1
|
Wu C, Song N, Zhao Y, Wang H, Ai Y, Wang Y, Wang Y, Yuan X, Liu T, Li N, Jaijyan DK, Li C, Zhang L, Zheng W, Yang Z, Zhu S, Liao HX. Structural basis of human cytomegalovirus neutralization by gB AD-5-specific potent antibodies. Cell Rep 2025; 44:115646. [PMID: 40382771 DOI: 10.1016/j.celrep.2025.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/25/2025] [Accepted: 04/11/2025] [Indexed: 05/20/2025] Open
Abstract
Human cytomegalovirus (hCMV) poses a severe threat to fetuses, newborns, and immunocompromised individuals. No approved vaccines and limited treatment options are current medical challenges. Here, we analyze the human B cell responses to glycoprotein B (gB) in three top hCMV neutralizers from a cohort of 283 individuals with latent-infected hCMV. By single-cell amplification of memory B cells, we identify a cluster of potent neutralizing monoclonal antibodies (nAbs) that competitively recognize an unknown vulnerable site on gB antigenic domain 5 (AD-5). This cluster of nAbs functionally outperforms the nAbs utilized in clinical trials. Cryoelectron microscopy (cryo-EM) unveils the structural basis of the neutralization mechanism of an antibody directly targeting the fusion subdomain on AD-5. Moreover, immunological analyses of human and mouse sera have preliminarily validated the potential superiority of AD-5-focused immune responses. Overall, our results will support the development of optimized gB-based vaccines and provide promising prophylactic and therapeutic antibody candidates against hCMV infection.
Collapse
Affiliation(s)
- Changwen Wu
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China.
| | - Nan Song
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Han Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanbao Ai
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Yayu Wang
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Yueming Wang
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Xiaohui Yuan
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Tong Liu
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Nan Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Chengming Li
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weihong Zheng
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Hua-Xin Liao
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China.
| |
Collapse
|
2
|
Molinos-Albert LM, Baquero E, Planchais C, Doceul V, El Costa H, Mottez E, Mallet V, Pol S, Albert ML, Pavio N, Alanio C, Dimitrov JD, Mouquet H. Structural basis for hepatitis E virus neutralization by potent human antibodies. SCIENCE ADVANCES 2025; 11:eadu8811. [PMID: 40333967 PMCID: PMC12057666 DOI: 10.1126/sciadv.adu8811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
Antibodies targeting the hepatitis E virus (HEV) surface capsid protein (CA) are essential for infection control and resolution, yet their molecular and functional attributes remain largely elusive. We characterized 144 human HEV-CA-specific monoclonal antibodies cloned from the memory B cells of HEV-exposed individuals. Most human anti-CA antibodies cross-reacted with all HEV genotype variants, and a subset also recognized the zoonotic rat hepatitis E virus. HEV antibody repertoire was diverse and contained highly potent neutralizing antibodies binding to the CA protruding (P) domain. Structural analyses of CA protein complexed with three potent and broad HEV antibodies uncovered a neutralizing site located on monomeric P domain loops at the apex of the viral spike. These findings provide valuable insights into the protective humoral response to HEV and offer a framework for the rational design of HEV vaccines and immunotherapies.
Collapse
Affiliation(s)
| | - Eduard Baquero
- NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Virginie Doceul
- UMR Virology, École Nationale Vétérinaire d'Alfort, INRAE, ANSES, 94704 Maisons-Alfort, France
| | - Hicham El Costa
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM-CNRS-University Toulouse III, 31024 Toulouse, France
| | - Estelle Mottez
- Human Immunology Center, Immunobiology of Dendritic Cells Unit, Institut Pasteur, 75015 Paris, France
| | - Vincent Mallet
- Groupe Hospitalier Cochin Port Royal, DMU Cancérologie et Spécialités Médico-Chirurgicales, Service d'Hépatologie, AP-HP Centre, Université Paris Cité, 75014 Paris, France
| | - Stanislas Pol
- Groupe Hospitalier Cochin Port Royal, DMU Cancérologie et Spécialités Médico-Chirurgicales, Service d'Hépatologie, AP-HP Centre, Université Paris Cité, 75014 Paris, France
| | - Matthew L. Albert
- Human Immunology Center, Immunobiology of Dendritic Cells Unit, Institut Pasteur, 75015 Paris, France
| | - Nicole Pavio
- UMR Virology, École Nationale Vétérinaire d'Alfort, INRAE, ANSES, 94704 Maisons-Alfort, France
| | - Cécile Alanio
- Human Immunology Center, Immunobiology of Dendritic Cells Unit, Institut Pasteur, 75015 Paris, France
| | - Jordan D. Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
3
|
Hsiao YC, Wallweber HA, Alberstein RG, Lin Z, Du C, Etxeberria A, Aung T, Shang Y, Seshasayee D, Seeger F, Watkins AM, Hansen DV, Bohlen CJ, Hsu PL, Hötzel I. Rapid affinity optimization of an anti-TREM2 clinical lead antibody by cross-lineage immune repertoire mining. Nat Commun 2024; 15:8382. [PMID: 39333507 PMCID: PMC11437124 DOI: 10.1038/s41467-024-52442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/07/2024] [Indexed: 09/29/2024] Open
Abstract
We describe a process for rapid antibody affinity optimization by repertoire mining to identify clones across B cell clonal lineages based on convergent immune responses where antigen-specific clones with the same heavy (VH) and light chain germline segment pairs, or parallel lineages, bind a single epitope on the antigen. We use this convergence framework to mine unique and distinct VH lineages from rat anti-triggering receptor on myeloid cells 2 (TREM2) antibody repertoire datasets with high diversity in the third complementarity-determining loop region (CDR H3) to further affinity-optimize a high-affinity agonistic anti-TREM2 antibody while retaining critical functional properties. Structural analyses confirm a nearly identical binding mode of anti-TREM2 variants with subtle but significant structural differences in the binding interface. Parallel lineage repertoire mining is uniquely tailored to rationally explore the large CDR H3 sequence space in antibody repertoires and can be easily and generally applied to antibodies discovered in vivo.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | | | | | - Zhonghua Lin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | - Changchun Du
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | | | - Theint Aung
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | - Yonglei Shang
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
- Amberstone Biosciences, Irvine, CA, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | - Franziska Seeger
- Prescient Design, a Genentech Accelerator, South San Francisco, CA, USA
| | - Andrew M Watkins
- Prescient Design, a Genentech Accelerator, South San Francisco, CA, USA
| | - David V Hansen
- Department of Neuroscience, Genentech, South San Francisco, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | - Peter L Hsu
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Isidro Hötzel
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA.
| |
Collapse
|
4
|
Roffler AA, Maurer DP, Lunn TJ, Sironen T, Forbes KM, Schmidt AG. Bat humoral immunity and its role in viral pathogenesis, transmission, and zoonosis. Front Immunol 2024; 15:1269760. [PMID: 39156901 PMCID: PMC11329927 DOI: 10.3389/fimmu.2024.1269760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/08/2024] [Indexed: 08/20/2024] Open
Abstract
Bats harbor viruses that can cause severe disease and death in humans including filoviruses (e.g., Ebola virus), henipaviruses (e.g., Hendra virus), and coronaviruses (e.g., SARS-CoV). Bats often tolerate these viruses without noticeable adverse immunological effects or succumbing to disease. Previous studies have largely focused on the role of the bat's innate immune response to control viral pathogenesis, but little is known about bat adaptive immunity. A key component of adaptive immunity is the humoral response, comprised of antibodies that can specifically recognize viral antigens with high affinity. The antibody genes within the 1,400 known bat species are highly diverse, and these genetic differences help shape fundamental aspects of the antibody repertoire, including starting diversity and viral antigen recognition. Whether antibodies in bats protect, mediate viral clearance, and prevent transmission within bat populations is poorly defined. Furthermore, it is unclear how neutralizing activity and Fc-mediated effector functions contribute to bat immunity. Although bats have canonical Fc genes (e.g., mu, gamma, alpha, and epsilon), the copy number and sequences of their Fc genes differ from those of humans and mice. The function of bat antibodies targeting viral antigens has been speculated based on sequencing data and polyclonal sera, but functional and biochemical data of monoclonal antibodies are lacking. In this review, we summarize current knowledge of bat humoral immunity, including variation between species, their potential protective role(s) against viral transmission and replication, and address how these antibodies may contribute to population dynamics within bats communities. A deeper understanding of bat adaptive immunity will provide insight into immune control of transmission and replication for emerging viruses with the potential for zoonotic spillover.
Collapse
Affiliation(s)
- Anne A. Roffler
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Daniel P. Maurer
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Tamika J. Lunn
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Kristian M. Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Aaron G. Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Shrock EL, Timms RT, Kula T, Mena EL, West AP, Guo R, Lee IH, Cohen AA, McKay LGA, Bi C, Keerti, Leng Y, Fujimura E, Horns F, Li M, Wesemann DR, Griffiths A, Gewurz BE, Bjorkman PJ, Elledge SJ. Germline-encoded amino acid-binding motifs drive immunodominant public antibody responses. Science 2023; 380:eadc9498. [PMID: 37023193 PMCID: PMC10273302 DOI: 10.1126/science.adc9498] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023]
Abstract
Despite the vast diversity of the antibody repertoire, infected individuals often mount antibody responses to precisely the same epitopes within antigens. The immunological mechanisms underpinning this phenomenon remain unknown. By mapping 376 immunodominant "public epitopes" at high resolution and characterizing several of their cognate antibodies, we concluded that germline-encoded sequences in antibodies drive recurrent recognition. Systematic analysis of antibody-antigen structures uncovered 18 human and 21 partially overlapping mouse germline-encoded amino acid-binding (GRAB) motifs within heavy and light V gene segments that in case studies proved critical for public epitope recognition. GRAB motifs represent a fundamental component of the immune system's architecture that promotes recognition of pathogens and leads to species-specific public antibody responses that can exert selective pressure on pathogens.
