1
|
Yi X, Huang Y, Li X, Xu H, Liu C, Li C, Zeng Q, Luo H, Ye Z, He J, You X. Decoding Mycoplasma Nucleases: Biological Functions and Pathogenesis. Toxins (Basel) 2025; 17:215. [PMID: 40423298 DOI: 10.3390/toxins17050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Nucleases are critical metabolic enzymes expressed by mycoplasmas to acquire nucleic acid precursors from the host for their parasitic existence. Certain nucleases, either membrane-bound or secreted, not only contribute to the growth of mycoplasmas but also serve as key virulence factors due to their unique spatial structures and physiological activity. The pathogenesis includes, but is not limited to, degradation of host DNA and RNA, leading to disruptions of nucleic acid metabolism and the induction of host cell apoptosis; degradation of neutrophil extracellular traps (NETs), allowing escape from neutrophil-mediated killing; and upregulation of inflammatory molecules to modulate the immune response of the host. Understanding the biological functions of nucleases is essential for gaining deeper insights into the virulence and immune evasion strategies of mycoplasmas, which can inform the development of novel approaches for the prevention, diagnosis, and treatment of mycoplasma infections.
Collapse
Affiliation(s)
- Xinchao Yi
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Ying Huang
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Xinru Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Hao Xu
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Chang Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Chao Li
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Qianrui Zeng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Haodang Luo
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zufeng Ye
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Xiaoxing You
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
2
|
Cieplak-Rotowska MK, Dadlez M, Niedzwiecka A. Exploring the CNOT1(800-999) HEAT Domain and Its Interactions with Tristetraprolin (TTP) as Revealed by Hydrogen/Deuterium Exchange Mass Spectrometry. Biomolecules 2025; 15:403. [PMID: 40149939 PMCID: PMC11939966 DOI: 10.3390/biom15030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
CNOT1, a key scaffold in the CCR4-NOT complex, plays a critical role in mRNA decay, particularly in the regulation of inflammatory responses through its interaction with tristetraprolin. A fragment of the middle part of CNOT1 (residues 800-999) is an example of an α-helical HEAT-like repeat domain. The HEAT motif is an evolutionarily conserved motif present in scaffolding and transport proteins across a wide range of organisms. Using hydrogen/deuterium exchange mass spectrometry (HDX MS), a method that has not been widely explored in the context of HEAT repeats, we analysed the structural dynamics of wild-type CNOT1(800-999) and its two double point mutants (E893A/Y900A, E893Q/Y900H) to find the individual contributions of these CNOT1 residues to the molecular recognition of tristetraprolin (TTP). Our results show that the differences in the interactions of CNOT1(800-999) variants with the TTP peptide fragment are due to the absence of the critical residues resulting from point mutations and not due to the perturbation of the protein structure. Nevertheless, the HDX MS was able to detect slight local changes in structural dynamics induced by protein point mutations, which are usually neglected in studies of intermolecular interactions.
Collapse
Affiliation(s)
- Maja K. Cieplak-Rotowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, PL-02089 Warsaw, Poland;
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Michał Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106 Warsaw, Poland;
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| |
Collapse
|
3
|
Lee YS, Levdansky Y, Jung Y, Kim VN, Valkov E. Deadenylation kinetics of mixed poly(A) tails at single-nucleotide resolution. Nat Struct Mol Biol 2024; 31:826-834. [PMID: 38374449 PMCID: PMC11102861 DOI: 10.1038/s41594-023-01187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/24/2023] [Indexed: 02/21/2024]
Abstract
Shortening of messenger RNA poly(A) tails, or deadenylation, is a rate-limiting step in mRNA decay and is highly regulated during gene expression. The incorporation of non-adenosines in poly(A) tails, or 'mixed tailing', has been observed in vertebrates and viruses. Here, to quantitate the effect of mixed tails, we mathematically modeled deadenylation reactions at single-nucleotide resolution using an in vitro deadenylation system reconstituted with the complete human CCR4-NOT complex. Applying this model, we assessed the disrupting impact of single guanosine, uridine or cytosine to be equivalent to approximately 6, 8 or 11 adenosines, respectively. CCR4-NOT stalls at the 0, -1 and -2 positions relative to the non-adenosine residue. CAF1 and CCR4 enzyme subunits commonly prefer adenosine but exhibit distinct sequence selectivities and stalling positions. Our study provides an analytical framework to monitor deadenylation and reveals the molecular basis of tail sequence-dependent regulation of mRNA stability.
Collapse
Affiliation(s)
- Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Yevgen Levdansky
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Yoonseok Jung
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
4
|
Krempl C, Lazzaretti D, Sprangers R. A structural biology view on the enzymes involved in eukaryotic mRNA turnover. Biol Chem 2023; 404:1101-1121. [PMID: 37709756 DOI: 10.1515/hsz-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Daniela Lazzaretti
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
5
|
Zhao Q, Pavanello L, Bartlam M, Winkler GS. Structure and function of molecular machines involved in deadenylation-dependent 5'-3' mRNA degradation. Front Genet 2023; 14:1233842. [PMID: 37876592 PMCID: PMC10590902 DOI: 10.3389/fgene.2023.1233842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
In eukaryotic cells, the synthesis, processing, and degradation of mRNA are important processes required for the accurate execution of gene expression programmes. Fully processed cytoplasmic mRNA is characterised by the presence of a 5'cap structure and 3'poly(A) tail. These elements promote translation and prevent non-specific degradation. Degradation via the deadenylation-dependent 5'-3' degradation pathway can be induced by trans-acting factors binding the mRNA, such as RNA-binding proteins recognising sequence elements and the miRNA-induced repression complex. These factors recruit the core mRNA degradation machinery that carries out the following steps: i) shortening of the poly(A) tail by the Ccr4-Not and Pan2-Pan3 poly (A)-specific nucleases (deadenylases); ii) removal of the 5'cap structure by the Dcp1-Dcp2 decapping complex that is recruited by the Lsm1-7-Pat1 complex; and iii) degradation of the mRNA body by the 5'-3' exoribonuclease Xrn1. In this review, the biochemical function of the nucleases and accessory proteins involved in deadenylation-dependent mRNA degradation will be reviewed with a particular focus on structural aspects of the proteins and enzymes involved.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | | |
Collapse
|
6
|
Kulshrestha S, Devkar R. Circadian control of Nocturnin and its regulatory role in health and disease. Chronobiol Int 2023; 40:970-981. [PMID: 37400970 DOI: 10.1080/07420528.2023.2231081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Circadian rhythms are generated by intrinsic 24-h oscillations that anticipate the extrinsic changes associated with solar day. A conserved transcriptional-translational feedback loop generates these molecular oscillations of clock genes at the organismal and the cellular levels. One of the recently discovered outputs of circadian clock is Nocturnin (Noct) or Ccrn4l. In mice, Noct mRNA is broadly expressed in cells throughout the body, with a particularly high-amplitude rhythm in liver. NOCT belongs to the EEP family of proteins with the closest similarity to the CCR4 family of deadenylases. Multiple studies have investigated the role of Nocturnin in development, adipogenesis, lipid metabolism, inflammation, osteogenesis, and obesity. Further, mice lacking Noct (Noct KO or Noct-/-) are protected from high-fat diet-induced obesity and hepatic steatosis. Recent studies had provided new insights by investigating various aspects of Nocturnin, ranging from its sub-cellular localization to identification of its target transcripts. However, a profound understanding of its molecular function remains elusive. This review article seeks to integrate the available literature into our current understanding of the functions of Nocturnin, their regulatory roles in key tissues and to throw light on the existing scientific lacunae.
Collapse
Affiliation(s)
- Shruti Kulshrestha
- Chronobiology and Molecular Endocrinology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ranjitsinh Devkar
- Chronobiology and Molecular Endocrinology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
7
|
Pavanello L, Hall M, Winkler GS. Regulation of eukaryotic mRNA deadenylation and degradation by the Ccr4-Not complex. Front Cell Dev Biol 2023; 11:1153624. [PMID: 37152278 PMCID: PMC10157403 DOI: 10.3389/fcell.2023.1153624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Accurate and precise regulation of gene expression programmes in eukaryotes involves the coordinated control of transcription, mRNA stability and translation. In recent years, significant progress has been made about the role of sequence elements in the 3' untranslated region for the regulation of mRNA degradation, and a model has emerged in which recruitment of the Ccr4-Not complex is the critical step in the regulation of mRNA decay. Recruitment of the Ccr4-Not complex to a target mRNA results in deadenylation mediated by the Caf1 and Ccr4 catalytic subunits of the complex. Following deadenylation, the 5' cap structure is removed, and the mRNA subjected to 5'-3' degradation. Here, the role of the human Ccr4-Not complex in cytoplasmic deadenylation of mRNA is reviewed, with a particular focus on mechanisms of its recruitment to mRNA by sequence motifs in the 3' untranslated region, codon usage, as well as general mechanisms involving the poly(A) tail.
