1
|
Munir A, Khan S, Saleem A, Nusrat H, Khan SA, Sayyed H, Khalid A, Javed B, Hidayat F. The Role of Epstein-Barr Virus Molecular Mimicry in Various Autoimmune Diseases. Scand J Immunol 2025; 101:e70016. [PMID: 40155782 DOI: 10.1111/sji.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
Rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and multiple sclerosis (MS) are complex autoimmune inflammatory diseases influenced by genetic, environmental and infectious agents like Epstein-Barr virus (EBV). EBV has been proposed to impact immune pathways through molecular mimicry, diverting antibody reactivity towards host tissues. This review explores the literature on EBV-specific similarities with human peptides and cytokines that might contribute to the onset of RA, SLE and MS. In conclusion, it is vital to conduct experimental computational analyses focusing on the homology between EBV and human proteins to unravel the complexities of autoimmune diseases and advance therapeutic approaches. These insights highlight the significance of collaborative efforts and diverse clinical studies for validation, linking the gap between research and practical applications in the complex field of autoimmunity.
Collapse
Affiliation(s)
- Ayesha Munir
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Sanaullah Khan
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Aisha Saleem
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Hira Nusrat
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Salman Ali Khan
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Humaira Sayyed
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ayesha Khalid
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Bushra Javed
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Fatima Hidayat
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
2
|
Sattarnezhad N, Kockum I, Thomas OG, Liu Y, Ho PP, Barrett AK, Comanescu AI, Wijeratne TU, Utz PJ, Alfredsson L, Steinman L, Robinson WH, Olsson T, Lanz TV. Antibody reactivity against EBNA1 and GlialCAM differentiates multiple sclerosis patients from healthy controls. Proc Natl Acad Sci U S A 2025; 122:e2424986122. [PMID: 40063790 PMCID: PMC11929495 DOI: 10.1073/pnas.2424986122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 03/25/2025] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS), which is linked to Epstein-Barr virus (EBV) infection, preceding the disease. The molecular mechanisms underlying this connection are only partially understood. We previously described molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and three human CNS proteins: anoctamin-2 (ANO2), alpha-B crystallin (CRYAB), and glial cellular adhesion molecule (GlialCAM). Here, we investigated antibody responses against EBNA1 and GlialCAM in a large cohort of 650 MS patients and 661 matched population controls and compared them to responses against CRYAB and ANO2. We confirmed that elevated IgG responses against EBNA1 and all three CNS-mimic antigens associate with increased MS risk. Blocking experiments confirmed the presence of cross-reactive antibodies and molecular mimicry between EBNA1 and GlialCAM, and accompanying antibody responses against adjacent peptide regions of GlialCAM suggest epitope spreading. Antibody responses against EBNA1, GlialCAM, CRYAB, and ANO2 are elevated in MS patients carrying the main risk allele HLA-DRB1*15:01, and combinations of HLA-DRB1*15:01 with anti-EBNA1 and anti-GlialCAM antibodies increase MS risk significantly and in an additive fashion. In addition, antibody reactivities against more than one EBNA1 peptide and more than one CNS-mimic increase the MS risk significantly but modestly. Overall, we show that molecular mimicry between EBNA1 and GlialCAM is likely an important molecular mechanism contributing to MS pathology.
Collapse
Affiliation(s)
- Neda Sattarnezhad
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA94304
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm171 76, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm171 76, Sweden
| | - Olivia G. Thomas
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm171 76, Sweden
- Department of Clinical Neuroscience, Therapeutic Immune Design, Center for Molecular Medicine, Karolinska Institute, Stockholm171 77, Sweden
| | - Yicong Liu
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm171 76, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm171 76, Sweden
| | - Peggy P. Ho
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Alison K. Barrett
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Alexandros I. Comanescu
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Tilini U. Wijeratne
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Lars Alfredsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm171 76, Sweden
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm171 77, Sweden
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- The Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA94304
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm171 76, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm171 76, Sweden
| | - Tobias V. Lanz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
3
|
Allanach JR, Fettig NM, Hardman BK, Rosen AR, Fan V, Chung C, Goldberg EJ, Morse ZJ, Shanina I, Vorobeychik G, Osborne LC, Horwitz MS. Epstein-Barr virus infection promotes T cell dysregulation in a humanized mouse model of multiple sclerosis. SCIENCE ADVANCES 2025; 11:eadu5110. [PMID: 40043135 PMCID: PMC11881922 DOI: 10.1126/sciadv.adu5110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/29/2025] [Indexed: 05/13/2025]
Abstract
Latent infection with Epstein-Barr virus (EBV) is a strong risk factor for the development of multiple sclerosis (MS), although the underlying mechanisms remain unclear. To investigate this association, we induced experimental autoimmune encephalomyelitis (EAE) in immunodeficient mice reconstituted with peripheral blood mononuclear cells (PBMCs) from individuals with or without a history of EBV infection and/or relapsing MS (RRMS). HuPBMC EAE mice generated from EBV-seronegative healthy donors were less susceptible to developing severe neurological symptoms than healthy EBV-seropositive and RRMS donor groups. Donor EBV seropositivity and RRMS diagnosis were associated with a significant increase in the number of central nervous system (CNS) infiltrating effector T cells due to enhanced proliferation of proinflammatory T cells and limited expansion of regulatory T cells. The data indicate that a history of EBV infection, further compounded by a diagnosis of RRMS, promotes T cell-mediated xenogeneic CNS disease in a humanized mouse model of MS.
Collapse
Affiliation(s)
- Jessica R. Allanach
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Naomi M. Fettig
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Blair K. Hardman
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Ariel R. Rosen
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Vina Fan
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Cynthia Chung
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Erin J. Goldberg
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Zachary J. Morse
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Galina Vorobeychik
- Fraser Health Multiple Sclerosis Clinic, Burnaby, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lisa C. Osborne
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Schneider-Hohendorf T, Wünsch C, Falk S, Raposo C, Rubelt F, Mirebrahim H, Asgharian H, Schlecht U, Mattox D, Zhou W, Dawin E, Pawlitzki M, Lauks S, Jarius S, Wildemann B, Havla J, Kümpfel T, Schrot MC, Ringelstein M, Kraemer M, Schwake C, Schmitter T, Ayzenberg I, Fischer K, Meuth SG, Aktas O, Hümmert MW, Kretschmer JR, Trebst C, Kleffner I, Massey J, Muraro PA, Chen-Harris H, Gross CC, Klotz L, Wiendl H, Schwab N. Broader anti-EBV TCR repertoire in multiple sclerosis: disease specificity and treatment modulation. Brain 2025; 148:933-940. [PMID: 39021292 PMCID: PMC11884754 DOI: 10.1093/brain/awae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Epstein-Barr virus (EBV) infection has long been associated with the development of multiple sclerosis (MS). Patients with MS have elevated titres of EBV-specific antibodies in serum and show signs of CNS damage only after EBV infection. Regarding CD8+ T cells, an elevated but ineffective response to EBV was suggested in MS patients, who present with a broader MHC-I-restricted EBV-specific T-cell receptor beta chain (TRB) repertoire compared to controls. It is not known whether this altered EBV response could be subject to dynamic changes, e.g. by approved MS therapies, and whether it is specific for MS. Peripheral blood TRB repertoire samples (n = 1317) of healthy donors (n = 409), patients with MS (n = 710) before and after treatment, patients with neuromyelitis optica spectrum disorder (n = 87), MOG antibody-associated disease (MOGAD) (n = 64) and Susac's syndrome (n = 47) were analysed. Apart from MS, none of the evaluated diseases presented with a broader anti-EBV TRB repertoire. In MS patients undergoing autologous haematopoietic stem-cell transplantation, EBV reactivation coincided with elevated MHC-I-restricted EBV-specific TRB sequence matches. Therapy with ocrelizumab, teriflunomide or dimethyl fumarate reduced EBV-specific, but not CMV-specific MHC-I-restricted TRB sequence matches. Together, these data suggest that the aberrant MHC-I-restricted T-cell response directed against EBV is specific to MS with regard to neuromyelitis optica, MOGAD and Susac's syndrome and that it is specifically modified by MS treatments interfering with EBV host cells or activated lymphocytes.
Collapse
Affiliation(s)
- Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Christian Wünsch
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Simon Falk
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | | | | | | | | | | | | | - Wenyu Zhou
- Adaptive Biotechnologies, 98109 Seattle, WA, USA
| | - Eva Dawin
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Marc Pawlitzki
- Department of Neurology, Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sarah Lauks
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Klinikum, Ludwig-Maximilians-Universiät München, 80539 München, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU Klinikum, Ludwig-Maximilians-Universiät München, 80539 München, Germany
| | - Miriam-Carolina Schrot
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marius Ringelstein
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Neurology, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, 40629 Düsseldorf, Germany
| | - Markus Kraemer
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Neurology, Alfried Krupp Hospital, 45131 Essen, Germany
| | - Carolin Schwake
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, 44791 Bochum, Germany
| | - Thomas Schmitter
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, 44791 Bochum, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, 44791 Bochum, Germany
| | - Katinka Fischer
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Corinna Trebst
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Ilka Kleffner
- Department of Neurology, Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany
| | - Jennifer Massey
- Department of Neurology, St Vincent’s Hospital, 2010 Sydney, Australia
| | - Paolo A Muraro
- Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | | | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
5
|
Li V, McKay FC, Tscharke DC, Smith C, Khanna R, Lechner-Scott J, Rawlinson WD, Lloyd AR, Taylor BV, Morahan JM, Steinman L, Giovannoni G, Bar-Or A, Levy M, Drosu N, Potter A, Caswell N, Smith L, Brady EC, Frost B, Hodgkinson S, Hardy TA, Broadley SA. Repurposing Licensed Drugs with Activity Against Epstein-Barr Virus for Treatment of Multiple Sclerosis: A Systematic Approach. CNS Drugs 2025; 39:305-320. [PMID: 39792343 DOI: 10.1007/s40263-024-01153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Epstein-Barr virus (EBV) is implicated as a necessary factor in the development of multiple sclerosis (MS) and may also be a driver of disease activity. Although it is not clear whether ongoing viral replication is the driver for MS pathology, MS researchers have considered the prospect of using drugs with potential efficacy against EBV in the treatment of MS. We have undertaken scientific and lived experience expert panel reviews to shortlist existing licensed therapies that could be used in later-stage clinical trials in MS. METHODS A list of therapies with anti-EBV effects was developed from existing reviews. A detailed review of pre-clinical and clinical data was undertaken to assess these candidates for potential usefulness and possible harm in MS. A 'drug-CV' and a plain language version focusing on tolerability aspects was created for each candidate. We used validated criteria to score each candidate with an international scientific panel and people living with MS. RESULTS A preliminary list of 11 drug candidates was generated. Following review by the scientific and lived experience expert panels, six yielded the same highest score. A further review by the expert panel shortlisted four drugs (famciclovir, tenofovir alafenamide, maribavir and spironolactone) deemed to have the best balance of efficacy, safety and tolerability for use in MS. CONCLUSIONS Scientific and lived experience expert panel review of anti-EBV therapies selected four candidates with evidence for efficacy against EBV and acceptable safety and tolerability for potential use in phase III clinical trials for MS.
