infiltration of Th17 cells and neutrophils into brain tissue increased after SAH, leading to the release of pro-inflammatory factors (IL-6, IL-17, IL-18, and TNF-α). This response can be inhibited by RIPostC. Additionally, RIPostC facilitates the transfer of Treg from blood to the brain and triggers the release of anti-inflammatory (IL-2, IL-10, and IL-5) factors to suppress the inflammation following SAH. Finally, it was found that RIPostC increased the phosphorylation of STAT5 while decreasing the phosphorylation of STAT3. RIPostC reduces inflammation after SAH by partially balancing Th17/Treg cell homeostasis, which may be related to downregulation of STAT3 and upregulation of STAT5 phosphorylation, which ultimately alleviates cognitive impairment in rats. Targeting Th17/Treg cell homeostasis may be a promising strategy for early SAH treatment.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Xiaoguo Li
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - DaoChen Wen
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zichao Huang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Jin Yan
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zhaosi Zhang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Yingwen Wang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zongduo Guo
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Costa-Pereira S, Lanzinger M, Núñez N, Villar-Vesga J, Andreadou M, Prisco F, Häne P, Roussel E, Krishnarajah S, Chanel Lindemann R, Oberbichler L, Westermann F, Da Silva AF, Cecconi V, Pinzger M, Tugues S, Mundt S, Greter M, De Feo D, Becher B. Regulatory T cells suppress GM-CSF-producing T helper cells via IL-2 modulation to restrain immunopathology. Cell Rep 2025; 44:115642. [PMID: 40315053 DOI: 10.1016/j.celrep.2025.115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025] Open
Abstract
Regulatory T (Treg) cells are critical for maintaining peripheral tolerance and preventing autoimmunity. Treg cell depletion or dysfunction results in fatal multiorgan inflammation linked to unrestrained effector T cell expansion. Here, we combine in vivo gene targeting and fate-mapping with high-dimensional cytometry to identify Treg cells' steady-state function and suppressive mechanisms that prevent autoimmune inflammation and dissect the T helper (TH) cell-derived cytokines and responding cells executing tissue damage upon global loss of peripheral tolerance. We unveil that type 1 cytokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and interferon (IFN)γ, but not interleukin (IL)-17A, direct the ensuing immunopathology and mortality. GM-CSF orchestrates tissue invasion by monocytes and granulocytes and enhances their reactive oxygen species production and phagocytic capability. IL-2 modulation by Treg cells is crucial in restraining pathogenic GM-CSF-producing TH cells. Our study highlights the critical role of Treg cells and IL-2 signaling in controlling GM-CSF-producing TH cells and type 1 responses to curb phagocyte-mediated tissue destruction.
Collapse
Affiliation(s)
- Sara Costa-Pereira
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Margit Lanzinger
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Nicolás Núñez
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; Faculty of Chemical Sciences, National University of Córdoba, X5000 Córdoba, Argentina
| | - Juan Villar-Vesga
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Myrto Andreadou
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Francesco Prisco
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Philipp Häne
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Elsa Roussel
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Sinduya Krishnarajah
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | | | - Laura Oberbichler
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Frederike Westermann
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | | | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Mirjam Pinzger
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
3
|
Li H, Zheng A, Jian L, Xiang JB. Buserelin Promotes the Differentiation and Function of Macrophage-Colony-Stimulating Factor-Producing T Helper Cells. Immunol Invest 2025; 54:167-184. [PMID: 39495003 DOI: 10.1080/08820139.2024.2422383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
BACKGROUND Buserelin has been used to treat central precocious puberty (CPP). However, it could potentially result in immune dysregulation to undermine patients' health. Therefore, it is necessary to elucidate the effects of buserelin on immune cells. Here we explored buserelin-induced impacts on the differentiation and function of macrophage-colony-stimulating factor-producing T helper (ThGM) cells to uncover the immunoregulatory role of buserelin. METHODS Rat CPP was induced by danazol injection followed by buserelin treatment. The frequencies of ThGM cells in the spleen and lymph nodes were evaluated by flow cytometry. ThGM cell generation and function were analyzed in cell culture assays. Cell signaling was measured by Immunoblotting. RESULTS Buserelin increased the frequencies of splenic and lymph node ThGM cells. Buserelin promoted the in vitro differentiation and proliferation of ThGM cells. Buserelin-treated ThGM cells showed stronger supportive effects on other effector T helper cells. Buserelin induced the activation of the nuclear factor of activated T cells and extracellular signal-regulated kinase 1/2 in ThGM cells. CONCLUSION Buserelin enhances the differentiation and function of pro-inflammatory ThGM cells, thus increasing the risk of autoimmune or inflammatory disorders. Therefore, it is necessary to monitor ThGM cells in buserelin-treated children to prevent latent immune dysregulation.
Collapse
Affiliation(s)
- Hua Li
- Department of Pediatrics at Shenhe People's Hospital, The Fifth Affiliated Hospital of Jinan University, Heyuan Guangdong, China
| | - Aini Zheng
- Department of Pediatrics at Shenhe People's Hospital, The Fifth Affiliated Hospital of Jinan University, Heyuan Guangdong, China
| | - Lei Jian
- Department of Endocrinology, Affiliated Renhe Hospital of China Three Gorges University, Yichang Hubei, China
| | - Jin-Bo Xiang
- Department of Pediatrics, Affiliated Renhe Hospital of China Three Gorges University, Yichang Hubei, China
| |
Collapse
|
4
|
Bouzeineddine NZ, Philippi A, Gee K, Basta S. Granulocyte macrophage colony stimulating factor in virus-host interactions and its implication for immunotherapy. Cytokine Growth Factor Rev 2025; 81:54-63. [PMID: 39755463 DOI: 10.1016/j.cytogfr.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Viruses have evolved to strategically exploit cellular signaling pathways to evade host immune defenses. GM-CSF signaling plays a pivotal role in regulating inflammation, activating myeloid cells, and enhancing the immune response to infections. Due to its central role in the immune system, viruses may target this pathway to further establish infection. This review focuses on key studies elucidating virus interactions with GM-CSF signaling proteins and summarizes findings on the impact of viral infections on GM-CSF production. Additionally, therapeutic strategies centered around GM-CSF are investigated, such as the potential benefits of administering GM-CSF versus inhibiting GM-CSF signaling to mitigate viral-induced aberrant inflammation. Understanding these virus-host interactions provides valuable insights that help further our understanding to develop future therapeutic approaches in modulating the immune response during viral infections.
Collapse
Affiliation(s)
- Nasry Zane Bouzeineddine
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alecco Philippi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Sam Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
5
|
Li J, Mao N, Wang Y, Deng S, Chen K. Novel insights into the ROCK-JAK-STAT signaling pathway in upper respiratory tract infections and neurodegenerative diseases. Mol Ther 2025; 33:32-50. [PMID: 39511889 PMCID: PMC11764622 DOI: 10.1016/j.ymthe.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
Acute upper respiratory tract infections are a major public health issue, with uncontrolled inflammation triggered by upper respiratory viruses being a significant cause of patient deterioration or death. This study focuses on the Janus kinase-signal transducer and activator of transcription Rho-associated coiled-coil containing protein kinase (JAK-STAT-ROCK) signaling pathway, providing an in-depth analysis of the interplay between uncontrolled inflammation after upper respiratory tract infections and the development of neurodegenerative diseases. It offers a conceptual framework for understanding the lung-brain-related immune responses and potential interactions. The relationship between the ROCK-JAK-STAT signaling pathway and inflammatory immunity is a complex and multi-layered research area and exploring potential common targets could open new avenues for the prevention and treatment of related inflammation.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Naihui Mao
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China.
| |
Collapse
|
6
|
Rong H, Yang H, Liu Q, Zhang H, Wang S. Substance P and neurokinin 1 receptor boost the pathogenicity of granulocyte-macrophage colony-stimulating factor-producing T helper cells in dry eye disease. Scand J Immunol 2025; 101:e13434. [PMID: 39789752 DOI: 10.1111/sji.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Dry eye disease (DED) is an inflammatory disorder in which CD4+ T cells play a significant role in its pathogenesis. A CD4+ T cell subset termed granulocyte-macrophage colony-stimulating factor-producing T helper (ThGM) cells would contribute to DED pathogenesis. However, the mechanisms by which the activity of ThGM cells is modulated are not thoroughly understood. In this research, we characterized the effects of neurokinin 1 receptor (NK1R) and neurokinin 2 receptor (NK2R) on ThGM cells and T helper 1 (Th1) cells in a murine DED model. We found that ThGM cells expressed NK1R and NK2R, whereas Th1 cells predominantly expressed NK1R. Furthermore, substance P and neurokinin A (NKA), the ligands of NK1R and NK2R, were upregulated in post-DED LNs and conjunctivae. Substance P significantly promoted granulocyte-macrophage colony-stimulating factor (GM-CSF) expression while mildly upregulating the expression of interferon-gamma (IFN-γ) and interleukin 2 (IL-2) in ThGM cells. By contrast, NKA did not change GM-CSF expression but significantly increased IFN-γ expression in ThGM cells. Importantly, the adoptive transfer of NK1R-expressing ThGM cells significantly exacerbated DED, whereas the transfer of NK1R-knockdown ThGM cells weakly aggravated DED. NK2R knockdown in ThGM cells did not affect DED progression. In conclusion, this study identifies the substance P-NK1R axis as a novel mechanism that reinforces the pathogenicity of ThGM cells in DED.
Collapse
Affiliation(s)
- Hua Rong
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| | - Hai Yang
- Department of Ophthalmology, Shanghai East Hospital Affiliated to Tongji University, Shanghai, China
| | - Qingqing Liu
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| | - Hui Zhang
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| | - Shaolin Wang
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| |
Collapse
|
7
|
Wang Y, Li J, Chen R, Xu Q, Wang D, Mao C, Xiang Z, Wu G, Yu Y, Li J, Zheng Y, Chen K. Emerging concepts in mucosal immunity and oral microecological control of respiratory virus infection-related inflammatory diseases. Microbiol Res 2024; 289:127930. [PMID: 39427450 DOI: 10.1016/j.micres.2024.127930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Oral microecological imbalance is closely linked to oral mucosal inflammation and is implicated in the development of both local and systemic diseases, including those caused by viral infections. This review examines the critical role of the interleukin (IL)-17/helper T cell 17 (Th17) axis in regulating immune responses within the oral mucosa, focusing on both its protective and pathogenic roles during inflammation. We specifically highlight how the IL-17/Th17 pathway contributes to dysregulated inflammation in the context of respiratory viral infections. Furthermore, this review explores the potential interactions between respiratory viruses and the oral microbiota, emphasizing how alterations in the oral microbiome and increased production of proinflammatory factors may serve as early, non-invasive biomarkers for predicting the severity of respiratory viral infections. These findings provide insights into novel diagnostic approaches and therapeutic strategies aimed at mitigating respiratory disease severity through monitoring and modulating the oral microbiome.