Collapse
Affiliation(s)
- Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael Hall
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | | |
Collapse
|
8
|
Raisch T, Valkov E. Regulation of the multisubunit CCR4-NOT deadenylase in the initiation of mRNA degradation. Curr Opin Struct Biol 2022; 77:102460. [PMID: 36116370 PMCID: PMC9771892 DOI: 10.1016/j.sbi.2022.102460] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022]
Abstract
The conserved CCR4-NOT complex initiates the decay of mRNAs by catalyzing the shortening of their poly(A) tails in a process known as deadenylation. Recent studies have provided mechanistic insights into the action and regulation of this molecular machine. The two catalytic enzymatic subunits of the complex hydrolyze polyadenosine RNA. Notably, the non-catalytic subunits substantially enhance the complex's affinity and sequence selectivity for polyadenosine by directly contacting the RNA. An additional regulatory mechanism is the active recruitment of the CCR4-NOT to transcripts targeted for decay by RNA-binding proteins that recognize motifs or sequences residing predominantly in untranslated regions. This targeting and strict control of the mRNA deadenylation process emerges as a crucial nexus during post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Tobias Raisch
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Eugene Valkov
- RNA Biology Laboratory & Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
9
|
Li CY, Liang Z, Hu Y, Zhang H, Setiasabda KD, Li J, Ma S, Xia X, Kuang Y. Cytidine-containing tails robustly enhance and prolong protein production of synthetic mRNA in cell and in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:300-310. [PMID: 36320322 PMCID: PMC9614650 DOI: 10.1016/j.omtn.2022.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Synthetic mRNAs are rising rapidly as alternative therapeutic agents for delivery of proteins. However, the practical use of synthetic mRNAs has been restricted by their low cellular stability as well as poor protein production efficiency. The key roles of poly(A) tail on mRNA biology inspire us to explore the optimization of tail sequence to overcome the aforementioned limitations. Here, the systematic substitution of non-A nucleotides in the tails revealed that cytidine-containing tails can substantially enhance the protein production rate and duration of synthetic mRNAs both in vitro and in vivo. Such C-containing tails shield synthetic mRNAs from deadenylase CCR4-NOT transcription complex, as the catalytic CNOT proteins, especially CNOT6L and CNOT7, have lower efficiency in trimming of cytidine. Consistently, these enhancement effects of C-containing tails were observed on all synthetic mRNAs tested and were independent of transfection reagents and cell types. As the C-containing tails can be used along with other mRNA enhancement technologies to synergically boost protein production, we believe that these tails can be broadly used on synthetic mRNAs to directly promote their clinical applications.
Collapse
Affiliation(s)
- Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhenghua Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yaxin Hu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Kharis Daniel Setiasabda
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiawei Li
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518057, China
| | - Shaohua Ma
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518057, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China,HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China,Corresponding author Yi Kuang, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Katsumura S, Siddiqui N, Goldsmith MR, Cheah JH, Fujikawa T, Minegishi G, Yamagata A, Yabuki Y, Kobayashi K, Shirouzu M, Inagaki T, Huang THM, Musi N, Topisirovic I, Larsson O, Morita M. Deadenylase-dependent mRNA decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metab 2022; 34:564-580.e8. [PMID: 35385705 PMCID: PMC9386786 DOI: 10.1016/j.cmet.2022.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Hepatokines, secretory proteins from the liver, mediate inter-organ communication to maintain a metabolic balance between food intake and energy expenditure. However, molecular mechanisms by which hepatokine levels are rapidly adjusted following stimuli are largely unknown. Here, we unravel how CNOT6L deadenylase switches off hepatokine expression after responding to stimuli (e.g., exercise and food) to orchestrate energy intake and expenditure. Mechanistically, CNOT6L inhibition stabilizes hepatic Gdf15 and Fgf21 mRNAs, increasing corresponding serum protein levels. The resulting upregulation of GDF15 stimulates the hindbrain to suppress appetite, while increased FGF21 affects the liver and adipose tissues to induce energy expenditure and lipid consumption. Despite the potential of hepatokines to treat metabolic disorders, their administration therapies have been challenging. Using small-molecule screening, we identified a CNOT6L inhibitor enhancing GDF15 and FGF21 hepatokine levels, which dramatically improves diet-induced metabolic syndrome. Our discovery, therefore, lays the foundation for an unprecedented strategy to treat metabolic syndrome.
Collapse
Affiliation(s)
- Sakie Katsumura
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nadeem Siddiqui
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | | | - Jaime H Cheah
- High Throughput Sciences Facility, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genki Minegishi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Atsushi Yamagata
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Yukako Yabuki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Graduate School of Clinical Pharmacy, Meiji Pharmaceutical University, Kiyose-shi, Tokyo 204-8588, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-shi, Gunma 371-8512, Japan
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; San Antonio Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Ivan Topisirovic
- Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, Division of Experimental Medicine and Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Masahiro Morita
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Zhang Q, Pavanello L, Potapov A, Bartlam M, Winkler GS. Structure of the human Ccr4-Not nuclease module using X-ray crystallography and electron paramagnetic resonance spectroscopy distance measurements. Protein Sci 2022; 31:758-764. [PMID: 34923703 PMCID: PMC8862426 DOI: 10.1002/pro.4262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Regulated degradation of mature, cytoplasmic mRNA is a key step in eukaryotic gene regulation. This process is typically initiated by the recruitment of deadenylase enzymes by cis-acting elements in the 3' untranslated region resulting in the shortening and removal of the 3' poly(A) tail of the target mRNA. The Ccr4-Not complex, a major eukaryotic deadenylase, contains two exoribonuclease subunits with selectivity toward poly(A): Caf1 and Ccr4. The Caf1 deadenylase subunit binds the MIF4G domain of the large subunit CNOT1 (Not1) that is the scaffold of the complex. The Ccr4 nuclease is connected to the complex via its leucine-rich repeat (LRR) domain, which binds Caf1, whereas the catalytic activity of Ccr4 is provided by its EEP domain. While the relative positions of the MIF4G domain of CNOT1, the Caf1 subunit, and the LRR domain of Ccr4 are clearly defined in current models, the position of the EEP nuclease domain of Ccr4 is ambiguous. Here, we use X-ray crystallography, the AlphaFold resource of predicted protein structures, and pulse electron paramagnetic resonance spectroscopy to determine and validate the position of the EEP nuclease domain of Ccr4 resulting in an improved model of the human Ccr4-Not nuclease module.
Collapse
Affiliation(s)
- Qionglin Zhang
- Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Lorenzo Pavanello
- School of PharmacyUniversity of NottinghamNottinghamUK,Present address:
LifeArcStevenage Bioscience Catalyst Open Innovation CampusStevenageUK
| | - Alexey Potapov
- School of Physics and Astronomy, Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Mark Bartlam
- Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | | |
Collapse
|
12
|
Stoney PN, Yanagiya A, Nishijima S, Yamamoto T. CNOT7 outcompetes its paralog CNOT8 for integration into the CCR4-NOT complex. J Mol Biol 2022; 434:167523. [DOI: 10.1016/j.jmb.2022.167523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
|
13
|
Gillen SL, Giacomelli C, Hodge K, Zanivan S, Bushell M, Wilczynska A. Differential regulation of mRNA fate by the human Ccr4-Not complex is driven by coding sequence composition and mRNA localization. Genome Biol 2021; 22:284. [PMID: 34615539 PMCID: PMC8496106 DOI: 10.1186/s13059-021-02494-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Regulation of protein output at the level of translation allows for a rapid adaptation to dynamic changes to the cell's requirements. This precise control of gene expression is achieved by complex and interlinked biochemical processes that modulate both the protein synthesis rate and stability of each individual mRNA. A major factor coordinating this regulation is the Ccr4-Not complex. Despite playing a role in most stages of the mRNA life cycle, no attempt has been made to take a global integrated view of how the Ccr4-Not complex affects gene expression. RESULTS This study has taken a comprehensive approach to investigate post-transcriptional regulation mediated by the Ccr4-Not complex assessing steady-state mRNA levels, ribosome position, mRNA stability, and protein production transcriptome-wide. Depletion of the scaffold protein CNOT1 results in a global upregulation of mRNA stability and the preferential stabilization of mRNAs enriched for G/C-ending codons. We also uncover that mRNAs targeted to the ER for their translation have reduced translational efficiency when CNOT1 is depleted, specifically downstream of the signal sequence cleavage site. In contrast, translationally upregulated mRNAs are normally localized in p-bodies, contain disorder-promoting amino acids, and encode nuclear localized proteins. Finally, we identify ribosome pause sites that are resolved or induced by the depletion of CNOT1. CONCLUSIONS We define the key mRNA features that determine how the human Ccr4-Not complex differentially regulates mRNA fate and protein synthesis through a mechanism linked to codon composition, amino acid usage, and mRNA localization.