Collapse
Affiliation(s)
- Vivien Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Fiona C McKay
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia.
| | - David C Tscharke
- Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Corey Smith
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Rajiv Khanna
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Jeannette Lechner-Scott
- University of Newcastle, School of Medicine and Public Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - William D Rawlinson
- Serology and Virology Division (SAViD), Microbiology NSW Health Pathology, Randwick, NSW, 2031, Australia
| | - Andrew R Lloyd
- The Kirby Institute, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Julia M Morahan
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia
| | - Lawrence Steinman
- Departments of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 9305-5101, USA
| | - Gavin Giovannoni
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Natalia Drosu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Andrew Potter
- Multiple Sclerosis Australia, Suite 3.01 18 Flour Mill Way, Summer Hill, NSW, 2130, Australia
| | - Nigel Caswell
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Lynne Smith
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Erin C Brady
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Bruce Frost
- National Advocates, Multiple Sclerosis Australia, Summer Hill, NSW, 2130, Australia
| | - Suzanne Hodgkinson
- School of Clinical Medicine, University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Todd A Hardy
- Department of Neurology, Concord Hospital, University of Sydney, Concord West, NSW, 2039, Australia
| | - Simon A Broadley
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD, 4222, Australia
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| |
Collapse
|
6
|
Lanz TV, Robinson WH. Connecting the dots: Presentation of EBV antigens on HLA class II risk alleles connects the two main risk factors of multiple sclerosis. Proc Natl Acad Sci U S A 2024; 121:e2420070121. [PMID: 39585999 PMCID: PMC11626193 DOI: 10.1073/pnas.2420070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Affiliation(s)
- Tobias V. Lanz
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA94305
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA94305
| | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA94305
- Geriatric Research Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA94304
| |
Collapse
|
7
|
Robinson WH, Younis S, Love ZZ, Steinman L, Lanz TV. Epstein-Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol 2024; 20:729-740. [PMID: 39390260 DOI: 10.1038/s41584-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
The Epstein-Barr virus (EBV) is epidemiologically associated with development of autoimmune diseases, including systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. Although there is well-established evidence for this association, the underlying mechanistic basis remains incompletely defined. In this Review, we discuss the role of EBV infection as a potentiator of autoimmune rheumatic diseases. We review the EBV life cycle, viral transcription programmes, serological profiles and lytic reactivation. We discuss the epidemiological and mechanistic associations of EBV with systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. We describe the potential mechanisms by which EBV might promote autoimmunity, including EBV nuclear antigen 1-mediated molecular mimicry of human autoantigens; EBV-mediated B cell reprogramming, including EBV nuclear antigen 2-mediated dysregulation of autoimmune susceptibility genes; EBV and host genetic factors, including the potential for autoimmunity-promoting strains of EBV; EBV immune evasion and insufficient host responses to control infection; lytic reactivation; and other mechanisms. Finally, we discuss the therapeutic implications and potential therapeutic approaches to targeting EBV for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Shady Younis
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Zelda Z Love
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Paediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tobias V Lanz
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Schreiner TG, Romanescu C, Schreiner OD, Nhambasora F. New insights on the link between Epstein‑Barr virus infection and cognitive decline in neurodegenerative diseases (Review). Exp Ther Med 2024; 28:413. [PMID: 39268367 PMCID: PMC11391170 DOI: 10.3892/etm.2024.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Cognitive decline is a frequent complaint in healthy controls and neurological patients, regardless of the underlying pathology. Whilst cognitive impairment can be easily diagnosed in the more advanced stages of neurodegenerative diseases, early detection can be challenging. This is mainly the consequence of the incomplete understanding of the underlying pathophysiological mechanisms. In addition, currently available neurological treatments do not specifically target cognitive decline, since other motor and non-motor symptoms, such as bradykinesia, tremor, autonomic disturbances and depression, are of greater relevance from a therapeutic perspective. In this context, prospective studies must address a number of issues, including the risk factors associated with cognitive deficits in neurodegenerative diseases. The present review aims to offer a novel perspective on the association between Epstein-Barr virus infection and cognitive decline found in patients with neurodegenerative disorders. Specifically, relevant epidemiological studies and clinical trials explaining this connection were reviewed, focusing on the most frequent neurodegenerative disorders. They are namely Alzheimer's disease, Parkinson's disease and multiple sclerosis. Despite their limitations, possible underlying pathophysiological mechanisms that explain the impact of Epstein-Barr virus infection on cognitive decline are expected to offer novel study directions on this clinically relevant topic.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy 'Gr. T. Popa', 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Constantin Romanescu
- Clinical Section IV, 'St. Parascheva' Infectious Disease Hospital, 700116 Iasi, Romania
| | - Oliver Daniel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy 'Gr. T. Popa', 700115 Iasi, Romania
- Department of Medical Oncology, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Farai Nhambasora
- Department of Obstetrics and Gynecology, St. Luke's Hospital, R95 FY71 Kilkenny, Republic of Ireland
| |
Collapse
|
9
|
Huang J, Tengvall K, Lima IB, Hedström AK, Butt J, Brenner N, Gyllenberg A, Stridh P, Khademi M, Ernberg I, Al Nimer F, Manouchehrinia A, Hillert J, Alfredsson L, Andersen O, Sundström P, Waterboer T, Olsson T, Kockum I. Genetics of immune response to Epstein-Barr virus: prospects for multiple sclerosis pathogenesis. Brain 2024; 147:3573-3582. [PMID: 38630618 PMCID: PMC11449136 DOI: 10.1093/brain/awae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Epstein-Barr virus (EBV) infection has been advocated as a prerequisite for developing multiple sclerosis (MS) and possibly the propagation of the disease. However, the precise mechanisms for such influences are still unclear. A large-scale study investigating the host genetics of EBV serology and related clinical manifestations, such as infectious mononucleosis (IM), may help us better understand the role of EBV in MS pathogenesis. This study evaluates the host genetic factors that influence serological response against EBV and history of IM and cross-evaluates them with MS risk and genetic susceptibility in the Swedish population. Plasma IgG antibody levels against EBV nuclear antigen-1 [EBNA-1, truncated = amino acids (aa) (325-641), peptide = aa(385-420)] and viral capsid antigen p18 (VCAp18) were measured using bead-based multiplex serology for 8744 MS cases and 7229 population-matched control subjects. The MS risk association for high/low EBV antibody levels and history of IM was compared to relevant clinical measures along with sex, age at sampling, and associated HLA allele variants. Genome-wide and HLA allele association analyses were also performed to identify genetic risk factors for EBV antibody response and IM history. Higher antibody levels against VCAp18 [odds ratio (OR) = 1.74, 95% confidence interval (CI) = 1.60-1.88] and EBNA-1, particularly the peptide (OR = 3.13, 95% CI = 2.93-3.35), were associated with an increased risk for MS. The risk increased with higher anti-EBNA-1 IgG levels up to 12× the reference risk. We also identified several independent HLA haplotypes associated with EBV serology overlapping with known MS risk alleles (e.g. DRB1*15:01). Although there were several candidates, no variants outside the HLA region reached genome-wide significance. Cumulative HLA risk for anti-EBNA-1 IgG levels, particularly the peptide fragment, was strongly associated with MS. In contrast, the genetic risk for high anti-VCAp18 IgG levels was not as strongly associated with MS risk. IM history was not associated with class II HLA genes but negatively associated with A*02:01, which is protective against MS. Our findings emphasize that the risk association between anti-EBNA-1 IgG levels and MS may be partly due to overlapping HLA associations. Additionally, the increasing MS risk with increasing anti-EBNA-1 levels would be consistent with a pathogenic role of the EBNA-1 immune response, perhaps through molecular mimicry. Given that high anti-EBNA-1 antibodies may reflect a poorly controlled T-cell defence against the virus, our findings would be consistent with DRB1*15:01 being a poor class II antigen in the immune defence against EBV. Last, the difference in genetic control of IM supports the independent roles of EBNA-1 and IM in MS susceptibility.
Collapse
Affiliation(s)
- Jesse Huang
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Katarina Tengvall
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE 751 23 Uppsala, Sweden
| | - Izaura Bomfim Lima
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Julia Butt
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), DE-69120 Heidelberg, Germany
| | - Nicole Brenner
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), DE-69120 Heidelberg, Germany
| | - Alexandra Gyllenberg
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ali Manouchehrinia
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, SE-171 77 Stockholm, Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburgh, Sweden
| | - Peter Sundström
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), DE-69120 Heidelberg, Germany
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
10
|
Ebert AC, Harper S, Vestergaard MV, Mitchell W, Jess T, Elmahdi R. Risk of inflammatory bowel disease following hospitalisation with infectious mononucleosis: nationwide cohort study from Denmark. Nat Commun 2024; 15:8383. [PMID: 39333475 PMCID: PMC11437054 DOI: 10.1038/s41467-024-52195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
Infectious mononucleosis (IM) is suspected to be associated with inflammatory bowel disease (IBD) development. Using a Danish nationwide cohort of people developing severe IM and their age-, sex-, and socioeconomic (SES) index-matched counterparts, we investigated the subsequent risk of IBD, Crohn's disease (CD), or ulcerative colitis (UC) development from 1977 to 2021. Among 39,684 severe IM patients we find a sex-, age-, and SES index-adjusted HR for IBD of 1.35 (95% CI: 1.22-1.49). This significantly increased risk was seen for both CD (HR: 1.56; 95% CI: 1.34-1.83) and to a lesser extent UC (HR: 1.23; 95% CI: 1.08-1.40) and remains following negative control matching with a cohort diagnosed with Chlamydia trachomatis infection (HR: 1.39; 95% CI: 1.01-1.91). Those with severe IM at 0-9 years had a particularly increased risk for CD (HR: 1.77; 95% CI: 1.26-2.49). Here we show an increased risk for IBD diagnosis following IM hospitalisation, indicating an association between severe EBV disease and later IBD development. Further exploration of the potential factors contributing to IBD susceptibility following EBV disease is warranted.
Collapse
Affiliation(s)
- Anthony C Ebert
- PREDICT Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Shania Harper
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Marie V Vestergaard
- PREDICT Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Wayne Mitchell
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Tine Jess
- PREDICT Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Rahma Elmahdi
- PREDICT Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark.