Collapse
Affiliation(s)
- Ellen L. Shrock
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard University, Boston, MA 02115, USA
| | - Richard T. Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Tomasz Kula
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard University, Boston, MA 02115, USA
- Present address: Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Elijah L. Mena
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rui Guo
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - I-Hsiu Lee
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lindsay G. A. McKay
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Caihong Bi
- Division of Allergy and Immunology, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Keerti
- Division of Allergy and Immunology, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eric Fujimura
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Felix Horns
- Department of Bioengineering, Department of Applied Physics, Chan Zuckerberg Biohub and Stanford University, Stanford, CA 94305, USA
| | - Mamie Li
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Duane R. Wesemann
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Division of Allergy and Immunology, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139 USA
| | - Anthony Griffiths
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
6
|
Jenks JA, Amin S, Sponholtz MR, Kumar A, Wrapp D, Venkatayogi S, Tu JJ, Karthigeyan K, Valencia SM, Connors M, Harnois MJ, Hora B, Rochat E, McLellan JS, Wiehe K, Permar SR. A single, improbable B cell receptor mutation confers potent neutralization against cytomegalovirus. PLoS Pathog 2023; 19:e1011107. [PMID: 36662906 PMCID: PMC9891502 DOI: 10.1371/journal.ppat.1011107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/01/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region. We mapped the genealogy of B cells encoding potently neutralizing anti-gB AD-2S1 antibodies from their inferred unmutated common ancestor (UCA) and characterized the binding and function of early lineage ancestors. Surprisingly, we found that a single amino acid heavy chain mutation A33N, which was an improbable mutation rarely generated by somatic hypermutation machinery, conferred broad CMV neutralization to the non-neutralizing UCA antibody. Structural studies revealed that this mutation mediated key contacts with the gB AD-2S1 epitope. Collectively, these results provide insight into potently neutralizing gB-directed antibody evolution in a single donor and lay a foundation for using this B cell-lineage directed approach for the design of next-generation CMV vaccines.
Collapse
Affiliation(s)
- Jennifer A. Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sharmi Amin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Madeline R. Sponholtz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Krithika Karthigeyan
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| | - Sarah M. Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Megan Connors
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| | - Melissa J. Harnois
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eric Rochat
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
7
|
Bozhanova NG, Flyak AI, Brown BP, Ruiz SE, Salas J, Rho S, Bombardi RG, Myers L, Soto C, Bailey JR, Crowe JE, Bjorkman PJ, Meiler J. Computational identification of HCV neutralizing antibodies with a common HCDR3 disulfide bond motif in the antibody repertoires of infected individuals. Nat Commun 2022; 13:3178. [PMID: 35676279 PMCID: PMC9177688 DOI: 10.1038/s41467-022-30865-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Despite recent success in hepatitis C virus (HCV) treatment using antivirals, an HCV vaccine is still needed to prevent reinfections in treated patients, to avert the emergence of drug-resistant strains, and to provide protection for people with no access to the antiviral therapeutics. The early production of broadly neutralizing antibodies (bNAbs) associates with HCV clearance. Several potent bNAbs bind a conserved HCV glycoprotein E2 epitope using an unusual heavy chain complementarity determining region 3 (HCDR3) containing an intra-loop disulfide bond. Isolation of additional structurally-homologous bNAbs would facilitate the recognition of key determinants of such bNAbs and guide rational vaccine design. Here we report the identification of new antibodies containing an HCDR3 disulfide bond motif using computational screening with the Rosetta software. Using the newly-discovered and already-known members of this antibody family, we review the required HCDR3 amino acid composition and propose determinants for the bent versus straight HCDR3 loop conformation observed in these antibodies.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Benjamin P Brown
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stormy E Ruiz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jordan Salas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Semi Rho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Cinque Soto
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC, 04103, Germany.
| |
Collapse
|
8
|
Safonova Y, Shin SB, Kramer L, Reecy J, Watson CT, Smith TPL, Pevzner PA. Variations in antibody repertoires correlate with vaccine responses. Genome Res 2022; 32:791-804. [PMID: 35361626 PMCID: PMC8997358 DOI: 10.1101/gr.276027.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
Abstract
An important challenge in vaccine development is to figure out why a vaccine succeeds in some individuals and fails in others. Although antibody repertoires hold the key to answering this question, there have been very few personalized immunogenomics studies so far aimed at revealing how variations in immunoglobulin genes affect a vaccine response. We conducted an immunosequencing study of 204 calves vaccinated against bovine respiratory disease (BRD) with the goal to reveal variations in immunoglobulin genes and somatic hypermutations that impact the efficacy of vaccine response. Our study represents the largest longitudinal personalized immunogenomics study reported to date across all species, including humans. To analyze the generated data set, we developed an algorithm for identifying variations of the immunoglobulin genes (as well as frequent somatic hypermutations) that affect various features of the antibody repertoire and titers of neutralizing antibodies. In contrast to relatively short human antibodies, cattle have a large fraction of ultralong antibodies that have opened new therapeutic opportunities. Our study reveals that ultralong antibodies are a key component of the immune response against the costliest disease of beef cattle in North America. The detected variants of the cattle immunoglobulin genes, which are implicated in the success/failure of the BRD vaccine, have the potential to direct the selection of individual cattle for ongoing breeding programs.
Collapse
Affiliation(s)
- Yana Safonova
- Computer Science and Engineering Department, University of California at San Diego, San Diego, California 92093, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sung Bong Shin
- U.S. Meat Animal Research Center, USDA-ARS, Clay Center, Nebraska 68933, USA
| | - Luke Kramer
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - James Reecy
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Timothy P L Smith
- U.S. Meat Animal Research Center, USDA-ARS, Clay Center, Nebraska 68933, USA
| | - Pavel A Pevzner
- Computer Science and Engineering Department, University of California at San Diego, San Diego, California 92093, USA
| |
Collapse
|
9
|
Sangesland M, Lingwood D. Public Immunity: Evolutionary Spandrels for Pathway-Amplifying Protective Antibodies. Front Immunol 2021; 12:708882. [PMID: 34956170 PMCID: PMC8696009 DOI: 10.3389/fimmu.2021.708882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Humoral immunity is seeded by affinity between the B cell receptor (BCR) and cognate antigen. While the BCR is a chimeric display of diverse antigen engagement solutions, we discuss its functional activity as an ‘innate-like’ immune receptor, wherein genetically hardwired antigen complementarity can serve as reproducible templates for pathway-amplifying otherwise immunologically recessive antibody responses. We propose that the capacity for germline reactivity to new antigen emerged as a set of evolutionary spandrels or coupled traits, which can now be exploited by rational vaccine design to focus humoral immunity upon conventionally immune-subdominant antibody targets. Accordingly, we suggest that evolutionary spandrels account for the necessary but unanticipated antigen reactivity of the germline antibody repertoire.
Collapse
Affiliation(s)
- Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
10
|
Wang H, Yan K, Wang R, Yang Y, Shen Y, Yu C, Chen L. Antibody heavy chain CDR3 length-dependent usage of human IGHJ4 and IGHJ6 germline genes. Antib Ther 2021; 4:101-108. [PMID: 34195544 PMCID: PMC8237691 DOI: 10.1093/abt/tbab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
Therapeutic antibody discovery using synthetic diversity has been proved productive, especially for target proteins not suitable for traditional animal immunization-based antibody discovery approaches. Recently, many lines of evidences suggest that the quality of synthetic diversity design limits the development success of synthetic antibody hits. The aim of our study is to understand the quality limitation and to properly address the challenges with a better design. Using VH3–23 as a model framework, we observed and quantitatively mapped CDR-H3 loop length-dependent usage of human IGHJ4 and IGHJ6 germline genes in the natural human immune repertoire. Skewed usage of DH2-JH6 and DH3-JH6 rearrangements was quantitatively determined in a CDR-H3 length-dependent manner in natural human antibodies with long CDR-H3 loops. Structural modeling suggests choices of JH help to stabilize antibody CDR-H3 loop and JH only partially contributes to the paratope. Our observations shed light on the design of next-generation synthetic diversity with improved probability of success.
Collapse
Affiliation(s)
- Huimin Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, #15 Beisanhuandong Rd, Chaoyang District, Beijing 100029, China
| | - Kai Yan
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Ruixue Wang
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Yi Yang
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Yuelei Shen
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, #15 Beisanhuandong Rd, Chaoyang District, Beijing 100029, China
| | - Lei Chen
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| |
Collapse
|
11
|
Lee DCP, Raman R, Ghafar NA, Budigi Y. An antibody engineering platform using amino acid networks: A case study in development of antiviral therapeutics. Antiviral Res 2021; 192:105105. [PMID: 34111505 DOI: 10.1016/j.antiviral.2021.105105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022]
Abstract
We present here a case study of an antibody-engineering platform that selects, modifies, and assembles antibody parts to construct novel antibodies. A salient feature of this platform includes the role of amino acid networks in optimizing framework regions (FRs) and complementarity determining regions (CDRs) to engineer new antibodies with desired structure-function relationships. The details of this approach are described in the context of its utility in engineering ZAb_FLEP, a potent anti-Zika virus antibody. ZAb_FLEP comprises of distinct parts, including heavy chain and light chain FRs and CDRs, with engineered features such as loop lengths and optimal epitope-paratope contacts. We demonstrate, with different test antibodies derived from different FR-CDR combinations, that despite these test antibodies sharing high overall sequence similarity, they yield diverse functional readouts. Furthermore, we show that strategies relying on one dimensional sequence similarity-based analyses of antibodies miss important structural nuances of the FR-CDR relationship, which is effectively addressed by the amino acid networks approach of this platform.