Collapse
Affiliation(s)
- Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Chiara Giacomelli
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kelly Hodge
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Ania Wilczynska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Chen Y, Khazina E, Izaurralde E, Weichenrieder O. Crystal structure and functional properties of the human CCR4-CAF1 deadenylase complex. Nucleic Acids Res 2021; 49:6489-6510. [PMID: 34038562 PMCID: PMC8216464 DOI: 10.1093/nar/gkab414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 01/07/2023] Open
Abstract
The CCR4 and CAF1 deadenylases physically interact to form the CCR4-CAF1 complex and function as the catalytic core of the larger CCR4-NOT complex. Together, they are responsible for the eventual removal of the 3′-poly(A) tail from essentially all cellular mRNAs and consequently play a central role in the posttranscriptional regulation of gene expression. The individual properties of CCR4 and CAF1, however, and their respective contributions in different organisms and cellular environments are incompletely understood. Here, we determined the crystal structure of a human CCR4-CAF1 complex and characterized its enzymatic and substrate recognition properties. The structure reveals specific molecular details affecting RNA binding and hydrolysis, and confirms the CCR4 nuclease domain to be tethered flexibly with a considerable distance between both enzyme active sites. CCR4 and CAF1 sense nucleotide identity on both sides of the 3′-terminal phosphate, efficiently differentiating between single and consecutive non-A residues. In comparison to CCR4, CAF1 emerges as a surprisingly tunable enzyme, highly sensitive to pH, magnesium and zinc ions, and possibly allowing distinct reaction geometries. Our results support a picture of CAF1 as a primordial deadenylase, which gets assisted by CCR4 for better efficiency and by the assembled NOT proteins for selective mRNA targeting and regulation.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elena Khazina
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| |
Collapse
|
15
|
Cristodero M, Brogli R, Joss O, Schimanski B, Schneider A, Polacek N. tRNA 3' shortening by LCCR4 as a response to stress in Trypanosoma brucei. Nucleic Acids Res 2021; 49:1647-1661. [PMID: 33406257 PMCID: PMC7897491 DOI: 10.1093/nar/gkaa1261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/24/2020] [Accepted: 12/19/2020] [Indexed: 12/27/2022] Open
Abstract
Sensing of environmental cues is crucial for cell survival. To adapt to changes in their surroundings cells need to tightly control the repertoire of genes expressed at any time. Regulation of translation is key, especially in organisms in which transcription is hardly controlled, like Trypanosoma brucei. In this study, we describe the shortening of the bulk of the cellular tRNAs during stress at the expense of the conserved 3' CCA-tail. This tRNA shortening is specific for nutritional stress and renders tRNAs unsuitable substrates for translation. We uncovered the nuclease LCCR4 (Tb927.4.2430), a homologue of the conserved deadenylase Ccr4, as being responsible for tRNA trimming. Once optimal growth conditions are restored tRNAs are rapidly repaired by the trypanosome tRNA nucleotidyltransferase thus rendering the recycled tRNAs amenable for translation. This mechanism represents a fast and efficient way to repress translation during stress, allowing quick reactivation with a low energy input.
Collapse
Affiliation(s)
| | - Rebecca Brogli
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver Joss
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Bernd Schimanski
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Norbert Polacek
- Correspondence may also be addressed to Norbert Polacek. Tel: +41 031 631 4320;
| |
Collapse
|
16
|
Beta RAA, Kyritsis A, Douka V, Papanastasi E, Rizouli M, Leonidas DD, Vlachakis D, Balatsos NAA. Biochemical and in silico identification of the active site and the catalytic mechanism of the circadian deadenylase HESPERIN. FEBS Open Bio 2020; 12:1036-1049. [PMID: 33095977 PMCID: PMC9063446 DOI: 10.1002/2211-5463.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/04/2020] [Accepted: 10/20/2020] [Indexed: 11/23/2022] Open
Abstract
The 24‐h molecular clock is based on the stability of rhythmically expressed transcripts. The shortening of the poly(A) tail of mRNAs is often the first and rate‐limiting step that determines the lifespan of a mRNA and is catalyzed by deadenylases. Herein, we determine the catalytic site of Hesperin, a recently described circadian deadenylase in plants, using a modified site‐directed mutagenesis protocol and a custom vector, pATHRA. To explore the catalytic efficiency of AtHESPERIN, we investigated the effect of AMP and neomycin, and used molecular modeling simulations to propose a catalytic mechanism. Collectively, the biochemical and in silico results classify AtHESPERIN in the exonuclease–endonuclease–phosphatase deadenylase superfamily and contribute to the understanding of the intricate mechanisms of circadian mRNA turnover.
Collapse
Affiliation(s)
- Rafailia A A Beta
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece
| | - Athanasios Kyritsis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece.,Pulmonology Clinic, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Viopolis, 415 00, Larissa, Greece
| | - Veroniki Douka
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece
| | - Eirini Papanastasi
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece.,Department of Dermatology and Venereology, Lausanne University Hospital (CHUV), University of Lausanne, Switzerland
| | - Marianna Rizouli
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece
| | - Dimitrios Vlachakis
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Nikolaos A A Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 415 00, Larissa, Greece
| |
Collapse
|
17
|
Pinto PH, Kroupova A, Schleiffer A, Mechtler K, Jinek M, Weitzer S, Martinez J. ANGEL2 is a member of the CCR4 family of deadenylases with 2',3'-cyclic phosphatase activity. Science 2020; 369:524-530. [PMID: 32732418 DOI: 10.1126/science.aba9763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
RNA molecules are frequently modified with a terminal 2',3'-cyclic phosphate group as a result of endonuclease cleavage, exonuclease trimming, or de novo synthesis. During pre-transfer RNA (tRNA) and unconventional messenger RNA (mRNA) splicing, 2',3'-cyclic phosphates are substrates of the tRNA ligase complex, and their removal is critical for recycling of tRNAs upon ribosome stalling. We identified the predicted deadenylase angel homolog 2 (ANGEL2) as a human phosphatase that converts 2',3'-cyclic phosphates into 2',3'-OH nucleotides. We analyzed ANGEL2's substrate preference, structure, and reaction mechanism. Perturbing ANGEL2 expression affected the efficiency of pre-tRNA processing, X-box-binding protein 1 (XBP1) mRNA splicing during the unfolded protein response, and tRNA nucleotidyltransferase 1 (TRNT1)-mediated CCA addition onto tRNAs. Our results indicate that ANGEL2 is involved in RNA pathways that rely on the ligation or hydrolysis of 2',3'-cyclic phosphates.