Collapse
Affiliation(s)
- Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Qiuyi Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Di Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Chenxi Mao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ziyi Xiang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ying Yu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310063, China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China.
| |
Collapse
|
8
|
Fachi JL, de Oliveira S, Gilfillan S, Antonova AU, Hou J, Vinolo MAR, Colonna M. NKp46 + ILC3s promote early neutrophil defense against Clostridioides difficile infection through GM-CSF secretion. Proc Natl Acad Sci U S A 2024; 121:e2416182121. [PMID: 39475653 PMCID: PMC11551360 DOI: 10.1073/pnas.2416182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
Clostridioides difficile infection (CDI) is a common cause of antibiotic-associated colitis. C. difficile proliferates and produces toxins that damage the colonic epithelium, leading to symptoms ranging from mild diarrhea to severe pseudomembranous colitis. The host's innate response to CDI occurs in two phases: an early phase in which neutrophils reduce the bacterial load and a late phase involving repair mechanisms to restore epithelial integrity. Group 3 innate lymphoid cells (ILC3s) are crucial in protecting the gut from CDI. Previous studies have shown that ILC3-derived IL-22 is essential in the late phase of CDI for epithelial repair and maintaining an intestinal microbiota that competes with C. difficile, preventing its expansion. Our study finds that ILC3s also protect during the early stages of CDI by sustaining neutrophils through GM-CSF. Less neutrophil production, accumulation, and activation was evident in ILC3-deficient mice than in wild-type (WT) mice, which led to exacerbated symptoms, impaired pathogen clearance, a compromised epithelial barrier, and increased mortality. The adoptive transfer of ILC3s into ILC3-deficient mice restored neutrophil responses and improved disease outcomes. Both in vitro and in vivo experiments revealed that GM-CSF production by ILC3s is crucial for neutrophil production and effective resistance during CDI. Using mice lacking NKp46+ ILC3s, we found that this subset significantly contributes to GM-CSF production in CDI. These findings highlight the critical role of the ILC3-neutrophil connection in early innate responses to CDI. Enhancing ILC3 production of GM-CSF could be a promising strategy for improving host defense against CDI and other enteric infections.
Collapse
Affiliation(s)
- José L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO63110
| | - Sarah de Oliveira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP13083-862, Brazil
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO63110
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO63110
| | - JinChao Hou
- Department of Anesthesiology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou310052, China
| | - Marco A. R. Vinolo
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP13083-862, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO63110
| |
Collapse
|
9
|
He X, Liu P, Luo Y, Fu X, Yang T. STATs, promising targets for the treatment of autoimmune and inflammatory diseases. Eur J Med Chem 2024; 277:116783. [PMID: 39180944 DOI: 10.1016/j.ejmech.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Cytokines play a crucial role in the pathophysiology of autoimmune and inflammatory diseases, with over 50 cytokines undergoing signal transduction through the Signal Transducers and Activators of Transcription (STAT) signaling pathway. Recent studies have solidly confirmed the pivotal role of STATs in autoimmune and inflammatory diseases. Therefore, this review provides a detailed summary of the immunological functions of STATs, focusing on exploring their mechanisms in various autoimmune and inflammatory diseases. Additionally, with the rapid advancement of structural biology in the field of drug discovery, many STAT inhibitors have been identified using structure-based drug design strategies. In this review, we also examine the structures of STAT proteins and compile the latest research on STAT inhibitors currently being tested in animal models and clinical trials for the treatment of immunological diseases, which emphasizes the feasibility of STATs as promising therapeutic targets and provides insights into the design of the next generation of STAT inhibitors.
Collapse
Affiliation(s)
- Xinlian He
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
11
|
Xiong X, Yan Z, Yan L, Yang X, Li D, Lin G. Oxidized low-density lipoproteins impair the pro-atherosclerotic effect of granulocyte-macrophage-colony-stimulating factor-producing T helper cells on macrophages. Scand J Immunol 2024; 99:e13362. [PMID: 38605563 DOI: 10.1111/sji.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 04/13/2024]
Abstract
T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1β (IL-1β), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.
Collapse
Affiliation(s)
- Xiaofang Xiong
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Zheng Yan
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Long Yan
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Xuexue Yang
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Dongsheng Li
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| | - Guizhen Lin
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuchang, Hubei Province, China
| |
Collapse
|
12
|
Mou D, Wu S, Jiao L, Zhou Y, Bai X. T Helper Cells Producing Granulocyte-Macrophage Colony Stimulating Factor as a Risk Marker for Coronary Heart Disease. Bull Exp Biol Med 2024; 177:15-21. [PMID: 38954298 DOI: 10.1007/s10517-024-06122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 07/04/2024]
Abstract
Coronary heart disease (CHD) is related to aberrant aggregation of immune cells in the plaques. This study focused on identification of abnormal T cell subtypes and inflammatory factors in CHD patients. To this end, the subtypes of T cells in peripheral blood of CHD patients (n=141) and healthy controls (n=46) were analyzed by flow cytometry. Plasma concentrations of cytokines were analyzed by multiplex assay. It was shown that the number of T helper cells producing granulocyte-macrophage CSF (GM-CSF) was higher in CHD patients in comparison with healthy controls. In addition, the fractions of Th1 and Th17 cells as well as the levels of IL-4, IL-5, IL-6, and IL-10 in CHD patients also surpassed the control values (p<0.05). However, the level of GM-CSF was insignificantly lower in CHD patients. Thus, we revealed a relationship between the number of T cells producing GM-CSF and the severity of CHD. Our results can be used to develop new potential biomarkers for CHD detection.
Collapse
Affiliation(s)
- D Mou
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - S Wu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - L Jiao
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Y Zhou
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - X Bai
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China.
- Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
13
|
Bernardi C, Charvet C, Zeiser R, Simonetta F. Granulocyte-Macrophage Colony-Stimulating Factor in Allogenic Hematopoietic Stem Cell Transplantation: From Graft-versus-Host Disease to the Graft-versus-Tumor Effect. Transplant Cell Ther 2024; 30:386-395. [PMID: 38224950 DOI: 10.1016/j.jtct.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) is a widely used treatment for a broad range of hematologic malignancies because of its graft-versus-tumor (GVT) effect. Unfortunately, allo-HSCT is still associated with morbidity and mortality related to relapse and transplantation complications, namely graft-versus-host-disease (GVHD). In an era of therapies specifically targeting molecular pathways, transcription factors, and cytokines, a better understanding of GVHD physiopathology is essential for the development of new therapeutic approaches. In this review, we outline the current knowledge of the role of granulocyte- macrophage colony-stimulating factor (GM-CSF) in allo-HSCT. We first discuss the biology of GM-CSF and its signaling pathways, with a focus on the main producing cells, T cells. We discuss recent preclinical studies pointing to a pivotal role of GM-CSF in GVHD, in particular gastrointestinal GVHD. We then summarize the potential role of GM-CSF in the GVT effect, discussing some potential strategies for exploiting GM-CSF in the context of allo-HSCT.
Collapse
Affiliation(s)
- Chiara Bernardi
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Céline Charvet
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Robert Zeiser
- Hematology, Oncology and Stem Cell Transplantation, Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg and German Cancer Research Center, Heidelberg, Germany; Signaling Research Centres BIOSS and Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
14
|
Ageeva T, Rizvanov A, Mukhamedshina Y. NF-κB and JAK/STAT Signaling Pathways as Crucial Regulators of Neuroinflammation and Astrocyte Modulation in Spinal Cord Injury. Cells 2024; 13:581. [PMID: 38607020 PMCID: PMC11011519 DOI: 10.3390/cells13070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Spinal cord injury (SCI) leads to significant functional impairments below the level of the injury, and astrocytes play a crucial role in the pathophysiology of SCI. Astrocytes undergo changes and form a glial scar after SCI, which has traditionally been viewed as a barrier to axonal regeneration and functional recovery. Astrocytes activate intracellular signaling pathways, including nuclear factor κB (NF-κB) and Janus kinase-signal transducers and activators of transcription (JAK/STAT), in response to external stimuli. NF-κB and STAT3 are transcription factors that play a pivotal role in initiating gene expression related to astrogliosis. The JAK/STAT signaling pathway is essential for managing secondary damage and facilitating recovery processes post-SCI: inflammation, glial scar formation, and astrocyte survival. NF-κB activation in astrocytes leads to the production of pro-inflammatory factors by astrocytes. NF-κB and STAT3 signaling pathways are interconnected: NF-κB activation in astrocytes leads to the release of interleukin-6 (IL-6), which interacts with the IL-6 receptor and initiates STAT3 activation. By modulating astrocyte responses, these pathways offer promising avenues for enhancing recovery outcomes, illustrating the crucial need for further investigation into their mechanisms and therapeutic applications in SCI treatment.
