1
|
Feng C, Chen B, Hofer J, Shi Y, Jiang M, Song B, Cheng H, Lu L, Wang L, Howard A, Bendahmane A, Fouchal A, Moreau C, Sawada C, LeSignor C, Zhang C, Vikeli E, Tsanakas G, Zhao H, Cheema J, Barclay JE, Hou J, Sayers L, Wingen L, Vigouroux M, Vickers M, Ambrose M, Dalmais M, Higuera-Poveda P, Li P, Yuan Q, Spanner R, Horler R, Wouters R, Chundakkad S, Wu T, Zhao X, Li X, Sun Y, Huang Z, Wu Z, Deng XW, Steuernagel B, Domoney C, Ellis N, Chayut N, Cheng S. Genomic and genetic insights into Mendel's pea genes. Nature 2025:10.1038/s41586-025-08891-6. [PMID: 40269167 DOI: 10.1038/s41586-025-08891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/12/2025] [Indexed: 04/25/2025]
Abstract
Mendel1 studied in detail seven pairs of contrasting traits in pea (Pisum sativum), establishing the foundational principles of genetic inheritance. Here we investigate the genetic architecture that underlies these traits and uncover previously undescribed alleles for the four characterized Mendelian genes2-7, including a rare revertant of Mendel's white-flowered a allele. Primarily, we focus on the three remaining uncharacterized traits and find that (1) an approximately 100-kb genomic deletion upstream of the Chlorophyll synthase (ChlG) gene disrupts chlorophyll biosynthesis through the generation of intergenic transcriptional fusion products, conferring the yellow pod phenotype of gp mutants; (2) a MYB gene with an upstream Ogre element insertion and a CLE peptide-encoding gene with an in-frame premature stop codon explain the v and p alleles, which disrupt secondary cell wall thickening and lignification, resulting in the parchmentless, edible-pod phenotype; and (3) a 5-bp exonic deletion in a CIK-like co-receptor kinase gene, in combination with a genetic modifier locus, is associated with the fasciated stem (fa) phenotype. Furthermore, we characterize genes and alleles associated with diverse agronomic traits, such as axil ring anthocyanin pigmentation, seed size and the 'semi-leafless' form. This study establishes a foundation for fundamental research, education in biology and genetics, and pea breeding practices.
Collapse
Affiliation(s)
- Cong Feng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Baizhi Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Julie Hofer
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yan Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mei Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hong Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lu Lu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Luyao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Alex Howard
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Abdel Bendahmane
- INRAE UMR 1403, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
| | - Anissa Fouchal
- INRAE UMR 1403, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
| | - Carol Moreau
- John Innes Centre, Norwich Research Park, Norwich, UK
- Paleogenomics Laboratory, INRAE Clermont-Auvergne-Rhône-Alpes, CS 60032, Clermont-Ferrand, France
| | - Chie Sawada
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Eleni Vikeli
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Hang Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jitender Cheema
- John Innes Centre, Norwich Research Park, Norwich, UK
- EMBL-EBI, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, UK
| | | | - Junliang Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liz Sayers
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Luzie Wingen
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Mike Ambrose
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marion Dalmais
- INRAE UMR 1403, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
| | | | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Quan Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rebecca Spanner
- John Innes Centre, Norwich Research Park, Norwich, UK
- Department of Plant Pathology, University of Minnesota, St Paul, MN, USA
| | | | | | | | - Tian Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxiao Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuchen Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zejian Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | | | - Noel Ellis
- John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Noam Chayut
- John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Tang T, Ndikuryayo F, Gong XY, Amirinezhadfard E, Aslam MM, Chen MX, Yang WC. Deciphering the complex roles of leucine-rich repeat receptor kinases (LRR-RKs) in plant signal transduction. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112494. [PMID: 40180130 DOI: 10.1016/j.plantsci.2025.112494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Leucine-rich repeat receptor kinases (LRR-RKs) are essential receptor protein kinases in plants that are the key to signal perception and responses and central to regulating plant growth, development, and defense. Despite extensive research on the LRR-RK family, gaps persist in our understanding of their ligand recognition and activation mechanisms, interactions with co-receptor, signal transduction pathways, and biochemical and molecular regulation. Researchers have made significant advances in understanding the critical roles of LRR-RKs in plant growth and development, signal transduction, and stress responses. Here, we first summarized the gene expression levels of LRR-RKs in plants. We then reviewed the conservation and evolutionary relationships of these genes across different species. We also investigated the molecular mechanisms underlying the variations in LRR-RK signaling under different environmental conditions. Finally, we provide a comprehensive summary of how abiotic and biotic stresses modulate LRR-RK signaling pathways in plants.
Collapse
Affiliation(s)
- Ting Tang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Ferdinand Ndikuryayo
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Xue-Yan Gong
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Elaheh Amirinezhadfard
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, MO 65201, USA
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China.
| | - Wen-Chao Yang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China.
| |
Collapse
|
3
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
4
|
Jia F, Xiao Y, Feng Y, Yan J, Fan M, Sun Y, Huang S, Li W, Zhao T, Han Z, Hou S, Chai J. N-glycosylation facilitates the activation of a plant cell-surface receptor. NATURE PLANTS 2024; 10:2014-2026. [PMID: 39511417 DOI: 10.1038/s41477-024-01841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
Plant receptor kinases (RKs) are critical for transmembrane signalling involved in various biological processes including plant immunity. MALE DISCOVERER1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) is a unique RK that recognizes a family of immunomodulatory peptides called SERINE-RICH ENDOGENOUS PEPTIDEs (SCOOPs) and activates pattern-triggered immunity responses. However, the precise mechanisms underlying SCOOP recognition and activation of MIK2 remain poorly understood. Here we present the cryogenic electron microscopy structure of a ternary complex consisting of the extracellular leucine-rich repeat (LRR) of MIK2 (MIK2LRR), SCOOP12 and the extracellular LRR of the co-receptor BAK1 (BAK1LRR) at a resolution of 3.34 Å. The structure reveals that a DNHH motif in MIK2LRR plays a critical role in specifically recognizing the highly conserved SxS motif of SCOOP12. Furthermore, the structure demonstrates that N-glycans at MIK2LRRAsn410 directly interact with the N-terminal capping region of BAK1LRR. Mutation of the glycosylation site, MIK2LRRN410D, completely abolishes the SCOOP12-independent interaction between MIK2LRR and BAK1LRR and substantially impairs the assembly of the MIK2LRR-SCOOP12-BAK1LRR complex. Supporting the biological relevance of N410-glycosylation, MIK2N410D substantially compromises SCOOP12-triggered immune responses in plants. Collectively, these findings elucidate the mechanism underlying the loose specificity of SCOOP recognition by MIK2 and reveal an unprecedented mechanism by which N-glycosylation modification of LRR-RK promotes receptor activation.
Collapse
Affiliation(s)
- Fangshuai Jia
- College of Life Sciences, Henan Normal University, Xinxiang, China
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yu Xiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Yaojie Feng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jinghui Yan
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Mingzhu Fan
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, China
| | - Yue Sun
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Shijia Huang
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Weiguo Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Tian Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhifu Han
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Shuguo Hou
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| | - Jijie Chai
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
5
|
Zhang H, Wang Q, Blanco-Touriñán N, Hardtke CS. Antagonistic CLE peptide pathways shape root meristem tissue patterning. NATURE PLANTS 2024; 10:1900-1908. [PMID: 39468296 DOI: 10.1038/s41477-024-01838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Secreted CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands dimension the stem cell niche of Arabidopsis shoot meristems by signalling through redundant and cross-compensating CLAVATA1 (CLV1)-type receptor kinases. In the root meristem, the CLV1 homologues BARELY ANY MERISTEM 1 (BAM1) and BAM2 drive CLE13/16-mediated formative divisions that produce the ground tissue layers. Here we report that BAM1/2 are also required to initiate the vascular phloem lineage and that cross-compensation between CLV1-type receptors as observed in the shoot does not operate similarly in the root. Rather, we find that BAM3-mediated CLE45 signalling antagonizes BAM1/2-mediated CLE11/12/13 signalling in the phloem initials but not in the ground tissue. We further observe spatiotemporally contrasting CLE signalling requirements for phloem initiation and differentiation, which are shaped by the SHORT ROOT (SHR) pathway. Our findings thus suggest an intricate quantitative interplay between distinct and antagonistic CLE signalling pathways that organizes tissue layer formation in the Arabidopsis root meristem.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Qian Wang
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Noel Blanco-Touriñán
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Ji B, Wang X, Wang X, Xu L, Peng S. scDCA: deciphering the dominant cell communication assembly of downstream functional events from single-cell RNA-seq data. Brief Bioinform 2024; 26:bbae663. [PMID: 39694816 DOI: 10.1093/bib/bbae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cell-cell communications (CCCs) involve signaling from multiple sender cells that collectively impact downstream functional processes in receiver cells. Currently, computational methods are lacking for quantifying the contribution of pairwise combinations of cell types to specific functional processes in receiver cells (e.g. target gene expression or cell states). This limitation has impeded understanding the underlying mechanisms of cancer progression and identifying potential therapeutic targets. Here, we proposed a deep learning-based method, scDCA, to decipher the dominant cell communication assembly (DCA) that have a higher impact on a particular functional event in receiver cells from single-cell RNA-seq data. Specifically, scDCA employed a multi-view graph convolution network to reconstruct the CCCs landscape at single-cell resolution, and then identified DCA by interpreting the model with the attention mechanism. Taking the samples from advanced renal cell carcinoma as a case study, the scDCA was successfully applied and validated in revealing the DCA affecting the crucial gene expression in immune cells. The scDCA was also applied and validated in revealing the DCA responsible for the variation of 14 typical functional states of malignant cells. Furthermore, the scDCA was applied and validated to explore the alteration of CCCs under clinical intervention by comparing the DCA for certain cytotoxic factors between patients with and without immunotherapy. In summary, scDCA provides a valuable and practical tool for deciphering the cell type combinations with the most dominant impact on a specific functional process of receiver cells, which is of great significance for precise cancer treatment. Our data and code are free available at a public GitHub repository: https://github.com/pengsl-lab/scDCA.git.