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.
| |
Collapse
|
11
|
Gouider R, Souissi A, Mrabet S, Gharbi A, Abida Y, Kacem I, Gargouri-Berrechid A. Environmental factors related to multiple sclerosis progression. J Neurol Sci 2024; 464:123161. [PMID: 39137699 DOI: 10.1016/j.jns.2024.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Multiple Sclerosis (MS) is a complex neurological disease which prevalence is increasing worldwide. The impact of environmental factors on MS susceptibility has already been defined and highlighted in many previous reports, particularly vitamin D or ultraviolet B light exposure, Epstein-Barr virus (EBV) infection, obesity, and smoking. There is increasing evidence that environmental and lifestyle factors are not only important in triggering MS but are also implicated in MS progression. Low sun exposure and vitamin D deficiency exhibit a strong relationship with disease progression in both animal and human studies. The gestational period seems also to impact long-term disease progression as January's babies had a higher risk of requiring walking assistance than those born in other months. The implication of EBV in neurodegeneration and MS progression was also suggested even though its specific targets and mechanisms are still unclear. Cigarette smoking is correlated with faster clinical progression. The association of obesity and smoking seems to be associated with a faster progression and an increased rate of brain atrophy. Although the effect of air pollution on MS pathogenesis remains not fully understood, exposure to polluted air can stimulate several mechanisms that might contribute to MS severity. People with MS with active disease have an altered microbiota compared to patients in the remission phase. Cardiovascular comorbidities, epilepsy, and depression are also associated with a more severe disability accrual. Knowledge about MS modifiable risk factors of progression need to be incorporated into everyday clinical practice in order to ameliorate disease outcomes.
Collapse
Affiliation(s)
- Riadh Gouider
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia.
| | - Amira Souissi
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| | - Saloua Mrabet
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| | - Alya Gharbi
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| | - Youssef Abida
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| | - Imen Kacem
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| | - Amina Gargouri-Berrechid
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
| |
Collapse
|
12
|
Dinakis E, O'Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf) 2024; 240:e14193. [PMID: 38899764 DOI: 10.1111/apha.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The gut-immune axis is a relatively novel phenomenon that provides mechanistic links between the gut microbiome and the immune system. A growing body of evidence supports it is key in how the gut microbiome contributes to several diseases, including hypertension and cardiovascular diseases (CVDs). Evidence over the past decade supports a causal link of the gut microbiome in hypertension and its complications, including myocardial infarction, atherosclerosis, heart failure, and stroke. Perturbations in gut homeostasis such as dysbiosis (i.e., alterations in gut microbial composition) may trigger immune responses that lead to chronic low-grade inflammation and, ultimately, the development and progression of these conditions. This is unsurprising, as the gut harbors one of the largest numbers of immune cells in the body, yet is a phenomenon not entirely understood in the context of cardiometabolic disorders. In this review, we discuss the role of the gut microbiome, the immune system, and inflammation in the context of hypertension and CVD, and consolidate current evidence of this complex interplay, whilst highlighting gaps in the literature. We focus on diet as one of the major modulators of the gut microbiota, and explain key microbial-derived metabolites (e.g., short-chain fatty acids, trimethylamine N-oxide) as potential mediators of the communication between the gut and peripheral organs such as the heart, arteries, kidneys, and the brain via the immune system. Finally, we explore the dual role of both the gut microbiome and the immune system, and how they work together to not only contribute, but also mitigate hypertension and CVD.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Zhao Y, Zhang Q, Zhang B, Dai Y, Gao Y, Li C, Yu Y, Li C. Epstein-Barr Viruses: Their Immune Evasion Strategies and Implications for Autoimmune Diseases. Int J Mol Sci 2024; 25:8160. [PMID: 39125729 PMCID: PMC11311853 DOI: 10.3390/ijms25158160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, is one of the most prevalent and persistent human viruses, infecting up to 90% of the adult population globally. EBV's life cycle includes primary infection, latency, and lytic reactivation, with the virus primarily infecting B cells and epithelial cells. This virus has evolved sophisticated strategies to evade both innate and adaptive immune responses, thereby maintaining a lifelong presence within the host. This persistence is facilitated by the expression of latent genes such as EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), which play crucial roles in viral latency and oncogenesis. In addition to their well-known roles in several types of cancer, including nasopharyngeal carcinoma and B-cell lymphomas, recent studies have identified the pathogenic roles of EBV in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. This review highlights the intricate interactions between EBV and the host immune system, underscoring the need for further research to develop effective therapeutic and preventive strategies against EBV-associated diseases.
Collapse
Affiliation(s)
- Yuehong Zhao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Qi Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Botian Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yihao Dai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yifei Gao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Chenzhong Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
14
|
Abbadessa G, Lepore MT, Bruzzaniti S, Piemonte E, Miele G, Signoriello E, Perna F, De Falco C, Lus G, Matarese G, Bonavita S, Galgani M. Ocrelizumab Alters Cytotoxic Lymphocyte Function While Reducing EBV-Specific CD8 + T-Cell Proliferation in Patients With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200250. [PMID: 38662990 PMCID: PMC11087045 DOI: 10.1212/nxi.0000000000200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND OBJECTIVES The role of B cells in the pathogenic events leading to relapsing multiple sclerosis (R-MS) has only been recently elucidated. A pivotal step in defining this role has been provided by therapeutic efficacy of anti-CD20 monoclonal antibodies. Indeed, treatment with anti-CD20 can also alter number and function of other immune cells not directly expressing CD20 on their cell surface, whose activities can contribute to unknown aspects influencing therapeutic efficacy. We examined the phenotype and function of cytotoxic lymphocytes and Epstein-Barr virus (EBV)-specific immune responses in people with R-MS before and after ocrelizumab treatment. METHODS In this prospective study, we collected blood samples from people with R-MS (n = 41) before and 6 and 12 months after initiating ocrelizumab to assess the immune phenotype and the indirect impact on cytotoxic functions of CD8+ T and NK cells. In addition, we evaluated the specific anti-EBV proliferative responses of both CD8+ T and NK lymphocytes as surrogate markers of anti-EBV activity. RESULTS We observed that while ocrelizumab depleted circulating B cells, it also reduced the expression of activation and migratory markers on both CD8+ T and NK cells as well as their in vitro cytotoxic activity. A comparable pattern in the modulation of immune molecules by ocrelizumab was observed in cytotoxic cells even when patients with R-MS were divided into groups based on their prior disease-modifying treatment. These effects were accompanied by a significant and selective reduction of CD8+ T-cell proliferation in response to EBV antigenic peptides. DISCUSSION Taken together, our findings suggest that ocrelizumab-while depleting B cells-affects the cytotoxic function of CD8+ and NK cells, whose reduced cross-activity against myelin antigens might also contribute to its therapeutic efficacy during MS.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/pharmacology
- Female
- Adult
- Male
- Herpesvirus 4, Human/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Middle Aged
- Immunologic Factors/pharmacology
- Multiple Sclerosis, Relapsing-Remitting/drug therapy
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/blood
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Prospective Studies
- Cell Proliferation/drug effects
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lymphocyte Activation/drug effects
Collapse
Affiliation(s)
- Gianmarco Abbadessa
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| | - Maria Teresa Lepore
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| | - Sara Bruzzaniti
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| | - Erica Piemonte
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| | - Giuseppina Miele
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| | - Elisabetta Signoriello
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| | - Francesco Perna
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| | - Chiara De Falco
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| | - G Lus
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| | - Giuseppe Matarese
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| | - Simona Bonavita
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| | - Mario Galgani
- From the Department of Advanced Medical and Surgical Sciences (G.A., G. Miele, E.S., G.L., S. Bonavita), University of Campania Luigi Vanvitelli; Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G.Salvatore" - Consiglio Nazionale delle Ricerche (M.T.L., S. Bruzzaniti, G. Matarese, M.G.); Department of Molecular Medicine and Medical Biotechnologies (E.P., G. Matarese, M.G.); Department of Clinical Medicine and Surgery (F.P.), University of Naples "Federico II"; and UOC Biochimica Clinica - Ospedali dei Colli (C.D.F.), Naples, Italy
| |
Collapse
|
15
|
Dunlap G, Wagner A, Meednu N, Wang R, Zhang F, Ekabe JC, Jonsson AH, Wei K, Sakaue S, Nathan A, Bykerk VP, Donlin LT, Goodman SM, Firestein GS, Boyle DL, Holers VM, Moreland LW, Tabechian D, Pitzalis C, Filer A, Raychaudhuri S, Brenner MB, Thakar J, McDavid A, Rao DA, Anolik JH. Clonal associations between lymphocyte subsets and functional states in rheumatoid arthritis synovium. Nat Commun 2024; 15:4991. [PMID: 38862501 PMCID: PMC11167034 DOI: 10.1038/s41467-024-49186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving antigen-specific T and B cells. Here, we perform single-cell RNA and repertoire sequencing on paired synovial tissue and blood samples from 12 seropositive RA patients. We identify clonally expanded CD4 + T cells, including CCL5+ cells and T peripheral helper (Tph) cells, which show a prominent transcriptomic signature of recent activation and effector function. CD8 + T cells show higher oligoclonality than CD4 + T cells, with the largest synovial clones enriched in GZMK+ cells. CD8 + T cells with possibly virus-reactive TCRs are distributed across transcriptomic clusters. In the B cell compartment, NR4A1+ activated B cells, and plasma cells are enriched in the synovium and demonstrate substantial clonal expansion. We identify synovial plasma cells that share BCRs with synovial ABC, memory, and activated B cells. Receptor-ligand analysis predicted IFNG and TNFRSF members as mediators of synovial Tph-B cell interactions. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate the synovium of patients with RA.
Collapse
Affiliation(s)
- Garrett Dunlap
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aaron Wagner
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nida Meednu
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ruoqiao Wang
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Fan Zhang
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jabea Cyril Ekabe
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vivian P Bykerk
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Susan M Goodman
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego;, La Jolla, CA, USA
| | - David L Boyle
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego;, La Jolla, CA, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Larry W Moreland
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Darren Tabechian
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
- Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital, Milan, Italy
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Juilee Thakar
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
16
|
Giovannoni G. Targeting Epstein-Barr virus in multiple sclerosis: when and how? Curr Opin Neurol 2024; 37:228-236. [PMID: 38511407 DOI: 10.1097/wco.0000000000001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
PURPOSE OF REVIEW Epidemiological evidence implicates Epstein-Barr virus (EBV) as the cause of multiple sclerosis (MS). However, its biological role in the pathogenesis of MS is uncertain. The article provides an overview of the role of EBV in the pathogenesis of MS and makes a case for targeting EBV as a treatment strategy for MS. RECENT FINDINGS EBV potentially triggers autoimmunity via molecular mimicry or immune dysregulation. Another hypothesis, supported by immunological and virological data, indicates that active EBV infection via latent-lytic infection cycling within the central nervous system or periphery drives MS disease activity. This supports testing small molecule anti-EBV agents targeting both latent and lytic infection, central nervous system-penetrant B-cell therapies and EBV-targeted immunotherapies in MS. Immunotherapies may include EBV-specific cytotoxic or chimeric antigen receptors T-cells, therapeutic EBV vaccines and immune reconstitution therapies to boost endogenous EBV-targeted cytotoxic T-cell responses. SUMMARY EBV is the probable cause of MS and is likely to be driving MS disease activity via latent-lytic infection cycling. There is evidence that all licensed MS disease-modifying therapies target EBV, and there is a compelling case for testing other anti-EBV strategies as potential treatments for MS.