Collapse
Affiliation(s)
| | - Rahul Raman
- Department of Biological Engineering, And Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
12
|
A conditionally replication-defective cytomegalovirus vaccine elicits potent and diverse functional monoclonal antibodies in a phase I clinical trial. NPJ Vaccines 2021; 6:79. [PMID: 34078915 PMCID: PMC8172929 DOI: 10.1038/s41541-021-00342-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/24/2021] [Indexed: 02/03/2023] Open
Abstract
A conditionally replication-defective human cytomegalovirus (HCMV) vaccine, V160, was shown to be safe and immunogenic in a two-part, double-blind, randomized, placebo-controlled phase I clinical trial (NCT01986010). However, the specificities and functional properties of V160-elicited antibodies remain undefined. Here, we characterized 272 monoclonal antibodies (mAbs) isolated from single memory B cells of six V160-vaccinated subjects. The mAbs bind to diverse HCMV antigens, including multiple components of the pentamer, gB, and tegument proteins. The most-potent neutralizing antibodies target the pentamer-UL subunits. The binding sites of the antibodies overlap with those of antibodies responding to natural HCMV infection. The majority of the neutralizing antibodies target the gHgL subunit. The non-neutralizing antibodies predominantly target the gB and pp65 proteins. Sequence analysis indicated that V160 induced a class of gHgL antibodies expressing the HV1-18/KV1-5 germline genes in multiple subjects. This study provides valuable insights into primary targets for anti-HCMV antibodies induced by V160 vaccination.
Collapse
|
13
|
Magar R, Yadav P, Barati Farimani A. Potential neutralizing antibodies discovered for novel corona virus using machine learning. Sci Rep 2021; 11:5261. [PMID: 33664393 PMCID: PMC7970853 DOI: 10.1038/s41598-021-84637-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
The fast and untraceable virus mutations take lives of thousands of people before the immune system can produce the inhibitory antibody. The recent outbreak of COVID-19 infected and killed thousands of people in the world. Rapid methods in finding peptides or antibody sequences that can inhibit the viral epitopes of SARS-CoV-2 will save the life of thousands. To predict neutralizing antibodies for SARS-CoV-2 in a high-throughput manner, in this paper, we use different machine learning (ML) model to predict the possible inhibitory synthetic antibodies for SARS-CoV-2. We collected 1933 virus-antibody sequences and their clinical patient neutralization response and trained an ML model to predict the antibody response. Using graph featurization with variety of ML methods, like XGBoost, Random Forest, Multilayered Perceptron, Support Vector Machine and Logistic Regression, we screened thousands of hypothetical antibody sequences and found nine stable antibodies that potentially inhibit SARS-CoV-2. We combined bioinformatics, structural biology, and Molecular Dynamics (MD) simulations to verify the stability of the candidate antibodies that can inhibit SARS-CoV-2.
Collapse
Affiliation(s)
- Rishikesh Magar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Prakarsh Yadav
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Magar R, Yadav P, Barati Farimani A. Potential neutralizing antibodies discovered for novel corona virus using machine learning. Sci Rep 2021; 11:5261. [PMID: 33664393 DOI: 10.1101/2020.03.14.992156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/17/2021] [Indexed: 05/22/2023] Open
Abstract
The fast and untraceable virus mutations take lives of thousands of people before the immune system can produce the inhibitory antibody. The recent outbreak of COVID-19 infected and killed thousands of people in the world. Rapid methods in finding peptides or antibody sequences that can inhibit the viral epitopes of SARS-CoV-2 will save the life of thousands. To predict neutralizing antibodies for SARS-CoV-2 in a high-throughput manner, in this paper, we use different machine learning (ML) model to predict the possible inhibitory synthetic antibodies for SARS-CoV-2. We collected 1933 virus-antibody sequences and their clinical patient neutralization response and trained an ML model to predict the antibody response. Using graph featurization with variety of ML methods, like XGBoost, Random Forest, Multilayered Perceptron, Support Vector Machine and Logistic Regression, we screened thousands of hypothetical antibody sequences and found nine stable antibodies that potentially inhibit SARS-CoV-2. We combined bioinformatics, structural biology, and Molecular Dynamics (MD) simulations to verify the stability of the candidate antibodies that can inhibit SARS-CoV-2.
Collapse
Affiliation(s)
- Rishikesh Magar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Prakarsh Yadav
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Siddiqui S, Hackl S, Ghoddusi H, McIntosh MR, Gomes AC, Ho J, Reeves MB, McLean GR. IgA binds to the AD-2 epitope of glycoprotein B and neutralizes human cytomegalovirus. Immunology 2021; 162:314-327. [PMID: 33283275 PMCID: PMC7884650 DOI: 10.1111/imm.13286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that is potentially pathogenic in immunosuppressed individuals and pregnant females during primary infection. The HCMV envelope glycoprotein B (gB) facilitates viral entry into all cell types and induces a potent immune response. AD-2 epitope is a highly conserved linear neutralizing epitope of gB and a critical target for antibodies; however, only 50% of sero-positive individuals make IgG antibodies to this site and IgA responses have not been fully investigated. This study aimed to compare IgG and IgA responses against gB and the AD-2 epitope in naturally exposed individuals and those receiving a recombinant gB/MF59 adjuvant vaccine. Thus, vaccination of sero-positive individuals improved pre-existing gB-specific IgA and IgG levels and induced de novo gB-specific IgA and IgG responses in sero-negative recipients. Pre-existing AD-2 IgG and IgA responses were boosted with vaccination, but de novo AD-2 responses were not detected. Naturally exposed individuals had dominant IgG responses towards gB and AD-2 compared with weaker and variable IgA responses, although a significant IgA binding response to AD-2 was observed within human breastmilk samples. All antibodies binding AD-2 contained kappa light chains, whereas balanced kappa/lambda light chain usage was found for those binding to gB. V region-matched AD-2-specific recombinant IgG and IgA bound both to gB and to AD-2 and neutralized HCMV infection in vitro. Overall, these results indicate that although human IgG responses dominate, IgA class antibodies against AD-2 are a significant component of human milk, which may function to protect neonates from HCMV.
Collapse
Affiliation(s)
- Saima Siddiqui
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK
| | - Sarah Hackl
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK
| | - Hamid Ghoddusi
- Microbiology Research UnitLondon Metropolitan UniversityLondonUK
| | - Megan R. McIntosh
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Ariane C. Gomes
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Joshua Ho
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Matthew B. Reeves
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Gary R. McLean
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK,National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
16
|
Hsiao YC, Chen YJJ, Goldstein LD, Wu J, Lin Z, Schneider K, Chaudhuri S, Antony A, Bajaj Pahuja K, Modrusan Z, Seshasayee D, Seshagiri S, Hötzel I. Restricted epitope specificity determined by variable region germline segment pairing in rodent antibody repertoires. MAbs 2021; 12:1722541. [PMID: 32041466 PMCID: PMC7039645 DOI: 10.1080/19420862.2020.1722541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibodies from B-cell clonal lineages share sequence and structural properties as well as epitope specificity. Clonally unrelated antibodies can similarly share sequence and specificity properties and are said to be convergent. Convergent antibody responses against several antigens have been described in humans and mice and include different classes of shared sequence features. In particular, some antigens and epitopes can induce convergent responses of clonally unrelated antibodies with restricted heavy (VH) and light (VL) chain variable region germline segment usage without similarity in the heavy chain third complementarity-determining region (CDR H3), a critical specificity determinant. Whether these V germline segment-restricted responses reflect a general epitope specificity restriction of antibodies with shared VH/VL pairing is not known. Here, we investigated this question by determining patterns of antigen binding competition between clonally unrelated antigen-specific rat antibodies from paired-chain deep sequencing datasets selected based solely on VH/VL pairing. We found that antibodies with shared VH/VL germline segment pairings but divergent CDR H3 sequences almost invariably have restricted epitope specificity indicated by shared binding competition patterns. This epitope restriction included 82 of 85 clonally unrelated antibodies with 13 different VH/VL pairings binding in 8 epitope groups in 2 antigens. The corollary that antibodies with shared VH/VL pairing and epitope-restricted binding can accommodate widely divergent CDR H3 sequences was confirmed by in vitro selection of variants of anti-human epidermal growth factor receptor 2 antibodies known to mediate critical antigen interactions through CDR H3. Our results show that restricted epitope specificity determined by VH/VL germline segment pairing is a general property of rodent antigen-specific antibodies.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Ying-Jiun J Chen
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Leonard D Goldstein
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA.,Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Jia Wu
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Zhonghua Lin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kellen Schneider
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Subhra Chaudhuri
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Aju Antony
- Department of Molecular Biology, SciGenom Labs, Cochin, India
| | | | - Zora Modrusan
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | | | - Isidro Hötzel
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| |
Collapse
|
17
|
Park S, Pascua E, Lindquist KC, Kimberlin C, Deng X, Mak YSL, Melton Z, Johnson TO, Lin R, Boldajipour B, Abraham RT, Pons J, Sasu BJ, Van Blarcom TJ, Chaparro-Riggers J. Direct control of CAR T cells through small molecule-regulated antibodies. Nat Commun 2021; 12:710. [PMID: 33514714 PMCID: PMC7846603 DOI: 10.1038/s41467-020-20671-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023] Open
Abstract
Antibody-based therapeutics have experienced a rapid growth in recent years and are now utilized in various modalities spanning from conventional antibodies, antibody-drug conjugates, bispecific antibodies to chimeric antigen receptor (CAR) T cells. Many next generation antibody therapeutics achieve enhanced potency but often increase the risk of adverse events. Antibody scaffolds capable of exhibiting inducible affinities could reduce the risk of adverse events by enabling a transient suspension of antibody activity. To demonstrate this, we develop conditionally activated, single-module CARs, in which tumor antigen recognition is directly modulated by an FDA-approved small molecule drug. The resulting CAR T cells demonstrate specific cytotoxicity of tumor cells comparable to that of traditional CARs, but the cytotoxicity is reversibly attenuated by the addition of the small molecule. The exogenous control of conditional CAR T cell activity allows continual modulation of therapeutic activity to improve the safety profile of CAR T cells across all disease indications.