Collapse
Affiliation(s)
- Tatyana Ageeva
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
| | - Albert Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
15
|
Zhou H, Jiang B, Qian Y, Ke C. The Mechanistic Target of Rapamycin Complex 1 Pathway Contributes to the Anti-Tumor Effect of Granulocyte-Macrophage-Colony-Stimulating Factor-Producing T Helper Cells in Mouse Colorectal Cancer. Immunol Invest 2024; 53:261-280. [PMID: 38050895 DOI: 10.1080/08820139.2023.2290631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
INTRODUCTION The role of granulocyte-macrophage-colony-stimulating factor-producing T helper (ThGM) cells in colorectal cancer (CRC) development remains unclear. This study characterizes the function of ThGM cells in mouse CRC. METHODS Mouse CRC was induced by administrating azoxymethane and dextran sulfate sodium. The presence of ThGM cells in CRC tissues and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in ThGM cells was detected by flow cytometry. The impact of mTORC1 signaling on ThGM cell function was determined by in vitro culture. The effect of ThGM cells on CRC development was evaluated by adoptive transfer assays. RESULTS ThGM cells, which expressed granulocyte-macrophage-colony-stimulating factor (GM-CSF), accumulated in CRC tissues. mTORC1 signaling is activated in CRC ThGM cells. mTORC1 inhibition by rapamycin suppressed ThGM cell differentiation and proliferation and resulted in the death of differentiating ThGM cells. mTORC1 inhibition in already differentiated ThGM cells did not induce significant cell death but decreased the expression of GM-CSF, interleukin-2, and tumor necrosis factor-alpha while impeding cell proliferation. Furthermore, mTORC1 inhibition diminished the effect of ThGM cells on driving macrophage polarization toward the M1 type, as evidenced by lower expression of pro-inflammatory cytokines, major histocompatibility complex class II molecule, and CD80 in macrophages after co-culture with rapamycin-treated ThGM cells. Lentivirus-mediated knockdown/overexpression of regulatory-associated protein of mTOR (Raptor) confirmed the essential role of mTORC1 in ThGM cell differentiation and function. Adoptively transferred ThGM cells suppressed CRC growth whereas mTORC1 inhibition abolished this effect. CONCLUSION mTORC1 is essential for the anti-CRC activity of ThGM cells.
Collapse
Affiliation(s)
- Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Yuyuan Qian
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| |
Collapse
|
16
|
Zhang Q, Sun W, Wang Q, Zheng X, Zhang R, Zhang N. A High MCT-Based Ketogenic Diet Suppresses Th1 and Th17 Responses to Ameliorate Experimental Autoimmune Encephalomyelitis in Mice by Inhibiting GSDMD and JAK2-STAT3/4 Pathways. Mol Nutr Food Res 2024; 68:e2300602. [PMID: 38054637 DOI: 10.1002/mnfr.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Indexed: 12/07/2023]
Abstract
SCOPE Inflammation and pyroptosis play important roles in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated the therapeutic potential of ketogenic diet (KD) in EAE. METHODS AND RESULTS The administration of KD reduces demyelination and microglial activation in the spinal cord of EAE mice. Meanwhile, KD decreases the levels of Th1 and Th17 associated cytokines/transcription factors production (T-bet, IFN-γ, RORγt, and IL-17) and increases those of Th2 and Treg cytokines/transcription factors (GATA3, IL-4, Foxp3, and IL-10) in the spinal cord and spleen. Corresponding, KD reduces the expression of chemokines in EAE, which those chemokines associate with T-cell infiltration into central nervous system (CNS). In addition, KD inhibits the GSDMD activation in microglia, oligodendrocyte, CD31+ cells, CCR2+ cells, and T cells in the spinal cord. Moreover, KD significantly decreases the ratios of p-JAK2/JAK2, p-STAT3/STAT3, and p-STAT4/STAT4, as well as GSDMD in EAE mice. CONCLUSIONS this study demonstrates that KD reduces the activation and differentiation of T cells in the spinal cord and spleen and prevents T cell infiltration into CNS of EAE via modulating the GSDMD and STAT3/4 pathways, suggesting that KD is a potentially effective strategy in the treatment of MS.
Collapse
Affiliation(s)
- Qianye Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| |
Collapse
|
17
|
Liu C, Chen H, Tao X, Li C, Li A, Wu W. ALKBH5 protects against stroke by reducing endoplasmic reticulum stress-dependent inflammation injury via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m 6A-YTHDF1-dependent manner. Exp Neurol 2024; 372:114629. [PMID: 38056583 DOI: 10.1016/j.expneurol.2023.114629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress causes neuroinflammation and neuronal apoptosis during ischemic stroke progression. This study has investigated the role of ALKBH5 in ER stress during ischemic stroke progression. METHODS In vivo and in vitro models of ischemic stroke were established by middle cerebral artery occlusion (MCAO) and OGD/R treatment, respectively. Cerebral infarct size was detected using triphenyltetrazolium chloride staining (TTC), and pathological changes were examined using histological staining. The levels of inflammatory factors were analyzed using Enzyme-linked immunosorbent assay. Cell counting kit-8 assay and flow cytometry were used to measure cell viability and apoptosis, respectively. The global m6A level was detected using the commercial kit, and STAT5 mRNA m6A level was determined using methylated RNA binding protein immunoprecipitation (Me-RIP). ALKBH5, YTHDF1, and STAT5 interactions were analyzed using RIP and RNA pull-down assays. RESULTS ALKBH5 was upregulated in MCAO animals and OGD/R cell models. ALKBH5 knockdown exacerbated ER stress, neuroinflammation, and neuronal apoptosis in brain tissues and neuronal cells. ALKBH5 inhibited STAT5 mRNA stability and expression in an m6A-YTHDF1-dependent manner. STAT5 promoted ER stress by activating the PERK/eIF2/CHOP signaling pathway. Furthermore, STAT5 knockdown reversed the effects of ALKBH5 knockdown on OGD/R-induced ER stress and neuroinflammation in HT22 cells. CONCLUSION ALKBH5 knockdown exacerbated ischemic stroke by increasing ER stress-dependent neuroinflammation and neuronal apoptosis via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m6A-YTHDF1-dependent manner.
Collapse
Affiliation(s)
- Chujuan Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China; Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Hui Chen
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China
| | - Xi Tao
- Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Chen Li
- Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Aiping Li
- Department of Neurological Neurology, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China.
| |
Collapse
|
18
|
Ali Mohammed S, Elbaramawy A, Hassan Abd-Allah S, Elkholy A, Ibrahim Elsayed N, Hussein S. Therapeutic potentials of mesenchymal stem cells in the treatment of inflammatory bowel disease in rats. J Biochem Mol Toxicol 2024; 38:e23532. [PMID: 37676835 DOI: 10.1002/jbt.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Interleukin-1beta (IL-1β) and interleukin-17A (IL-17A) have strong pro-inflammatory activities that are involved in inflammatory bowel diseases (IBDs). Mesenchymal stem cell (MSC) therapy is considered a promising treatment for IBD. This study was performed to understand the role of rat Nlrp3 inflammasome, Hmgb1, and pro-inflammatory cytokines (IL-1β and IL-17a) in the pathogenesis of IBD. Also, to evaluate the role of human umbilical cord blood-MSCs (hUCB-MSCs) in the management of IBD. The rats were in four groups: normal controls, indomethacin-induced IBD group, indomethacin-induced IBD rats that received phosphate-buffered saline (PBS), and the IBD group that received hUCB-MSCs as a treatment. The messenger RNA (mRNA) expression levels of rat Nlrp3, Hmgb1, IL-1β, and IL-17a were evaluated by quantitative real-time polymerase chain reaction. Histopathological examination of the small intestinal tissues of the studied rats was performed. There was a significant upregulation of the rat Nlrp3, IL-1β, IL-17a mRNA expression (p < 0.001 for the three parameters), and Hmgb1 (p < 0.05) in the untreated IBD group compared to the normal control group. In the MSC-treated group, IL-1β, IL-17a, and rat Nlrp3 mRNA expression significantly decreased compared to both the untreated IBD group and PBS group (p < 0.05 for all). hUCB-MSCs ameliorated IBD in rats by downregulating the pro-inflammatory cytokines (IL-1β and IL-17a) and other inflammatory mediators such as Hmgb1 and rat Nlrp3.
Collapse
Affiliation(s)
- Shuzan Ali Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Azza Elbaramawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Somia Hassan Abd-Allah
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Elkholy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Nashwa Ibrahim Elsayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Samia Hussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Lin F, Yu H, Zhang L, Zhou J, Cao Y, Wu S, Wang J. Differential expression of interleukin-35 receptor distinguishes different subsets of granulocyte-macrophage-colony-stimulating factor-producing T helper cells in a mouse endometriosis model. Mol Immunol 2023; 164:28-38. [PMID: 37944204 DOI: 10.1016/j.molimm.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
The immune system contributes to the pathophysiology of endometriosis. The role of ThGM cells, which produce granulocyte macrophage-colony-stimulating factor (GM-CSF), in the pathogenesis of endometriosis remains unknown. To analyze the features of ThGM cells in endometriosis, a mouse endometriosis model was established. ThGM cells in the spleen, peritoneal fluid (PF), and endometriotic lesions (EL) were measured by flow cytometry, based on the expression of surface markers and intracellular proteins. Live ThGM cells were sorted according to chemokine receptor expression profiles and their effects on other CD4+ T cell subsets were determined by co-culture assays. An adoptive transfer assay was performed to characterize the effect of ThGM cells on endometriosis. We found that ThGM cells were present in endometriotic PF and EL. Live EL ThGM cells were enriched in CD4+CXCR3-CCR8-CCR4+CCR10+ T cells. EL ThGM cells differentially express interleukin-35 receptor (IL-35R), consisting of an IL-35R+ subset and an IL-35R- subset. The IL-35R+ subset expressed less GM-CSF, interleukin-2 (IL-2), and tumor necrosis factor-alpha (TNF-α) and proliferated slower than the IL-35R- subset. Meanwhile, the IL-35R+ subset was weaker than the IL-35R- subset in promoting the functions of Th1 and Th17 cells. ThGM cell transfer did not influence EL development but significantly alleviated pro-inflammatory cytokines in PF and ELs. Interleukin-35 (IL-35), the ligand of IL-35R, suppressed ThGM cell function and proliferation in an IL-35R-dependent manner. In summary, ThGM cells in the PF and ELs might exacerbate endometriotic inflammation. IL-35 might suppress the function of ThGM cells via IL-35R.