Collapse
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
Thomas OG, Haigh TA, Croom-Carter D, Leese A, Van Wijck Y, Douglas MR, Rickinson A, Brooks JM, Taylor GS. Heightened Epstein-Barr virus immunity and potential cross-reactivities in multiple sclerosis. PLoS Pathog 2024; 20:e1012177. [PMID: 38843296 PMCID: PMC11156336 DOI: 10.1371/journal.ppat.1012177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated. METHODS Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. RESULTS EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. DISCUSSION Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Tracey A. Haigh
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Alison Leese
- School of Biological Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Yolanda Van Wijck
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Michael R. Douglas
- Dudley Group of Hospitals NHS Foundation Trust, Dudley, United Kingdom
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Jill M. Brooks
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
18
|
Soldan SS, Su C, Monaco MC, Yoon L, Kannan T, Zankharia U, Patel RJ, Dheekollu J, Vladimirova O, Dowling JW, Thebault S, Brown N, Clauze A, Andrada F, Feder A, Planet PJ, Kossenkov A, Schäffer DE, Ohayon J, Auslander N, Jacobson S, Lieberman PM. Multiple sclerosis patient-derived spontaneous B cells have distinct EBV and host gene expression profiles in active disease. Nat Microbiol 2024; 9:1540-1554. [PMID: 38806670 PMCID: PMC11900839 DOI: 10.1038/s41564-024-01699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
Epstein-Barr virus (EBV) is an aetiologic risk factor for the development of multiple sclerosis (MS). However, the role of EBV-infected B cells in the immunopathology of MS is not well understood. Here we characterized spontaneous lymphoblastoid cell lines (SLCLs) isolated from MS patients and healthy controls (HC) ex vivo to study EBV and host gene expression in the context of an individual's endogenous EBV. SLCLs derived from MS patient B cells during active disease had higher EBV lytic gene expression than SLCLs from MS patients with stable disease or HCs. Host gene expression analysis revealed activation of pathways associated with hypercytokinemia and interferon signalling in MS SLCLs and upregulation of forkhead box protein 1 (FOXP1), which contributes to EBV lytic gene expression. We demonstrate that antiviral approaches targeting EBV replication decreased cytokine production and autologous CD4+ T cell responses in this ex vivo model. These data suggest that dysregulation of intrinsic B cell control of EBV gene expression drives a pro-inflammatory, pathogenic B cell phenotype that can be attenuated by suppressing EBV lytic gene expression.
Collapse
Affiliation(s)
| | - Chenhe Su
- The Wistar Institute, Philadelphia, PA, USA
| | - Maria Chiara Monaco
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Leena Yoon
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | | | - Jack W Dowling
- The Wistar Institute, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simon Thebault
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Annaliese Clauze
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Frances Andrada
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Andries Feder
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul J Planet
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Joan Ohayon
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | | - Steven Jacobson
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | |
Collapse
|
19
|
Dungan L, Dunne J, Savio M, Kalaszi M, McElheron M, Lynagh Y, O'Driscoll K, Roche C, Qureshi A, Crowley B, Conlon N, Kearney H. Disease-Modifying Treatments for Multiple Sclerosis Affect Measures of Cellular Immune Responses to EBNA-1 Peptides. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200217. [PMID: 38547427 DOI: 10.1212/nxi.0000000000200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/19/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND OBJECTIVES Epstein-Barr virus (EBV) has been strongly implicated in the pathogenesis of multiple sclerosis (MS). Despite this, there are no routinely used tests to measure cellular response to EBV. In this study, we analyzed the cellular response to EBV nuclear antigen-1 (EBNA-1) in people with MS (pwMS) using a whole blood assay. METHODS This cross-sectional study took place in a dedicated MS clinic in a university hospital. We recruited healthy controls, people with epilepsy (PWE), and pwMS taking a range of disease-modifying treatments (DMTs) including natalizumab, anti-CD20 monoclonal antibodies (mAbs), dimethyl fumarate (DMF), and also treatment naïve. Whole blood samples were stimulated with commercially available PepTivator EBNA1 peptides and a control virus-cytomegalovirus (CMV) peptide. We recorded the cellular response to stimulation with both interferon gamma (IFN-γ) and interleukin-2 (IL-2). We also compared the cellular responses to EBNA1 with IgG responses to EBNA1, viral capsid antigen (VCA), and EBV viral load. RESULTS We recruited 86 pwMS, with relapsing remitting MS, in this group, and we observed a higher level of cellular response recorded with IFN-γ (0.79 IU/mL ± 1.36) vs healthy controls (0.29 IU/mL ± 0.90, p = 0.0048) and PWE (0.17 IU/mL ± 0.33, p = 0.0088). Treatment with either anti-CD20 mAbs (0.28 IU/mL ± 0.57) or DMF (0.07 IU/mL ± 0.15) resulted in a cellular response equivalent to control levels or in PWE (p = 0.26). The results of recording IL-2 response were concordant with IFN-γ: with suppression also seen with anti-CD20 mAbs and DMF. By contrast, we did not record any differential effect of DMTs on the levels of IgG to either EBNA-1 or VCA. Nor did we observe differences in cellular response to cytomegalovirus between groups. DISCUSSION This study demonstrates how testing and recording the cellular response to EBNA-1 in pwMS may be beneficial. EBNA-1 stimulation of whole blood samples produced higher levels of IFN-γ and IL-2 in pwMS compared with controls and PWE. In addition, we show a differential effect of currently available DMTs on this response. The functional assay deployed uses whole blood samples with minimal preprocessing suggesting that employment as a treatment response measure in clinical trials targeting EBV may be possible.
Collapse
Affiliation(s)
- Lara Dungan
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Jean Dunne
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Michael Savio
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Marianna Kalaszi
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Matt McElheron
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Yvonne Lynagh
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Kate O'Driscoll
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Carmel Roche
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Ammara Qureshi
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Brendan Crowley
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Niall Conlon
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Hugh Kearney
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
20
|
Serafini B, Benincasa L, Rosicarelli B, Aloisi F. EBV infected cells in the multiple sclerosis brain express PD-L1: How the virus and its niche may escape immune surveillance. J Neuroimmunol 2024; 389:578314. [PMID: 38422689 DOI: 10.1016/j.jneuroim.2024.578314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
The presence of EBV infected B cells in postmortem multiple sclerosis (MS) brain tissue suggests immune evasion strategies. Using immunohistochemical techniques we analysed the expression of the immune checkpoint molecule PD-L1 and its receptor PD-1 in MS brains containing B cell-enriched perivascular infiltrates and meningeal follicles, a major EBV reservoir. PD-1 and PD-L1 immunoreactivities were restricted to CNS-infiltrating immune cells. PD-L1 was expressed on B cells, including EBV infected B cells, while PD-1 was expressed on many CD8+ T cells, including EBV-specific CD8+ T-cells, and fewer CD4+ T cells. PD-L1+ cells and EBV infected cells were in close contact with PD-1+ T cells. PD-L1 expressed by EBV infected B cells could favour local immune evasion leading to EBV persistence and immunopathology in the MS brain.
Collapse
Affiliation(s)
- Barbara Serafini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Lucia Benincasa
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Barbara Rosicarelli
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
21
|
Gil A, Hoag GE, Salerno JP, Hornig M, Klimas N, Selin LK. Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/anti-pathogen agent in a retrospective case series. Brain Behav Immun Health 2024; 36:100720. [PMID: 38327880 PMCID: PMC10847863 DOI: 10.1016/j.bbih.2023.100720] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Background Patients with post-acute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (PASC, i.e., Long COVID) have a symptom complex highly analogous to many features of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggesting they may share some aspects of pathogenesis in these similar disorders. ME/CFS is a complex disease affecting numerous organ systems and biological processes and is often preceded by an infection-like episode. It is postulated that the chronic manifestations of illness may result from an altered host response to infection or inability to resolve inflammation, as is being reported in Long COVID. The immunopathogenesis of both disorders is still poorly understood. Here, we show data that suggest Long COVID and ME/CFS may be due to an aberrant response to an immunological trigger-like infection, resulting in a dysregulated immune system with CD8 T-cell dysfunction reminiscent of some aspects of T-cell clonal exhaustion, a phenomenon associated with oxidative stress. As there is an urgent need for diagnostic tools and treatment strategies for these two related disabling disorders, here, in a retrospective case series, we have also identified a potential nebulized antioxidant/anti-pathogen treatment that has evidence of a good safety profile. This nebulized agent is comprised of five ingredients previously reported individually to relieve oxidative stress, attenuate NF-κB signaling, and/or to act directly to inhibit pathogens, including viruses. Administration of this treatment by nebulizer results in rapid access of small doses of well-studied antioxidants and agents with anti-pathogen potential to the lungs; components of this nebulized agent are also likely to be distributed systemically, with potential to enter the central nervous system. Methods and Findings: We conducted an analysis of CD8 T-cell function and severity of symptoms by self-report questionnaires in ME/CFS, Long COVID and healthy controls. We developed a CD8 T-cell functional assay, assessing CD8 T-cell dysfunction by intracellular cytokine staining (ICS) in a group of ME/CFS (n = 12) and Long COVID patients (n = 8), comparing to healthy controls (HC) with similar age and sex (n = 10). Magnet-enriched fresh CD8 T-cells in both patient groups had a significantly diminished capacity to produce both cytokines, IFNγ or TNFα, after PMA stimulation when compared to HC. The symptom severity questionnaire showed similar symptom profiles for the two disorders. Fortuitously, through a retrospective case series, we were able to examine the ICS and questionnaire data of 4 ME/CFS and 4 Long COVID patients in conjunction with their treatment (3-15 months). In parallel with the treatment pursued electively by participants in this retrospective case series, there was an increase in CD8 T-cell IFNγ and TNFα production and a decrease in overall self-reported symptom severity score by 54%. No serious treatment-associated side effects or laboratory anomalies were noted in these patients. Conclusions Here, in this small study, we present two observations that appear potentially fundamental to the pathogenesis and treatment of Long COVID and ME/CFS. The first is that both disorders appear to be characterized by dysfunctional CD8 T-cells with severe deficiencies in their abilities to produce IFNγ and TNFα. The second is that in a small retrospective Long COVID and ME/CFS case series, this immune dysfunction and patient health improved in parallel with treatment with an immunomodulatory, antioxidant pharmacological treatment with anticipated anti-pathogen activity. This work provides evidence of the potential utility of a biomarker, CD8 T-cell dysfunction, and suggests the potential for benefit from a new nebulized antioxidant/anti-pathogen treatment. These immune biomarker data may help build capacity for improved diagnosis and tracking of treatment outcomes during clinical trials for both Long COVID and ME/CFS while providing clues to new treatment avenues that suggest potential efficacy for both conditions.