Collapse
Affiliation(s)
- Spencer Park
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Lyell Immunopharma, South San Francisco, CA USA
| | - Edward Pascua
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA
| | | | - Christopher Kimberlin
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Asher Bio, South San Francisco, CA USA
| | - Xiaodi Deng
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Dren Bio, San Carlos, CA USA
| | - Yvonne S. L. Mak
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Zea Melton
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | | | - Regina Lin
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Bijan Boldajipour
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Lyell Immunopharma, South San Francisco, CA USA
| | - Robert T. Abraham
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Vividion Therapeutics, San Diego, CA USA
| | - Jaume Pons
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: ALX Oncology, Burlingame, CA USA
| | - Barbra Johnson Sasu
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Thomas J. Van Blarcom
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | | |
Collapse
|
18
|
Huang KYA, Zhou D, Fry EE, Kotecha A, Huang PN, Yang SL, Tsao KC, Huang YC, Lin TY, Ren J, Stuart DI. Structural and functional analysis of protective antibodies targeting the threefold plateau of enterovirus 71. Nat Commun 2020; 11:5253. [PMID: 33067459 PMCID: PMC7567869 DOI: 10.1038/s41467-020-19013-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Enterovirus 71 (EV71)-neutralizing antibodies correlate with protection and have potential as therapeutic agents. We isolate and characterize a panel of plasmablast-derived monoclonal antibodies from an infected child whose antibody response focuses on the plateau epitope near the icosahedral 3-fold axes. Eight of a total of 19 antibodies target this epitope and three of these potently neutralize the virus. Representative neutralizing antibodies 38-1-10A and 38-3-11A both confer effective protection against lethal EV71 challenge in hSCARB2-transgenic mice. The cryo-electron microscopy structures of the EV71 virion in complex with Fab fragments of these potent and protective antibodies reveal the details of a conserved epitope formed by residues in the BC and HI loops of VP2 and the BC and HI loops of VP3 spanning the region around the 3-fold axis. Remarkably, the two antibodies interact with the epitope in quite distinct ways. These plateau-binding antibodies provide templates for promising candidate therapeutics.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Enterovirus A, Human/chemistry
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus Infections/immunology
- Enterovirus Infections/virology
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Neutralization Tests
Collapse
Affiliation(s)
- Kuan-Ying A Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Daming Zhou
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Elizabeth E Fry
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Abhay Kotecha
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Li Yang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jingshan Ren
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
19
|
Milivojevic M, Che X, Bateman L, Cheng A, Garcia BA, Hornig M, Huber M, Klimas NG, Lee B, Lee H, Levine S, Montoya JG, Peterson DL, Komaroff AL, Lipkin WI. Plasma proteomic profiling suggests an association between antigen driven clonal B cell expansion and ME/CFS. PLoS One 2020; 15:e0236148. [PMID: 32692761 PMCID: PMC7373296 DOI: 10.1371/journal.pone.0236148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an unexplained chronic, debilitating illness characterized by fatigue, sleep disturbances, cognitive dysfunction, orthostatic intolerance and gastrointestinal problems. Using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we analyzed the plasma proteomes of 39 ME/CFS patients and 41 healthy controls. Logistic regression models, with both linear and quadratic terms of the protein levels as independent variables, revealed a significant association between ME/CFS and the immunoglobulin heavy variable (IGHV) region 3-23/30. Stratifying the ME/CFS group based on self-reported irritable bowel syndrome (sr-IBS) status revealed a significant quadratic effect of immunoglobulin lambda constant region 7 on its association with ME/CFS with sr-IBS whilst IGHV3-23/30 and immunoglobulin kappa variable region 3-11 were significantly associated with ME/CFS without sr-IBS. In addition, we were able to predict ME/CFS status with a high degree of accuracy (AUC = 0.774-0.838) using a panel of proteins selected by 3 different machine learning algorithms: Lasso, Random Forests, and XGBoost. These algorithms also identified proteomic profiles that predicted the status of ME/CFS patients with sr-IBS (AUC = 0.806-0.846) and ME/CFS without sr-IBS (AUC = 0.754-0.780). Our findings are consistent with a significant association of ME/CFS with immune dysregulation and highlight the potential use of the plasma proteome as a source of biomarkers for disease.
Collapse
Affiliation(s)
- Milica Milivojevic
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Xiaoyu Che
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Lucinda Bateman
- Bateman Horne Center, Salt Lake City, UT, United States of America
| | - Aaron Cheng
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Benjamin A. Garcia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Manuel Huber
- German Research Center for Environmental Health, Institute for Health Economics and Health Care Management, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nancy G. Klimas
- Institute for Neuro Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- Miami VA Medical Center, Miami, FL, United States of America
| | - Bohyun Lee
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Hyoungjoo Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Susan Levine
- Levine Clinic, New York, NY, United States of America
| | - Jose G. Montoya
- Palo Alto Medical Foundation, Jack S. Remington Laboratory for Specialty Diagnostics of Toxoplasmosis, Palo Alto, CA, United States of America
| | - Daniel L. Peterson
- Sierra Internal Medicine at Incline Village, Incline Village, NV, United States of America
| | - Anthony L. Komaroff
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| |
Collapse
|
20
|
Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, Liu X, Xie L, Li J, Ye J, Dong L, Cui X, Miao Y, Wang D, Dong J, Xiao C, Chen W, Wang H. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov 2020; 6:31. [PMID: 32377375 PMCID: PMC7197635 DOI: 10.1038/s41421-020-0168-9] [Citation(s) in RCA: 551] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14++IL1β+ monocytes in the ERS. CD4+ T cells and CD8+ T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19.
Collapse
Affiliation(s)
- Wen Wen
- National Center for Liver Cancer, Second Military Medical University, 200438 Shanghai, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Changzheng
Hospital, Second Military Medical University, 200003 Shanghai, China
- Department of Critical Care, Wuhan Huoshenshan Hospital, 430113 Wuhan, Hubei China
| | - Wenqing Le
- Department of Critical Care, Wuhan Hankou Hospital, 430000 Wuhan, Hubei China
| | - Xiaopeng Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 100071 Beijing, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Jianmin Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 100071 Beijing, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Liwei Dong
- National Center for Liver Cancer, Second Military Medical University, 200438 Shanghai, China
| | - Xiuliang Cui
- National Center for Liver Cancer, Second Military Medical University, 200438 Shanghai, China
| | - Yushan Miao
- Department of Respiratory and Critical Care Medicine, Changzheng
Hospital, Second Military Medical University, 200003 Shanghai, China
| | - Depeng Wang
- GrandOmics Diagnosis Co. Ltd., 430014 Wuhan, Hubei China
| | | | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 100071 Beijing, China
| | - Hongyang Wang
- National Center for Liver Cancer, Second Military Medical University, 200438 Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
- Ministry of Education (MOE) Key Laboratory of Signaling Regulation and
Targeting Therapy of Liver Cancer, Second Military Medical University, 200433 Shanghai, China
| |
Collapse
|
21
|
Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, Liu X, Xie L, Li J, Ye J, Dong L, Cui X, Miao Y, Wang D, Dong J, Xiao C, Chen W, Wang H. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov 2020; 6:31. [PMID: 32377375 DOI: 10.1101/2020.03.23.20039362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/10/2020] [Indexed: 05/27/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14++IL1β+ monocytes in the ERS. CD4+ T cells and CD8+ T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19.