Collapse
Affiliation(s)
- Fengqin Lin
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Hongbo Yu
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Li Zhang
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Jing Zhou
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Yuan Cao
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Songli Wu
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China
| | - Junjie Wang
- The Department of Obstetrics and Gynecology at Affiliated Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province 443000, China.
| |
Collapse
|
20
|
Li J, Tang B, Miao Y, Li G, Sun Z. Targeting of STAT5 using the small molecule topotecan hydrochloride suppresses acute myeloid leukemia progression. Oncol Rep 2023; 50:208. [PMID: 37830151 PMCID: PMC10603551 DOI: 10.3892/or.2023.8645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is a common type of acute leukemia in adults and relapse is one of the main reasons for treatment failure. FLT3‑ITD mutations are associated with poor prognosis, short disease‑free progression survival and high relapse rates in patients with AML. STAT5 is activated by FLT3‑ITD and drives the pathogenesis of AML. STAT5 activation is usually a hallmark of hematologic malignancies and occurs in ~70% of patients with AML. Moreover, STAT5 is a key molecule which regulates hematopoiesis, and its high expression is closely associated with drug resistance, thus direct targeting of STAT5 for AML is of great clinical value. The present study introduces a new small‑molecule inhibitor that targets STAT5, presenting a promising approach for AML therapy. A high throughput fluorescence polarization (FP) screening system for STAT5 was designed and established, and used to screen an existing compound library to obtain the highly active small molecule inhibitor, topotecan hydrochloride. Topotecan hydrochloride was demonstrated to be an effective inhibitor of STAT5 by molecular docking prediction and cellular thermal shift assay. Topotecan hydrochloride bound to STAT5, inhibiting its dimerization, phosphorylation and transcription of specific target genes. The compound exhibits cellular activity at the nanomolar level and significantly inhibits the proliferation of human AML cell lines and FLT3‑ITD+ AML cells. Furthermore, topotecan hydrochloride has the potential to exert an anti‑tumor effect in vivo. Overall, topotecan hydrochloride offers a new opportunity for the treatment of AML and other hematologic malignancies by directly targeting STAT5.
Collapse
Affiliation(s)
- Jiahui Li
- Fengxian Hospital Affiliated to Anhui University of Science and Technology, Shanghai 201499, P.R. China
| | - Bin Tang
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People's Hospital of Wuhu City), Wuhu, Anhui 241000, P.R. China
| | - Ying Miao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 201100, P.R. China
| | - Guihong Li
- Fengxian Hospital Affiliated to The Southern Medical University, Shanghai 201499, P.R. China
| | - Zhenliang Sun
- Fengxian Hospital Affiliated to Anhui University of Science and Technology, Shanghai 201499, P.R. China
| |
Collapse
|
21
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
22
|
Shao S, Chen C, Shi G, Zhou Y, Wei Y, Wu L, Sun L, Zhang T. JAK inhibition ameliorated experimental autoimmune encephalomyelitis by blocking GM-CSF-driven inflammatory signature of monocytes. Acta Pharm Sin B 2023; 13:4185-4201. [PMID: 37799385 PMCID: PMC10547959 DOI: 10.1016/j.apsb.2023.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/27/2023] [Accepted: 07/13/2023] [Indexed: 10/07/2023] Open
Abstract
Monocytes are key effectors in autoimmunity-related diseases in the central nervous system (CNS) due to the critical roles of these cells in the production of proinflammatory cytokines, differentiation of T-helper (Th) cells, and antigen presentation. The JAK-STAT signaling is crucial for initiating monocytes induced immune responses by relaying cytokines signaling. However, the role of this pathway in modulating the communication between monocytes and Th cells in the pathogenesis of multiple sclerosis (MS) is unclear. Here, we show that the JAK1/2/3 and STAT1/3/5/6 subtypes involved in the demyelination mediated by the differentiation of pathological Th1 and Th17 and the CNS-infiltrating inflammatory monocytes in experimental autoimmune encephalomyelitis (EAE), a model for MS. JAK inhibition prevented the CNS-infiltrating CCR2-dependent Ly6Chi monocytes and monocyte-derived dendritic cells in EAE mice. In parallel, the proportion of GM-CSF+CD4+ T cells and GM-CSF secretion were decreased in pathological Th17 cells by JAK inhibition, which in turns converted CNS-invading monocytes into antigen-presenting cells to mediate tissue damage. Together, our data highlight the therapeutic potential of JAK inhibition in treating EAE by blocking the GM-CSF-driven inflammatory signature of monocytes.
Collapse
Affiliation(s)
| | | | - Gaona Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yazi Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Balendran T, Lim K, Hamilton JA, Achuthan AA. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front Immunol 2023; 14:1196931. [PMID: 37457726 PMCID: PMC10339812 DOI: 10.3389/fimmu.2023.1196931] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a destructive inflammatory autoimmune disease that causes pain and disability. Many of the currently available drugs for treating RA patients are aimed at halting the progression of the disease and alleviating inflammation. Further, some of these treatment options have drawbacks, including disease recurrence and adverse effects due to long-term use. These inefficiencies have created a need for a different approach to treating RA. Recently, the focus has shifted to direct targeting of transcription factors (TFs), as they play a vital role in the pathogenesis of RA, activating key cytokines, chemokines, adhesion molecules, and enzymes. In light of this, synthetic drugs and natural compounds are being explored to target key TFs or their signaling pathways in RA. This review discusses the role of four key TFs in inflammation, namely NF-κB, STATs, AP-1 and IRFs, and their potential for being targeted to treat RA.
Collapse
Affiliation(s)
- Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Keith Lim
- Department of Medicine, Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - John A. Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Adrian A. Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Wu L, Wang L, Chai X. Interleukin-17 receptor C is essential for the pro-inflammatory pathogenicity of granulocyte-macrophage-colony-stimulating factor-producing T helper cells in experimental autoimmune uveitis. Cell Immunol 2023; 390:104740. [PMID: 37336144 DOI: 10.1016/j.cellimm.2023.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Autoimmune uveitis is an inflammatory disorder of the eye triggered by the responses of autoreactive T cells to ocular autoantigens. This study aims to understand the role of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in the pathophysiology of mouse experimental autoimmune uveitis (EAU). We established an EAU model by immunizing mice with interphotoreceptor retinoid-binding protein (IRBP) 651-670. Splenic or eye-infiltrating ThGM cells were analyzed and enriched by flow cytometry according to the levels of an array of surface markers, transcription factors, and cytokines. Lentiviral transduction was conducted to silence or overexpress the target gene in differentiated ThGM cells. The adoptive transfer was applied to determine the pathogenicity of ThGM cells in vivo. We found that ThGM cells were present in the spleen and the eye after EAU induction. Both splenic and eye-infiltrating ThGM cells were phenotypically CD4+CCR7-CXCR3-CCR6-CCR10hi. Eye-infiltrating ThGM cells up-regulated interleukin-1β (IL-1β), interleukin-6 (IL-6), and IL-17 receptor C (IL-17RC) relative to splenic ThGM cells. IL-17RC overexpression enabled interleukin-17A (IL-17A)-induced up-regulation of IL-1β and IL-6 production in ThGM cells. Adoptive transfer of IL-17RC overexpressing ThGM cells exacerbated EAU severity, as evidenced by a higher histology score as well as increased pro-inflammatory cytokines and inflammatory cells in the eye. However, IL-17RC-silenced ThGM cells did not impact EAU. Therefore, for the first time, this study unveils the essential pro-inflammatory role of IL-17RC-expressing ThGM cells in EAU pathophysiology. We discovered a novel mechanism underlying the pathophysiology of autoimmune uveitis.
Collapse
Affiliation(s)
- Lina Wu
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province 430060, China.
| | - Lu Wang
- Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province 430060, China
| | - Xin Chai
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province 430060, China
| |
Collapse
|
25
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Matsubara E, Yano H, Pan C, Komohara Y, Fujiwara Y, Zhao S, Shinchi Y, Kurotaki D, Suzuki M. The Significance of SPP1 in Lung Cancers and Its Impact as a Marker for Protumor Tumor-Associated Macrophages. Cancers (Basel) 2023; 15:cancers15082250. [PMID: 37190178 DOI: 10.3390/cancers15082250] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Macrophages are a representative cell type in the tumor microenvironment. Macrophages that infiltrate the cancer microenvironment are referred to as tumor-associated macrophages (TAMs). TAMs exhibit protumor functions related to invasion, metastasis, and immunosuppression, and an increased density of TAMs is associated with a poor clinical course in many cancers. Phosphoprotein 1 (SPP1), also known as osteopontin, is a multifunctional secreted phosphorylated glycoprotein. Although SPP1 is produced in a variety of organs, at the cellular level, it is expressed on only a few cell types, such as osteoblasts, fibroblasts, macrophages, dendritic cells, lymphoid cells, and mononuclear cells. SPP1 is also expressed by cancer cells, and previous studies have demonstrated correlations between levels of circulating SPP1 and/or increased SPP1 expression on tumor cells and poor prognosis in many types of cancer. We recently revealed that SPP1 expression on TAMs is correlated with poor prognosis and chemoresistance in lung adenocarcinoma. In this review, we summarize the significance of TAMs in lung cancers and discuss the importance of SPP1 as a new marker for the protumor subpopulation of monocyte-derived TAMs in lung adenocarcinoma. Several studies have shown that the SPP1/CD44 axis contribute to cancer chemoresistance in solid cancers, so the SPP1/CD44 axis may represent one of the most critical mechanisms for cell-to-cell communication between cancer cells and TAMs.
Collapse
Affiliation(s)
- Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shukang Zhao
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yusuke Shinchi
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
27
|
Ansari MA, Singh PK, Dar SA, Rai G, Akhter N, Pandhi D, Gaurav V, Bhattacharya SN, Banerjee BD, Ahmad A, Das S. Deregulated phenotype of autoreactive Th17 and Treg clone cells in pemphigus vulgaris after in-vitro treatment with desmoglein antigen (Dsg-3). Immunobiology 2023; 228:152340. [PMID: 36689824 DOI: 10.1016/j.imbio.2023.152340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The loss of balance between regulatory T (Treg) and T helper 17 (Th17) causes loss of tolerance against desmoglein (Dsg)-3 leading to pemphigus vulgaris (PV), an autoimmune bullous skin disorder associated with autoantibodies against Dsg-3. We aimed to elucidate the complex relationship of Th17 and Treg cells, their molecules, and the underlying mechanism in the development of PV disease. Using cytokine secretion assays, Th17 and Treg cells were sorted by FACS Aria-III within Dsg-3-responsive PBMC population and homogeneous T cell clones were generated in-vitro. Different cell surface molecules like CD25, GITR, CD122, CD152, CD45RO, IL-23R, STAT3, STAT5, CD127, HLA-DR, CCR4, CCR5, CCR6 and CCR7 were studied. The functional response of Th17 and Treg cells were elucidated by measuring the levels of various cytokines released by IL-10 and IL-17 T cells. The mRNA expression of transcription factors (FoxP3 and RORγt) was also analyzed. IL-17 secreting (Th17) cells with phenotype CD4+IL-17+ were greatly increased and IL-10 secreting (Treg) cells with phenotype CD4+IL-10+ were reduced in PV cases than healthy controls. The qPCR analysis showing high expression of retinoic acid receptor-related orphan receptor gamma (RORγt) mRNA in comparison to forkhead box P3 (FoxP3) mRNA confirmed the development of pro-inflammatory Th17 response in PV. Further, the cytokine profile of pro-inflammatory and anti-inflammatory cytokines suggested defective suppressive functions in Treg cells with high inflammatory response. Our findings indicate that autoantigen Dsg-3 specifically allows the proliferation of IL-17 secreting T cells though has a negative effect on IL-10 secreting T cells leading to dysregulation of immunity in PV patients. This antagonistic relationship between Dsg-3-specific Th17 and Treg cells may be critical for the onset and persistence of inflammation in PV cases.