Collapse
Affiliation(s)
- Anna Gil
- University of Massachusetts Chan Medical School, Department of Pathology, Worcester, MA, USA
| | | | - John P. Salerno
- Inspiritol, Inc., Fairfield, CT, USA
- The Salerno Center for Complementary Medicine, New York, USA
| | - Mady Hornig
- Columbia University Mailman School of Public Health, New York, USA
| | - Nancy Klimas
- Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Liisa K. Selin
- University of Massachusetts Chan Medical School, Department of Pathology, Worcester, MA, USA
| |
Collapse
|
22
|
Mohammadzamani M, Kazemzadeh K, Chand S, Thapa S, Ebrahimi N, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. Insights into the interplay between Epstein-Barr virus (EBV) and multiple sclerosis (MS): A state-of-the-art review and implications for vaccine development. Health Sci Rep 2024; 7:e1898. [PMID: 38361801 PMCID: PMC10867693 DOI: 10.1002/hsr2.1898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Background and Aims Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). MS results from an inflammatory process leading to the loss of neural tissue and increased disability over time. The role of Epstein Barr Virus (EBV), as one of the most common global viruses, in MS development has been the subject of several studies. However, many related questions are still unanswered. This study aimed to review the connection between MS and EBV and provide a quick outline of MS prevention using EBV vaccination. Methods For this narrative review, an extensive literature search using specific terms was conducted across online databases, including PubMed/Medline, Scopus, Web of Science, and Google Scholar, to identify pertinent studies. Results Several studies proved that almost 100% of people with MS showed a history of EBV infection, and there was an association between high titers of EBV antibodies and an increased risk of MS development. Various hypotheses are proposed for how EBV may contribute to MS directly and indirectly: (1) Molecular Mimicry, (2) Mistaken Self, (3) Bystander Damage, and (4) Autoreactive B cells infected with EBV. Conclusion Given the infectious nature of EBV and its ability to elude the immune system, EBV emerges as a strong candidate for being the underlying cause of MS. The development of an EBV vaccine holds promise for preventing MS; however, overcoming the challenge of creating a safe and efficacious vaccine presents a significant obstacle.
Collapse
Affiliation(s)
- Mahtab Mohammadzamani
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Kimia Kazemzadeh
- Students' Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Swati Chand
- Westchester Medical CenterNew York Medical CollegeValhallaNew YorkUSA
| | - Sangharsha Thapa
- Department of Neurology, Westchester Medical CenterNew York Medical CollegeValhallaUSA
| | - Narges Ebrahimi
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | | | - Vahid Shaygannejad
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
23
|
Giovannoni G, Hawkes CH, Lechner-Scott J, Levy M, Yeh EA. Emboldened or not: The potential fall-out of a failed anti-EBV trial in multiple sclerosis. Mult Scler Relat Disord 2024; 81:105364. [PMID: 38104476 DOI: 10.1016/j.msard.2023.105364] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Christopher H Hawkes
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Michael Levy
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - E Ann Yeh
- Department of Paediatrics (Neurology), Hospital for Sick Children, Division of Neuroscience and Mental Health, The Hospital for Sick Children Research Institute University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Zhang J, Sommermann T, Li X, Gieselmann L, de la Rosa K, Stecklum M, Klein F, Kocks C, Rajewsky K. LMP1 and EBNA2 constitute a minimal set of EBV genes for transformation of human B cells. Front Immunol 2023; 14:1331730. [PMID: 38169736 PMCID: PMC10758421 DOI: 10.3389/fimmu.2023.1331730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Epstein-Barr virus (EBV) infection in humans is associated with a wide range of diseases including malignancies of different origins, most prominently B cells. Several EBV latent genes are thought to act together in B cell immortalization, but a minimal set of EBV genes sufficient for transformation remains to be identified. Methods Here, we addressed this question by transducing human peripheral B cells from EBV-negative donors with retrovirus expressing the latent EBV genes encoding Latent Membrane Protein (LMP) 1 and 2A and Epstein-Barr Nuclear Antigen (EBNA) 2. Results LMP1 together with EBNA2, but not LMP1 alone or in combination with LMP2A was able to transform human primary B cells. LMP1/EBNA2-immortalized cell lines shared surface markers with EBV-transformed lymphoblastoid cell lines (LCLs). They showed sustained growth for more than 60 days, albeit at a lower growth rate than EBV-transformed LCLs. LMP1/EBNA2-immortalized cell lines generated tumors when transplanted subcutaneously into severely immunodeficient NOG mice. Conclusion Our results identify a minimal set of EBV proteins sufficient for B cell transformation.
Collapse
Affiliation(s)
- Jingwei Zhang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Thomas Sommermann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Xun Li
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Kathrin de la Rosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Mechanisms and Human Antibodies, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Center of Biological Design, Berlin, Germany
| | - Maria Stecklum
- Experimental Pharmacology and Oncology (EPO) Berlin-Buch GmbH, Berlin, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christine Kocks
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| |
Collapse
|
25
|
Dabbaghi R, Safaralizadeh R, Rahmani S, Barpour N, Hosseinpourfeizi M, Rajabi A, Baradaran B. The effect of glatiramer acetate, IFNβ-1a, fingolimod, and dimethyl fumarate on the expression of T-bet, IFN-γ, and MEG3 in PBMC of RRMS patients. BMC Res Notes 2023; 16:273. [PMID: 37845751 PMCID: PMC10577903 DOI: 10.1186/s13104-023-06556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is a progressing neurodegenerative disease marked by chronic central nervous system inflammation and degeneration.This study investigates gene expression profiles of T-box transcription factor TBX21 (T-bet), interferon-gamma (IFN-γ), and long non-coding RNA MEG3 in peripheral blood mononuclear cells (PBMCs) from treatment-naïve Relapsing-Remitting Multiple Sclerosis patients (RRMS), healthy controls, and RRMS patients on different Disease Modifying Therapies (DMTs). The aim is to understand the role of T-bet, IFN-γ, and MEG3 in MS pathogenesis and their potential as diagnostic and therapeutic targets. RESULTS Elevated T-bet expression is observed in treatment-naïve RRMS patients compared to healthy individuals. RRMS patients treated with Interferon beta-1alpha (IFNβ-1a) and fingolimod exhibit downregulated T-bet and MEG3 expression levels, respectively, with more pronounced effects in females. Healthy individuals show a moderate positive correlation between T-bet and MEG3 and between IFN-γ and T-bet. In RRMS patients treated with Glatiramer Acetate (GA), a strong positive correlation is observed between MEG3 and IFN-γ. Remarkably, RRMS patients treated with Dimethyl Fumarate (DMF) exhibit a significant positive correlation between T-bet and MEG3. These findings underscore the diagnostic potential of T-bet in RRMS, warranting further exploration of MEG3, T-bet, and IFN-γ interplay in RRMS patients.
Collapse
Affiliation(s)
- Rozhin Dabbaghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Shima Rahmani
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nesa Barpour
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Ali Rajabi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Massey J, Artuz C, Dyer Z, Jackson K, Khoo M, Visweswaran M, Withers B, Moore J, Ma D, Sutton I. Diversification and expansion of the EBV-reactive cytotoxic T lymphocyte repertoire following autologous haematopoietic stem cell transplant for multiple sclerosis. Clin Immunol 2023; 254:109709. [PMID: 37495004 DOI: 10.1016/j.clim.2023.109709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Both genetic susceptibility and environmental exposures are thought to be involved in multiple sclerosis (MS) pathogenesis. Of all viruses potentially relevant to MS aetiology, Epstein-Barr virus (EBV) is the best-studied. EBV is a B cell lymphotropic virus which is able to evade the immune system by establishing latent infection in memory B cells, and EBV reactivation is restricted by CD8 cytotoxic T cell (CTL) responses in immune competent individuals. Autologous haematopoietic stem cell transplantation (AHSCT) is considered to be the most effective therapy in the treatment of relapsing MS even though chemotherapy-induced lymphopenia can associate with the re-emergence of latent viruses. Despite the increasing interest in EBV and MS pathogenesis the relationship between AHSCT, EBV and viral immunity in people with MS has not been investigated to date. This study analysed immune responses to EBV in a well characterised cohort of 13 individuals with MS by utilising pre-AHSCT, and 6-, 12- and 24-month post AHSCT bio-banked peripheral blood mononuclear cells and plasma samples. It is demonstrated that the infused stem cell product contains latently EBV-infected memory B cells, and that EBV viremia occurs in the immune-compromised recipient post-transplant. High throughput TCR analysis detected expansion and diversification of the CD8 CTL responses reactive with EBV lytic and latent antigens from 6 to 24 months following AHSCT. Increased levels of latent EBV infection found within the B cell pool following treatment, as measured by EBV genomic detection, did not associate with disease relapse. This is the first study of EBV immunity following application of AHSCT in the treatment of MS and not only raises important questions about the role of EBV infection in MS pathogenesis, but is of clinical importance given the expanding clinical trials of adoptive EBV-specific CTLs in MS.
Collapse
Affiliation(s)
- Jennifer Massey
- Department of Neurology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia.
| | - Crisbel Artuz
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Zoe Dyer
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia
| | - Katherine Jackson
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Melissa Khoo
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Malini Visweswaran
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Barbara Withers
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia; Department of Haematology, St Vincent's Hospital; Darlinghurst, NSW 2010, Australia
| | - John Moore
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia; Department of Haematology, St Vincent's Hospital; Darlinghurst, NSW 2010, Australia
| | - David Ma
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia; Department of Haematology, St Vincent's Hospital; Darlinghurst, NSW 2010, Australia
| | - Ian Sutton
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia; Department of Neurology, St Vincent's Clinic; Darlinghurst, NSW 2010, Australia
| |
Collapse
|
27
|
Yang L, Pu J, Cai F, Zhang Y, Gao R, Zhuang S, Liang Y, Wu Z, Pan S, Song J, Han F, Tang J, Wang X. Chronic Epstein-Barr virus infection: A potential junction between primary Sjögren's syndrome and lymphoma. Cytokine 2023; 168:156227. [PMID: 37244248 DOI: 10.1016/j.cyto.2023.156227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that targets exocrine glands, leading to exocrine dysfunction. Due to its propensity to infect epithelial and B cells, Epstein-Barr virus (EBV) is hypothesized to be related with pSS. Through molecular mimicry, the synthesis of specific antigens, and the release of inflammatory cytokines, EBV contributes to the development of pSS. Lymphoma is the most lethal outcome of EBV infection and the development of pSS. As a population-wide virus, EBV has had a significant role in the development of lymphoma in people with pSS. In the review, we will discuss the possible causes of the disease.