Collapse
Affiliation(s)
- Boya Ji
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| | - Xiaoqi Wang
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| | - Xiang Wang
- The Second Xiangya Hospital, Central South University, Yuelu, 410006 Changsha, China
| | - Liwen Xu
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| |
Collapse
|
7
|
Narasimhan M, Jahnke N, Kallert F, Bahafid E, Böhmer F, Hartmann L, Simon R. Macromolecular tool box to elucidate CLAVATA3/EMBRYO SURROUNDING REGION-RELATED-RLK binding, signaling, and downstream effects. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5438-5456. [PMID: 38717932 PMCID: PMC11389835 DOI: 10.1093/jxb/erae206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/07/2024] [Indexed: 09/13/2024]
Abstract
Plant peptides communicate by binding to a large family of receptor-like kinases (RLKs), and they share a conserved binding mechanism, which may account for their promiscuous interaction with several RLKs. In order to understand the in vivo binding specificity of the CLAVATA3/EMBRYO SURROUNDING REGION-RELATED peptide family in Arabidopsis, we have developed a novel set of CLAVATA3 (CLV3)-based peptide tools. After carefully evaluating the CLE peptide binding characteristics, using solid phase synthesis process, we modified the CLV3 peptide and attached a fluorophore and a photoactivable side group. We observed that the labeled CLV3 shows binding specificity within the CLAVATA1 clade of RLKs while avoiding the distantly related PEP RECEPTOR clade, thus resolving the contradictory results obtained previously by many in vitro methods. Furthermore, we observed that the RLK-bound CLV3 undergoes clathrin-mediated endocytosis and is trafficked to the vacuole via ARA7 (a Rab GTPase)-labeled endosomes. Additionally, modifying CLV3 for light-controlled activation enabled spatial and temporal control over CLE signaling. Hence, our CLV3 macromolecular toolbox can be used to study rapid cell specific down-stream effects. Given the conserved binding properties, in the future our toolbox can also be used as a template to modify other CLE peptides.
Collapse
Affiliation(s)
- Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Nina Jahnke
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Felix Kallert
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Elmehdi Bahafid
- Institute for Developmental Genetics, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Franziska Böhmer
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
- Institute of Macromolecular Chemistry, University Freiburg, Stefan-Meier-Straße 31, D-79104 Freiburg, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
- Institute for Developmental Genetics and Cluster of Excellence in Plant Sciences, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| |
Collapse
|
8
|
Zhou Y, Zheng J, Wu H, Yang Y, Han H. A novel toolbox to record CLE peptide signaling. FRONTIERS IN PLANT SCIENCE 2024; 15:1468763. [PMID: 39206038 PMCID: PMC11349659 DOI: 10.3389/fpls.2024.1468763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Yong Zhou
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Youxin Yang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Snoeck S, Lee HK, Schmid MW, Bender KW, Neeracher MJ, Fernández-Fernández AD, Santiago J, Zipfel C. Leveraging coevolutionary insights and AI-based structural modeling to unravel receptor-peptide ligand-binding mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2400862121. [PMID: 39106311 PMCID: PMC11331138 DOI: 10.1073/pnas.2400862121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 08/09/2024] Open
Abstract
Secreted signaling peptides are central regulators of growth, development, and stress responses, but specific steps in the evolution of these peptides and their receptors are not well understood. Also, the molecular mechanisms of peptide-receptor binding are only known for a few examples, primarily owing to the limited availability of protein structural determination capabilities to few laboratories worldwide. Plants have evolved a multitude of secreted signaling peptides and corresponding transmembrane receptors. Stress-responsive SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs) were recently identified. Bioactive SCOOPs are proteolytically processed by subtilases and are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) in the model plant Arabidopsis thaliana. How SCOOPs and MIK2 have (co)evolved, and how SCOOPs bind to MIK2 are unknown. Using in silico analysis of 350 plant genomes and subsequent functional testing, we revealed the conservation of MIK2 as SCOOP receptor within the plant order Brassicales. We then leveraged AI-based structural modeling and comparative genomics to identify two conserved putative SCOOP-MIK2 binding pockets across Brassicales MIK2 homologues predicted to interact with the "SxS" motif of otherwise sequence-divergent SCOOPs. Mutagenesis of both predicted binding pockets compromised SCOOP binding to MIK2, SCOOP-induced complex formation between MIK2 and its coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1, and SCOOP-induced reactive oxygen species production, thus, confirming our in silico predictions. Collectively, in addition to revealing the elusive SCOOP-MIK2 binding mechanism, our analytic pipeline combining phylogenomics, AI-based structural predictions, and experimental biochemical and physiological validation provides a blueprint for the elucidation of peptide ligand-receptor perception mechanisms.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne1015, Switzerland
| | | | - Kyle W. Bender
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Matthias J. Neeracher
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Alvaro D. Fernández-Fernández
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne1015, Switzerland
| | - Cyril Zipfel
- Department of Plant and Microbial Biology (IPMB), Zurich-Basel Plant Science Center, University of Zurich, Zurich8008, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
10
|
Lu S, Xiao F. Small Peptides: Orchestrators of Plant Growth and Developmental Processes. Int J Mol Sci 2024; 25:7627. [PMID: 39062870 PMCID: PMC11276966 DOI: 10.3390/ijms25147627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs' structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways.
Collapse
Affiliation(s)
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
11
|
Seo MG, Lim Y, Hendelman A, Robitaille G, Beak HK, Hong WJ, Park SJ, Lippman ZB, Park YJ, Kwon CT. Evolutionary conservation of receptor compensation for stem cell homeostasis in Solanaceae plants. HORTICULTURE RESEARCH 2024; 11:uhae126. [PMID: 38919555 PMCID: PMC11197305 DOI: 10.1093/hr/uhae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/21/2024] [Indexed: 06/27/2024]
Abstract
Stem cell homeostasis is pivotal for continuous and programmed formation of organs in plants. The precise control of meristem proliferation is mediated by the evolutionarily conserved signaling that encompasses complex interactions among multiple peptide ligands and their receptor-like kinases. Here, we identified compensation mechanisms involving the CLAVATA1 (CLV1) receptor and its paralogs, BARELY ANY MERISTEMs (BAMs), for stem cell proliferation in two Solanaceae species, tomato and groundcherry. Genetic analyses of higher-order mutants deficient in multiple receptor genes, generated via CRISPR-Cas9 genome editing, reveal that tomato SlBAM1 and SlBAM2 compensate for slclv1 mutations. Unlike the compensatory responses between orthologous receptors observed in Arabidopsis, tomato slclv1 mutations do not trigger transcriptional upregulation of four SlBAM genes. The compensation mechanisms within receptors are also conserved in groundcherry, and critical amino acid residues of the receptors associated with the physical interaction with peptide ligands are highly conserved in Solanaceae plants. Our findings demonstrate that the evolutionary conservation of both compensation mechanisms and critical coding sequences between receptor-like kinases provides a strong buffering capacity during stem cell homeostasis in tomato and groundcherry.
Collapse
Affiliation(s)
- Myeong-Gyun Seo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yoonseo Lim
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gina Robitaille
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Hong Kwan Beak
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Woo-Jong Hong
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soon Ju Park
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
12
|
Wang H. Endogenous and environmental signals in regulating vascular development and secondary growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1369241. [PMID: 38628366 PMCID: PMC11018896 DOI: 10.3389/fpls.2024.1369241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Huanzhong Wang
- Department of Plant Science & Landscape Architecture, University of Connecticut, Storrs, CT, United States
- Institute for System Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
13
|
Olt P, Ding W, Schulze WX, Ludewig U. The LaCLE35 peptide modifies rootlet density and length in cluster roots of white lupin. PLANT, CELL & ENVIRONMENT 2024; 47:1416-1431. [PMID: 38226783 DOI: 10.1111/pce.14799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/24/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024]
Abstract
White lupin (lupinus albus L.) forms special bottlebrush-like root structures called cluster roots (CR) when phosphorus is low, to remobilise sparingly soluble phosphates in the soil. The molecular mechanisms that control the CR formation remain unknown. Root development in other plants is regulated by CLE (CLAVATA3/ EMBRYO SURROUNDING REGION (ESR)-RELATED) peptides, which provide more precise control mechanisms than common phytohormones. This makes these peptides interesting candidates to be involved in CR formation, where fine tuning to environmental factors is required. In this study we present an analysis of CLE peptides in white lupin. The peptides LaCLE35 (RGVHy PSGANPLHN) and LaCLE55 (RRVHy PSCHy PDPLHN) reduced root growth and altered CR in hydroponically cultured white lupins. We demonstrate that rootlet density and rootlet length were locally, but not systemically, impaired by exogenously applied CLE35. The peptide was identified in the xylem sap. The inhibitory effect of CLE35 on root growth was attributed to arrested cell elongation in root tips. Taken together, CLE peptides affect both rootlet density and rootlet length, which are two critical factors for CR formation, and may be involved in fine tuning this peculiar root structure that is present in a few crops and many Proteaceae species, under low phosphorus availability.