Collapse
Affiliation(s)
- Paola H Pinto
- Max Perutz Labs, Medical University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Alena Kroupova
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Alexander Schleiffer
- IMP/IMBA Bioinformatics Core Facility, Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria.,Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Stefan Weitzer
- Max Perutz Labs, Medical University of Vienna, Vienna BioCenter, 1030 Vienna, Austria.
| | - Javier Martinez
- Max Perutz Labs, Medical University of Vienna, Vienna BioCenter, 1030 Vienna, Austria.
| |
Collapse
|
18
|
Tang TTL, Passmore LA. Recognition of Poly(A) RNA through Its Intrinsic Helical Structure. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:21-30. [PMID: 32295929 PMCID: PMC7116106 DOI: 10.1101/sqb.2019.84.039818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polyadenosine (poly(A)) tail, which is found on the 3’ end of almost all eukaryotic messenger RNAs (mRNAs), plays an important role in the posttranscriptional regulation of gene expression. Shortening of the poly(A) tail, a process known as deadenylation, is thought to be the first and rate-limiting step of mRNA turnover. Deadenylation is performed by the Pan2–Pan3 and Ccr4–Not complexes that contain highly conserved exonuclease enzymes Pan2, and Ccr4 and Caf1, respectively. These complexes have been extensively studied, but the mechanisms of how the deadenylase enzymes recognize the poly(A) tail were poorly understood until recently. Here, we summarize recent work from our laboratory demonstrating that the highly conserved Pan2 exonuclease recognizes the poly(A) tail, not through adenine-specific functional groups, but through the conformation of poly(A) RNA. Our biochemical, biophysical, and structural investigations suggest that poly(A) forms an intrinsic base-stacked, single-stranded helical conformation that is recognized by Pan2, and that disruption of this structure inhibits both Pan2 and Caf1. This intrinsic structure has been shown to be important in poly(A) recognition in other biological processes, further underlining the importance of the unique conformation of poly(A).
Collapse
Affiliation(s)
- Terence T L Tang
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
19
|
Mostafa D, Takahashi A, Yanagiya A, Yamaguchi T, Abe T, Kureha T, Kuba K, Kanegae Y, Furuta Y, Yamamoto T, Suzuki T. Essential functions of the CNOT7/8 catalytic subunits of the CCR4-NOT complex in mRNA regulation and cell viability. RNA Biol 2020; 17:403-416. [PMID: 31924127 PMCID: PMC6999631 DOI: 10.1080/15476286.2019.1709747] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Shortening of mRNA poly(A) tails (deadenylation) to trigger their decay is mediated mainly by the CCR4-NOT deadenylase complex. While four catalytic subunits (CNOT6, 6L 7, and 8) have been identified in the mammalian CCR4-NOT complex, their individual biological roles are not fully understood. In this study, we addressed the contribution of CNOT7/8 to viability of primary mouse embryonic fibroblasts (MEFs). We found that MEFs lacking CNOT7/8 expression [Cnot7/8-double knockout (dKO) MEFs] undergo cell death, whereas MEFs lacking CNOT6/6L expression (Cnot6/6l-dKO MEFs) remain viable. Co-immunoprecipitation analyses showed that CNOT6/6L are also absent from the CCR4-NOT complex in Cnot7/8-dKO MEFs. In contrast, either CNOT7 or CNOT8 still interacts with other subunits in the CCR4-NOT complex in Cnot6/6l-dKO MEFs. Exogenous expression of a CNOT7 mutant lacking catalytic activity in Cnot7/8-dKO MEFs cannot recover cell viability, even though CNOT6/6L exists to some extent in the CCR4-NOT complex, confirming that CNOT7/8 is essential for viability. Bulk poly(A) tail analysis revealed that mRNAs with longer poly(A) tails are more numerous in Cnot7/8-dKO MEFs than in Cnot6/6l-dKO MEFs. Consistent with elongated poly(A) tails, more mRNAs are upregulated and stabilized in Cnot7/8-dKO MEFs than in Cnot6/6l-dKO MEFs. Importantly, Cnot6/6l-dKO mice are viable and grow normally to adulthood. Taken together, the CNOT7/8 catalytic subunits are essential for deadenylation, which is necessary to maintain cell viability, whereas CNOT6/6L are not.
Collapse
Affiliation(s)
- Dina Mostafa
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Akiko Yanagiya
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Graduate School of Medicine, Akita University, Akita, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Taku Kureha
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yumi Kanegae
- Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Yasuhide Furuta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Laboratory for Immunogenetics, Riken Center of Integrative Medical Sciences, Yokohama, Japan
| | - Toru Suzuki
- Laboratory for Immunogenetics, Riken Center of Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
20
|
Pressler K, Mitterer F, Vorkapic D, Reidl J, Oberer M, Schild S. Characterization of Vibrio cholerae's Extracellular Nuclease Xds. Front Microbiol 2019; 10:2057. [PMID: 31551990 PMCID: PMC6746945 DOI: 10.3389/fmicb.2019.02057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative bacterium Vibrio cholerae encodes two nucleases, Dns and Xds, which play a major role during the human pathogen's lifecycle. Dns and Xds control three-dimensional biofilm formation and bacterial detachment from biofilms via degradation of extracellular DNA and thus contribute to the environmental, inter-epidemic persistence of the pathogen. During intestinal colonization the enzymes help evade the innate immune response, and therefore promote survival by mediating escape from neutrophil extracellular traps. Xds has the additional function of degrading extracellular DNA down to nucleotides, which are an important nutrient source for V. cholerae. Thus, Xds is a key enzyme for survival fitness during distinct stages of the V. cholerae lifecycle and could be a potential therapeutic target. This study provides detailed information about the enzymatic properties of Xds using purified protein in combination with a real time nuclease activity assay. The data define an optimal buffer composition for Xds activity as 50 mM Tris/HCl pH 7, 100 mM NaCl, 10 mM MgCl2, and 20 mM CaCl2. Moreover, maximal activity was observed using substrate DNA with low GC content and ambient temperatures of 20-25°C. In silico analysis and homology modeling predicted an exonuclease domain in the C-terminal part of the protein. Biochemical analyses with truncated variants and point mutants of Xds confirm that the C-terminal region is sufficient for nuclease activity. We also find that residues D787 and H837 within the predicted exonuclease domain are key to formation of the catalytic center.
Collapse
Affiliation(s)
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
21
|
Reconstitution of recombinant human CCR4-NOT reveals molecular insights into regulated deadenylation. Nat Commun 2019; 10:3173. [PMID: 31320642 PMCID: PMC6639331 DOI: 10.1038/s41467-019-11094-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
CCR4-NOT is a conserved multiprotein complex which regulates eukaryotic gene expression principally via shortening of poly(A) tails of messenger RNA or deadenylation. Here, we reconstitute a complete, recombinant human CCR4-NOT complex. Our reconstitution strategy permits strict compositional control to test mechanistic hypotheses with purified component variants. CCR4-NOT is more active and selective for poly(A) than the isolated exonucleases, CCR4a and CAF1, which have distinct deadenylation profiles in vitro. The exonucleases require at least two out of three conserved non-enzymatic modules (CAF40, NOT10:NOT11 or NOT) for full activity in CCR4-NOT. CAF40 and the NOT10:NOT11 module both bind RNA directly and stimulate deadenylation in a partially redundant manner. Linear motifs from different RNA-binding factors that recruit CCR4-NOT to specific mRNAs via protein-protein interactions with CAF40 can inhibit bulk deadenylation. We reveal an additional layer of regulatory complexity to the human deadenylation machinery, which may prime it either for general or target-specific degradation. The CCR4-NOT complex shortens poly(A) tails of messenger RNAs. By biochemical reconstitution of the entire human CCR4-NOT complex, the authors show the stimulatory roles of non-enzymatic subunits and the importance of the interaction between CAF40 and RNA binding proteins in targeted deadenylation.
Collapse
|
22
|
Abstract
The Ccr4-Not complex is an essential multi-subunit protein complex that plays a fundamental role in eukaryotic mRNA metabolism and has a multitude of different roles that impact eukaryotic gene expression . It has a conserved core of three Not proteins, the Ccr4 protein, and two Ccr4 associated factors, Caf1 and Caf40. A fourth Not protein, Not4, is conserved, but is only a stable subunit of the complex in yeast. Certain subunits have been duplicated during evolution, with functional divergence, such as Not3 in yeast, and Ccr4 or Caf1 in human. However the complex includes only one homolog for each protein. In addition, species-specific subunits are part of the complex, such as Caf130 in yeast or Not10 and Not11 in human. Two conserved catalytic functions are associated with the complex, deadenylation and ubiquitination . The complex adopts an L-shaped structure, in which different modules are bound to a large Not1 scaffold protein. In this chapter we will summarize our current knowledge of the architecture of the complex and of the structure of its constituents.