Collapse
Affiliation(s)
- Mohammad Ahmad Ansari
- Multidisciplinary Research Unit (Department of Health Research), University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Praveen Kumar Singh
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Gargi Rai
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65731, Saudi Arabia
| | - Deepika Pandhi
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Vishal Gaurav
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Sambit Nath Bhattacharya
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Basu Dev Banerjee
- Department of Biochemistry, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India.
| |
Collapse
|
28
|
Nechanitzky R, Nechanitzky D, Ramachandran P, Duncan GS, Zheng C, Göbl C, Gill KT, Haight J, Wakeham AC, Snow BE, Bradaschia-Correa V, Ganguly M, Lu Z, Saunders ME, Flavell RA, Mak TW. Cholinergic control of Th17 cell pathogenicity in experimental autoimmune encephalomyelitis. Cell Death Differ 2023; 30:407-416. [PMID: 36528755 PMCID: PMC9950465 DOI: 10.1038/s41418-022-01092-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS) in which Th17 cells have a crucial but unclear function. Here we show that choline acetyltransferase (ChAT), which synthesizes acetylcholine (ACh), is a critical driver of pathogenicity in EAE. Mice with ChAT-deficient Th17 cells resist disease progression and show reduced brain-infiltrating immune cells. ChAT expression in Th17 cells is linked to strong TCR signaling, expression of the transcription factor Bhlhe40, and increased Il2, Il17, Il22, and Il23r mRNA levels. ChAT expression in Th17 cells is independent of IL21r signaling but dampened by TGFβ, implicating ChAT in controlling the dichotomous nature of Th17 cells. Our study establishes a cholinergic program in which ACh signaling primes chronic activation of Th17 cells, and thereby constitutes a pathogenic determinant of EAE. Our work may point to novel targets for therapeutic immunomodulation in MS.
Collapse
Affiliation(s)
- Robert Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Duygu Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Parameswaran Ramachandran
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Gordon S Duncan
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Chunxing Zheng
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Christoph Göbl
- Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Kyle T Gill
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Bryan E Snow
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | - Milan Ganguly
- Histology Core, The Centre for Phenogenomics, Toronto, ON, Canada
| | - Zhibin Lu
- UHN Bioinformatics and HPC Core, Toronto, ON, Canada
| | - Mary E Saunders
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tak W Mak
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
29
|
Pant H, Hercus TR, Tumes DJ, Yip KH, Parker MW, Owczarek CM, Lopez AF, Huston DP. Translating the biology of β common receptor-engaging cytokines into clinical medicine. J Allergy Clin Immunol 2023; 151:324-344. [PMID: 36424209 DOI: 10.1016/j.jaci.2022.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
Abstract
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called β-common or βc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Collapse
Affiliation(s)
- Harshita Pant
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael W Parker
- Bio 21 Institute, The University of Melbourne, Melbourne, Australia; St Vincent's Institute of Medical Research, Melbourne, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - David P Huston
- Texas A&M University School of Medicine, Houston, Tex; Houston Methodist Hospital and Research Institute, Houston, Tex.
| |
Collapse
|
30
|
Le Floc'h A, Nagashima K, Birchard D, Scott G, Ben LH, Ajithdoss D, Gayvert K, Romero Hernandez A, Herbin O, Tay A, Farrales P, Korgaonkar CK, Pan H, Shah S, Kamat V, Chatterjee I, Popke J, Oyejide A, Lim WK, Kim JH, Huang T, Franklin M, Olson W, Norton T, Perlee L, Yancopoulos GD, Murphy AJ, Sleeman MA, Orengo JM. Blocking common γ chain cytokine signaling ameliorates T cell-mediated pathogenesis in disease models. Sci Transl Med 2023; 15:eabo0205. [PMID: 36630481 DOI: 10.1126/scitranslmed.abo0205] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The common γ chain (γc; IL-2RG) is a subunit of the interleukin (IL) receptors for the γc cytokines IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. The lack of appropriate neutralizing antibodies recognizing IL-2RG has made it difficult to thoroughly interrogate the role of γc cytokines in inflammatory and autoimmune disease settings. Here, we generated a γc cytokine receptor antibody, REGN7257, to determine whether γc cytokines might be targeted for T cell-mediated disease prevention and treatment. Biochemical, structural, and in vitro analysis showed that REGN7257 binds with high affinity to IL-2RG and potently blocks signaling of all γc cytokines. In nonhuman primates, REGN7257 efficiently suppressed T cells without affecting granulocytes, platelets, or red blood cells. Using REGN7257, we showed that γc cytokines drive T cell-mediated disease in mouse models of graft-versus-host disease (GVHD) and multiple sclerosis by affecting multiple aspects of the pathogenic response. We found that our xenogeneic GVHD mouse model recapitulates hallmarks of acute and chronic GVHD, with T cell expansion/infiltration into tissues and liver fibrosis, as well as hallmarks of immune aplastic anemia, with bone marrow aplasia and peripheral cytopenia. Our findings indicate that γc cytokines contribute to GVHD and aplastic anemia pathology by promoting these characteristic features. By demonstrating that broad inhibition of γc cytokine signaling with REGN7257 protects from immune-mediated disorders, our data provide evidence of γc cytokines as key drivers of pathogenic T cell responses, offering a potential strategy for the management of T cell-mediated diseases.
Collapse
Affiliation(s)
- Audrey Le Floc'h
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kirsten Nagashima
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dylan Birchard
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George Scott
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Li-Hong Ben
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dharani Ajithdoss
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kaitlyn Gayvert
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - Olivier Herbin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Amanda Tay
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Pamela Farrales
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - Hao Pan
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Sweta Shah
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Vishal Kamat
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ishita Chatterjee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jon Popke
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Adelekan Oyejide
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jee H Kim
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew Franklin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Thomas Norton
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lorah Perlee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jamie M Orengo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| |
Collapse
|
31
|
Zhang H, Jadhav RR, Cao W, Goronzy IN, Zhao TV, Jin J, Ohtsuki S, Hu Z, Morales J, Greenleaf WJ, Weyand CM, Goronzy JJ. Aging-associated HELIOS deficiency in naive CD4 + T cells alters chromatin remodeling and promotes effector cell responses. Nat Immunol 2023; 24:96-109. [PMID: 36510022 PMCID: PMC10118794 DOI: 10.1038/s41590-022-01369-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
Immune aging combines cellular defects in adaptive immunity with the activation of pathways causing a low-inflammatory state. Here we examined the influence of age on the kinetic changes in the epigenomic and transcriptional landscape induced by T cell receptor (TCR) stimulation in naive CD4+ T cells. Despite attenuated TCR signaling in older adults, TCR activation accelerated remodeling of the epigenome and induced transcription factor networks favoring effector cell differentiation. We identified increased phosphorylation of STAT5, at least in part due to aberrant IL-2 receptor and lower HELIOS expression, as upstream regulators. Human HELIOS-deficient, naive CD4+ T cells, when transferred into human-synovium-mouse chimeras, infiltrated tissues more efficiently. Inhibition of IL-2 or STAT5 activity in T cell responses of older adults restored the epigenetic response pattern to the one seen in young adults. In summary, reduced HELIOS expression in non-regulatory naive CD4+ T cells in older adults directs T cell fate decisions toward inflammatory effector cells that infiltrate tissue.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rohit R Jadhav
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Wenqiang Cao
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Isabel N Goronzy
- Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
| | - Tuantuan V Zhao
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jun Jin
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Shozo Ohtsuki
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Zhaolan Hu
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jose Morales
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | | | - Cornelia M Weyand
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jörg J Goronzy
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
32
|
Schnell A, Littman DR, Kuchroo VK. T H17 cell heterogeneity and its role in tissue inflammation. Nat Immunol 2023; 24:19-29. [PMID: 36596896 PMCID: PMC10795475 DOI: 10.1038/s41590-022-01387-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/04/2022] [Indexed: 01/05/2023]
Abstract
Since their discovery almost two decades ago, interleukin-17-producing CD4+ T cells (TH17 cells) have been implicated in the pathogenesis of multiple autoimmune and inflammatory disorders. In addition, TH17 cells have been found to play an important role in tissue homeostasis, especially in the intestinal mucosa. Recently, the use of single-cell technologies, along with fate mapping and various mutant mouse models, has led to substantial progress in the understanding of TH17 cell heterogeneity in tissues and of TH17 cell plasticity leading to alternative T cell states and differing functions. In this Review, we discuss the heterogeneity of TH17 cells and the role of this heterogeneity in diverse functions of TH17 cells from homeostasis to tissue inflammation. In addition, we discuss TH17 cell plasticity and its incorporation into the current understanding of T cell subsets and alternative views on the role of TH17 cells in autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dan R Littman
- Department of Cell Biology and Regenerative Medicine, New York University School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
33
|
Neobaicalein Inhibits Th17 Cell Differentiation Resulting in Recovery of Th17/Treg Ratio through Blocking STAT3 Signaling Activation. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010018. [PMID: 36615213 PMCID: PMC9822447 DOI: 10.3390/molecules28010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Huangqin is the dried root of Scutellaria baicalensis Georgi, which has been widely utilized for heat-clearing (Qingre) and dewetting (Zaoshi), heat-killed (Xiehuo) and detoxifying (Jiedu) in the concept of Traditional Chinese Medicine and is used for treating inflammation and cancer in clinical formulas. Neobaicalein (NEO) is of flavonoid isolated from Huangqin and has been reported to possess prominent anti-inflammatory effects in published work. Th17/Treg balance shift to Th17 cells is an essential reason for autoimmune inflammatory diseases. However, the role NEO plays in Th17 and Treg and the underlying mechanism has not been elucidated yet. Network pharmacology-based study revealed that NEO predominantly regulated IL-17 signaling pathway. Moreover, our result shown that NEO (3-30 μmol/L) down-regulated Th17 differentiation and cellular supernatant and intracellular IL-17A level and tumor necrosis factor α production in a concentration-dependent manner. The further mechanism research revealed that NEO also specifically inhibited phosphorylation of STAT3(Tyr725) and STAT4 (Y693) without influence on activation of STAT5 and STAT6 in splenocytes. Immunofluorescence results illuminated that NEO effectively blocked STAT3 translocated into nucleus. Interestingly, NEO at appreciated dose could only inhibit Th17 cell differentiation and have no effect on Treg differentiation. The present study revealed that NEO effectively inhibited Th17 cell differentiation through specifically blocking the activation of STAT3 signaling without inactivation of STAT5 and STAT6. Additional inhibitory effect on activation of STAT4 by NEO also suggested the potential for antagonism against Th1 differentiation. All work suggested that NEO may be a potential candidate for immunoregulation and treating autoimmune inflammatory diseases through inhibiting immune cell viability and T cell differentiation.