Collapse
Affiliation(s)
- Philipp Olt
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Wenli Ding
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Waltraud X Schulze
- Institute of Biology, Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
14
|
Bashyal S, Gautam CK, Müller LM. CLAVATA signaling in plant-environment interactions. PLANT PHYSIOLOGY 2024; 194:1336-1357. [PMID: 37930810 PMCID: PMC10904329 DOI: 10.1093/plphys/kiad591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Plants must rapidly and dynamically adapt to changes in their environment. Upon sensing environmental signals, plants convert them into cellular signals, which elicit physiological or developmental changes that allow them to respond to various abiotic and biotic cues. Because plants can be simultaneously exposed to multiple environmental cues, signal integration between plant cells, tissues, and organs is necessary to induce specific responses. Recently, CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides and their cognate CLAVATA-type receptors received increased attention for their roles in plant-environment interactions. CLE peptides are mobile signaling molecules, many of which are induced by a variety of biotic and abiotic stimuli. Secreted CLE peptides are perceived by receptor complexes on the surface of their target cells, which often include the leucine-rich repeat receptor-like kinase CLAVATA1. Receptor activation then results in cell-type and/or environment-specific responses. This review summarizes our current understanding of the diverse roles of environment-regulated CLE peptides in modulating plant responses to environmental cues. We highlight how CLE signals regulate plant physiology by fine-tuning plant-microbe interactions, nutrient homeostasis, and carbon allocation. Finally, we describe the role of CLAVATA receptors in the perception of environment-induced CLE signals and discuss how diverse CLE-CLAVATA signaling modules may integrate environmental signals with plant physiology and development.
Collapse
Affiliation(s)
- Sagar Bashyal
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | - Lena Maria Müller
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
15
|
Hong L, Fletcher JC. Stem Cells: Engines of Plant Growth and Development. Int J Mol Sci 2023; 24:14889. [PMID: 37834339 PMCID: PMC10573764 DOI: 10.3390/ijms241914889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.
Collapse
Affiliation(s)
- Liu Hong
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Yu Y, Song W, Zhai N, Zhang S, Wang J, Wang S, Liu W, Huang CH, Ma H, Chai J, Chang F. PXL1 and SERKs act as receptor-coreceptor complexes for the CLE19 peptide to regulate pollen development. Nat Commun 2023; 14:3307. [PMID: 37286549 DOI: 10.1038/s41467-023-39074-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
Gametophyte development in angiosperms occurs within diploid sporophytic structures and requires coordinated development; e.g., development of the male gametophyte pollen depends on the surrounding sporophytic tissue, the tapetum. The mechanisms underlying this interaction remain poorly characterized. The peptide CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 19 (CLE19) plays a "braking" role in preventing the harmful overexpression of tapetum transcriptional regulators to ensure normal pollen development in Arabidopsis. However, the CLE19 receptor is unknown. Here, we show that CLE19 interacts directly with the PXY-LIKE1 (PXL1) ectodomain and induces PXL1 phosphorylation. PXL1 is also required for the function of CLE19 in maintaining the tapetal transcriptional regulation of pollen exine genes. Additionally, CLE19 induces the interactions of PXL1 with SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) coreceptors required for pollen development. We propose that PXL1 and SERKs act as receptor and coreceptor, respectively, of the extracellular CLE19 signal, thereby regulating tapetum gene expression and pollen development.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen Song
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Max-Planck Institute for Plant Breeding Research, Institute of Biochemistry, University of Cologne, 50829, Cologne, Germany
| | - Nuo Zhai
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Shiting Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianzheng Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shuangshuang Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Weijia Liu
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Jijie Chai
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Max-Planck Institute for Plant Breeding Research, Institute of Biochemistry, University of Cologne, 50829, Cologne, Germany
| | - Fang Chang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
17
|
Hardtke CS. Phloem development. THE NEW PHYTOLOGIST 2023. [PMID: 37243530 DOI: 10.1111/nph.19003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
The evolution of the plant vascular system is a key process in Earth history because it enabled plants to conquer land and transform the terrestrial surface. Among the vascular tissues, the phloem is particularly intriguing because of its complex functionality. In angiosperms, its principal components are the sieve elements, which transport phloem sap, and their neighboring companion cells. Together, they form a functional unit that sustains sap loading, transport, and unloading. The developmental trajectory of sieve elements is unique among plant cell types because it entails selective organelle degradation including enucleation. Meticulous analyses of primary, so-called protophloem in the Arabidopsis thaliana root meristem have revealed key steps in protophloem sieve element formation at single-cell resolution. A transcription factor cascade connects specification with differentiation and also orchestrates phloem pole patterning via noncell-autonomous action of sieve element-derived effectors. Reminiscent of vascular tissue patterning in secondary growth, these involve receptor kinase pathways, whose antagonists guide the progression of sieve element differentiation. Receptor kinase pathways may also safeguard phloem formation by maintaining the developmental plasticity of neighboring cell files. Our current understanding of protophloem development in the A. thaliana root has reached sufficient detail to instruct molecular-level investigation of phloem formation in other organs.
Collapse
Affiliation(s)
- Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
18
|
Shimadzu S, Furuya T, Kondo Y. Molecular Mechanisms Underlying the Establishment and Maintenance of Vascular Stem Cells in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:274-283. [PMID: 36398989 PMCID: PMC10599399 DOI: 10.1093/pcp/pcac161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The vascular system plays pivotal roles in transporting water and nutrients throughout the plant body. Primary vasculature is established as a continuous strand, which subsequently initiates secondary growth through cell division. Key factors regulating primary and secondary vascular developments have been identified in numerous studies, and the regulatory networks including these factors have been elucidated through omics-based approaches. However, the vascular system is composed of a variety of cells such as xylem and phloem cells, which are commonly generated from vascular stem cells. In addition, the vasculature is located deep inside the plant body, which makes it difficult to investigate the vascular development while distinguishing between vascular stem cells and developing xylem and phloem cells. Recent technical advances in the tissue-clearing method, RNA-seq analysis and tissue culture system overcome these problems by enabling the cell-type-specific analysis during vascular development, especially with a special focus on stem cells. In this review, we summarize the recent findings on the establishment and maintenance of vascular stem cells.
Collapse
Affiliation(s)
- Shunji Shimadzu
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Department of Biological Sciences, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku,
Tokyo, 113-0033 Japan
| | - Tomoyuki Furuya
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- College of Life Sciences, Ritsumeikan
University, 1-1-1 Noji-higashi, Kusatsu, 525-8577 Japan
| | - Yuki Kondo
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
19
|
Carbonnel S, Falquet L, Hazak O. Deeper genomic insights into tomato CLE genes repertoire identify new active peptides. BMC Genomics 2022; 23:756. [PMID: 36396987 PMCID: PMC9670457 DOI: 10.1186/s12864-022-08980-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
In eukaryotes, cell-to-cell communication relies on the activity of small signaling peptides. In plant genomes, many hundreds of genes encode for such short peptide signals. However, only few of them are functionally characterized and due to the small gene size and high sequence variability, the comprehensive identification of such peptide-encoded genes is challenging. The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-RELATED (CLE) gene family encodes for short peptides that have a role in plant meristem maintenance, vascular patterning and responses to environment. The full repertoire of CLE genes and the role of CLE signaling in tomato (Solanum lycopersicum)- one of the most important crop plants- has not yet been fully studied.
Results
By using a combined approach, we performed a genome-wide identification of CLE genes using the current tomato genome version SL 4.0. We identified 52 SlCLE genes, including 37 new non annotated before. By analyzing publicly available RNAseq datasets we could confirm the expression of 28 new SlCLE genes. We found that SlCLEs are often expressed in a tissue-, organ- or condition-specific manner. Our analysis shows an interesting gene diversification within the SlCLE family that seems to be a result of gene duplication events. Finally, we could show a biological activity of selected SlCLE peptides in the root growth arrest that was SlCLV2-dependent.
Conclusions
Our improved combined approach revealed 37 new SlCLE genes. These findings are crucial for better understanding of the CLE signaling in tomato. Our phylogenetic analysis pinpoints the closest homologs of Arabidopsis CLE genes in tomato genome and can give a hint about the function of newly identified SlCLEs. The strategy described here can be used to identify more precisely additional short genes in plant genomes. Finally, our work suggests that the mechanism of root-active CLE peptide perception is conserved between Arabidopsis and tomato. In conclusion, our work paves the way to further research on the CLE-dependent circuits modulating tomato development and physiological responses.