Collapse
Affiliation(s)
- Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland.
| | - Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland
| |
Collapse
|
23
|
Estrella MA, Du J, Chen L, Rath S, Prangley E, Chitrakar A, Aoki T, Schedl P, Rabinowitz J, Korennykh A. The metabolites NADP + and NADPH are the targets of the circadian protein Nocturnin (Curled). Nat Commun 2019; 10:2367. [PMID: 31147539 PMCID: PMC6542800 DOI: 10.1038/s41467-019-10125-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
Nocturnin (NOCT) is a rhythmically expressed protein that regulates metabolism under the control of circadian clock. It has been proposed that NOCT deadenylates and regulates metabolic enzyme mRNAs. However, in contrast to other deadenylases, purified NOCT lacks the deadenylase activity. To identify the substrate of NOCT, we conducted a mass spectrometry screen and report that NOCT specifically and directly converts the dinucleotide NADP+ into NAD+ and NADPH into NADH. Further, we demonstrate that the Drosophila NOCT ortholog, Curled, has the same enzymatic activity. We obtained the 2.7 Å crystal structure of the human NOCT•NADPH complex, which revealed that NOCT recognizes the chemically unique ribose-phosphate backbone of the metabolite, placing the 2′-terminal phosphate productively for removal. We provide evidence for NOCT targeting to mitochondria and propose that NADP(H) regulation, which takes place at least in part in mitochondria, establishes the molecular link between circadian clock and metabolism. Nocturnin is a rhythmically expressed protein that regulates metabolism under the control of circadian clock proposed to function through the deadenylation of metabolic enzyme mRNAs. Here the authors show that Nocturnin and its fly homolog Curled catalyze the removal of 2′-phosphate from NADP+ and NADPH, providing a direct link to metabolic regulation.
Collapse
Affiliation(s)
- Michael A Estrella
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Jin Du
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Li Chen
- 285 Frick Laboratory, Department of Chemistry, Princeton, NJ, 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, 08544, USA
| | - Sneha Rath
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Eliza Prangley
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Alisha Chitrakar
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Tsutomu Aoki
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Paul Schedl
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Joshua Rabinowitz
- 285 Frick Laboratory, Department of Chemistry, Princeton, NJ, 08544, USA. .,Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, 08544, USA.
| | - Alexei Korennykh
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA.
| |
Collapse
|
24
|
Tang TTL, Stowell JAW, Hill CH, Passmore LA. The intrinsic structure of poly(A) RNA determines the specificity of Pan2 and Caf1 deadenylases. Nat Struct Mol Biol 2019; 26:433-442. [PMID: 31110294 PMCID: PMC6555765 DOI: 10.1038/s41594-019-0227-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/11/2019] [Indexed: 11/09/2022]
Abstract
The 3' poly(A) tail of messenger RNA is fundamental to regulating eukaryotic gene expression. Shortening of the poly(A) tail, termed deadenylation, reduces transcript stability and inhibits translation. Nonetheless, the mechanism for poly(A) recognition by the conserved deadenylase complexes Pan2-Pan3 and Ccr4-Not is poorly understood. Here we provide a model for poly(A) RNA recognition by two DEDD-family deadenylase enzymes, Pan2 and the Ccr4-Not nuclease Caf1. Crystal structures of Saccharomyces cerevisiae Pan2 in complex with RNA show that, surprisingly, Pan2 does not form canonical base-specific contacts. Instead, it recognizes the intrinsic stacked, helical conformation of poly(A) RNA. Using a fully reconstituted biochemical system, we show that disruption of this structure-for example, by incorporation of guanosine into poly(A)-inhibits deadenylation by both Pan2 and Caf1. Together, these data establish a paradigm for specific recognition of the conformation of poly(A) RNA by proteins that regulate gene expression.
Collapse
Affiliation(s)
| | | | - Chris H Hill
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
25
|
Morita M, Siddiqui N, Katsumura S, Rouya C, Larsson O, Nagashima T, Hekmatnejad B, Takahashi A, Kiyonari H, Zang M, St-Arnaud R, Oike Y, Giguère V, Topisirovic I, Okada-Hatakeyama M, Yamamoto T, Sonenberg N. Hepatic posttranscriptional network comprised of CCR4-NOT deadenylase and FGF21 maintains systemic metabolic homeostasis. Proc Natl Acad Sci U S A 2019; 116:7973-7981. [PMID: 30926667 PMCID: PMC6475422 DOI: 10.1073/pnas.1816023116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Whole-body metabolic homeostasis is tightly controlled by hormone-like factors with systemic or paracrine effects that are derived from nonendocrine organs, including adipose tissue (adipokines) and liver (hepatokines). Fibroblast growth factor 21 (FGF21) is a hormone-like protein, which is emerging as a major regulator of whole-body metabolism and has therapeutic potential for treating metabolic syndrome. However, the mechanisms that control FGF21 levels are not fully understood. Herein, we demonstrate that FGF21 production in the liver is regulated via a posttranscriptional network consisting of the CCR4-NOT deadenylase complex and RNA-binding protein tristetraprolin (TTP). In response to nutrient uptake, CCR4-NOT cooperates with TTP to degrade AU-rich mRNAs that encode pivotal metabolic regulators, including FGF21. Disruption of CCR4-NOT activity in the liver, by deletion of the catalytic subunit CNOT6L, increases serum FGF21 levels, which ameliorates diet-induced metabolic disorders and enhances energy expenditure without disrupting bone homeostasis. Taken together, our study describes a hepatic CCR4-NOT/FGF21 axis as a hitherto unrecognized systemic regulator of metabolism and suggests that hepatic CCR4-NOT may serve as a target for devising therapeutic strategies in metabolic syndrome and related morbidities.
Collapse
Affiliation(s)
- Masahiro Morita
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229;
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Institute of Resource Development and Analysis, Kumamoto University, 860-0811 Kumamoto, Japan
| | - Nadeem Siddiqui
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Sakie Katsumura
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Christopher Rouya
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Scilifelab, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Takeshi Nagashima
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Kanagawa, Japan
| | - Bahareh Hekmatnejad
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 2T5, Canada
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| | - Hiroshi Kiyonari
- Laboratories for Animal Resource Development and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047 Hyogo, Japan
| | - Mengwei Zang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 2T5, Canada
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 860-8556 Kumamoto, Japan
| | - Vincent Giguère
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Mariko Okada-Hatakeyama
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Kanagawa, Japan
- Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Suita, 565-0871 Osaka, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan;
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada;
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
26
|
Abstract
Human deoxyribonuclease I (DNase I) is an endonuclease that catalyzes the hydrolysis of extracellular DNA and is just one of the numerous types of nucleases found in nature. The enzymatic mechanism for a single turnover is reasonably well understood based on biochemical and structural studies that are consistent with divalent metal ion dependent nonspecific nicking of a phosphodiester bond in one of the strands of double stranded DNA. Recombinant human DNase I (rhDNase I, rhDNase, Pulmozyme®, dornase alfa) has been expressed in mammalian cell culture in Chinese hamster ovary cells and developed clinically where it is aerosolized into the airways for treatment of pulmonary disease in patients with cystic fibrosis (CF). rhDNase I hydrolyzes the DNA in purulent sputum of CF patients and reduces sputum viscoelasticity. Reduction of high molecular weight DNA into smaller fragments by treatment with aerosolized rhDNase I has been proposed as the mechanism to reduce the mucus viscosity and improve mucus clearability from obstructed airways in patients. The improved clearance of the purulent mucus enhances pulmonary function and reduces recurrent exacerbations of respiratory symptoms. rhDNase I was approved for clinical use in 1993 and has been widely used as a safe and effective therapy for CF patients. The use of rhDNase I has also been investigated in other diseases where exogenous DNA has been implicated in the disease pathology.