Collapse
|
34
|
Jin K, Li T, Miao Z, Ran J, Chen L, Mou D, Wang C, Wu S, Yang H, Fu XY. Stat5 -/- CD4 + T cells elicit anti-melanoma effect by CD4 + T cell remolding and Notch1 activation. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1824-1839. [PMID: 35508790 DOI: 10.1007/s11427-021-2078-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Signal transducers and activators of transcription 5 (Stat5) is known to engage in regulating the differentiation and effector function of various subsets of T helper cells. However, how Stat5 regulates the antitumor activity of tumor-infiltrating CD4+ T cells is largely unknown. Here, we showed that mice with specific deletion of Stat5 in CD4+ T cells were less susceptible to developing subcutaneous and lung metastatic B16 melanoma with CD4+ tumor-infiltrating lymphocytes (TILs) remolding. Especially, we confirmed that Stat5-deficient CD4+ naïve T cells were prone to polarization of two subtypes of Th17 cells: IFN-γ+ and IFN-γ- Th17 cells, which exhibited increased anti-melanoma activity through enhanced activation of Notch1 pathway compared with wild type Th17 cells. Our study therefore revealed a novel function of Stat5 in regulating tumor-specific Th17 cell differentiation and function in melanoma. This study also provided a new possibility for targeting Stat5 and other Th17-associated pathways to develop novel immunotherapies for melanoma patients.
Collapse
Affiliation(s)
- Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhiyong Miao
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingjing Ran
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luyu Chen
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dachao Mou
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Shasha Wu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xin-Yuan Fu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- Generos BioPharma, Hangzhou, 310018, China.
| |
Collapse
|
35
|
Meyer A, Parmar PJ, Shahrara S. Significance of IL-7 and IL-7R in RA and autoimmunity. Autoimmun Rev 2022; 21:103120. [PMID: 35595051 PMCID: PMC9987213 DOI: 10.1016/j.autrev.2022.103120] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
Abstract
While physiological levels of IL-7 are essential for T cell proliferation, survival and co-stimulation, its escalated concentration has been associated with autoimmune diseases such as Rheumatoid arthritis (RA). Expression of IL-7 and IL-7R in RA monocytes is linked to disease activity score and TNF transcription. TNF stimulation can modulate IL-7 secretion and IL-7R frequency in myeloid cells, however, only IL-7R transcription levels are downregulated in anti-TNF responsive patients. Elevated levels of IL-7 in RA synovial tissue and fluid are involved in attracting RA monocytes into the inflammatory joints and remodeling them into proinflammatory macrophages and mature osteoclasts. Further, IL-7 amplification of RA Th1 cell differentiation and IFNγ secretion, can directly prime myeloid IL-7R expression and thereby exacerbate IL-7-mediated joint inflammatory and erosive imprints. In parallel, IL-7 accentuates joint angiogenesis by expanding the production of proangiogenic factors from RA macrophages and endothelial cells. In preclinical models, blockade of IL-7 or IL-7R can effectively impair joint inflammation, osteoclast formation, and neovascularization primarily by impeding monocyte and endothelial cell infiltration as well as inhibition of pro-inflammatory macrophage and Th1/Th17 cell differentiation. In conclusion, disruption of IL-7/IL-7R signaling can uniquely intercept the crosstalk between RA myeloid and lymphoid cells in their ability to trigger neovascularization.
Collapse
Affiliation(s)
- Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Prashant J Parmar
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA.
| |
Collapse
|
36
|
Engineering a curcumol-loaded porphyrinic metal-organic framework for enhanced cancer photodynamic therapy. Colloids Surf B Biointerfaces 2022; 214:112456. [PMID: 35290822 DOI: 10.1016/j.colsurfb.2022.112456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Photodynamic therapy (PDT), a non-invasive and safe treatment, is a clinical promising alternative strategy for certain cancers. Although PDT can trigger tumor specific immunity, the immunosuppressive tumor microenvironment severely limits the efficacy of photodynamic immunotherapy. Curcumol (CUR), extracted from essential oils of traditional Chinese medicine, has potential immune activation effect for cancer immunotherapy. Considering the fat solubility and volatility hinder the in vivo application of essential oils, a metal-organic framework system (Named as CuTPyP/F68) composed of porphyrin and Cu2+ was constructed for delivering CUR (Named as CUR@CuTPyP/F68). The in vitro assays proved that CUR@CuTPyP/F68 could directly kill tumor cells by the released CUR and singlet oxygen (1O2) generated under laser irradiation (marked as '+'). Moreover, CUR@CuTPyP/F68 had superior tumor targeting and retention capabilities, which effectively inhibited tumor growth in vivo with only a single dose. Finally, the mechanism of CUR-mediated enhanced PDT had been firstly proposed: (1) CUR@CuTPyP/F68(+)-treated group exhibited more CD4+ and CD8+ T cells infiltration in tumor tissue; (2) CUR@CuTPyP/F68(+)-treated group exhibited high level of IFN-γ, IL-12 and TNF-α in blood. Overall, we believe the PDT-immunotherapy strategy has great potential for the treatment of breast cancer, and this work will provide a reference for the clinical application of essential oils in cancer immunotherapy.
Collapse
|
37
|
Lin EC, Hong CH. IL-33 Enhances ACE2 Expression on Epidermal Keratinocytes in Atopic Dermatitis: A Plausible Issue for SARS-CoV-2 Transmission in Inflamed Atopic Skin. Biomedicines 2022; 10:biomedicines10051183. [PMID: 35625919 PMCID: PMC9138833 DOI: 10.3390/biomedicines10051183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Interleukin-33 (IL-33) is an important cytokine in the pathophysiology of atopic dermatitis (AD) and in the progression of COVID-19. Angiotensin converting enzyme 2 (ACE2), the entry receptor for SARS-CoV-2, is expressed in epidermal keratinocytes. Whether IL-33 could regulate the expression of ACE2 mechanistically in keratinocytes warrants investigation. Objective: We questioned whether the ACE2 expression is increased in AD skin. We also questioned whether ACE2 is expressed in keratinocytes; if so, would its expression be enhanced mechanistically by IL-33. Methods: We measured and compared the expression of ACE2 in skin from patients with AD, patients with psoriasis, and healthy controls using immunohistochemistry. Flow cytometry, immunofluorescent exam, and quantitative RT-PCR were used for measuring the ACE2 expression in cultured keratinocytes treated with IL-33 and IL-17. Blocking antibodies were utilized to study the intracellular signaling pathways governing the ACE2 expression using cytokines. Results: The results showed that the ACE2 expression is increased in AD compared with that in healthy skin and psoriasis. In primary epidermal keratinocytes, ACE2 is constitutively expressed. IL-33 induces a time-dependent increase in ACE2 expression in cultured keratinocytes through quantitative PCR, flow cytometry, and immunofluorescent examinations. Furthermore, pretreatment of an ERK inhibitor, but not a STAT3 inhibitor, eliminated the increases in ACE2 by IL-33 in keratinocytes, indicating that IL-33 enhances ACE2 expression through ERK on epidermal keratinocytes. Conclusion: This is the first study to reveal that IL-33 enhances ACE2 expression on keratinocytes via ERK. Although further mechanistic studies are required, the increased ACE2 expression in IL-33 might have a biological implication on the transmission of SARS-CoV-2 in patients with AD.
Collapse
Affiliation(s)
- En-Cheng Lin
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Chien-Hui Hong
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- Department of Dermatology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence:
| |
Collapse
|
38
|
Piper C, Hainstock E, Yin-Yuan C, Chen Y, Khatun A, Kasmani MY, Evans J, Miller JA, Gorski J, Cui W, Drobyski WR. Single-cell immune profiling reveals a developmentally distinct CD4+ GM-CSF+ T-cell lineage that induces GI tract GVHD. Blood Adv 2022; 6:2791-2804. [PMID: 35015822 PMCID: PMC9092418 DOI: 10.1182/bloodadvances.2021006084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
Gastrointestinal (GI) tract involvement is a major determinant for subsequent morbidity and mortality arising during graft-versus-host disease (GVHD). CD4+ T cells that produce granulocyte-macrophage colony stimulating factor (GM-CSF) have emerged as central mediators of inflammation in this tissue site as GM-CSF serves as a critical cytokine link between the adaptive and innate arms of the immune system. However, cellular heterogeneity within the CD4+ GM-CSF+ T-cell population due to the concurrent production of other inflammatory cytokines has raised questions as to whether these cells have a common ontology or if a unique CD4+ GM-CSF+ subset exists that differs from other defined T helper subtypes. Using single-cell RNA sequencing analysis (scRNAseq), we identified two CD4+ GM-CSF+ T-cell populations that arose during GVHD and were distinguishable according to the presence or absence of interferon-γ (IFN-γ) coexpression. CD4+ GM-CSF+ IFN-γ- T cells, which emerged preferentially in the colon, had a distinct transcriptional profile, used unique gene regulatory networks, and possessed a nonoverlapping T-cell receptor repertoire compared with CD4+ GM-CSF+ IFN-γ+ T cells as well as all other transcriptionally defined CD4+ T-cell populations in the colon. Functionally, this CD4+ GM-CSF+ T-cell population contributed to pathologic damage in the GI tract that was critically dependent on signaling through the interleukin-17 (IL-7) receptor but was independent of type 1 interferon signaling. Thus, these studies help to unravel heterogeneity within CD4+ GM-CSF+ T cells that arise during GVHD and define a developmentally distinct colitogenic T helper subtype GM-CSF+ subset that mediates immunopathology.