Collapse
|
20
|
Wang J, Xi L, Wu XN, König S, Rohr L, Neumann T, Weber J, Harter K, Schulze WX. PEP7 acts as a peptide ligand for the receptor kinase SIRK1 to regulate aquaporin-mediated water influx and lateral root growth. MOLECULAR PLANT 2022; 15:1615-1631. [PMID: 36131543 DOI: 10.1016/j.molp.2022.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
Plant receptors constitute a large protein family that regulates various aspects of development and responses to external cues. Functional characterization of this protein family and the identification of their ligands remain major challenges in plant biology. Previously, we identified plasma membrane-intrinsic sucrose-induced receptor kinase 1 (SIRK1) and Qian Shou kinase 1 (QSK1) as receptor/co-receptor pair involved in the regulation of aquaporins in response to osmotic conditions induced by sucrose. In this study, we identified a member of the elicitor peptide (PEP) family, namely PEP7, as the specific ligand of th receptor kinase SIRK1. PEP7 binds to the extracellular domain of SIRK1 with a binding constant of 1.44 ± 0.79 μM and is secreted to the apoplasm specifically in response to sucrose treatment. Stabilization of a signaling complex involving SIRK1, QSK1, and aquaporins as substrates is mediated by alterations in the external sucrose concentration or by PEP7 application. Moreover, the presence of PEP7 induces the phosphorylation of aquaporins in vivo and enhances water influx into protoplasts. Disturbed water influx, in turn, led to delayed lateral root development in the pep7 mutant. The loss-of-function mutant of SIRK1 is not responsive to external PEP7 treatment regarding kinase activity, aquaporin phosphorylation, water influx activity, and lateral root development. Taken together, our data indicate that the PEP7/SIRK1/QSK1 complex represents a crucial perception and response module that mediates sucrose-controlled water flux in plants and lateral root development.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany; School of Life Science, Center for Life Sciences, Yunnan University, 650091 Kunming, People's Republic of China
| | - Stefanie König
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Leander Rohr
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Theresia Neumann
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jan Weber
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
21
|
Abstract
Peptide signaling is an emerging paradigm in molecular plant-microbe interactions with vast implications for our understanding of plant-nematode interactions and beyond. Plant-like peptide hormones, first discovered in cyst nematodes, are now recognized as an important class of peptide effectors mediating several different types of pathogenic and symbiotic interactions. Here, we summarize what has been learned about nematode-secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptide effectors since the last comprehensive review on this topic a decade ago. We also highlight new discoveries of a diverse array of peptide effectors that go beyond the CLE peptide effector family in not only phytonematodes but in organisms beyond the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| |
Collapse
|
22
|
Ghosh S, Nelson JF, Cobb GMC, Etchells JP, de Lucas M. Light regulates xylem cell differentiation via PIF in Arabidopsis. Cell Rep 2022; 40:111075. [PMID: 35858547 PMCID: PMC9638722 DOI: 10.1016/j.celrep.2022.111075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/15/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
The balance between cell proliferation and differentiation in the cambium defines the formation of plant vascular tissues. As cambium cells proliferate, subsets of daughter cells differentiate into xylem or phloem. TDIF-PXY/TDR signaling is central to this process. TDIF, encoded by CLE41 and CLE44, activates PXY/TDR receptors to maintain proliferative cambium. Light and water are necessary for photosynthesis; thus, vascular differentiation must occur upon light perception to facilitate the transport of water and minerals to the photosynthetic tissues. However, the molecular mechanism controlling vascular differentiation in response to light remains elusive. In this study we show that the accumulation of PIF transcription factors in the dark promotes TDIF signaling and inhibits vascular cell differentiation. On the contrary, PIF inactivation by light leads to a decay in TDIF activity, which induces vascular cell differentiation. Our study connects light to vascular differentiation and highlights the importance of this crosstalk to fine-tune water transport. Active CLE peptide TDIF inhibits xylem differentiation in etiolated seedlings The expression of the TDIF precursor CLE44 is rapidly inhibited by light PIF transcription factors are necessary for TDIF expression in the dark Blue light signaling prevents TDIF expression, which promotes xylem differentiation
Collapse
Affiliation(s)
- Shraboni Ghosh
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Joseph F Nelson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - J Peter Etchells
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Miguel de Lucas
- Department of Biosciences, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
23
|
Zhang Y, Tan S, Gao Y, Kan C, Wang HL, Yang Q, Xia X, Ishida T, Sawa S, Guo H, Li Z. CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:550-562. [PMID: 35396726 DOI: 10.1111/nph.18154] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence is the final stage of leaf development and is influenced by numerous internal and environmental factors. CLE family peptides are plant-specific peptide hormones that regulate various developmental processes. However, the role of CLE in regulating Arabidopsis leaf senescence remains unclear. Here, we found that CLE42 is a negative regulator of leaf senescence by using a CRISPR/Cas9-produced CLE mutant collection. The cle42 mutant displayed earlier senescence phenotypes, while overexpression of CLE42 delayed age-dependent and dark-induced leaf senescence. Moreover, application of the synthesized 12-amino-acid peptide (CLE42p) also delayed leaf senescence under natural and dark conditions. CLE42 and CLE41/44 displayed functional redundancy in leaf senescence, and the cle41 cle42 cle44 triple mutant displayed more pronounced earlier senescence phenotypes than any single mutant. Analysis of differentially expressed genes obtained by RNA-Seq methodology revealed that the ethylene pathway was suppressed by overexpressing CLE42. Moreover, CLE42 suppressed ethylene biosynthesis and thus promoted the protein accumulation of EBF, which in turn decreased the function of EIN3. Accordingly, mutation of EIN3/EIL1 or overexpression of EBF1 suppressed the earlier senescence phenotypes of the cle42 mutant. Together, our results reveal that the CLE peptide hormone regulates leaf senescence by communicating with the ethylene pathway.
Collapse
Affiliation(s)
- Yi Zhang
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, China
| | - Shuya Tan
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuhan Gao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chengcheng Kan
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qi Yang
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, China
| | - Zhonghai Li
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
24
|
Rhodes J, Roman AO, Bjornson M, Brandt B, Derbyshire P, Wyler M, Schmid MW, Menke FLH, Santiago J, Zipfel C. Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3. eLife 2022; 11:74687. [PMID: 35617122 PMCID: PMC9191895 DOI: 10.7554/elife.74687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Plant genomes encode hundreds of secreted peptides; however, relatively few have been characterised. We report here an uncharacterised, stress-induced family of plant signalling peptides, which we call CTNIPs. Based on the role of the common co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) in CTNIP-induced responses, we identified in Arabidopsis thaliana the orphan receptor kinase HAESA-LIKE 3 (HSL3) as the CTNIP receptor via a proteomics approach. CTNIP binding, ligand-triggered complex formation with BAK1, and induced downstream responses all involve HSL3. Notably, the HSL3-CTNIP signalling module is evolutionarily conserved amongst most extant angiosperms. The identification of this novel signalling module will further shed light on the diverse functions played by plant signalling peptides and will provide insights into receptor-ligand co-evolution.
Collapse
Affiliation(s)
- Jack Rhodes
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Andra-Octavia Roman
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Marta Bjornson
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Brandt
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Cyril Zipfel
- Department of Plant Molecular Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Haas AS, Shi D, Greb T. Cell Fate Decisions Within the Vascular Cambium-Initiating Wood and Bast Formation. FRONTIERS IN PLANT SCIENCE 2022; 13:864422. [PMID: 35548289 PMCID: PMC9082745 DOI: 10.3389/fpls.2022.864422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 06/15/2023]
Abstract
Precise coordination of cell fate decisions is a hallmark of multicellular organisms. Especially in tissues with non-stereotypic anatomies, dynamic communication between developing cells is vital for ensuring functional tissue organization. Radial plant growth is driven by a plant stem cell niche known as vascular cambium, usually strictly producing secondary xylem (wood) inward and secondary phloem (bast) outward, two important structures serving as much-needed CO2 depositories and building materials. Because of its bidirectional nature and its developmental plasticity, the vascular cambium serves as an instructive paradigm for investigating principles of tissue patterning. Although genes and hormones involved in xylem and phloem formation have been identified, we have a yet incomplete picture of the initial steps of cell fate transitions of stem cell daughters into xylem and phloem progenitors. In this mini-review perspective, we describe two possible scenarios of cell fate decisions based on the current knowledge about gene regulatory networks and how cellular environments are established. In addition, we point out further possible research directions.
Collapse
Affiliation(s)
- Aylin S. Haas
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Dongbo Shi
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
- RIKEN Center for Sustainable Resource Science (CSRS), Tsurumi-Yokohama, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Japan
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
26
|
Kwon CT, Tang L, Wang X, Gentile I, Hendelman A, Robitaille G, Van Eck J, Xu C, Lippman ZB. Dynamic evolution of small signalling peptide compensation in plant stem cell control. NATURE PLANTS 2022; 8:346-355. [PMID: 35347264 DOI: 10.1038/s41477-022-01118-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Gene duplications are a hallmark of plant genome evolution and a foundation for genetic interactions that shape phenotypic diversity1-5. Compensation is a major form of paralogue interaction6-8 but how compensation relationships change as allelic variation accumulates is unknown. Here we leveraged genomics and genome editing across the Solanaceae family to capture the evolution of compensating paralogues. Mutations in the stem cell regulator CLV3 cause floral organs to overproliferate in many plants9-11. In tomato, this phenotype is partially suppressed by transcriptional upregulation of a closely related paralogue12. Tobacco lost this paralogue, resulting in no compensation and extreme clv3 phenotypes. Strikingly, the paralogues of petunia and groundcherry nearly completely suppress clv3, indicating a potent ancestral state of compensation. Cross-species transgenic complementation analyses show that this potent compensation partially degenerated in tomato due to a single amino acid change in the paralogue and cis-regulatory variation that limits its transcriptional upregulation. Our findings show how genetic interactions are remodelled following duplications and suggest that dynamic paralogue evolution is widespread over short time scales and impacts phenotypic variation from natural and engineered mutations.