Collapse
Affiliation(s)
- Wen Wen
- 1National Center for Liver Cancer, Second Military Medical University, 200438 Shanghai, China
| | - Wenru Su
- 2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Hao Tang
- 3Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, 200003 Shanghai, China
- Department of Critical Care, Wuhan Huoshenshan Hospital, 430113 Wuhan, Hubei China
| | - Wenqing Le
- Department of Critical Care, Wuhan Hankou Hospital, 430000 Wuhan, Hubei China
| | - Xiaopeng Zhang
- 6Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 100071 Beijing, China
| | - Yingfeng Zheng
- 2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Xiuxing Liu
- 2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Lihui Xie
- 2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Jianmin Li
- 6Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 100071 Beijing, China
| | - Jinguo Ye
- 2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Liwei Dong
- 1National Center for Liver Cancer, Second Military Medical University, 200438 Shanghai, China
| | - Xiuliang Cui
- 1National Center for Liver Cancer, Second Military Medical University, 200438 Shanghai, China
| | - Yushan Miao
- 3Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, 200003 Shanghai, China
| | - Depeng Wang
- GrandOmics Diagnosis Co. Ltd., 430014 Wuhan, Hubei China
| | | | - Chuanle Xiao
- 2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Wei Chen
- 6Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 100071 Beijing, China
| | - Hongyang Wang
- 1National Center for Liver Cancer, Second Military Medical University, 200438 Shanghai, China
- 9Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
- 10Ministry of Education (MOE) Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, 200433 Shanghai, China
| |
Collapse
|
22
|
Flyak AI, Ruiz SE, Salas J, Rho S, Bailey JR, Bjorkman PJ. An ultralong CDRH2 in HCV neutralizing antibody demonstrates structural plasticity of antibodies against E2 glycoprotein. eLife 2020; 9:e53169. [PMID: 32125272 PMCID: PMC7064334 DOI: 10.7554/elife.53169] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
A vaccine protective against diverse HCV variants is needed to control the HCV epidemic. Structures of E2 complexes with front layer-specific broadly neutralizing antibodies (bNAbs) isolated from HCV-infected individuals, revealed a disulfide bond-containing CDRH3 that adopts straight (individuals who clear infection) or bent (individuals with chronic infection) conformation. To investigate whether a straight versus bent disulfide bond-containing CDRH3 is specific to particular HCV-infected individuals, we solved a crystal structure of the HCV E2 ectodomain in complex with AR3X, a bNAb with an unusually long CDRH2 that was isolated from the chronically-infected individual from whom the bent CDRH3 bNAbs were derived. The structure revealed that AR3X utilizes both its ultralong CDRH2 and a disulfide motif-containing straight CDRH3 to recognize the E2 front layer. These results demonstrate that both the straight and bent CDRH3 classes of HCV bNAb can be elicited in a single individual, revealing a structural plasticity of VH1-69-derived bNAbs.
Collapse
Affiliation(s)
- Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Stormy E Ruiz
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jordan Salas
- Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Semi Rho
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
23
|
Bhullar D, Nemazee D. B Cells Carrying Antigen Receptors Against Microbes as Tools for Vaccine Discovery and Design. Curr Top Microbiol Immunol 2020; 428:165-180. [PMID: 30919086 PMCID: PMC6765437 DOI: 10.1007/82_2019_156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2024]
Abstract
Can basic science improve the art of vaccinology? Here, we review efforts to understand immune responses with the aim to improve vaccine design and, eventually, to predict the efficacy of human vaccine candidates using the tools of transformed B cells and targeted transgenic mice carrying B cells with antigen receptors specific for microbes of interest.
Collapse
Affiliation(s)
- Deepika Bhullar
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Rd, IM29, La Jolla, CA, 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Rd, IM29, La Jolla, CA, 92037, USA.
| |
Collapse
|
24
|
Kreer C, Gruell H, Mora T, Walczak AM, Klein F. Exploiting B Cell Receptor Analyses to Inform on HIV-1 Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010013. [PMID: 31906351 PMCID: PMC7157687 DOI: 10.3390/vaccines8010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
The human antibody repertoire is generated by the recombination of different gene segments as well as by processes of somatic mutation. Together these mechanisms result in a tremendous diversity of antibodies that are able to combat various pathogens including viruses and bacteria, or malignant cells. In this review, we summarize the opportunities and challenges that are associated with the analyses of the B cell receptor repertoire and the antigen-specific B cell response. We will discuss how recent advances have increased our understanding of the antibody response and how repertoire analyses can be exploited to inform on vaccine strategies, particularly against HIV-1.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Thierry Mora
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Aleksandra M. Walczak
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
25
|
Schleiss MR. Searching for a Serological Correlate of Protection for a CMV Vaccine. J Infect Dis 2019. [PMID: 29528437 DOI: 10.1093/infdis/jiy104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- M R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, and Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis
| |
Collapse
|
26
|
Keck ZY, Pierce BG, Lau P, Lu J, Wang Y, Underwood A, Bull RA, Prentoe J, Velázquez-Moctezuma R, Walker MR, Luciani F, Guest JD, Fauvelle C, Baumert TF, Bukh J, Lloyd AR, Foung SKH. Broadly neutralizing antibodies from an individual that naturally cleared multiple hepatitis C virus infections uncover molecular determinants for E2 targeting and vaccine design. PLoS Pathog 2019; 15:e1007772. [PMID: 31100098 PMCID: PMC6542541 DOI: 10.1371/journal.ppat.1007772] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/30/2019] [Accepted: 04/20/2019] [Indexed: 12/17/2022] Open
Abstract
Cumulative evidence supports a role for neutralizing antibodies contributing to spontaneous viral clearance during acute hepatitis C virus (HCV) infection. Information on the timing and specificity of the B cell response associated with clearance is crucial to inform vaccine design. From an individual who cleared three sequential HCV infections with genotypes 1b, 1a and 3a strains, respectively, we employed peripheral B cells to isolate and characterize neutralizing human monoclonal antibodies (HMAbs) to HCV after the genotype 1 infections. The majority of isolated antibodies, designated as HMAbs 212, target conformational epitopes on the envelope glycoprotein E2 and bound broadly to genotype 1–6 E1E2 proteins. Further, some of these antibodies showed neutralization potential against cultured genotype 1–6 viruses. Competition studies with defined broadly neutralizing HCV HMAbs to epitopes in distinct clusters, designated antigenic domains B, C, D and E, revealed that the selected HMAbs compete with B, C and D HMAbs, previously isolated from subjects with chronic HCV infections. Epitope mapping studies revealed domain B and C specificity of these HMAbs 212. Sequential serum samples from the studied subject inhibited the binding of HMAbs 212 to autologous E2 and blocked a representative domain D HMAb. The specificity of this antibody response appears similar to that observed during chronic infection, suggesting that the timing and affinity maturation of the antibody response are the critical determinants in successful and repeated viral clearance. While additional studies should be performed for individuals with clearance or persistence of HCV, our results define epitope determinants for antibody E2 targeting with important implications for the development of a B cell vaccine. Studies of hepatitis C virus (HCV) infected individuals spontaneously clearing acute infections provide an opportunity to characterize the specificities of associated protective antibody responses. In an individual who resolved three separate HCV infections with different HCV genotypes, the antibodies induced during these acute infection episodes were similar to those induced during chronic infection. Surprisingly, the earliest detected antibodies were directed against conformational HCV epitopes on the envelope glycoprotein E2 (including polyprotein residues 434–446) known to be targeted by broadly neutralizing antibodies. Taken together, the key B-cell determinants in spontaneous clearance are the timing and affinity maturation of broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janine Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute and School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rowena A. Bull
- Viral Immunology Systems Program, The Kirby Institute and School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie R. Walker
- Viral Immunology Systems Program, The Kirby Institute and School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fabio Luciani
- Viral Immunology Systems Program, The Kirby Institute and School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Johnathan D. Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Catherine Fauvelle
- Inserm U1110, Institut de Recherche sur les Maladies et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm U1110, Institut de Recherche sur les Maladies et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pole Hépato-digestif, Institut Hospitalo-Universitaire, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew R. Lloyd
- Viral Immunology Systems Program, The Kirby Institute and School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Computational Prediction of the Epitopes of HA1 Protein of Influenza Viruses to its Neutralizing Antibodies. Antibodies (Basel) 2018; 8:antib8010002. [PMID: 31544808 PMCID: PMC6640696 DOI: 10.3390/antib8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 11/17/2022] Open
Abstract
In this work, we have used a new method to predict the epitopes of HA1 protein of influenza virus to several antibodies HC19, CR9114, BH151 and 4F5. While our results reproduced the binding epitopes of H3N2 or H5N1 for the neutralizing antibodies HC19, CR9114, and BH151 as revealed from the available crystal structures, additional epitopes for these antibodies were also suggested. Moreover, the predicted epitopes of H5N1 HA1 for the newly developed antibody 4F5 are located at the receptor binding domain, while previous study identified a region 76-WLLGNP-81 as the epitope. The possibility of antibody recognition of influenza virus via different mechanism by binding to different epitopes of an antigen is also discussed.
Collapse
|
28
|
A Native Human Monoclonal Antibody Targeting HCMV gB (AD-2 Site I). Int J Mol Sci 2018; 19:ijms19123982. [PMID: 30544903 PMCID: PMC6321246 DOI: 10.3390/ijms19123982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/22/2022] Open
Abstract
Hyperimmune globulin (HIG) has shown efficacy against human cytomegalovirus (HCMV) for both transplant and congenital transmission indications. Replicating that activity with a monoclonal antibody (mAb) offers the potential for improved consistency in manufacturing, lower infusion volume, and improved pharmacokinetics, as well as reduced risk of off-target reactivity leading to toxicity. HCMV pathology is linked to its broad cell tropism. The glycoprotein B (gB) envelope protein is important for infections in all cell types. Within gB, the antigenic determinant (AD)-2 Site I is qualitatively more highly-conserved than any other region of the virus. TRL345, a high affinity (Kd = 50 pM) native human mAb to this site, has shown efficacy in neutralizing the infection of fibroblasts, endothelial and epithelial cells, as well as specialized placental cells including trophoblast progenitor cells. It has also been shown to block the infection of placental fragments grown ex vivo, and to reduce syncytial spread in fibroblasts in vitro. Manufacturing and toxicology preparation for filing an IND (investigational new drug) application with the US Food and Drug Administration (FDA) are expected to be completed in mid-2019.