Collapse
Affiliation(s)
- Clint Piper
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Emma Hainstock
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Cheng Yin-Yuan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Moujtaba Y. Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | | | | | - Jack Gorski
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - William R. Drobyski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
39
|
Hanna L, Poluyi E, Ikwuegbuenyi C, Morgan E, Imaguezegie G. Peripheral inflammation and neurodegeneration; a potential for therapeutic intervention in Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). EGYPTIAN JOURNAL OF NEUROSURGERY 2022. [DOI: 10.1186/s41984-022-00150-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Degeneration of the central nervous system (CNS), also known as neurodegeneration, describes an age-associated progressive loss of the structure and function of neuronal materials, leading to functional and mental impairments.
Main body
Neuroinflammation contributes to the continuous worsening of neurodegenerative states which are characterised by functional and mental impairments due to the progressive loss of the structure and function of neuronal materials. Some of the most common neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Whilst neuroinflammation is a key contributor to the progression of such disease states, it is not the single cause as there are multiple factors which contribute. Theoretically, non-steroidal anti-inflammatory drugs (NSAIDs) have potential to target neuroinflammation to reduce the severity of disease states. Whilst some animal models investigating the effects of NSAIDs on the risk of neurodegenerative diseases have shown a beneficial effect, this is not always the case and a large number of clinical trials have not shown the same finding.
Conclusion
Further investigation using more advanced research methods is required to better understand neuroinflammatory pathways and understand if there is still a potential window for NSAID efficacy.
Collapse
|
40
|
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4 + T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13:817473. [PMID: 35250997 PMCID: PMC8889115 DOI: 10.3389/fimmu.2022.817473] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.
Collapse
Affiliation(s)
- Aaron H S Heng
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caleb W Han
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caitlin Abbott
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
41
|
Wang N, Chen Z, Zhang F, Zhang Q, Sun L, Lv H, Wang B, Shen J, Zhou X, Chen F, Zhang B, Meng L, Zhou H, Bai Z, Huang J. Intravenous Immunoglobulin Therapy Restores the Quantity and Phenotype of Circulating Dendritic Cells and CD4 + T Cells in Children With Acute Kawasaki Disease. Front Immunol 2022; 13:802690. [PMID: 35222381 PMCID: PMC8866170 DOI: 10.3389/fimmu.2022.802690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background Intravenous immunoglobulin (IVIG) showed its therapeutic efficacy on Kawasaki disease (KD). However, the mechanisms by which it reduces systemic inflammation are not completely understood. Dendritic cells (DCs) and T cells play critical roles in the pathogenic processes of immune disorders. Assessing the quantity of DC subsets and T cells and identifying functional molecules present on these cells, which provide information about KD, in the peripheral blood may provide new insights into the mechanisms of immunoglobulin therapy. Methods In total, 54 patients with KD and 27 age-matched healthy controls (HCs) were included in this study. The number, percentage, and phenotype of DC subsets and CD4+ T cells in peripheral blood were analyzed through flow cytometry. Results Patients with KD exhibited fewer peripheral DC subsets and CD4+ T cells than HCs. Human leucocyte antigen-DR (HLA-DR) expression was reduced on CD1c+ myeloid DCs (CD1c+ mDCs), whereas that on plasmacytoid DCs (pDCs) did not change significantly. Both pDCs and CD1c+ mDCs displayed significantly reduced expression of co-stimulatory molecules, including CD40, CD86. pDCs and CD1c+ mDCs presented an immature or tolerant phenotype in acute stages of KD. Number of circulating pDC and CD1c+ mDC significantly inversely correlated with plasma interleukin-6 (IL-6) levels in KD patients pre-IVIG treatment. No significant differences were found concerning the DC subsets and CD4+ T cells in patients with KD with and without coronary artery lesions. Importantly, these altered quantity and phenotypes on DC subsets and CD4+ T cells were restored to a great extent post-IVIG treatment. T helper (Th) subsets including Th1 and Th2 among CD4+ T cells did not show alteration pre- and post-IVIG treatment, although the Th1-related cytokine IFN-γ level in plasma increased dramatically in patients with KD pre-IVIG treatment. Conclusions pDCs and CD1c+ mDCs presented an immature or tolerant phenotype in acute stages of KD, IVIG treatment restored the quantity and functional molecules of DCs and CD4+ T cells to distinct levels in vivo, indicating the involvement of DCs and CD4+ T cells in the inflammation in KD. The findings provide insights into the immunomodulatory actions of IVIG in KD.
Collapse
Affiliation(s)
- Nana Wang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhongyue Chen
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Fan Zhang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Qianwen Zhang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Ling Sun
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Bo Wang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Shen
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Xufang Zhou
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Feiyan Chen
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Binwei Zhang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Lijun Meng
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Huiting Zhou
- Pediatric Research Institute of Soochow University, Suzhou, China
| | - ZhenJiang Bai
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - Jie Huang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
42
|
Ziaei A, Garcia-Miralles M, Radulescu CI, Sidik H, Silvin A, Bae HG, Bonnard C, Yusof NABM, Ferrari Bardile C, Tan LJ, Ng AYJ, Tohari S, Dehghani L, Henry L, Yeo XY, Lee S, Venkatesh B, Langley SR, Shaygannejad V, Reversade B, Jung S, Ginhoux F, Pouladi MA. Ermin deficiency leads to compromised myelin, inflammatory milieu, and susceptibility to demyelinating insult. Brain Pathol 2022; 32:e13064. [PMID: 35285112 PMCID: PMC9425013 DOI: 10.1111/bpa.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/09/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Ermin is an actin-binding protein found almost exclusively in the central nervous system (CNS) as a component of myelin sheaths. Although Ermin has been predicted to play a role in the formation and stability of myelin sheaths, this has not been directly examined in vivo. Here, we show that Ermin is essential for myelin sheath integrity and normal saltatory conduction. Loss of Ermin in mice caused de-compacted and fragmented myelin sheaths and led to slower conduction along with progressive neurological deficits. RNA sequencing of the corpus callosum, the largest white matter structure in the CNS, pointed to inflammatory activation in aged Ermin-deficient mice, which was corroborated by increased levels of microgliosis and astrogliosis. The inflammatory milieu and myelin abnormalities were further associated with increased susceptibility to immune-mediated demyelination insult in Ermin knockout mice. Supporting a possible role of Ermin deficiency in inflammatory white matter disorders, a rare inactivating mutation in the ERMN gene was identified in multiple sclerosis patients. Our findings demonstrate a critical role for Ermin in maintaining myelin integrity. Given its near-exclusive expression in myelinating oligodendrocytes, Ermin deficiency represents a compelling "inside-out" model of inflammatory dysmyelination and may offer a new paradigm for the development of myelin stability-targeted therapies.
Collapse
Affiliation(s)
- Amin Ziaei
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore.,UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Carola I Radulescu
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Harwin Sidik
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
| | - Han-Gyu Bae
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore.,Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Carine Bonnard
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Nur Amirah Binte Mohammad Yusof
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Costanza Ferrari Bardile
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore.,Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liang Juin Tan
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Alvin Yu Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Leila Dehghani
- Department of Neurology, Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lily Henry
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Xin Yi Yeo
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Sejin Lee
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Vahid Shaygannejad
- Department of Neurology, Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Sangyong Jung
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore.,Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Krishnarajah S, Becher B. T H Cells and Cytokines in Encephalitogenic Disorders. Front Immunol 2022; 13:822919. [PMID: 35320935 PMCID: PMC8934849 DOI: 10.3389/fimmu.2022.822919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
The invasion of immune cells into the central nervous system (CNS) is a hallmark of the process we call neuroinflammation. Diseases such as encephalitides or multiple sclerosis (MS) are characterised by the dramatic influx of T lymphocytes and monocytes. The communication between inflammatory infiltrates and CNS resident cells is primarily mediated through cytokines. Over the years, numerous cytokine networks have been assessed to better understand the development of immunopathology in neuroinflammation. In MS for instance, many studies have shown that CD4+ T cells infiltrate the CNS and subsequently lead to immunopathology. Inflammatory CD4+ T cells, such as TH1, TH17, GM-CSF-producing helper T cells are big players in chronic neuroinflammation. Conversely, encephalitogenic or meningeal regulatory T cells (TREGs) and TH2 cells have been shown to drive a decrease in inflammatory functions in microglial cells and thus promote a neuroprotective microenvironment. Recent studies report overlapping as well as differential roles of these cells in tissue inflammation. Taken together, this suggests a more complex relationship between effector T cell subsets in neuroinflammation than has hitherto been established. In this overview, we review the interplay between helper T cell subsets infiltrating the CNS and how they actively contribute to neuroinflammation and degeneration. Importantly, in this context, we will especially focus on the current knowledge regarding the contribution of various helper cell subsets to neuroinflammation by referring to their helper T cell profile in the context of their target cell.