Collapse
Affiliation(s)
- Choon-Tak Kwon
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Lingli Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingang Wang
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Iacopo Gentile
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Anat Hendelman
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Gina Robitaille
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Zachary B Lippman
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
| |
Collapse
|
27
|
Roman AO, Jimenez-Sandoval P, Augustin S, Broyart C, Hothorn LA, Santiago J. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat Commun 2022; 13:876. [PMID: 35169143 PMCID: PMC8847575 DOI: 10.1038/s41467-022-28558-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
The membrane receptor kinases HAESA and HSL2 recognize a family of IDA/IDL signaling peptides to control cell separation processes in different plant organs. The homologous HSL1 has been reported to regulate epidermal cell patterning by interacting with a different class of signaling peptides from the CLE family. Here we demonstrate that HSL1 binds IDA/IDL peptides with high, and CLE peptides with lower affinity, respectively. Ligand sensing capability and receptor activation of HSL1 require a SERK co-receptor kinase. Crystal structures with IDA/IDLs or with CLE9 reveal that HSL1-SERK1 complex recognizes the entire IDA/IDL signaling peptide, while only parts of CLE9 are bound to the receptor. In contrast, the receptor kinase BAM1 interacts with the entire CLE9 peptide with high affinity and specificity. Furthermore, the receptor tandem BAM1/BAM2 regulates epidermal cell division homeostasis. Consequently, HSL1-IDLs and BAM1/BAM2-CLEs independently regulate cell patterning in the leaf epidermal tissue.
Collapse
Affiliation(s)
- Andra-Octavia Roman
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Sebastian Augustin
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, 30167, Hannover, Germany
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
28
|
Turley EK, Etchells JP. Laying it on thick: a study in secondary growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:665-679. [PMID: 34655214 PMCID: PMC8793872 DOI: 10.1093/jxb/erab455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 05/12/2023]
Abstract
The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world's biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide-receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants.
Collapse
Affiliation(s)
- Emma K Turley
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - J Peter Etchells
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Correspondence:
| |
Collapse
|
29
|
Song XF, Hou XL, Liu CM. CLE peptides: critical regulators for stem cell maintenance in plants. PLANTA 2021; 255:5. [PMID: 34841457 DOI: 10.1007/s00425-021-03791-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Plant CLE peptides, which regulate stem cell maintenance in shoot and root meristems and in vascular bundles through LRR family receptor kinases, are novel, complex, and to some extent conserved. Over the past two decades, peptide ligands of the CLAVATA3 (CLV3) /Embryo Surrounding Region (CLE) family have been recognized as critical short- and long-distance communication signals in plants, especially for stem cell homeostasis, cell fate determination and physiological responses. Stem cells located at the shoot apical meristem (SAM), the root apical meristem (RAM) and the procambium divide and differentiate into specialized cells that form a variety of tissues such as epidermis, ground tissues, xylem and phloem. In the SAM of Arabidopsis (Arabidopsis thaliana), the CLV3 peptide restricts the number of stem cells via leucine-rich repeat (LRR)-type receptor kinases. In the RAM, root-active CLE peptides are critical negative regulators, while ROOT GROWTH FACTOR (RGF) peptides are positive regulators in stem cell maintenance. Among those root-active CLE peptides, CLE25 promotes, while CLE45 inhibits phloem differentiation. In vascular bundles, TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/CLE41/CLE44 promotes procambium cell division, and prevents xylem differentiation. Orthologs of CLV3 have been identified in liverwort (Marchantia polymorpha), tomato (Solanum lycopersicum), rice (Oryza sativa), maize (Zea mays) and lotus (Lotus japonicas), suggesting that CLV3 is an evolutionarily conserved signal in stem cell maintenance. However, functional characterization of endogenous CLE peptides and corresponding receptor kinases, and the downstream signal transduction has been challenging due to their genome-wide redundancies and rapid evolution.
Collapse
Affiliation(s)
- Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu-Li Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Breiden M, Olsson V, Blümke P, Schlegel J, Gustavo-Pinto K, Dietrich P, Butenko MA, Simon R. The Cell Fate Controlling CLE40 Peptide Requires CNGCs to Trigger Highly Localized Ca2+ Transients in Arabidopsis thaliana Root Meristems. PLANT & CELL PHYSIOLOGY 2021; 62:1290-1301. [PMID: 34059877 DOI: 10.1093/pcp/pcab079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Communication between plant cells and their biotic environment largely depends on the function of plasma membrane localized receptor-like kinases (RLKs). Major players in this communication within root meristems are secreted peptides, including CLAVATA3/EMBRYO SURROUNDING REGION40 (CLE40). In the distal root meristem, CLE40 acts through the RLK ARABIDOPSIS CRINKLY4 (ACR4) and the leucine-rich repeat (LRR) RLK CLAVATA1 (CLV1) to promote cell differentiation. In the proximal meristem, CLE40 signaling requires the LRR receptor-like protein CLAVATA2 (CLV2) and the membrane localized pseudokinase CORYNE (CRN) and serves to inhibit cell differentiation. The molecular components that act immediately downstream of the CLE40-activated receptors are not yet known. Here, we show that active CLE40 signaling triggers the release of intracellular Ca2+ leading to increased cytosolic Ca2+ concentration ([Ca2+]cyt) in a small subset of proximal root meristem cells. This rise in [Ca2+]cyt depends on the CYCLIC NUCLEOTIDE GATED CHANNELS (CNGCs) 6 and 9 and on CLV1. The precise function of changes in [Ca2+]cyt is not yet known but might form a central part of a fine-tuned response to CLE40 peptide that serves to integrate root meristem growth with stem cell fate decisions and initiation of lateral root primordia.
Collapse
Affiliation(s)
- Maike Breiden
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Vilde Olsson
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Osl, Blindernveien 31, Oslo 0316, Norway
| | - Patrick Blümke
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Jenia Schlegel
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Karine Gustavo-Pinto
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Petra Dietrich
- Cell Biology of Plants, Friedrich Alexander University, Staudtstr. 5, Erlangen 91058, Germany
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Osl, Blindernveien 31, Oslo 0316, Norway
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
31
|
Yuan B, Wang H. Peptide Signaling Pathways Regulate Plant Vascular Development. FRONTIERS IN PLANT SCIENCE 2021; 12:719606. [PMID: 34539713 PMCID: PMC8446620 DOI: 10.3389/fpls.2021.719606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Plant small peptides, including CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) and Epidermal Patterning Factor-Like (EPFL) peptides, play pivotal roles in coordinating developmental processes through cell-cell communication. Recent studies have revealed that the phloem-derived CLE peptides, CLE41/44 and CLE42, promote (pro-)cambial cell proliferation and inhibit xylem cell differentiation. The endodermis-derived EPFL peptides, EPFL4 and EPFL6, modulate vascular development in the stem. Further, several other peptide ligands CLE9, CLE10, and CLE45 play crucial roles in regulating vascular development in the root. The peptide signaling pathways interact with each other and crosstalk with plant hormone signals. In this mini-review, we summtarize the recent advances on peptides function in vascular development and discuss future perspectives for the research of the CLE and EPFL peptides.
Collapse
Affiliation(s)
- Bingjian Yuan
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
- Institute for System Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
32
|
Hirakawa Y. CLAVATA3, a plant peptide controlling stem cell fate in the meristem. Peptides 2021; 142:170579. [PMID: 34033873 DOI: 10.1016/j.peptides.2021.170579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
CLAVATA3 (CLV3) is a peptide signal initially identified in the analysis of clv mutants in the model plant Arabidopsis thaliana, as a regulator of meristem homeostasis and floral organ numbers. CLV3 homologs are widely conserved in land plants, collectively called CLV3/ESR-related (CLE) genes. A 12-amino acid CLE peptide with hydroxyproline residues was identified in Zinnia elegans cell culture system, in which cells secrete a CLE peptide called tracheary element differentiation factor (TDIF) into the culture medium. Mature CLV3 peptide is also a post-translationally modified short peptide containing additional triarabinosylation on a hydroxyproline residue. Genetic studies have revealed the involvement of leucin-rich repeat receptor-like kinases (LRR-RLKs) in CLV3 signaling, including CLV1/BAM-CIK, CLV2-CRN and RPK2, although the mechanisms of signal transduction and integration via crosstalk is still largely unknown. Recent studies on bryophyte model species provided a clue to understand evolution and ancestral function of CLV signaling in land plants. Fundamental understanding on CLV signaling provided an opportunity to optimize the crop yield traits using a novel breeding technology with CRISPR/Cas genome editing.