Collapse
Affiliation(s)
- Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Feiyang Cai
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada; Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shuqi Zhuang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
28
|
Hogeboom C. Does multiple sclerosis have a zoonotic origin? Correlations with lymphocytic choriomeningitis virus infection. Front Immunol 2023; 14:1217176. [PMID: 37398653 PMCID: PMC10313729 DOI: 10.3389/fimmu.2023.1217176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
|
29
|
Habibi MA, Nezhad Shamohammadi F, Rajaei T, Namdari H, Pashaei MR, Farajifard H, Ahmadpour S. Immunopathogenesis of viral infections in neurological autoimmune disease. BMC Neurol 2023; 23:201. [PMID: 37221459 DOI: 10.1186/s12883-023-03239-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Autoimmune diseases develop due to self-tolerance failure in recognizing self and non-self-antigens. Several factors play a role in inducing autoimmunity, including genetic and environmental elements. Several studies demonstrated the causative role of viruses; however, some studies showed the preventive effect of viruses in the development of autoimmunity. Neurological autoimmune diseases are classified based on the targets of autoantibodies, which target intracellular or extracellular antigens rather than neurons. Several theories have been hypothesized to explain the role of viruses in the pathogenesis of neuroinflammation and autoimmune diseases. This study reviewed the current data on the immunopathogenesis of viruses in autoimmunity of the nervous system.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Multiple Sclerosis Research Center, Neuroscience Institut, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute , Tehran University of Medical Sciences, Tehran, Iran
| | | | - Taraneh Rajaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Science, Urmia, Iran
| | - Hamid Farajifard
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute , Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
30
|
Debuysschere C, Nekoua MP, Hober D. Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis. Microorganisms 2023; 11:1262. [PMID: 37317236 DOI: 10.3390/microorganisms11051262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Viral infections have been suspected of being involved in the pathogenesis of certain autoimmune diseases for many years. Epstein-Barr virus (EBV), a DNA virus belonging to the Herpesviridae family, is thought to be associated with the onset and/or the progression of multiple sclerosis (MS), systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and type 1 diabetes. The lifecycle of EBV consists of lytic cycles and latency programmes (0, I, II and III) occurring in infected B-cells. During this lifecycle, viral proteins and miRNAs are produced. This review provides an overview of the detection of EBV infection, focusing on markers of latency and lytic phases in MS. In MS patients, the presence of latency proteins and antibodies has been associated with lesions and dysfunctions of the central nervous system (CNS). In addition, miRNAs, expressed during lytic and latency phases, may be detected in the CNS of MS patients. Lytic reactivations of EBV can occur in the CNS of patients as well, with the presence of lytic proteins and T-cells reacting to this protein in the CNS of MS patients. In conclusion, markers of EBV infection can be found in MS patients, which argues in favour of a relationship between EBV and MS.
Collapse
Affiliation(s)
- Cyril Debuysschere
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
31
|
Ortega-Hernandez OD, Martínez-Cáceres EM, Presas-Rodríguez S, Ramo-Tello C. Epstein-Barr Virus and Multiple Sclerosis: A Convoluted Interaction and the Opportunity to Unravel Predictive Biomarkers. Int J Mol Sci 2023; 24:ijms24087407. [PMID: 37108566 PMCID: PMC10138841 DOI: 10.3390/ijms24087407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Since the early 1980s, Epstein-Barr virus (EBV) infection has been described as one of the main risk factors for developing multiple sclerosis (MS), and recently, new epidemiological evidence has reinforced this premise. EBV seroconversion precedes almost 99% of the new cases of MS and likely predates the first clinical symptoms. The molecular mechanisms of this association are complex and may involve different immunological routes, perhaps all running in parallel (i.e., molecular mimicry, the bystander damage theory, abnormal cytokine networks, and coinfection of EBV with retroviruses, among others). However, despite the large amount of evidence available on these topics, the ultimate role of EBV in the pathogenesis of MS is not fully understood. For instance, it is unclear why after EBV infection some individuals develop MS while others evolve to lymphoproliferative disorders or systemic autoimmune diseases. In this regard, recent studies suggest that the virus may exert epigenetic control over MS susceptibility genes by means of specific virulence factors. Such genetic manipulation has been described in virally-infected memory B cells from patients with MS and are thought to be the main source of autoreactive immune responses. Yet, the role of EBV infection in the natural history of MS and in the initiation of neurodegeneration is even less clear. In this narrative review, we will discuss the available evidence on these topics and the possibility of harnessing such immunological alterations to uncover predictive biomarkers for the onset of MS and perhaps facilitate prognostication of the clinical course.
Collapse
Affiliation(s)
- Oscar-Danilo Ortega-Hernandez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Eva M Martínez-Cáceres
- Department of Immunology, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Silvia Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| |
Collapse
|
32
|
Rousseau BA, Bhaduri-McIntosh S. Inflammation and Epstein-Barr Virus at the Crossroads of Multiple Sclerosis and Post-Acute Sequelae of COVID-19 Infection. Viruses 2023; 15:949. [PMID: 37112929 PMCID: PMC10141000 DOI: 10.3390/v15040949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Recent studies have strengthened the evidence for Epstein-Barr Virus (EBV) as an important contributing factor in the development of multiple sclerosis (MS). Chronic inflammation is a key feature of MS. EBV+ B cells can express cytokines and exosomes that promote inflammation, and EBV is known to be reactivated through the upregulation of cellular inflammasomes. Inflammation is a possible cause of the breakdown of the blood-brain barrier (BBB), which allows the infiltration of lymphocytes into the central nervous system. Once resident, EBV+ or EBV-specific B cells could both plausibly exacerbate MS plaques through continued inflammatory processes, EBV reactivation, T cell exhaustion, and/or molecular mimicry. Another virus, SARS-CoV-2, the cause of COVID-19, is known to elicit a strong inflammatory response in infected and immune cells. COVID-19 is also associated with EBV reactivation, particularly in severely ill patients. Following viral clearance, continued inflammation may be a contributor to post-acute sequelae of COVID-19 infection (PASC). Evidence of aberrant cytokine activation in patients with PASC supports this hypothesis. If unaddressed, long-term inflammation could put patients at risk for reactivation of EBV. Determining mechanisms by which viruses can cause inflammation and finding treatments for reducing that inflammation may help reduce the disease burden for patients suffering from PASC, MS, and EBV diseases.
Collapse
Affiliation(s)
- Beth A. Rousseau
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
33
|
Aloisi F, Giovannoni G, Salvetti M. Epstein-Barr virus as a cause of multiple sclerosis: opportunities for prevention and therapy. Lancet Neurol 2023; 22:338-349. [PMID: 36764322 DOI: 10.1016/s1474-4422(22)00471-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 02/10/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the CNS that results from the interplay between heritable and environmental factors. Mounting evidence from different fields of research supports the pivotal role of the Epstein-Barr virus (EBV) in the development of multiple sclerosis. However, translating this knowledge into clinically actionable information requires a better understanding of the mechanisms linking EBV to pathophysiology. Ongoing research is trying to clarify whether EBV causes neuroinflammation via autoimmunity or antiviral immunity, and if the interaction of EBV with genetic susceptibility to multiple sclerosis can explain why a ubiquitous virus promotes immune dysfunction in susceptible individuals. If EBV also has a role in driving disease activity, the characterisation of this role will help diagnosis, prognosis, and treatment in people with multiple sclerosis. Ongoing clinical trials targeting EBV and new anti-EBV vaccines provide hope for future treatments and preventive interventions.
Collapse
Affiliation(s)
- Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine and Blizard Institute, Queen Mary University, London, UK
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
34
|
Dunlap G, Wagner A, Meednu N, Zhang F, Jonsson AH, Wei K, Sakaue S, Nathan A, Bykerk VP, Donlin LT, Goodman SM, Firestein GS, Boyle DL, Holers VM, Moreland LW, Tabechian D, Pitzalis C, Filer A, Raychaudhuri S, Brenner MB, McDavid A, Rao DA, Anolik JH. Clonal associations of lymphocyte subsets and functional states revealed by single cell antigen receptor profiling of T and B cells in rheumatoid arthritis synovium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533282. [PMID: 36993527 PMCID: PMC10055242 DOI: 10.1101/2023.03.18.533282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease initiated by antigen-specific T cells and B cells, which promote synovial inflammation through a complex set of interactions with innate immune and stromal cells. To better understand the phenotypes and clonal relationships of synovial T and B cells, we performed single-cell RNA and repertoire sequencing on paired synovial tissue and peripheral blood samples from 12 donors with seropositive RA ranging from early to chronic disease. Paired transcriptomic-repertoire analyses highlighted 3 clonally distinct CD4 T cells populations that were enriched in RA synovium: T peripheral helper (Tph) and T follicular helper (Tfh) cells, CCL5+ T cells, and T regulatory cells (Tregs). Among these cells, Tph cells showed a unique transcriptomic signature of recent T cell receptor (TCR) activation, and clonally expanded Tph cells expressed an elevated transcriptomic effector signature compared to non-expanded Tph cells. CD8 T cells showed higher oligoclonality than CD4 T cells, and the largest CD8 T cell clones in synovium were highly enriched in GZMK+ cells. TCR analyses revealed CD8 T cells with likely viral-reactive TCRs distributed across transcriptomic clusters and definitively identified MAIT cells in synovium, which showed transcriptomic features of TCR activation. Among B cells, non-naive B cells including age-associated B cells (ABC), NR4A1+ activated B cells, and plasma cells, were enriched in synovium and had higher somatic hypermutation rates compared to blood B cells. Synovial B cells demonstrated substantial clonal expansion, with ABC, memory, and activated B cells clonally linked to synovial plasma cells. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate RA synovium.
Collapse
Affiliation(s)
- Garrett Dunlap
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
| | - Aaron Wagner
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry; Rochester, NY, USA
| | - Nida Meednu
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center; Rochester, NY, USA
| | - Fan Zhang
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital; Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine; Aurora, CO, USA
| | - A Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
| | - Saori Sakaue
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital; Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital; Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Vivian P Bykerk
- Hospital for Special Surgery; New York, NY, USA
- Weill Cornell Medicine; New York, NY, USA
| | - Laura T Donlin
- Hospital for Special Surgery; New York, NY, USA
- Weill Cornell Medicine; New York, NY, USA
| | - Susan M Goodman
- Hospital for Special Surgery; New York, NY, USA
- Weill Cornell Medicine; New York, NY, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy, and Immunology, University of California, San Diego; La Jolla, CA, USA
| | - David L Boyle
- Division of Rheumatology, Allergy, and Immunology, University of California, San Diego; La Jolla, CA, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine; Aurora, CO, USA
| | - Larry W Moreland
- Division of Rheumatology, University of Colorado School of Medicine; Aurora, CO, USA
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Darren Tabechian
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center; Rochester, NY, USA
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London; London, UK
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital; Birmingham, UK
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital; Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester; Manchester, UK
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
| | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry; Rochester, NY, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center; Rochester, NY, USA
| |
Collapse
|
35
|
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15:v15030782. [PMID: 36992490 PMCID: PMC10051805 DOI: 10.3390/v15030782] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.