Collapse
|
29
|
Baraniak I, Kropff B, McLean GR, Pichon S, Piras-Douce F, Milne RSB, Smith C, Mach M, Griffiths PD, Reeves MB. Epitope-Specific Humoral Responses to Human Cytomegalovirus Glycoprotein-B Vaccine With MF59: Anti-AD2 Levels Correlate With Protection From Viremia. J Infect Dis 2018; 217:1907-1917. [PMID: 29528415 PMCID: PMC5972559 DOI: 10.1093/infdis/jiy102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/23/2018] [Indexed: 12/05/2022] Open
Abstract
The human cytomegalovirus (HCMV) virion envelope protein glycoprotein B (gB) is essential for viral entry and represents a major target for humoral responses following infection. Previously, a phase 2 placebo-controlled clinical trial conducted in solid organ transplant candidates demonstrated that vaccination with gB plus MF59 adjuvant significantly increased gB enzyme-linked immunosorbent assay (ELISA) antibody levels whose titer correlated directly with protection against posttransplant viremia. The aim of the current study was to investigate in more detail this protective humoral response in vaccinated seropositive transplant recipients. We focused on 4 key antigenic domains (AD) of gB (AD1, AD2, AD4, and AD5), measuring antibody levels in patient sera and correlating these with posttransplant HCMV viremia. Vaccination of seropositive patients significantly boosted preexisting antibody levels against the immunodominant region AD1 as well as against AD2, AD4, and AD5. A decreased incidence of viremia correlated with higher antibody levels against AD2 but not with antibody levels against the other 3 ADs. Overall, these data support the hypothesis that antibodies against AD2 are a major component of the immune protection of seropositives seen following vaccination with gB/MF59 vaccine and identify a correlate of protective immunity in allograft patients.
Collapse
Affiliation(s)
- Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, United Kingdom
| | - Barbara Kropff
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Gary R McLean
- Cellular and Molecular Immunology Research Centre, London Metropolitan University, United Kingdom
| | - Sylvie Pichon
- Clinical Development, Sanofi Pasteur, Marcy l’Etoile, France
| | | | - Richard S B Milne
- Institute for Immunity and Transplantation, University College London, United Kingdom
| | - Colette Smith
- Research Department of Infection and Population Health, University College London, United Kingdom
| | - Michael Mach
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, United Kingdom
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, United Kingdom
| |
Collapse
|
30
|
Goodwin E, Gilman MSA, Wrapp D, Chen M, Ngwuta JO, Moin SM, Bai P, Sivasubramanian A, Connor RI, Wright PF, Graham BS, McLellan JS, Walker LM. Infants Infected with Respiratory Syncytial Virus Generate Potent Neutralizing Antibodies that Lack Somatic Hypermutation. Immunity 2018; 48:339-349.e5. [PMID: 29396163 PMCID: PMC6005179 DOI: 10.1016/j.immuni.2018.01.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/03/2017] [Accepted: 12/29/2017] [Indexed: 11/17/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of infant mortality, and there are currently no licensed vaccines to protect this vulnerable population. A comprehensive understanding of infant antibody responses to natural RSV infection would facilitate vaccine development. Here, we isolated more than 450 RSV fusion glycoprotein (F)-specific antibodies from 7 RSV-infected infants and found that half of the antibodies recognized only two antigenic sites. Antibodies targeting both sites showed convergent sequence features, and structural studies revealed the molecular basis for their recognition of RSV F. A subset of antibodies targeting one of these sites displayed potent neutralizing activity despite lacking somatic mutations, and similar antibodies were detected in RSV-naive B cell repertoires, suggesting that expansion of these B cells in infants may be possible with suitably designed vaccine antigens. Collectively, our results provide fundamental insights into infant antibody responses and a framework for the rational design of age-specific RSV vaccines.
Collapse
Affiliation(s)
| | - Morgan S A Gilman
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Daniel Wrapp
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Joan O Ngwuta
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Patricia Bai
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | - Ruth I Connor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Peter F Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jason S McLellan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | | |
Collapse
|
31
|
Chen L, Duan Y, Benatuil L, Stine WB. Analysis of 5518 unique, productively rearranged human VH3-23*01 gene sequences reveals CDR-H3 length-dependent usage of the IGHD2 gene family. Protein Eng Des Sel 2017; 30:603-609. [PMID: 28472386 DOI: 10.1093/protein/gzx027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/18/2017] [Indexed: 01/16/2023] Open
Abstract
Clear and accurate understanding of diversity in antibody complementarity-determining regions (CDRs) is critical for antibody discovery and engineering. Previous observations of antibody CDR-H3 diversity were based on analyzing available antibody sequences in the public databases. The results may not accurately reflect that of natural antibody repertoire due to erroneous species annotation and the presence of man-made CDR loop diversity in public antibody sequence databases. In this study, in a precisely controlled germline context, we explored the relationship between amino acid composition and CDR-H3 length using 5518 unique productively rearranged human VH3-23*01 gene sequences. CDR-H3 length-dependent usage of the Cys-Xn-Cys motif is reported here.
Collapse
Affiliation(s)
- Lei Chen
- Abbvie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Yuanyuan Duan
- Data and Statistical Sciences, 100 Research Drive, Worcester, MA 01605, USA
| | - Lorenzo Benatuil
- Abbvie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - William B Stine
- Abbvie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| |
Collapse
|
32
|
Di Palma F, Tramontano A. Dynamics behind affinity maturation of an anti-HCMV antibody family influencing antigen binding. FEBS Lett 2017; 591:2936-2950. [PMID: 28771696 DOI: 10.1002/1873-3468.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
Abstract
The investigation of antibody affinity maturation and its effects on antigen binding is important with respect to understanding the regulation of the immune response. To shed light on this crucial process, we analyzed two Igs neutralizing the human cytomegalovirus: the primary germline antibody M2J1 and its related mature antibody 8F9. Both antibodies target the AD-2S1 epitope of the gB envelope protein and are considered to establish similar interactions with the cognate antigen. We used molecular dynamics simulations to understand the effect of mutations on the antibody-antigen interactions. The results provide a qualitative explanation for the increased 8F9 peptide affinity compared with that of M2J1. The emerging atomistic-detailed description of these complexes reveals the molecular effects of the somatic hypermutations occurring during affinity maturation.
Collapse
Affiliation(s)
| | - Anna Tramontano
- Department of Physics, Sapienza - Università di Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Roma, Italy
| |
Collapse
|
33
|
Watson CT, Glanville J, Marasco WA. The Individual and Population Genetics of Antibody Immunity. Trends Immunol 2017; 38:459-470. [PMID: 28539189 PMCID: PMC5656258 DOI: 10.1016/j.it.2017.04.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
Antibodies (Abs) produced by immunoglobulin (IG) genes are the most diverse proteins expressed in humans. While part of this diversity is generated by recombination during B-cell development and mutations during affinity maturation, the germ-line IG loci are also diverse across human populations and ethnicities. Recently, proof-of-concept studies have demonstrated genotype–phenotype correlations between specific IG germ-line variants and the quality of Ab responses during vaccination and disease. However, the functional consequences of IG genetic variation in Ab function and immunological outcomes remain underexplored. In this opinion article, we outline interconnections between IG genomic diversity and Ab-expressed repertoires and structure. We further propose a strategy for integrating IG genotyping with functional Ab profiling data as a means to better predict and optimize humoral responses in genetically diverse human populations, with immediate implications for personalized medicine. Genetic variation in human populations affects how individuals are able to mount functional antibody responses. Different alleles can encode convergent binding motifs that result in successful Ab responses against specific infections and vaccinations. Given the complexity of the IG loci and the diversity of the antibody repertoire, links between IG polymorphism and antibody repertoire variability have not been thoroughly explored. We present a strategy to mine genotype–repertoire–disease associations.
Collapse
Affiliation(s)
- Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Jacob Glanville
- Institute for Immunity, Transplantation and Infection, and Computational and Systems Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Germline-encoded neutralization of a Staphylococcus aureus virulence factor by the human antibody repertoire. Nat Commun 2016; 7:13376. [PMID: 27857134 PMCID: PMC5120205 DOI: 10.1038/ncomms13376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/28/2016] [Indexed: 11/08/2022] Open
Abstract
Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe, we analysed the memory humoral response against IsdB, a protein involved in iron acquisition, in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions, the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39, with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while part of the adaptive immune system, may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition.
Collapse
|
35
|
Somatic Hypermutation-Induced Changes in the Structure and Dynamics of HIV-1 Broadly Neutralizing Antibodies. Structure 2016; 24:1346-1357. [PMID: 27477385 PMCID: PMC5250619 DOI: 10.1016/j.str.2016.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 01/07/2023]
Abstract
Antibody somatic hypermutation (SHM) and affinity maturation enhance antigen recognition by modifying antibody paratope structure to improve its complementarity with the target epitope. SHM-induced changes in paratope dynamics may also contribute to antibody maturation, but direct evidence of this is limited. Here, we examine two classes of HIV-1 broadly neutralizing antibodies (bNAbs) for SHM-induced changes in structure and dynamics, and delineate the effects of these changes on interactions with the HIV-1 envelope glycoprotein (Env). In combination with new and existing structures of unmutated and affinity matured antibody Fab fragments, we used hydrogen/deuterium exchange with mass spectrometry to directly measure Fab structural dynamics. Changes in antibody structure and dynamics were positioned to improve complementarity with Env, with changes in dynamics primarily observed at the paratope peripheries. We conclude that SHM optimizes paratope complementarity to conserved HIV-1 epitopes and restricts the mobility of paratope-peripheral residues to minimize clashes with variable features on HIV-1 Env.