Collapse
Affiliation(s)
- Yuki Hirakawa
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan.
| |
Collapse
|
33
|
Zhu Y, Hu C, Cui Y, Zeng L, Li S, Zhu M, Meng F, Huang S, Long L, Yi J, Li J, Gou X. Conserved and differentiated functions of CIK receptor kinases in modulating stem cell signaling in Arabidopsis. MOLECULAR PLANT 2021; 14:1119-1134. [PMID: 33823234 DOI: 10.1016/j.molp.2021.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
The shoot apical meristem (SAM) and root apical meristem (RAM) act as pools of stem cells that give rise to aboveground and underground tissues and organs in higher plants, respectively. The CLAVATA3 (CLV3)-WUSCHEL (WUS) negative-feedback loop acts as a core pathway controlling SAM homeostasis, while CLV3/EMBRYO SURROUNDING REGION (ESR) 40 (CLE40) and WUSCHEL-RELATED HOMEOBOX5 (WOX5), homologs of CLV3 and WUS, direct columella stem cell fate. Moreover, CLV3 INSENSITIVE KINASES (CIKs) have been shown to be essential for maintaining SAM homeostasis, whereas whether they regulate the distal root meristem remains to be elucidated. Here, we report that CIKs are indispensable for transducing the CLE40 signal to maintain homeostasis of the distal root meristem. We found that the cik mutant roots displayed disrupted quiescent center and delayed columella stem cell (CSC) differentiation. Biochemical assays demonstrated that CIKs interact with ARABIDOPSIS CRINKLY4 (ACR4) in a ligand-independent manner and can be phosphorylated by ACR4 in vitro. In addition, the phosphorylation of CIKs can be rapidly induced by CLE40, which partially depends on ACR4. Although CIKs act as conserved and redundant regulators in the SAM and RAM, our results demonstrated that they exhibit differentiated functions in these meristems.
Collapse
Affiliation(s)
- Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yanwei Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li Zeng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sunjingnan Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fanhui Meng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuting Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li Long
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
34
|
Kawaharada Y, Sandal N, Gupta V, Jin H, Kawaharada M, Taniuchi M, Ruman H, Nadzieja M, Andersen KR, Schneeberger K, Stougaard J, Andersen SU. Natural variation identifies a Pxy gene controlling vascular organisation and formation of nodules and lateral roots in Lotus japonicus. THE NEW PHYTOLOGIST 2021; 230:2459-2473. [PMID: 33759450 DOI: 10.1111/nph.17356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/01/2021] [Indexed: 05/06/2023]
Abstract
Forward and reverse genetics using the model legumes Lotus japonicus and Medicago truncatula have been instrumental in identifying the essential genes governing legume-rhizobia symbiosis. However, little information is known about the effects of intraspecific variation on symbiotic signalling. Here, we use quantitative trait locus sequencing (QTL-seq) to investigate the genetic basis of the differentiated phenotypic responses shown by the Lotus accessions Gifu and MG20 to inoculation with the Mesorhizobium loti exoU mutant that produces truncated exopolysaccharides. We identified through genetic complementation the Pxy gene as a component of this differential exoU response. Lotus Pxy encodes a leucine-rich repeat receptor-like kinase similar to Arabidopsis thaliana PXY, which regulates stem vascular development. We show that Lotus pxy insertion mutants displayed defects in root and stem vascular organisation, as well as lateral root and nodule formation. Our work links Pxy to de novo organogenesis in the root, highlights the genetic overlap between regulation of lateral root and nodule formation, and demonstrates that natural variation in Pxy affects nodulation signalling.
Collapse
Affiliation(s)
- Yasuyuki Kawaharada
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Haojie Jin
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Maya Kawaharada
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Makoto Taniuchi
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Hafijur Ruman
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Korbinian Schneeberger
- Department for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
35
|
Chen T. Identification and characterization of the LRR repeats in plant LRR-RLKs. BMC Mol Cell Biol 2021; 22:9. [PMID: 33509084 PMCID: PMC7841916 DOI: 10.1186/s12860-021-00344-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/12/2021] [Indexed: 01/11/2023] Open
Abstract
Background Leucine-rich-repeat receptor-like kinases (LRR-RLKs) play central roles in sensing various signals to regulate plant development and environmental responses. The extracellular domains (ECDs) of plant LRR-RLKs contain LRR motifs, consisting of highly conserved residues and variable residues, and are responsible for ligand perception as a receptor or co-receptor. However, there are few comprehensive studies on the ECDs of LRR-RLKs due to the difficulty in effectively identifying the divergent LRR repeats. Results In the current study, an efficient LRR motif prediction program, the “Phyto-LRR prediction” program, was developed based on the position-specific scoring matrix algorithm (PSSM) with some optimizations. This program was trained by 16-residue plant-specific LRR-highly conserved segments (HCS) from LRR-RLKs of 17 represented land plant species and a database containing more than 55,000 predicted LRRs based on this program was constructed. Both the prediction tool and database are freely available at http://phytolrr.com/ for website usage and at http://github.com/phytolrr for local usage. The LRR-RLKs were classified into 18 subgroups (SGs) according to the maximum-likelihood phylogenetic analysis of kinase domains (KDs) of the sequences. Based on the database and the SGs, the characteristics of the LRR motifs in the ECDs of the LRR-RLKs were examined, such as the arrangement of the LRRs, the solvent accessibility, the variable residues, and the N-glycosylation sites, revealing a comprehensive profile of the plant LRR-RLK ectodomains. Conclusion The “Phyto-LRR prediction” program is effective in predicting the LRR segments in plant LRR-RLKs, which, together with the database, will facilitate the exploration of plant LRR-RLKs functions. Based on the database, comprehensive sequential characteristics of the plant LRR-RLK ectodomains were profiled and analyzed. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00344-y.
Collapse
Affiliation(s)
- Tianshu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Ave, Nanjing, 210046, China.
| |
Collapse
|
36
|
Takahashi G, Betsuyaku S, Okuzumi N, Kiyosue T, Hirakawa Y. An Evolutionarily Conserved Coreceptor Gene Is Essential for CLAVATA Signaling in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2021; 12:657548. [PMID: 33927741 PMCID: PMC8076897 DOI: 10.3389/fpls.2021.657548] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/22/2021] [Indexed: 05/05/2023]
Abstract
Growth and development of land plants are controlled by CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) family of peptide hormones. In contrast to the genetic diversity of CLE family in flowering plants, the liverwort Marchantia polymorpha possesses a minimal set of CLE, MpCLE1(TDIF homolog), and MpCLE2 (CLV3 homolog). MpCLE1 and MpCLE2 peptides exert distinct function at the apical meristem of M. polymorpha gametophyte via specific receptors, MpTDIF RECEPTOR (MpTDR) and MpCLAVATA1 (MpCLV1), respectively, both belonging to the subclass XI of leucine-rich repeat receptor-like kinases (LRR-RLKs). Biochemical and genetic studies in Arabidopsis have shown that TDR/PXY family and CLV1/BAM family recognize the CLE peptide ligand in a heterodimeric complex with a member of subclass-II coreceptors. Here we show that three LRR-RLK genes of M. polymorpha are classified into subclass II, representing three distinct subgroups evolutionarily conserved in land plants. To address the involvement of subclass-II coreceptors in M. polymorpha CLE signaling, we performed molecular genetic analysis on one of them, MpCLAVATA3 INSENSITIVE RECEPTOR KINASE (MpCIK). Two knockout alleles for MpCIK formed narrow apical meristems marked by prom MpYUC2:GUS marker, which were not expanded by MpCLE2 peptide treatment, phenocopying Mpclv1. Loss of sensitivity to MpCLE2 peptide was also observed in gemma cup formation in both Mpclv1 and Mpcik. Biochemical analysis using a Nicotiana benthamiana transient expression system revealed weak association between MpCIK and MpCLV1, as well as MpCIK and MpTDR. While MpCIK may also participate in MpCLE1 signaling, our data show that the conserved CLV3-CLV1-CIK module functions in M. polymorpha, controlling meristem activity for development and organ formation for asexual reproduction.
Collapse
Affiliation(s)
- Go Takahashi
- Graduate School of Science, Gakushuin University, Tokyo, Japan
| | | | - Natsuki Okuzumi
- Graduate School of Science, Gakushuin University, Tokyo, Japan
| | | | - Yuki Hirakawa
- Graduate School of Science, Gakushuin University, Tokyo, Japan
- *Correspondence: Yuki Hirakawa,
| |
Collapse
|
37
|
Song W, Forderer A, Yu D, Chai J. Structural biology of plant defence. THE NEW PHYTOLOGIST 2021; 229:692-711. [PMID: 32880948 DOI: 10.1111/nph.16906] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plants employ the innate immune system to discriminate between self and invaders through two types of immune receptors, one on the plasma membrane and the other in the intracellular space. The immune receptors on the plasma membrane are pattern recognition receptors (PRRs) that can perceive pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) leading to pattern-triggered immunity (PTI). Particular pathogens are capable of overcoming PTI by secreting specific effectors into plant cells to perturb different components of PTI signalling through various mechanisms. Most of the immune receptors from the intracellular space are the nucleotide-binding leucine-rich repeat receptors (NLRs), which specifically recognize pathogen-secreted effectors to mediate effector-triggered immunity (ETI). In this review, we will summarize recent progress in structural studies of PRRs, NLRs, and effectors, and discuss how these studies shed light on ligand recognition and activation mechanisms of the two types of immune receptors and the diversified mechanisms used by effectors to manipulate plant immune signalling.