Collapse
|
44
|
Li D, Li J, Liu H, Zhai L, Hu W, Xia N, Tang T, Jiao J, Lv B, Nie S, Hu D, Liao Y, Yang X, Shi G, Cheng X. Pathogenic Tconvs promote inflammatory macrophage polarization through GM‐CSF and exacerbate abdominal aortic aneurysm formation. FASEB J 2022; 36:e22172. [PMID: 35133017 PMCID: PMC9303938 DOI: 10.1096/fj.202101576r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
Abdominal aortic aneurysms (AAAs) elicit massive inflammatory leukocyte recruitment to the aorta. CD4+ T cells, which include regulatory T cells (Tregs) and conventional T cells (Tconvs), are involved in the progression of AAA. Tregs have been reported to limit AAA formation. However, the function and phenotype of the Tconvs found in AAAs remain poorly understood. We characterized aortic Tconvs by bulk RNA sequencing and discovered that Tconvs in aortic aneurysm highly expressed Cxcr6 and Csf2. Herein, we determined that the CXCR6/CXCL16 signaling axis controlled the recruitment of Tconvs to aortic aneurysms. Deficiency of granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), encoded by Csf2, markedly inhibited AAA formation and led to a decrease of inflammatory monocytes, due to a reduction of CCL2 expression. Conversely, the exogenous administration of GM‐CSF exacerbated inflammatory monocyte infiltration by upregulating CCL2 expression, resulting in worsened AAA formation. Mechanistically, GM‐CSF upregulated the expression of interferon regulatory factor 5 to promote M1‐like macrophage differentiation in aortic aneurysms. Importantly, we also demonstrated that the GM‐CSF produced by Tconvs enhanced the polarization of M1‐like macrophages and exacerbated AAA formation. Our findings revealed that GM‐CSF, which was predominantly derived from Tconvs in aortic aneurysms, played a pathogenic role in the progression of AAAs and may represent a potential target for AAA treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Jingyong Li
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Henan Liu
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Luna Zhai
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Wangling Hu
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Ni Xia
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Tingting Tang
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Jiao Jiao
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Bingjie Lv
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Shaofang Nie
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Institute of Hematology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Yuhua Liao
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Xiangping Yang
- School of Basic Medicine Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Guo‐Ping Shi
- Department of Medicine Brigham and Women’s Hospital and Harvard Medical School Boston Massachusetts USA
| | - Xiang Cheng
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
45
|
Jin G, Wang L, Ma J. Inhibiting STAT5 significantly attenuated Ang II-induced cardiac dysfunction and inflammation. Eur J Pharmacol 2022; 915:174689. [PMID: 34919891 DOI: 10.1016/j.ejphar.2021.174689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
Cardiac hypertrophy is a compensatory response to chronic pressure overload. Excessive angiotensin II is an important inducer of cardiac hypertrophy. Signal transducers and activators of transcription 5(STAT5), a member of STATs family which can mediate the transcription of interferon (IFN) genes and immune response has recently been reported to have a close link with non-tumor diseases. However, much remains unknown about how STAT5 might be involved in the progression of hypertrophy. Herein, STAT5-IN-1, a STAT5 inhibitor, was orally administered to Ang II-induced mice. Ang II-stimulated H9c2s cells were used as cell models for the in vitro experiment. Efforts were made to investigate the effects of STAT5-IN-1 in Ang II-induced mice, along with potential mechanism that might account for these effects, which involved treatment with STAT5 inhibitor and the use of siRNA-induced gene silencing. The findings demonstrated that STAT5 inhibitor resulted in a substantial decrease in cardiac hypertrophy in Ang II-induced mice and that this effect is mediated by decreasing inflammation, thus identifying one mechanism of Ang II-induced STAT5 activation. Based on these findings, it can be argued that targeting STAT5 mighted be considered as a potential therapeutic strategy for reducing hypertrophy.
Collapse
Affiliation(s)
- Ge Jin
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Lintao Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210000, China
| | - Jun Ma
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| |
Collapse
|
46
|
Monaghan KL, Aesoph D, Ammer AG, Zheng W, Rahimpour S, Farris BY, Spinner CA, Li P, Lin JX, Yu ZX, Lazarevic V, Hu G, Leonard WJ, Wan ECK. Tetramerization of STAT5 promotes autoimmune-mediated neuroinflammation. Proc Natl Acad Sci U S A 2021; 118:e2116256118. [PMID: 34934004 PMCID: PMC8719886 DOI: 10.1073/pnas.2116256118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Signal tranducer and activator of transcription 5 (STAT5) plays a critical role in mediating cellular responses following cytokine stimulation. STAT proteins critically signal via the formation of dimers, but additionally, STAT tetramers serve key biological roles, and we previously reported their importance in T and natural killer (NK) cell biology. However, the role of STAT5 tetramerization in autoimmune-mediated neuroinflammation has not been investigated. Using the STAT5 tetramer-deficient Stat5a-Stat5b N-domain double knockin (DKI) mouse strain, we report here that STAT5 tetramers promote the pathogenesis of experimental autoimmune encephalomyelitis (EAE). The mild EAE phenotype observed in DKI mice correlates with the impaired extravasation of pathogenic T-helper 17 (Th17) cells and interactions between Th17 cells and monocyte-derived cells (MDCs) in the meninges. We further demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated STAT5 tetramerization regulates the production of CCL17 by MDCs. Importantly, CCL17 can partially restore the pathogenicity of DKI Th17 cells, and this is dependent on the activity of the integrin VLA-4. Thus, our study reveals a GM-CSF-STAT5 tetramer-CCL17 pathway in MDCs that promotes autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Kelly L Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Drake Aesoph
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506
| | - Amanda G Ammer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Microscope Imaging Facility, West Virginia University, Morgantown, WV 26506
| | - Wen Zheng
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Shokofeh Rahimpour
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Breanne Y Farris
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Camille A Spinner
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Peng Li
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892;
| | - Edwin C K Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506;
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
47
|
Alam MS, Otsuka S, Wong N, Abbasi A, Gaida MM, Fan Y, Meerzaman D, Ashwell JD. TNF plays a crucial role in inflammation by signaling via T cell TNFR2. Proc Natl Acad Sci U S A 2021; 118:e2109972118. [PMID: 34873037 PMCID: PMC8685675 DOI: 10.1073/pnas.2109972118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
TNF, produced largely by T and innate immune cells, is potently proinflammatory, as are cytokines such as IFN-γ and IL-17 produced by Th1 and Th17 cells, respectively. Here, we asked if TNF is upstream of Th skewing toward inflammatory phenotypes. Exposure of mouse CD4+ T cells to TNF and TGF-β generated Th17 cells that express low levels of IL-17 (ROR-γt+IL-17lo) and high levels of inflammatory markers independently of IL-6 and STAT3. This was mediated by the nondeath TNF receptor TNFR2, which also contributed to the generation of inflammatory Th1 cells. Single-cell RNA sequencing of central nervous system-infiltrating CD4+ T cells in mouse experimental autoimmune encephalomyelitis (EAE) found an inflammatory gene expression profile similar to cerebrospinal fluid-infiltrating CD4+ T cells from patients with multiple sclerosis. Notably, TNFR2-deficient CD4+ T cells produced fewer inflammatory mediators and were less pathogenic in EAE and colitis. IL-1β, a Th17-skewing cytokine, induced TNF and proinflammatory granulocyte-macrophage colony-stimulating factor (GM-CSF) in T cells, which was inhibited by disruption of TNFR2 signaling, demonstrating IL-1β can function indirectly via the production of TNF. Thus, TNF is not just an effector but also an initiator of inflammatory Th differentiation.
Collapse
Affiliation(s)
- Muhammad S Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NlH, Bethesda, MD 20892;
| | - Shizuka Otsuka
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NlH, Bethesda, MD 20892
| | - Nathan Wong
- CCR Collaborative Bioinformatics Resources, Center for Cancer Research, Bethesda, MD 20892
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Aamna Abbasi
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NlH, Bethesda, MD 20892
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Yu Fan
- Center for Biomedical Informatics and information Technology, National Cancer Institute, Rockville, MD 20852
| | - Daoud Meerzaman
- Center for Biomedical Informatics and information Technology, National Cancer Institute, Rockville, MD 20852
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NlH, Bethesda, MD 20892;
| |
Collapse
|
48
|
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.
Collapse
Affiliation(s)
- Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia; Australian Institute for Musculoskeletal Science, St Albans, Victoria 3021, Australia
| |
Collapse
|
49
|
Ingelfinger F, De Feo D, Becher B. GM-CSF: Master regulator of the T cell-phagocyte interface during inflammation. Semin Immunol 2021; 54:101518. [PMID: 34763973 DOI: 10.1016/j.smim.2021.101518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022]
Abstract
The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sequentially redefined during the past decades. Originally described as a hematopoietic growth factor for myelopoiesis, GM-CSF was recognized as a central mediator of inflammation bridging the innate and adaptive arms of the immune system. Phagocytes sensing GM-CSF adapt an inflammatory phenotype and facilitate pathogen clearance. However, in the context of chronic tissue inflammation, GM-CSF secreted by tissue-invading lymphocytes has detrimental effects by licensing tissue damage and hyperinflammation. Accordingly, therapeutic intervention at the T cell-phagocyte interface represents an attractive target to ameliorate disease progression and immunopathology. Although GM-CSF is largely dispensable for steady state myelopoiesis, dysregulation, as seen in chronic inflammatory diseases, may however lead to disrupted haematopoiesis and long-term effects on bone marrow output. Here, we will survey the role of GM-CSF during inflammation, discuss the extent to which GM-CSF-secreting T cells, debate their introduction as a separate T cell lineage and explore current and future clinical implications of GM-CSF in human disease settings.
Collapse
Affiliation(s)
- Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
50
|
Tuzlak S, Dejean AS, Iannacone M, Quintana FJ, Waisman A, Ginhoux F, Korn T, Becher B. Repositioning T H cell polarization from single cytokines to complex help. Nat Immunol 2021; 22:1210-1217. [PMID: 34545250 DOI: 10.1038/s41590-021-01009-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
When helper T (TH) cell polarization was initially described three decades ago, the TH cell universe grew dramatically. New subsets were described based on their expression of few specific cytokines. Beyond TH1 and TH2 cells, this led to the coining of various TH17 and regulatory (Treg) cell subsets as well as TH22, TH25, follicular helper (TFH), TH3, TH5 and TH9 cells. High-dimensional single-cell analysis revealed that a categorization of TH cells into a single-cytokine-based nomenclature fails to capture the complexity and diversity of TH cells. Similar to the simple nomenclature used to describe innate lymphoid cells (ILCs), we propose that TH cell polarization should be categorized in terms of the help they provide to phagocytes (type 1), to B cells, eosinophils and mast cells (type 2) and to non-immune tissue cells, including the stroma and epithelium (type 3). Studying TH cells based on their helper function and the cells they help, rather than phenotypic features such as individual analyzed cytokines or transcription factors, better captures TH cell plasticity and conversion as well as the breadth of immune responses in vivo.
Collapse
Affiliation(s)
- Selma Tuzlak
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Anne S Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse, France
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, the Academia, Singapore, Singapore.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|