Collapse
|
27
|
Webster MW, Chen YH, Stowell JAW, Alhusaini N, Sweet T, Graveley BR, Coller J, Passmore LA. mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases. Mol Cell 2019; 70:1089-1100.e8. [PMID: 29932902 PMCID: PMC6024076 DOI: 10.1016/j.molcel.2018.05.033] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023]
Abstract
Translation and decay of eukaryotic mRNAs is controlled by shortening of the poly(A) tail and release of the poly(A)-binding protein Pab1/PABP. The Ccr4-Not complex contains two exonucleases—Ccr4 and Caf1/Pop2—that mediate mRNA deadenylation. Here, using a fully reconstituted biochemical system with proteins from the fission yeast Schizosaccharomyces pombe, we show that Pab1 interacts with Ccr4-Not, stimulates deadenylation, and differentiates the roles of the nuclease enzymes. Surprisingly, Pab1 release relies on Ccr4 activity. In agreement with this, in vivo experiments in budding yeast show that Ccr4 is a general deadenylase that acts on all mRNAs. In contrast, Caf1 only trims poly(A) not bound by Pab1. As a consequence, Caf1 is a specialized deadenylase required for the selective deadenylation of transcripts with lower rates of translation elongation and reduced Pab1 occupancy. These findings reveal a coupling between the rates of translation and deadenylation that is dependent on Pab1 and Ccr4-Not. Poly(A)-binding protein is efficiently released by Ccr4-Not nuclease activity Ccr4, but not Caf1, removes poly(A) tails bound to Pab1 Ccr4 acts on all transcripts and Caf1 acts on transcripts with low codon optimality Deadenylation by Ccr4-Not connects translation with mRNA stability
Collapse
Affiliation(s)
| | - Ying-Hsin Chen
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | - Najwa Alhusaini
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | - Thomas Sweet
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | - Brenton R Graveley
- Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jeff Coller
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA.
| | | |
Collapse
|
28
|
Sha QQ, Yu JL, Guo JX, Dai XX, Jiang JC, Zhang YL, Yu C, Ji SY, Jiang Y, Zhang SY, Shen L, Ou XH, Fan HY. CNOT6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. EMBO J 2018; 37:embj.201899333. [PMID: 30478191 DOI: 10.15252/embj.201899333] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/09/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Meiotic resumption-coupled degradation of maternal transcripts occurs during oocyte maturation in the absence of mRNA transcription. The CCR4-NOT complex has been identified as the main eukaryotic mRNA deadenylase. In vivo functional and mechanistic information regarding its multiple subunits remains insufficient. Cnot6l, one of four genes encoding CCR4-NOT catalytic subunits, is preferentially expressed in mouse oocytes. Genetic deletion of Cnot6l impaired deadenylation and degradation of a subset of maternal mRNAs during oocyte maturation. Overtranslation of these undegraded mRNAs caused microtubule-chromosome organization defects, which led to activation of spindle assembly checkpoint and meiotic cell cycle arrest at prometaphase. Consequently, Cnot6l -/- female mice were severely subfertile. The function of CNOT6L in maturing oocytes is mediated by RNA-binding protein ZFP36L2, not maternal-to-zygotic transition licensing factor BTG4, which interacts with catalytic subunits CNOT7 and CNOT8 of CCR4-NOT Thus, recruitment of different adaptors by different catalytic subunits ensures stage-specific degradation of maternal mRNAs by CCR4-NOT This study provides the first direct genetic evidence that CCR4-NOT-dependent and particularly CNOT6L-dependent decay of selective maternal mRNAs is a prerequisite for meiotic maturation of oocytes.
Collapse
Affiliation(s)
- Qian-Qian Sha
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jia-Li Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jing-Xin Guo
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xing-Xing Dai
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jun-Chao Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yin-Li Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shu-Yan Ji
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Song-Ying Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiang-Hong Ou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Crystal Structure of Human Nocturnin Catalytic Domain. Sci Rep 2018; 8:16294. [PMID: 30389976 PMCID: PMC6214945 DOI: 10.1038/s41598-018-34615-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/19/2018] [Indexed: 11/29/2022] Open
Abstract
Nocturnin (NOCT) helps the circadian clock to adjust metabolism according to day and night activity. NOCT is upregulated in early evening and it has been proposed that NOCT serves as a deadenylase for metabolic enzyme mRNAs. We present a 2.7-Å crystal structure of the catalytic domain of human NOCT. Our structure shows that NOCT has a close overall similarity to CCR4 deadenylase family members, PDE12 and CNOT6L, and to a DNA repair enzyme TDP2. All the key catalytic residues present in PDE12, CNOT6L and TDP2 are conserved in NOCT and have the same conformations. However, we observe substantial differences in the surface properties of NOCT, an unexpectedly narrow active site pocket, and conserved structural elements in the vicinity of the catalytic center, which are unique to NOCT and absent in the deadenylases PDE12/CNOT6L. Moreover, we show that in contrast to human PDE12 and CNOT6L, NOCT is completely inactive against poly-A RNA. Our work thus reveals the structure of an intriguing circadian protein and suggests that NOCT has considerable differences from the related deadenylases, which may point to a unique cellular function of this enzyme.
Collapse
|
30
|
Hughes KL, Abshire ET, Goldstrohm AC. Regulatory roles of vertebrate Nocturnin: insights and remaining mysteries. RNA Biol 2018; 15:1255-1267. [PMID: 30257600 PMCID: PMC6284557 DOI: 10.1080/15476286.2018.1526541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional control of messenger RNA (mRNA) is an important layer of gene regulation that modulates mRNA decay, translation, and localization. Eukaryotic mRNA decay begins with the catalytic removal of the 3' poly-adenosine tail by deadenylase enzymes. Multiple deadenylases have been identified in vertebrates and are known to have distinct biological roles; among these proteins is Nocturnin, which has been linked to circadian biology, adipogenesis, osteogenesis, and obesity. Multiple studies have investigated Nocturnin's involvement in these processes; however, a full understanding of its molecular function remains elusive. Recent studies have provided new insights by identifying putative Nocturnin-regulated mRNAs in mice and by determining the structure and regulatory activities of human Nocturnin. This review seeks to integrate these new discoveries into our understanding of Nocturnin's regulatory functions and highlight the important remaining unanswered questions surrounding its regulation, biochemical activities, protein partners, and target mRNAs.
Collapse
Affiliation(s)
- Kelsey L. Hughes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth T. Abshire
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Aaron C. Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
Lim J, Kim D, Lee YS, Ha M, Lee M, Yeo J, Chang H, Song J, Ahn K, Kim VN. Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science 2018; 361:701-704. [PMID: 30026317 DOI: 10.1126/science.aam5794] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/17/2018] [Accepted: 07/10/2018] [Indexed: 01/13/2023]
Abstract
RNA tails play integral roles in the regulation of messenger RNA (mRNA) translation and decay. Guanylation of the poly(A) tail was discovered recently, yet the enzymology and function remain obscure. Here we identify TENT4A (PAPD7) and TENT4B (PAPD5) as the enzymes responsible for mRNA guanylation. Purified TENT4 proteins generate a mixed poly(A) tail with intermittent non-adenosine residues, the most common of which is guanosine. A single guanosine residue is sufficient to impede the deadenylase CCR4-NOT complex, which trims the tail and exposes guanosine at the 3' end. Consistently, depletion of TENT4A and TENT4B leads to a decrease in mRNA half-life and abundance in cells. Thus, TENT4A and TENT4B produce a mixed tail that shields mRNA from rapid deadenylation. Our study unveils the role of mixed tailing and expands the complexity of posttranscriptional gene regulation.
Collapse
Affiliation(s)
- Jaechul Lim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dongwan Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Minju Ha
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Mihye Lee
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jinah Yeo
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jaewon Song
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Republic of Korea. .,School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
32
|
Abshire ET, Chasseur J, Bohn JA, Del Rizzo PA, Freddolino L, Goldstrohm AC, Trievel RC. The structure of human Nocturnin reveals a conserved ribonuclease domain that represses target transcript translation and abundance in cells. Nucleic Acids Res 2018; 46:6257-6270. [PMID: 29860338 PMCID: PMC6158716 DOI: 10.1093/nar/gky412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
The circadian protein Nocturnin (NOCT) belongs to the exonuclease, endonuclease and phosphatase superfamily and is most similar to the CCR4-class of deadenylases that degrade the poly-adenosine tails of mRNAs. NOCT-deficient mice are resistant to high-fat diet induced weight gain, and exhibit dysregulation of bone formation. However, the mechanisms by which NOCT regulates these processes remain to be determined. Here, we describe a pair of high-resolution crystal structures of the human NOCT catalytic domain. The active site of NOCT is highly conserved with other exoribonucleases, and when directed to a transcript in cells, NOCT can reduce translation and abundance of that mRNA in a manner dependent on key active site residues. In contrast to the related deadenylase CNOT6L, purified recombinant NOCT lacks in vitro ribonuclease activity, suggesting that unidentified factors are necessary for enzymatic activity. We also find the ability of NOCT to repress reporter mRNAs in cells depends upon the 3' end of the mRNA, as reporters terminating with a 3' MALAT1 structure cannot be repressed by NOCT. Together, these data demonstrate that NOCT is an exoribonuclease that can degrade mRNAs to inhibit protein expression, suggesting a molecular mechanism for its regulatory role in lipid metabolism and bone development.