Collapse
Affiliation(s)
- Bhargavi Sundaresan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Fatemeh Shirafkan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kevin Ripperger
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kristin Rattay
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
36
|
Bjornevik K, Münz C, Cohen JI, Ascherio A. Epstein-Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol 2023; 19:160-171. [PMID: 36759741 DOI: 10.1038/s41582-023-00775-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/11/2023]
Abstract
Epidemiological studies have provided compelling evidence that multiple sclerosis (MS) is a rare complication of infection with the Epstein-Barr virus (EBV), a herpesvirus that infects more than 90% of the global population. This link was long suspected because the risk of MS increases markedly after infectious mononucleosis (symptomatic primary EBV infection) and with high titres of antibodies to specific EBV antigens. However, it was not until 2022 that a longitudinal study demonstrated that MS risk is minimal in individuals who are not infected with EBV and that it increases over 30-fold following EBV infection. Over the past few years, a number of studies have provided clues on the underlying mechanisms, which might help us to develop more targeted treatments for MS. In this Review, we discuss the evidence linking EBV to the development of MS and the mechanisms by which the virus is thought to cause the disease. Furthermore, we discuss implications for the treatment and prevention of MS, including the use of antivirals and vaccines.
Collapse
Affiliation(s)
- Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Alexander MR, Dale BL, Smart CD, Elijovich F, Wogsland CE, Lima SM, Irish JM, Madhur MS. Immune Profiling Reveals Decreases in Circulating Regulatory and Exhausted T Cells in Human Hypertension. JACC Basic Transl Sci 2023; 8:319-336. [PMID: 37034287 PMCID: PMC10077123 DOI: 10.1016/j.jacbts.2022.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 01/06/2023]
Abstract
Evidence from nonhuman animal models demonstrates an important role for immune cells in hypertension, but immune cell changes in human hypertension are less clear. Using mass cytometry, we demonstrate novel and selective reductions in CCR10+ regulatory T cells (Tregs) and PD-1+CD57-CD8+ memory T cells. RNA sequencing reveals that CCR10+ Tregs exhibit gene expression changes consistent with enhanced immunosuppressive function. In addition, CITE-Seq demonstrates that PD-1+CD57-CD8+ memory T cells exhibit features of T-cell exhaustion. Taken together, these results provide novel evidence for decreases in anti-inflammatory and/or hypofunctional T-cell populations that may contribute to enhanced inflammation in human hypertension.
Collapse
Affiliation(s)
- Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Bethany L. Dale
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Current affiliation: Pirche, Berlin, Germany
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cara E. Wogsland
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Current affiliation: KinN Therapeutics, Bergen, Norway
| | - Sierra M. Lima
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jonathan M. Irish
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Clark F, Gil A, Thapa I, Aslan N, Ghersi D, Selin LK. Cross-reactivity influences changes in human influenza A virus and Epstein Barr virus specific CD8 memory T cell receptor alpha and beta repertoires between young and old. Front Immunol 2023; 13:1011935. [PMID: 36923729 PMCID: PMC10009332 DOI: 10.3389/fimmu.2022.1011935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/30/2022] [Indexed: 03/03/2023] Open
Abstract
Older people have difficulty controlling infection with common viruses such as influenza A virus (IAV), RNA virus which causes recurrent infections due to a high rate of genetic mutation, and Epstein Barr virus (EBV), DNA virus which persists in B cells for life in the 95% of people that become acutely infected. We questioned whether changes in epitope-specific memory CD8 T cell receptor (TCR) repertoires to these two common viruses could occur with increasing age and contribute to waning immunity. We compared CD8 memory TCR alpha and beta repertoires in two HLA-A2+ EBV- and IAV-immune donors, young (Y) and older (O) donors to three immunodominant epitopes known to be cross-reactive, IAV-M158-66 (IAV-M1), EBV-BMLF1280-288 (EBV-BM), and EBV-BRLF1109-117 (EBV-BR). We, therefore, also designed these studies to examine if TCR cross-reactivity could contribute to changes in repertoire with increasing age. TCR high throughput sequencing showed a significant difference in the pattern of TRBV usage between Y and O. However, there were many more differences in AV and AJ usage, between the age groups suggesting that changes in TCRα usage may play a greater role in evolution of the TCR repertoire emphasizing the importance of studying TRAV repertoires. With increasing age there was a preferential retention of TCR for all three epitopes with features in their complementarity-determining region (CDR3) that increased their ease of generation, and their cross-reactive potential. Young and older donors differed in the patterns of AV/AJ and BV/BJ pairings and usage of dominant CDR3 motifs specific to all three epitopes. Both young and older donors had cross-reactive responses between these 3 epitopes, which were unique and differed from the cognate responses having features that suggested they could interact with either ligand. There was an increased tendency for the classic IAV-M1 specific clone BV19-IRSS-JB2.7/AV27-CAGGGSQGNLIF-AJ42 to appear among the cross-reactive clones, suggesting that the dominance of this clone may relate to its cross-reactivity with EBV. These results suggest that although young and older donors retain classic TCR features for each epitope their repertoires are gradually changing with age, maintaining TCRs that are cross-reactive between these two common human viruses, one with recurrent infections and the other a persistent virus which frequently reactivates.
Collapse
Affiliation(s)
- Fransenio Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Liisa K. Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
39
|
Dyer Z, Tscharke D, Sutton I, Massey J. From bedside to bench: how existing therapies inform the relationship between Epstein-Barr virus and multiple sclerosis. Clin Transl Immunology 2023; 12:e1437. [PMID: 36844913 PMCID: PMC9947628 DOI: 10.1002/cti2.1437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Therapy for relapsing-remitting multiple sclerosis (MS) has advanced dramatically despite incomplete understanding of the cause of the condition. Current treatment involves inducing broad effects on immune cell populations with consequent off-target side effects, and no treatment can completely prevent disability progression. Further therapeutic advancement will require a better understanding of the pathobiology of MS. Interest in the role of Epstein-Barr virus (EBV) in multiple sclerosis has intensified based on strong epidemiological evidence of an association between EBV seroprevalence and MS. Hypotheses proposed to explain the biological relationship between EBV and MS include molecular mimicry, EBV immortalised autoreactive B cells and infection of glial cells by EBV. Examining the interaction between EBV and immunotherapies that have demonstrated efficacy in MS offers clues to the validity of these hypotheses. The efficacy of B cell depleting therapies could be consistent with a hypothesis that EBV-infected B cells drive MS; however, loss of T cell control of B cells does not exacerbate MS. A number of MS therapies invoke change in EBV-specific T cell populations, but pathogenic EBV-specific T cells with cross-reactivity to CNS antigen have not been identified. Immune reconstitution therapies induce EBV viraemia and expansion of EBV-specific T cell clones, but this does not correlate with relapse. Much remains unknown regarding the role of EBV in MS pathogenesis. We discuss future translational research that could fill important knowledge gaps.
Collapse
Affiliation(s)
- Zoe Dyer
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical ResearchDarlinghurstNSWAustralia,St. Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW)DarlinghurstNSWAustralia
| | - David Tscharke
- John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Ian Sutton
- St. Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW)DarlinghurstNSWAustralia,Department of NeurologySt Vincent's ClinicDarlinghurstNSWAustralia
| | - Jennifer Massey
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical ResearchDarlinghurstNSWAustralia,St. Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW)DarlinghurstNSWAustralia,Department of NeurologySt Vincent's ClinicDarlinghurstNSWAustralia,Department of NeurologySt Vincent's HospitalDarlinghurstNSWAustralia
| |
Collapse
|
40
|
Soldan S, Su C, Monaco MC, Brown N, Clauze A, Andrada F, Feder A, Planet P, Kossenkov A, Schäffer D, Ohayon J, Auslander N, Jacobson S, Lieberman P. Unstable EBV latency drives inflammation in multiple sclerosis patient derived spontaneous B cells. RESEARCH SQUARE 2023:rs.3.rs-2398872. [PMID: 36778367 PMCID: PMC9915775 DOI: 10.21203/rs.3.rs-2398872/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiological studies have demonstrated that Epstein-Barr virus (EBV) is a known etiologic risk factor, and perhaps prerequisite, for the development of MS. EBV establishes life-long latent infection in a subpopulation of memory B cells. Although the role of memory B cells in the pathobiology of MS is well established, studies characterizing EBV-associated mechanisms of B cell inflammation and disease pathogenesis in EBV (+) B cells from MS patients are limited. Accordingly, we analyzed spontaneous lymphoblastoid cell lines (SLCLs) from multiple sclerosis patients and healthy controls to study host-virus interactions in B cells, in the context of an individual's endogenous EBV. We identify differences in EBV gene expression and regulation of both viral and cellular genes in SLCLs. Our data suggest that EBV latency is dysregulated in MS SLCLs with increased lytic gene expression observed in MS patient B cells, especially those generated from samples obtained during "active" disease. Moreover, we show increased inflammatory gene expression and cytokine production in MS patient SLCLs and demonstrate that tenofovir alafenamide, an antiviral that targets EBV replication, decreases EBV viral loads, EBV lytic gene expression, and EBV-mediated inflammation in both SLCLs and in a mixed lymphocyte assay. Collectively, these data suggest that dysregulation of EBV latency in MS drives a pro-inflammatory, pathogenic phenotype in memory B cells and that this response can be attenuated by suppressing EBV lytic activation. This study provides further support for the development of antiviral agents that target EBV-infection for use in MS.