Collapse
|
36
|
Bryson S, Thomson CA, Risnes LF, Dasgupta S, Smith K, Schrader JW, Pai EF. Structures of Preferred Human IgV Genes-Based Protective Antibodies Identify How Conserved Residues Contact Diverse Antigens and Assign Source of Specificity to CDR3 Loop Variation. THE JOURNAL OF IMMUNOLOGY 2016; 196:4723-30. [PMID: 27183571 DOI: 10.4049/jimmunol.1402890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/01/2016] [Indexed: 11/19/2022]
Abstract
The human Ab response to certain pathogens is oligoclonal, with preferred IgV genes being used more frequently than others. A pair of such preferred genes, IGVK3-11 and IGVH3-30, contributes to the generation of protective Abs directed against the 23F serotype of the pneumonococcal capsular polysaccharide of Streptococcus pneumoniae and against the AD-2S1 peptide of the gB membrane protein of human CMV. Structural analyses of Fab fragments of mAbs 023.102 and pn132p2C05 in complex with portions of the 23F polysaccharide revealed five germline-encoded residues in contact with the key component, l-rhamnose. In the case of the AD-2S1 peptide, the KE5 Fab fragment complex identified nine germline-encoded contact residues. Two of these germline-encoded residues, Arg91L and Trp94L, contact both the l-rhamnose and the AD-2S1 peptide. Comparison of the respective paratopes that bind to carbohydrate and protein reveals that stochastic diversity in both CDR3 loops alone almost exclusively accounts for their divergent specificity. Combined evolutionary pressure by human CMV and the 23F serotype of S. pneumoniae acted on the IGVK3-11 and IGVH3-30 genes as demonstrated by the multiple germline-encoded amino acids that contact both l-rhamnose and AD-2S1 peptide.
Collapse
Affiliation(s)
- Steve Bryson
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christy A Thomson
- Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Louise F Risnes
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Somnath Dasgupta
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Kenneth Smith
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - John W Schrader
- Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Emil F Pai
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
37
|
Abstract
A brief outline of antibody structure is followed by highlights from several recently determined crystal structures of human, antiviral Fabs. These Fabs all have novel structural features that allow them to potently and broadly neutralize their targets.
Collapse
|
38
|
Ohlin M, Söderberg-Nauclér C. Human antibody technology and the development of antibodies against cytomegalovirus. Mol Immunol 2015; 67:153-70. [DOI: 10.1016/j.molimm.2015.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
|
39
|
Finton KAK, Friend D, Jaffe J, Gewe M, Holmes MA, Larman HB, Stuart A, Larimore K, Greenberg PD, Elledge SJ, Stamatatos L, Strong RK. Ontogeny of recognition specificity and functionality for the broadly neutralizing anti-HIV antibody 4E10. PLoS Pathog 2014; 10:e1004403. [PMID: 25254371 PMCID: PMC4177983 DOI: 10.1371/journal.ppat.1004403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/16/2014] [Indexed: 01/07/2023] Open
Abstract
The process of antibody ontogeny typically improves affinity, on-rate, and thermostability, narrows polyspecificity, and rigidifies the combining site to the conformer optimal for binding from the broader ensemble accessible to the precursor. However, many broadly-neutralizing anti-HIV antibodies incorporate unusual structural elements and recognition specificities or properties that often lead to autoreactivity. The ontogeny of 4E10, an autoreactive antibody with unexpected combining site flexibility, was delineated through structural and biophysical comparisons of the mature antibody with multiple potential precursors. 4E10 gained affinity primarily by off-rate enhancement through a small number of mutations to a highly conserved recognition surface. Controverting the conventional paradigm, the combining site gained flexibility and autoreactivity during ontogeny, while losing thermostability, though polyspecificity was unaffected. Details of the recognition mechanism, including inferred global effects due to 4E10 binding, suggest that neutralization by 4E10 may involve mechanisms beyond simply binding, also requiring the ability of the antibody to induce conformational changes distant from its binding site. 4E10 is, therefore, unlikely to be re-elicited by conventional vaccination strategies.
Collapse
Affiliation(s)
- Kathryn A. K. Finton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Della Friend
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James Jaffe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mesfin Gewe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Margaret A. Holmes
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - H. Benjamin Larman
- Department of Genetics, Harvard University Medical School, and Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Andrew Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kevin Larimore
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Philip D. Greenberg
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Program in Immunology, Cancer Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Stephen J. Elledge
- Department of Genetics, Harvard University Medical School, and Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Leonidas Stamatatos
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Roland K. Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
40
|
Levin M, Davies AM, Liljekvist M, Carlsson F, Gould HJ, Sutton BJ, Ohlin M. Human IgE against the major allergen Bet v 1--defining an epitope with limited cross-reactivity between different PR-10 family proteins. Clin Exp Allergy 2014; 44:288-99. [PMID: 24447087 PMCID: PMC4215112 DOI: 10.1111/cea.12230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/24/2013] [Accepted: 10/25/2013] [Indexed: 02/05/2023]
Abstract
Background The interaction between IgE and allergen is a key event at the initiation of an allergic response, and its characteristics have substantial effects on the clinical manifestation. Despite this, the molecular details of the interaction between human IgE and the major birch allergen Bet v 1, one of the most potent tree allergens, still remain poorly investigated. Objective To isolate Bet v 1-specific human monoclonal IgE and characterize their interaction with the allergen. Methods Recombinant human IgE were isolated from a combinatorial antibody fragment library and their interaction with Bet v 1 assessed using various immunological assays. The structure of one such IgE in the single-chain fragment variable format was determined using X-ray crystallography. Results We present four novel Bet v 1-specific IgE, for one of which we solve the structure, all with their genetic origin in the IGHV5 germline gene, and demonstrate that they target two non-overlapping epitopes on the surface of Bet v 1, thereby fulfilling the basic criteria for FcεRI cross-linkage. We further define these epitopes and for one epitope pinpoint single amino acid residues important for the interaction with human IgE. This provides a potential explanation, at the molecular level, for the differences in recognition of isoforms of Bet v 1 and other allergens in the PR-10 protein family displayed by IgE targeting this epitope. Finally, we present the first high-resolution structure of a human allergen-specific IgE fragment in the single-chain fragment variable (scFv) format. Conclusions and Clinical Relevance We here display the usefulness of allergen-specific human monoclonal IgE as a tool in studies of the crucial molecular interaction taking place at the initiation of an allergic response. Such studies may aid us in development of better diagnostic tools and guide us in the development of new therapeutic compounds.
Collapse
Affiliation(s)
- M Levin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Saha S, Pashov A, Siegel ER, Murali R, Kieber-Emmons T. Defining the recognition elements of Lewis Y-reactive antibodies. PLoS One 2014; 9:e104208. [PMID: 25117628 PMCID: PMC4130537 DOI: 10.1371/journal.pone.0104208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 07/11/2014] [Indexed: 11/23/2022] Open
Abstract
Antibody response to carbohydrate antigens is often independent of T cells and the process of affinity/specificity improvement is considered strictly dependent on the germinal centers. Antibodies induced during a T cell-independent type 2 (TI-2) response are less variable and less functionally versatile than those induced with T cell help. The antigen specificity consequences of accumulation of somatic mutations in antibodies during TI-2 responses of Marginal Zone (MZ) B cells is a fact that still needs explanation. Germline genes that define carbohydrate-reactive antibodies are known to sculpt antibody-combining sites containing innate, key side-chain contacts that define the antigen recognition step. However, substitutions associated with MZ B cell derived antibodies might affect the mobility and polyspecificity of the antibody. To examine this hypothesis, we analyzed antibodies reactive with the neolactoseries antigen Lewis Y (LeY) to define the residue subset required for the reactive repertoire for the LeY antigen. Our molecular simulation studies of crystallographically determined and modeled antibody-LeY complexes suggests that the heavy-chain germline gene VH7183.a13.20 and the light-chain Vκ cr1 germline gene are sufficient to account for the recognition of the trisaccharide-H determinant Types 1–4, while the specificity for LeY is driven by the CDR3 backbone conformation of the heavy chain and not the side chain interactions. These results confirm that these monoclonals use germline-encoded amino acids to recognize simple carbohydrate determinants like trisaccharide-H but relies on somatic mutations in the periphery of the combining site to modify affinity for LeY through electrostatic interactions that leads to their optimized binding. These observations bring further attention to the role of mutations in T-cell independent antibodies to distinguish self from non-self carbohydrate antigens.
Collapse
Affiliation(s)
- Somdutta Saha
- Bioinformatics Graduate Program, University of Arkansas at Little Rock/University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Anastas Pashov
- Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Eric R. Siegel
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ramachandran Murali
- Department of Biological Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Thomas Kieber-Emmons
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Ohlin M. A new look at a poorly immunogenic neutralization epitope on cytomegalovirus glycoprotein B. Is there cause for antigen redesign? Mol Immunol 2014; 60:95-102. [PMID: 24802891 DOI: 10.1016/j.molimm.2014.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
Abstract
The immune response is able to control cytomegalovirus infection in most subjects. However, in some patient groups the virus is not well contained resulting in disease and severe morbidity. The development of efficacious vaccines is therefore a high priority. Antibodies may contribute to protection against disease caused by CMV but the most efficient targets for protective humoral immunity are not precisely known. Glycoprotein B (gB) is a protein that is targeted by virus-neutralizing antibodies. One epitope on gB, AD-2, is poorly immunogenic following natural infection and vaccination. It is consequently not effectively exploited as a target for antibodies by the immune system. However, antibodies specific for this epitope, when they develop, display important functional activities that may play a role in protection against infection. In this study critical features of human antibody recognition of this epitope are re-assessed based on structural and immunochemical data. The analysis suggests that the immune system may only be able to develop an AD-2 specific antibody response through rare, very specific rearrangement events that by chance create a naïve B cell that can be recruited into an AD-2 specific immune response. These results reinvigorate the notion that if we are to be able to effectively exploit AD-2 specific humoral immunity we need to readdress the nature of the antigen incorporated into vaccines so as to more effectively recruit B cells into the response against this epitope.