Collapse
Affiliation(s)
- Elizabeth T Abshire
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer Chasseur
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul A Del Rizzo
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Chen H, Sirupangi T, Wu ZH, Johnson DL, Laribee RN. The conserved RNA recognition motif and C3H1 domain of the Not4 ubiquitin ligase regulate in vivo ligase function. Sci Rep 2018; 8:8163. [PMID: 29802328 PMCID: PMC5970261 DOI: 10.1038/s41598-018-26576-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/16/2018] [Indexed: 11/09/2022] Open
Abstract
The Ccr4-Not complex controls RNA polymerase II (Pol II) dependent gene expression and proteasome function. The Not4 ubiquitin ligase is a Ccr4-Not subunit that has both a RING domain and a conserved RNA recognition motif and C3H1 domain (referred to as the RRM-C domain) with unknown function. We demonstrate that while individual Not4 RING or RRM-C mutants fail to replicate the proteasomal defects found in Not4 deficient cells, mutation of both exhibits a Not4 loss of function phenotype. Transcriptome analysis revealed that the Not4 RRM-C affects a specific subset of Pol II-regulated genes, including those involved in transcription elongation, cyclin-dependent kinase regulated nutrient responses, and ribosomal biogenesis. The Not4 RING, RRM-C, or RING/RRM-C mutations cause a generalized increase in Pol II binding at a subset of these genes, yet their impact on gene expression does not always correlate with Pol II recruitment which suggests Not4 regulates their expression through additional mechanisms. Intriguingly, we find that while the Not4 RRM-C is dispensable for Ccr4-Not association with RNA Pol II, the Not4 RING domain is required for these interactions. Collectively, these data elucidate previously unknown roles for the conserved Not4 RRM-C and RING domains in regulating Ccr4-Not dependent functions in vivo.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Tirupataiah Sirupangi
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Daniel L Johnson
- Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - R Nicholas Laribee
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America.
| |
Collapse
|
34
|
Reconstitution of Targeted Deadenylation by the Ccr4-Not Complex and the YTH Domain Protein Mmi1. Cell Rep 2017; 17:1978-1989. [PMID: 27851962 PMCID: PMC5120349 DOI: 10.1016/j.celrep.2016.10.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/10/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
Ccr4-Not is a conserved protein complex that shortens the 3' poly(A) tails of eukaryotic mRNAs to regulate transcript stability and translation into proteins. RNA-binding proteins are thought to facilitate recruitment of Ccr4-Not to certain mRNAs, but lack of an in-vitro-reconstituted system has slowed progress in understanding the mechanistic details of this specificity. Here, we generate a fully recombinant Ccr4-Not complex that removes poly(A) tails from RNA substrates. The intact complex is more active than the exonucleases alone and has an intrinsic preference for certain RNAs. The RNA-binding protein Mmi1 is highly abundant in preparations of native Ccr4-Not. We demonstrate a high-affinity interaction between recombinant Ccr4-Not and Mmi1. Using in vitro assays, we show that Mmi1 accelerates deadenylation of target RNAs. Together, our results support a model whereby both RNA-binding proteins and the sequence context of mRNAs influence deadenylation rate to regulate gene expression.
Collapse
|
35
|
Skeparnias I, Αnastasakis D, Shaukat AN, Grafanaki K, Stathopoulos C. Expanding the repertoire of deadenylases. RNA Biol 2017; 14:1320-1325. [PMID: 28267419 PMCID: PMC5711463 DOI: 10.1080/15476286.2017.1300222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 12/20/2022] Open
Abstract
Deadenylases belong to an expanding family of exoribonucleases involved mainly in mRNA stability and turnover, with the exception of PARN which has additional roles in the biogenesis of several important non-coding RNAs, including miRNAs and piRNAs. Recently, PARN in C. elegans and its homolog PNLDC1 in B. mori were reported as the elusive trimmers mediating piRNA biogenesis. In addition, characterization of mammalian PNLDC1 in comparison to PARN, showed that is specifically expressed in embryonic stem and germ cells, as well as during early embryo development. Moreover, its expression is correlated with epigenetic events mediated by the de novo DNMT3b methyltransferase and knockdown in stem cells upregulates important genes that regulate multipotency. The recent data suggest that at least some new deadenylases may have expanded roles in cell metabolism as regulators of gene expression, through mRNA deadenylation, ncRNAs biogenesis and ncRNA-mediated mRNA targeting, linking essential mechanisms that regulate epigenetic control and transition events during differentiation. The possible roles of mammalian PNLDC1 along those dynamic networks are discussed in the light of new extremely important findings.
Collapse
Affiliation(s)
- Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, Greece
| | | | | | - Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, Greece
| | | |
Collapse
|
36
|
Abstract
Poly(A) tails are found at the 3' end of almost every eukaryotic mRNA and are important for the stability of mRNAs and their translation into proteins. Thus, removal of the poly(A) tail, a process called deadenylation, is critical for regulation of gene expression. Most deadenylation enzymes are components of large multi-protein complexes. Here, we describe an in vitro deadenylation assay developed to study the exonucleolytic activities of the multi-protein Ccr4-Not and Pan2-Pan3 complexes. We discuss how this assay can be used with short synthetic RNAs, as well as longer RNA substrates generated using in vitro transcription. Importantly, quantitation of the reactions allows detailed analyses of deadenylation in the presence and absence of accessory factors, leading to new insights into targeted mRNA decay.
Collapse
|
37
|
Niinuma S, Tomari Y. ATP is dispensable for both miRNA- and Smaug-mediated deadenylation reactions. RNA (NEW YORK, N.Y.) 2017; 23:866-871. [PMID: 28250202 PMCID: PMC5435859 DOI: 10.1261/rna.060764.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/24/2017] [Indexed: 05/25/2023]
Abstract
MicroRNAs (miRNAs), as well as the RNA-binding protein Smaug, recruit the CCR4-NOT deadenylase complex for shortening of the poly(A) tail. It has been believed that ATP is required for deadenylation induced by miRNAs or Smaug, based on the fact that the deadenylation reaction is blocked by ATP depletion. However, when isolated, neither of the two deadenylases in the CCR4-NOT complex requires ATP by itself. Thus, it remains unknown why ATP is required for deadenylation by ribonucleoprotein complexes like miRNAs and Smaug. Herein we found that, in the absence of the ATP-regenerating system, ATP is rapidly consumed into AMP, a strong deadenylase inhibitor, in Drosophila cell lysate. Importantly, hydrolysis of AMP was sufficient to reactivate deadenylation by miRNAs or Smaug, suggesting that AMP accumulation, rather than ATP depletion, caused the inhibition of the deadenylation reaction. Our results indicate that ATP is dispensable for deadenylation induced by miRNAs or Smaug and emphasize caution in the use of ATP depletion methods.
Collapse
Affiliation(s)
- Sho Niinuma
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
38
|
Chou WL, Chung YL, Fang JC, Lu CA. Novel interaction between CCR4 and CAF1 in rice CCR4-NOT deadenylase complex. PLANT MOLECULAR BIOLOGY 2017; 93:79-96. [PMID: 27714489 DOI: 10.1007/s11103-016-0548-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. In yeast and humans, CCR4 can interact with CAF1 via its N-terminal LRR domain. However, no CCR4 protein containing N-terminal LRR motifs have been found in plants. In this manuscript, we demonstrate a novel pattern of interaction between OsCCR4 and OsCAF1 in the rice CCR4-NOT complex, and that OsCAF1 acts as a bridge between OsCCR4 and OsNOT1 in this complex. Our results revealed that the Mynd-like domain at the N-terminus of rice CCR4 proteins and the PXLXP motif at the rice CAF1 N-terminus play critical roles in OsCCR4-OsCAF1 interaction. Deadenylation, also called poly(A) tail shortening, is the first rate-limiting step in general cytoplasmic mRNA degradation in eukaryotic cells. Carbon catabolite repressor (CCR)4 and CCR4-associated factor (CAF)1 in the CCR4-NOT complex function in mRNA poly(A) tail shortening. CCR4s contain N-terminal leucine-rich repeat (LRR) motifs that interact with CAF1s in yeast, fruit fly and mammals. In silico analysis has not identified any plant CCR4 proteins that contain LRR motifs. Here, two rice CCR4 homologous genes, OsCCR4a and OsCCR4b, were identified. The isolated recombinant exonuclease-endonuclease-phosphatase domain of OsCCR4a and OsCCR4b exhibited 3'-5' exonuclease activity in vitro, and point mutation of a catalytic residue in this domain disrupted the deadenylase activity. Both OsCCR4a and OsCCR4b fluorescent fusion proteins were localized in the rice cytoplasm and nucleus, and both associated with processing bodies via their N-terminus. Binding analyses showed that OsCCR4a and OsCCR4b directly interacted with three rice CAF1 family members: OsCAF1A, OsCAF1G and OsCAF1H. The zf-MYND-like domain at the N terminus of rice CCR4 and the PXLXP motif of rice CAF1 play critical roles in OsCCR4-OsCAF1 interaction. OsCAF1 proteins, but not OsCCR4 proteins, can interact with the MIG4G domain of rice OsNOT1. Our studies thus reveal a hitherto undiscovered novel interaction pattern that connects OsCCR4 and OsCAF1 in the rice CCR4-NOT complex.