Collapse
Affiliation(s)
| | | | - Maria Chiara Monaco
- National Institutes of Health - National Institute of Neurological Disorders and Stroke
| | | | | | | | | | | | | | - Daniel Schäffer
- Computational Biology Department, Carnegie Mellon University
| | | | | | | | | |
Collapse
|
41
|
Thomas OG, Rickinson A, Palendira U. Epstein-Barr virus and multiple sclerosis: moving from questions of association to questions of mechanism. Clin Transl Immunology 2023; 12:e1451. [PMID: 37206956 PMCID: PMC10191779 DOI: 10.1002/cti2.1451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
The link between Epstein-Barr virus (EBV) and multiple sclerosis (MS) has puzzled researchers since it was first discovered over 40 years ago. Until that point, EBV was primarily viewed as a cancer-causing agent, but the culmination of evidence now shows that EBV has a pivotal role in development of MS. Early MS disease is characterised by episodic neuroinflammation and focal lesions in the central nervous system (CNS) that over time develop into progressive neurodegeneration and disability. Risk of MS is vanishingly low in EBV seronegative individuals, history of infectious mononucleosis (acute symptomatic primary infection with EBV) significantly increases risk and elevated antibody titres directed against EBV antigens are well-characterised in patients. However, the underlying mechanism - or mechanisms - responsible for this interplay remains to be fully elucidated; how does EBV-induced immune dysregulation either trigger or drive MS in susceptible individuals? Furthermore, deep understanding of virological and immunological events during primary infection and long-term persistence in B cells will help to answer the many questions that remain regarding MS pathogenesis. This review discusses the current evidence and mechanisms surrounding EBV and MS, which have important implications for the future of MS therapies and prevention.
Collapse
Affiliation(s)
- Olivia G Thomas
- Department of Clinical Neuroscience, Therapeutic Immune Design, Centre for Molecular MedicineKarolinska InstituteStockholmSweden
| | - Alan Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of Birmingham, EdgbastonBirminghamUK
| | - Umaimainthan Palendira
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
- Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
42
|
Sato Y. [Epidemiological and mechanistic links between Epstein-Barr virus and multiple sclerosis]. Uirusu 2023; 73:147-152. [PMID: 39343549 DOI: 10.2222/jsv.73.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus that causes several malignancies. EBV infects approximately 90% of individuals worldwide. Recent studies have provided robust evidence for a causal role of EBV in multiple sclerosis. Multiple sclerosis is the most prevalent chronic inflammatory and degenerative disease of the central nerve system (CNS) that progresses over time to progressive neurodegeneration and disability. Here, I review how a ubiquitous virus can elicit autoreactive antibodies through molecular mimicry between viral and host CNS antigens, triggering multiple sclerosis.
Collapse
Affiliation(s)
- Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine
| |
Collapse
|
43
|
Sedighi S, Gholizadeh O, Yasamineh S, Akbarzadeh S, Amini P, Favakehi P, Afkhami H, Firouzi-Amandi A, Pahlevan D, Eslami M, Yousefi B, Poortahmasebi V, Dadashpour M. Comprehensive Investigations Relationship Between Viral Infections and Multiple Sclerosis Pathogenesis. Curr Microbiol 2023; 80:15. [PMID: 36459252 PMCID: PMC9716500 DOI: 10.1007/s00284-022-03112-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/05/2022] [Indexed: 12/04/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). Compared to other types of self-limiting myelin disorders, MS compartmentalizes and maintains chronic inflammation in the CNS. Even though the exact cause of MS is unclear, it is assumed that genetic and environmental factors play an important role in susceptibility to this disease. The progression of MS is triggered by certain environmental factors, such as viral infections. The most important viruses that affect MS are Epstein-Barr virus (EBV), human herpes virus 6 (HHV-6), human endogenous retrovirus (HERV), cytomegalovirus (CMV), and varicella zoster virus (VZV). These viruses all have latent stages that allow them to escape immune detection and reactivate after exposure to various stimuli. Furthermore, their tropism for CNS and immune system cells explains their possible deleterious function in neuroinflammation. In this study, the effect of viral infections on MS disease focuses on the details of viruses that can change the risk of the disease. Paying attention to the most recent articles on the role of SARS-CoV-2 in MS disease, laboratory indicators show the interaction of the immune system with the virus. Also, strategies to prevent viruses that play a role in triggering MS are discussed, such as EBV, which is one of the most important.
Collapse
Affiliation(s)
- Somayeh Sedighi
- Department of Immunology, Faculty of Medicine, Medical Science of Mashhad, Mashhad, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Parya Amini
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnia Favakehi
- Department of Microbiology, Falavargan Branch, Islamic Azad University, Isfahan, Iran
| | - Hamed Afkhami
- Department of Bacteriology, Faculty of Medicine, Medical Science of Shahed, Tehran, Iran
| | - Akram Firouzi-Amandi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryoush Pahlevan
- Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
44
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
45
|
Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol 2022; 22:734-750. [PMID: 35508809 DOI: 10.1038/s41577-022-00718-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Our incomplete understanding of the causes and pathways involved in the onset and progression of multiple sclerosis (MS) limits our ability to effectively treat this complex neurological disease. Recent studies explore the role of immune cells at different stages of MS and how they interact with cells of the central nervous system (CNS). The findings presented here begin to question the exclusivity of an antigen-specific cause and highlight how seemingly distinct immune cell types can share common functions that drive disease. Innovative techniques further expose new disease-associated immune cell populations and reinforce how environmental context is critical to their phenotype and subsequent role in disease. Importantly, the differentiation of immune cells into a pathogenic state is potentially reversible through therapeutic manipulation. As such, understanding the mechanisms that provide plasticity to causal cell types is likely key to uncoupling these disease processes and may identify novel therapeutic targets that replace the need for cell ablation.
Collapse
Affiliation(s)
- Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK
| | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Max Kaufmann
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Giovannoni G, Hawkes CH, Lechner-Scott J, Levy M, Yeh EA. What are T-cells telling us about how EBV causes MS? Mult Scler Relat Disord 2022; 68:104434. [PMID: 36544308 DOI: 10.1016/j.msard.2022.104434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Christopher H Hawkes
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeannette Lechner-Scott
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael Levy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E Ann Yeh
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
47
|
Mouat IC, Allanach JR, Fettig NM, Fan V, Girard AM, Shanina I, Osborne LC, Vorobeychik G, Horwitz MS. Gammaherpesvirus infection drives age-associated B cells toward pathogenicity in EAE and MS. SCIENCE ADVANCES 2022; 8:eade6844. [PMID: 36427301 PMCID: PMC9699667 DOI: 10.1126/sciadv.ade6844] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
While age-associated B cells (ABCs) are known to expand and persist following viral infection and during autoimmunity, their interactions are yet to be studied together in these contexts. Here, we directly compared CD11c+T-bet+ ABCs using models of Epstein-Barr virus (EBV), gammaherpesvirus 68 (γHV68), multiple sclerosis (MS), and experimental autoimmune encephalomyelitis (EAE), and found that each drives the ABC population to opposing phenotypes. EBV infection has long been implicated in MS, and we have previously shown that latent γHV68 infection exacerbates EAE. Here, we demonstrate that ABCs are required for γHV68-enhanced disease. We then show that the circulating ABC population is expanded and phenotypically altered in people with relapsing MS. In this study, we show that viral infection and autoimmunity differentially affect the phenotype of ABCs in humans and mice, and we identify ABCs as functional mediators of viral-enhanced autoimmunity.
Collapse
Affiliation(s)
- Isobel C. Mouat
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica R. Allanach
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M. Fettig
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vina Fan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna M. Girard
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa C. Osborne
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Galina Vorobeychik
- Fraser Health Multiple Sclerosis Clinic, Burnaby, British Columbia, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author.
| |
Collapse
|
48
|
Leffler J, Trend S, Hart PH, French MA. Epstein-Barr virus infection, B-cell dysfunction and other risk factors converge in gut-associated lymphoid tissue to drive the immunopathogenesis of multiple sclerosis: a hypothesis. Clin Transl Immunology 2022; 11:e1418. [PMID: 36325491 PMCID: PMC9621333 DOI: 10.1002/cti2.1418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Multiple sclerosis is associated with Epstein-Barr virus (EBV) infection, B-cell dysfunction, gut dysbiosis, and environmental and genetic risk factors, including female sex. A disease model incorporating all these factors remains elusive. Here, we hypothesise that EBV-infected memory B cells (MBCs) migrate to gut-associated lymphoid tissue (GALT) through EBV-induced expression of LPAM-1, where they are subsequently activated by gut microbes and/or their products resulting in EBV reactivation and compartmentalised anti-EBV immune responses. These responses involve marginal zone (MZ) B cells that activate CD4+ T-cell responses, via HLA-DRB1, which promote downstream B-cell differentiation towards CD11c+/T-bet+ MBCs, as well as conventional MBCs. Intrinsic expression of low-affinity B-cell receptors (BCRs) by MZ B cells and CD11c+/T-bet+ MBCs promotes polyreactive BCR/antibody responses against EBV proteins (e.g. EBNA-1) that cross-react with central nervous system (CNS) autoantigens (e.g. GlialCAM). EBV protein/autoantigen-specific CD11c+/T-bet+ MBCs migrate to the meningeal immune system and CNS, facilitated by their expression of CXCR3, and induce cytotoxic CD8+ T-cell responses against CNS autoantigens amplified by BAFF, released from EBV-infected MBCs. An increased abundance of circulating IgA+ MBCs, observed in MS patients, might also reflect GALT-derived immune responses, including disease-enhancing IgA antibody responses against EBV and gut microbiota-specific regulatory IgA+ plasma cells. Female sex increases MZ B-cell and CD11c+/T-bet+ MBC activity while environmental risk factors affect gut dysbiosis. Thus, EBV infection, B-cell dysfunction and other risk factors converge in GALT to generate aberrant B-cell responses that drive pathogenic T-cell responses in the CNS.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Stephanie Trend
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia,Perron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Prue H Hart
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Martyn A French
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia,Immunology DivisionPathWest Laboratory MedicinePerthWAAustralia
| |
Collapse
|
49
|
Schönrich G, Abdelaziz MO, Raftery MJ. Epstein-Barr virus, interleukin-10 and multiple sclerosis: A ménage à trois. Front Immunol 2022; 13:1028972. [PMID: 36275700 PMCID: PMC9585213 DOI: 10.3389/fimmu.2022.1028972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease that is characterized by inflammation and demyelination of nerve cells. There is strong evidence that Epstein-Barr virus (EBV), a human herpesvirus infecting B cells, greatly increases the risk of subsequent MS. Intriguingly, EBV not only induces human interleukin-10 but also encodes a homologue of this molecule, which is a key anti-inflammatory cytokine of the immune system. Although EBV-encoded IL-10 (ebvIL-10) has a high amino acid identity with its cellular counterpart (cIL-10), it shows more restricted and partially weaker functionality. We propose that both EBV-induced cIL-10 and ebvIL-10 act in a temporally and functionally coordinated manner helping the pathogen to establish latency in B cells and, at the same time, to balance the function of antiviral T cells. As a result, the EBV load persisting in the immune system is kept at a constant but individually different level (set point). During this immunological tug of war between virus and host, however, MS can be induced as collateral damage if the set point is too high. Here, we discuss a possible role of ebvIL-10 and EBV-induced cIL-10 in EBV-driven pathogenesis of MS.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,*Correspondence: Günther Schönrich,
| | - Mohammed O. Abdelaziz
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,Department of Hematology, Oncology and Tumor Immunology (CCM), Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
50
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|