Collapse
Affiliation(s)
- Wen Song
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Alexander Forderer
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Dongli Yu
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Jijie Chai
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| |
Collapse
|
38
|
Ma D, Endo S, Betsuyaku S, Shimotohno A, Fukuda H. CLE2 regulates light-dependent carbohydrate metabolism in Arabidopsis shoots. PLANT MOLECULAR BIOLOGY 2020; 104:561-574. [PMID: 32980951 DOI: 10.1007/s11103-020-01059-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/21/2020] [Indexed: 05/05/2023]
Abstract
This study focused on the role of CLE1-CLE7 peptides as environmental mediators and indicated that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots. Plants sense environmental stimuli and convert them into cellular signals, which are transmitted to distinct cells and tissues to induce adequate responses. Plant hormones and small secretory peptides often function as environmental stress mediators. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED proteins, CLE1-CLE7, which share closely related CLE domains, mediate environmental stimuli in Arabidopsis thaliana. Expression analysis of CLE1-CLE7 revealed that these genes respond to different environmental stimuli, such as nitrogen deprivation, nitrogen replenishment, cold, salt, dark, and sugar starvation, in a sophisticated manner. To further investigate the function of CLE2, we generated transgenic Arabidopsis lines expressing the β-glucuronidase gene under the control of the CLE2 promoter or expressing the CLE2 gene under the control of an estradiol-inducible promoter. We also generated cle2-1 and cle2-2 mutants using the CRISPR/Cas9 technology. In these transgenic lines, dark induced the expression of CLE2 in the root vasculature. Additionally, induction of CLE2 in roots induced the expression of various genes not only in roots but also in shoots, and genes related to light-dependent carbohydrate metabolism were particularly induced in shoots. In addition, cle2 mutant plants showed chlorosis when subjected to a shade treatment. These results suggest that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots.
Collapse
Affiliation(s)
- Dichao Ma
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Satoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigeyuki Betsuyaku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Akie Shimotohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
39
|
Stührwohldt N, Ehinger A, Thellmann K, Schaller A. Processing and Formation of Bioactive CLE40 Peptide Are Controlled by Posttranslational Proline Hydroxylation. PLANT PHYSIOLOGY 2020; 184:1573-1584. [PMID: 32907884 PMCID: PMC7608152 DOI: 10.1104/pp.20.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/27/2020] [Indexed: 06/01/2023]
Abstract
Small posttranslationally modified signaling peptides are proteolytically derived from larger precursor proteins and subject to several additional steps of modification, including Pro hydroxylation, Hyp glycosylation, and/or Tyr sulfation. The processing proteases and the relevance of posttranslational modifications for peptide biogenesis and activity are largely unknown. In this study these questions were addressed for the Clavata3/Endosperm Surrounding Region (CLE) peptide CLE40, a peptide regulator of stem cell differentiation in the Arabidopsis (Arabidopsis thaliana) root meristem. We identify three subtilases (SBT1.4, SBT1.7, and SBT4.13) that cleave the CLE40 precursor redundantly at two sites. C-terminal processing releases the mature peptide from its precursor and is thus required for signal biogenesis. SBT-mediated cleavage at a second site within the mature peptide attenuates the signal. The second cleavage is prevented by Pro hydroxylation, resulting in the formation of mature and bioactive CLE40 in planta. Our data reveal a role for posttranslational modification by Pro hydroxylation in the regulation of CLE40 formation and activity.
Collapse
Affiliation(s)
- Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Alexandra Ehinger
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Kerstin Thellmann
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
40
|
Trihemasava K, Chakraborty S, Blackburn K, Xu G. Expression, purification, and phylogenetic analysis of MDIS1-INTERACTING RECEPTOR-LIKE KINASE1 (MIK1). Protein J 2020; 39:461-471. [PMID: 33104960 DOI: 10.1007/s10930-020-09926-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 11/27/2022]
Abstract
An abundance of protein structures has been solved in the last six decades that are paramount in defining the function of such proteins. For unsolved protein structures, however, predictions based on sequence and phylogenetic similarity can be useful for identifying key domains of interaction. Here, we describe expression and purification of a recombinant plant LRR-RLK ectodomain MIK1 using a modified baculovirus-mediated expression system with subsequent N-linked glycosylation analysis using LC-MS/MS and computational sequence-based analyses. Though highly ubiquitous, glycosylation site specificity and the degree of glycosylation influenced by genetic and exogenous factors are still largely unknown. Our experimental analysis of N-glycans on MIK1 identified clusters of glycosylation that may explicate the regions involved in MIK1 ectodomain binding. Whether these glycans are necessary for function is yet to be determined. Phylogenetic comparison using multiple sequence alignment between MIK1 and other LRR-RLKs, namely TDR in Arabidopsis thaliana, revealed conserved structural motifs that are known to play functional roles in ligand and receptor binding.
Collapse
Affiliation(s)
- Krittin Trihemasava
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sayan Chakraborty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
- Waters Corporation, Milford, MA, USA
| | - Guozhou Xu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
41
|
Zhang Z, Liu L, Kucukoglu M, Tian D, Larkin RM, Shi X, Zheng B. Predicting and clustering plant CLE genes with a new method developed specifically for short amino acid sequences. BMC Genomics 2020; 21:709. [PMID: 33045986 PMCID: PMC7552357 DOI: 10.1186/s12864-020-07114-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022] Open
Abstract
Background The CLV3/ESR-RELATED (CLE) gene family encodes small secreted peptides (SSPs) and plays vital roles in plant growth and development by promoting cell-to-cell communication. The prediction and classification of CLE genes is challenging because of their low sequence similarity. Results We developed a machine learning-aided method for predicting CLE genes by using a CLE motif-specific residual score matrix and a novel clustering method based on the Euclidean distance of 12 amino acid residues from the CLE motif in a site-weight dependent manner. In total, 2156 CLE candidates—including 627 novel candidates—were predicted from 69 plant species. The results from our CLE motif-based clustering are consistent with previous reports using the entire pre-propeptide. Characterization of CLE candidates provided systematic statistics on protein lengths, signal peptides, relative motif positions, amino acid compositions of different parts of the CLE precursor proteins, and decisive factors of CLE prediction. The approach taken here provides information on the evolution of the CLE gene family and provides evidence that the CLE and IDA/IDL genes share a common ancestor. Conclusions Our new approach is applicable to SSPs or other proteins with short conserved domains and hence, provides a useful tool for gene prediction, classification and evolutionary analysis.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Melis Kucukoglu
- Institute of Biotechnology, Helsinki Institute of Life Science (HILIFE), University of Helsinki, 00014, Helsinki, Finland.,Viikki Plant Science Centre, University of Helsinki, 00014, Helsinki, Finland
| | - Dongdong Tian
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
42
|
Fletcher JC. Recent Advances in Arabidopsis CLE Peptide Signaling. TRENDS IN PLANT SCIENCE 2020; 25:1005-1016. [PMID: 32402660 DOI: 10.1016/j.tplants.2020.04.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 05/18/2023]
Abstract
Like communities of people, communities of cells must continuously communicate to thrive. Polypeptide signaling molecules that act as mobile ligands are widely used by eukaryotic organisms to transmit information between cells to coordinate developmental processes and responses to environmental cues. In plants, the CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) genes encode a large family of extracellular signaling peptides that stimulate receptor-mediated signal transduction cascades to modulate diverse developmental and physiological processes. This review highlights the emerging roles of Arabidopsisthaliana CLE peptide signaling pathways in shoot stem cell homeostasis and root xylem development, as well as in root protophloem cell differentiation, vascular cambium activity, and stomatal formation and closure.
Collapse
Affiliation(s)
- Jennifer C Fletcher
- Plant Gene Expression Center, US Department of Agriculture (USDA) Agricultural Research Service, Albany, CA 94710, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
43
|
Wang J, Yan LL, Yue ZL, Li HY, Ji XJ, Pu CX, Sun Y. Receptor-like kinase OsCR4 controls leaf morphogenesis and embryogenesis by fixing the distribution of auxin in rice. J Genet Genomics 2020; 47:577-589. [PMID: 33092991 DOI: 10.1016/j.jgg.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Cell differentiation is a key event in organ development; it involves auxin gradient formation, cell signaling, and transcriptional regulation. Yet, how these processes are orchestrated during leaf morphogenesis is poorly understood. Here, we demonstrate an essential role for the receptor-like kinase OsCR4 in leaf development. oscr4 loss-of-function mutants displayed short shoots and roots, with tiny, crinkly, or even dead leaves. The delayed outgrowth of the first three leaves and seminal root in oscr4 was due to defects in plumule and radicle formation during embryogenesis. The deformed epidermal, mesophyll, and vascular tissues observed in oscr4 leaves arose at the postembryo stage; the corresponding expression pattern of proOsCR4:GUS in embryos and young leaves suggests that OsCR4 functions in these tissues. Signals from the auxin reporter DR5rev:VENUS were found to be altered in oscr4 embryos and disorganized in oscr4 leaves, in which indole-3-acetic acid accumulation was further revealed by immunofluorescence. OsWOX3A, which is auxin responsive and related to leaf development, was activated extensively and ectopically in oscr4 leaves, partially accounting for the observed lack of cell differentiation. Our data suggest that OsCR4 plays a fundamental role in leaf morphogenesis and embryogenesis by fixing the distribution of auxin.