Collapse
Affiliation(s)
- Mats Ohlin
- Dept. of Immunotechnology, Lund University, Medicon Village, Building 406, S-22381 Lund, Sweden.
| |
Collapse
|
43
|
Malia TJ, Teplyakov A, Brezski RJ, Luo J, Kinder M, Sweet RW, Almagro JC, Jordan RE, Gilliland GL. Structure and specificity of an antibody targeting a proteolytically cleaved IgG hinge. Proteins 2014; 82:1656-67. [PMID: 24638881 DOI: 10.1002/prot.24545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/13/2014] [Accepted: 02/20/2014] [Indexed: 11/09/2022]
Abstract
The functional role of human antihinge (HAH) autoantibodies in normal health and disease remains elusive, but recent evidence supports their role in the host response to IgG cleavage by proteases that are prevalent in certain disorders. Characterization and potential exploitation of these HAH antibodies has been hindered by the absence of monoclonal reagents. 2095-2 is a rabbit monoclonal antibody targeting the IdeS-cleaved hinge of human IgG1. We have determined the crystal structure of the Fab of 2095-2 and its complex with a hinge analog peptide. The antibody is selective for the C-terminally cleaved hinge ending in G236 and this interaction involves an uncommon disulfide in VL CDR3. We probed the importance of the disulfide in VL CDR3 through engineering variants. We identified one variant, QAA, which does not require the disulfide for biological activity or peptide binding. The structure of this variant offers a starting point for further engineering of 2095-2 with the same specificity, but lacking the potential manufacturing liability of an additional disulfide. Proteins 2014; 82:1656-1667. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas J Malia
- Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McCutcheon KM, Gray J, Chen NY, Liu K, Park M, Ellsworth S, Tripp RA, Tompkins SM, Johnson SK, Samet S, Pereira L, Kauvar LM. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets. MAbs 2014; 6:460-73. [PMID: 24492306 DOI: 10.4161/mabs.27760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape.
Collapse
Affiliation(s)
| | | | | | - Keyi Liu
- Trellis Biosciences; South San Francisco, CA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang F, Ekiert DC, Ahmad I, Yu W, Zhang Y, Bazirgan O, Torkamani A, Raudsepp T, Mwangi W, Criscitiello MF, Wilson IA, Schultz PG, Smider VV. Reshaping antibody diversity. Cell 2013; 153:1379-93. [PMID: 23746848 DOI: 10.1016/j.cell.2013.04.049] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/15/2013] [Accepted: 04/23/2013] [Indexed: 11/16/2022]
Abstract
Some species mount a robust antibody response despite having limited genome-encoded combinatorial diversity potential. Cows are unusual in having exceptionally long CDR H3 loops and few V regions, but the mechanism for creating diversity is not understood. Deep sequencing reveals that ultralong CDR H3s contain a remarkable complexity of cysteines, suggesting that disulfide-bonded minidomains may arise during repertoire development. Indeed, crystal structures of two cow antibodies reveal that these CDR H3s form a very unusual architecture composed of a β strand "stalk" that supports a structurally diverse, disulfide-bonded "knob" domain. Diversity arises from somatic hypermutation of an ultralong DH with a severe codon bias toward mutation to cysteine. These unusual antibodies can be elicited to recognize defined antigens through the knob domain. Thus, the bovine immune system produces an antibody repertoire composed of ultralong CDR H3s that fold into a diversity of minidomains generated through combinations of somatically generated disulfides.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Characterization of pathogenic human monoclonal autoantibodies against GM-CSF. Proc Natl Acad Sci U S A 2013; 110:7832-7. [PMID: 23620516 DOI: 10.1073/pnas.1216011110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin of pathogenic autoantibodies remains unknown. Idiopathic pulmonary alveolar proteinosis is caused by autoantibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF). We generated 19 monoclonal autoantibodies against GM-CSF from six patients with idiopathic pulmonary alveolar proteinosis. The autoantibodies used multiple V genes, excluding preferred V-gene use as an etiology, and targeted at least four nonoverlapping epitopes on GM-CSF, suggesting that GM-CSF is driving the autoantibodies and not a B-cell epitope on a pathogen cross-reacting with GM-CSF. The number of somatic mutations in the autoantibodies suggests that the memory B cells have been helped by T cells and re-entered germinal centers. All autoantibodies neutralized GM-CSF bioactivity, with general correlations to affinity and off-rate. The binding of certain autoantibodies was changed by point mutations in GM-CSF that reduced binding to the GM-CSF receptor. Those monoclonal autoantibodies that potently neutralize GM-CSF may be useful in treating inflammatory disease, such as rheumatoid arthritis and multiple sclerosis, cancer, and pain.
Collapse
|
47
|
Structural basis for HIV-1 gp120 recognition by a germ-line version of a broadly neutralizing antibody. Proc Natl Acad Sci U S A 2013; 110:6049-54. [PMID: 23524883 DOI: 10.1073/pnas.1303682110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Efforts to design an effective antibody-based vaccine against HIV-1 would benefit from understanding how germ-line B-cell receptors (BCRs) recognize the HIV-1 gp120/gp41 envelope spike. Potent VRC01-like (PVL) HIV-1 antibodies derived from the VH1-2*02 germ-line allele target the conserved CD4 binding site on gp120. A bottleneck for design of immunogens capable of eliciting PVL antibodies is that VH1-2*02 germ-line BCR interactions with gp120 are uncharacterized. Here, we report the structure of a VH1-2*02 germ-line antibody alone and a germ-line heavy-chain/mature light-chain chimeric antibody complexed with HIV-1 gp120. VH1-2*02 residues make extensive contacts with the gp120 outer domain, including all PVL signature and CD4 mimicry interactions, but not critical CDRH3 contacts with the gp120 inner domain and bridging sheet that are responsible for the improved potency of NIH45-46 over closely related clonal variants, such as VRC01. Our results provide insight into initial recognition of HIV-1 by VH1-2*02 germ-line BCRs and may facilitate the design of immunogens tailored to engage and stimulate broad and potent CD4 binding site antibodies.
Collapse
|
48
|
A simplified method for the efficient refolding and purification of recombinant human GM-CSF. PLoS One 2012; 7:e49891. [PMID: 23166789 PMCID: PMC3498172 DOI: 10.1371/journal.pone.0049891] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/17/2012] [Indexed: 01/09/2023] Open
Abstract
Human granulocyte macrophage colony-stimulating factor (hGM-CSF) is a haematopoietic growth factor and proinflammatory cytokine. Recombinant hGM-CSF is important not only as a research tool but also as a biotherapeutic. However, rhGM-CSF expressed in E. coli is known to form inclusion bodies of misfolded, aggregated protein. Refolding and subsequent purification of rhGM-CSF from inclusion bodies is difficult with low yields of bioactive protein being produced. Here we describe a method for the isolation, refolding and purification of bioactive rhGM-CSF from inclusion bodies. The method is straightforward, not requiring extensive experience in protein refolding nor purification and using standard laboratory equipment.
Collapse
|
49
|
Bhowmick A, Salunke DM. Limited conformational flexibility in the paratope may be responsible for degenerate specificity of HIV epitope recognition. Int Immunol 2012; 25:77-90. [DOI: 10.1093/intimm/dxs093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Almagro JC, Raghunathan G, Beil E, Janecki DJ, Chen Q, Dinh T, LaCombe A, Connor J, Ware M, Kim PH, Swanson RV, Fransson J. Characterization of a high-affinity human antibody with a disulfide bridge in the third complementarity-determining region of the heavy chain. J Mol Recognit 2012; 25:125-35. [PMID: 22407976 DOI: 10.1002/jmr.1168] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Disulfide bridges are common in the antigen-binding site from sharks (new antigen receptor) and camels (single variable heavy-chain domain, VHH), in which they confer both structural diversity and domain stability. In human antibodies, cysteine residues in the third complementarity-determining region of the heavy chain (CDR-H3) are rare but naturally encoded in the IGHD germline genes. Here, by panning a phage display library designed based on human germline genes and synthetic CDR-H3 regions against a human cytokine, we identified an antibody (M3) containing two cysteine residues in the CDR-H3. It binds the cytokine with high affinity (0.4 nM), recognizes a unique epitope on the antigen, and has a distinct neutralization profile as compared with all other antibodies selected from the library. The two cysteine residues form a disulfide bridge as determined by mass spectrometric peptide mapping. Replacing the cysteines with alanines did not change the solubility and stability of the monoclonal antibody, but binding to the antigen was significantly impaired. Three-dimensional modeling and dynamic simulations were employed to explore how the disulfide bridge influences the conformation of CDR-H3 and binding to the antigen. On the basis of these results, we envision that designing human combinatorial antibody libraries to contain intra-CDR or inter-CDR disulfide bridges could lead to identification of human antibodies with unique binding profiles.
Collapse
|