Collapse
Affiliation(s)
- Jiao Wang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Lin-Lin Yan
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Zhi-Liang Yue
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China; Institute of Cash Crops, Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang, 050051, China
| | - Hao-Yue Li
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Xiu-Jie Ji
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Cui-Xia Pu
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
| | - Ying Sun
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
| |
Collapse
|
44
|
Khan SU, Khan MHU, Ahmar S, Fan C. Comprehensive study and multipurpose role of the CLV3/ESR-related (CLE) genes family in plant growth and development. J Cell Physiol 2020; 236:2298-2317. [PMID: 32864739 DOI: 10.1002/jcp.30021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
The CLAVATA3/endosperm surrounding region-related (CLE) is one of the most important signaling peptides families in plants. These peptides signaling are common in the cell to cell communication and control various physiological and developmental processes, that is cell differentiation and proliferation, self-incompatibility, and the defense response. The CLE signaling systems are conserved across the plant kingdom but have a diverse mode of action in various developmental processes in different species. In this review, we concise various methods of peptides identification, structure, and molecular identity of the CLE family, the developmental role of CLE genes/peptides in plants, environmental stimuli, and CLE family and some other novel progress in CLE genes/peptides in various crops, and so forth. According to previous literature, about 1,628 CLE genes were identified in land plants, which deeply explained the tale of plant development. Nevertheless, some important queries need to be addressed to get clear insights into the CLE gene family in other organisms and their role in various physiological and developmental processes. Furthermore, we summarized the power of the CLE family around the environment as well as bifunctional activity and the crystal structure recognition mechanism of CLE peptides by their receptors and CLE clusters functions. We strongly believed that the discovery of the CLE family in other organisms would provide a significant breakthrough for future revolutionary and functional studies.
Collapse
Affiliation(s)
- Shahid U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Hafeez U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
45
|
Chen H, Kong Y, Chen J, Li L, Li X, Yu F, Ming Z. Crystal structure of the extracellular domain of the receptor-like kinase TMK3 from Arabidopsis thaliana. Acta Crystallogr F Struct Biol Commun 2020; 76:384-390. [PMID: 32744250 PMCID: PMC7397464 DOI: 10.1107/s2053230x20010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/22/2020] [Indexed: 11/10/2022] Open
Abstract
Transmembrane kinases (TMKs) are members of the plant receptor-like kinase (RLK) family. TMKs are characterized by an extracellular leucine-rich-repeat (LRR) domain, a single transmembrane region and a cytoplasmic kinase domain. TMKs have been shown to act as critical modulators of cell expansion and cell proliferation. Here, the crystal structure of the extracellular domain of TMK3 (TMK3-ECD) was determined to a resolution of 2.06 Å, with an Rwork of 17.69% and an Rfree of 20.58%. Similar to the extracellular domain of TMK1, the TMK3-ECD structure contains two solenoids with 13 LRRs and a non-LRR region (316-364) between the tenth and 11th LRRs. A comparison of TMK3-ECD with other LRR-RLKs that contain a non-LRR region indicates that the non-LRR region plays a critical role in structural integrity and may contribute to ligand interactions. The non-LRR region of TMK3-ECD is characterized by two disulfide bonds that may have critical biological implications.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, People’s Republic of China
| | - Yanqiong Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People’s Republic of China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, People’s Republic of China
| | - Lan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, People’s Republic of China
| | - Xiushan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, People’s Republic of China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, People’s Republic of China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People’s Republic of China
| |
Collapse
|
46
|
Paul A, Srinivasan N. Genome-wide and structural analyses of pseudokinases encoded in the genome of Arabidopsis thaliana provide functional insights. Proteins 2020; 88:1620-1638. [PMID: 32667690 DOI: 10.1002/prot.25981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/26/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022]
Abstract
Protein Kinase-Like Non-Kinases (PKLNKs), commonly known as "pseudokinases", are homologous to eukaryotic Ser/Thr/Tyr protein kinases (PKs) but lack the crucial aspartate residue in the catalytic loop, indispensable for phosphotransferase activity. Therefore, they are predicted to be "catalytically inactive" enzyme homologs. Analysis of protein-kinase like sequences from Arabidopsis thaliana led to the identification of more than 120 pseudokinases lacking catalytic aspartate, majority of which are closely related to the plant-specific receptor-like kinase family. These pseudokinases engage in different biological processes, enabled by their diverse domain architectures and specific subcellular localizations. Structural comparison of pseudokinases with active and inactive conformations of canonical PKs, belonging to both plant and animal origin, revealed unique structural differences. The currently available crystal structures of pseudokinases show that the loop topologically equivalent to activation segment of PKs adopts a distinct-folded conformation, packing against the pseudoenzyme core, in contrast to the extended and inhibitory geometries observed for active and inactive states, respectively, of catalytic PKs. Salt-bridge between ATP-binding Lys and DFG-Asp as well as hydrophobic interactions between the conserved nonpolar residue C-terminal to the equivalent DFG motif and nonpolar residues in C-helix mediate such a conformation in pseudokinases. This results in enhanced solvent accessibility of the pseudocatalytic loop in pseudokinases that can possibly serve as an interacting surface while associating with other proteins. Specifically, our analysis identified several residues that may be involved in pseudokinase regulation and hints at the repurposing of pseudocatalytic residues to achieve mechanistic control over noncatalytic functions of pseudoenzymes.
Collapse
Affiliation(s)
- Anindita Paul
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
47
|
Han S, Khan MHU, Yang Y, Zhu K, Li H, Zhu M, Amoo O, Khan SU, Fan C, Zhou Y. Identification and comprehensive analysis of the CLV3/ESR-related (CLE) gene family in Brassica napus L. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:709-721. [PMID: 32223006 DOI: 10.1111/plb.13117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/05/2020] [Indexed: 05/14/2023]
Abstract
The CLE (CLAVATA3/ESR) gene family, encoding a group of small secretory peptides, plays important roles in cell-to-cell communication, thereby controlling a broad spectrum of development processes. The CLE family has been systematically characterized in some plants, but not in Brassica napus. In the present study, 116 BnCLE genes were identified in the B. napus genome, including seven unannotated, six incorrectly predicted and five multi-CLE domain-encoding genes. These BnCLE members were separated into seven distinct groups based on phylogenetic analysis, which might facilitate the functional characterization of the peptides. Further characterization of CLE pre-propeptides revealed 31 unique CLE peptides from 45 BnCLE genes, which may give rise to distinct roles of BnCLE and expansion of the gene family. The biological activity of these unique CLE dodecamer peptides was tested further through in vitro peptide assays. Variations in several important residues were identified as key contributors to the functional differentiation of BnCLE and expansion of the gene family in B. napus. Expression profile analysis helped to characterize possible functional redundancy and sub-functionalization among the BnCLE members. This study presents a comprehensive overview of the CLE gene family in B. napus and provides a foundation for future evolutionary and functional studies.
Collapse
Affiliation(s)
- S Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - M H U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Y Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - K Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - H Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - M Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - O Amoo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - S U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - C Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Y Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
48
|
Whitewoods CD. Evolution of CLE peptide signalling. Semin Cell Dev Biol 2020; 109:12-19. [PMID: 32444290 DOI: 10.1016/j.semcdb.2020.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
CLEs are small non-cell autonomous signalling peptides that regulate cell division rate and orientation in a variety of developmental contexts. Recent years have generated a huge amount of research on CLE function across land plants, characterising their role across the whole plant; they control stem cell division in the shoot, root and cambial meristems, balance developmental investment into symbiosis, regulate leaf development, pattern stomata and control axillary branching. They have even been co-opted by parasitic nematodes to mediate infection. This review synthesises these recent findings and embeds them in an evolutionary context, outlining the likely evolution of the CLE signalling pathway. I use this framework to infer common mechanistic themes and pose key future questions for the field.
Collapse
|
49
|
Fukuda H, Hardtke CS. Peptide Signaling Pathways in Vascular Differentiation. PLANT PHYSIOLOGY 2020; 182:1636-1644. [PMID: 31796560 PMCID: PMC7140915 DOI: 10.1104/pp.19.01259] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/17/2019] [Indexed: 05/18/2023]
Abstract
CLE peptide and related signaling pathways take up prominent roles in the development of both vascular tissues, xylem and phloem.
Collapse
Affiliation(s)
- Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Sandoval PJ, Santiago J. In Vitro Analytical Approaches to Study Plant Ligand-Receptor Interactions. PLANT PHYSIOLOGY 2020; 182:1697-1712. [PMID: 32034053 PMCID: PMC7140929 DOI: 10.1104/pp.19.01396] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/30/2020] [Indexed: 05/15/2023]
Abstract
State-of-the-art in vitro methods characterize receptor-ligand interactions, highlighting experiment strategies, advantages and limitations.
Collapse
Affiliation(s)
- Pedro Jimenez Sandoval
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|