Collapse
Affiliation(s)
- Wei-Lun Chou
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Yue-Lin Chung
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC.
| |
Collapse
|
39
|
Delis C, Krokida A, Tomatsidou A, Tsikou D, Beta RAA, Tsioumpekou M, Moustaka J, Stravodimos G, Leonidas DD, Balatsos NAA, Papadopoulou KK. AtHESPERIN: a novel regulator of circadian rhythms with poly(A)-degrading activity in plants. RNA Biol 2016; 13:68-82. [PMID: 26619288 DOI: 10.1080/15476286.2015.1119363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We report the identification and characterization of a novel gene, AtHesperin (AtHESP) that codes for a deadenylase in Arabidopsis thaliana. The gene is under circadian clock-gene regulation and has similarity to the mammalian Nocturnin. AtHESP can efficiently degrade poly(A) substrates exhibiting allosteric kinetics. Size exclusion chromatography and native electrophoresis coupled with kinetic analysis support that the native enzyme is oligomeric with at least 3 binding sites. Knockdown and overexpression of AtHESP in plant lines affects the expression and rhythmicity of the clock core oscillator genes TOC1 and CCA1. This study demonstrates an evolutionary conserved poly(A)-degrading activity in plants and suggests deadenylation as a mechanism involved in the regulation of the circadian clock. A role of AtHESP in stress response in plants is also depicted.
Collapse
Affiliation(s)
- Costas Delis
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Afrodite Krokida
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Anastasia Tomatsidou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Daniela Tsikou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Rafailia A A Beta
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Maria Tsioumpekou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Julietta Moustaka
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Georgios Stravodimos
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Demetres D Leonidas
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Nikolaos A A Balatsos
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| | - Kalliope K Papadopoulou
- a Department of Biochemistry and Biotechnology , University of Thessaly , Larissa , 412 21 , Greece
| |
Collapse
|
40
|
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3125-3147. [PMID: 27713097 DOI: 10.1016/j.bbamcr.2016.09.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Collapse
Affiliation(s)
- Anna Łabno
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
41
|
Niinuma S, Fukaya T, Tomari Y. CCR4 and CAF1 deadenylases have an intrinsic activity to remove the post-poly(A) sequence. RNA (NEW YORK, N.Y.) 2016; 22:1550-1559. [PMID: 27484313 PMCID: PMC5029453 DOI: 10.1261/rna.057679.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/21/2016] [Indexed: 05/31/2023]
Abstract
MicroRNAs (miRNAs) recruit the CCR4-NOT complex, which contains two deadenylases, CCR4 and CAF1, to promote shortening of the poly(A) tail. Although both CCR4 and CAF1 generally have a strong preference for poly(A) RNA substrates, it has been reported from yeast to humans that they can also remove non-A residues in vitro to various degrees. However, it remains unknown how CCR4 and CAF1 remove non-A sequences. Herein we show that Drosophila miRNAs can promote the removal of 3'-terminal non-A residues in an exonucleolytic manner, but only if an upstream poly(A) sequence exists. This non-A removing reaction is directly catalyzed by both CCR4 and CAF1 and depends on the balance between the length of the internal poly(A) sequence and that of the downstream non-A sequence. These results suggest that the CCR4-NOT complex has an intrinsic activity to remove the 3'-terminal non-A modifications downstream from the poly(A) tail.
Collapse
Affiliation(s)
- Sho Niinuma
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, JapanDepartment of Computational Biology and Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Fukaya
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, JapanDepartment of Computational Biology and Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, JapanDepartment of Computational Biology and Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
42
|
Abstract
In a recent issue of Nature Communications Ukleja and co‐workers reported a cryo‐EM 3D reconstruction of the Ccr4‐Not complex from Schizosaccharomyces pombe with an immunolocalization of the different subunits. The newly gained architectural knowledge provides cues to apprehend the functional diversity of this major eukaryotic regulator. Indeed, in the cytoplasm alone, Ccr4‐Not regulates translational repression, decapping and deadenylation, and the Not module additionally plays a positive role in translation. The spatial distribution of the subunits within the structure is compatible with a model proposing that the Ccr4‐Not complex interacts with the 5′ and 3′ ends of target mRNAs, allowing different functional modules of the complex to act at different stages of the translation process, possibly within a circular constellation of the mRNA. This work opens new avenues, and reveals important gaps in our understanding regarding structure and mode of function of the Ccr4‐Not complex that need to be addressed in the future.
Collapse
Affiliation(s)
- Zoltan Villanyi
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics Geneva, Geneva, Switzerland
| | - Martine A Collart
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland. .,Institute of Genetics and Genomics Geneva, Geneva, Switzerland.
| |
Collapse
|
43
|
Ukleja M, Valpuesta JM, Dziembowski A, Cuellar J. Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms: New structural insights to unravel CCR4-NOT mRNA processing machinery. Bioessays 2016; 38:1048-58. [PMID: 27502453 DOI: 10.1002/bies.201600092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery.
Collapse
Affiliation(s)
- Marta Ukleja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. .,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland. .,Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain. .,Institute of Structural and Molecular Biology, University College London and Birkbeck, London, UK.
| | - José María Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
44
|
Zhang Q, Yan D, Guo E, Ding B, Yang W, Liu R, Yamamoto T, Bartlam M. Structural basis for inhibition of the deadenylase activity of human CNOT6L. FEBS Lett 2016; 590:1270-9. [PMID: 27013054 DOI: 10.1002/1873-3468.12160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/08/2022]
Abstract
Human CNOT6L/CCR4, a member of the endonuclease-exonuclease-phosphatase (EEP) family enzymes, is one of the two deadenylase enzymes in the conserved CCR4-NOT complex. Here, we report inhibitor-bound crystal structures of the human CNOT6L nuclease domain in complex with the nucleotide CMP and the aminoglycoside neomycin. Deadenylase activity assays show that nucleotides are effective inhibitors of both CNOT6L and CNOT7, with AMP more effective than other nucleotides, and that neomycin is a weak deadenylase inhibitor. Structural analysis shows that all inhibitors occupy the substrate and magnesium-binding sites of CNOT6L, suggesting that inhibitors compete with both substrate and divalent magnesium ions for overlapping binding sites.
Collapse
Affiliation(s)
- Qionglin Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Dongke Yan
- College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Erhong Guo
- College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Bojian Ding
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wen Yang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami, Okinawa, Japan
| | - Mark Bartlam
- College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
45
|
ExoMeg1: a new exonuclease from metagenomic library. Sci Rep 2016; 6:19712. [PMID: 26815639 PMCID: PMC4750427 DOI: 10.1038/srep19712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/27/2015] [Indexed: 01/18/2023] Open
Abstract
DNA repair mechanisms are responsible for maintaining the integrity of DNA and are essential to life. However, our knowledge of DNA repair mechanisms is based on model organisms such as Escherichia coli, and little is known about free living and uncultured microorganisms. In this study, a functional screening was applied in a metagenomic library with the goal of discovering new genes involved in the maintenance of genomic integrity. One clone was identified and the sequence analysis showed an open reading frame homolog to a hypothetical protein annotated as a member of the Exo_Endo_Phos superfamily. This novel enzyme shows 3′-5′ exonuclease activity on single and double strand DNA substrates and it is divalent metal-dependent, EDTA-sensitive and salt resistant. The clone carrying the hypothetical ORF was able to complement strains deficient in recombination or base excision repair, suggesting that the new enzyme may be acting on the repair of single strand breaks with 3′ blockers, which are substrates for these repair pathways. Because this is the first report of an enzyme obtained from a metagenomic approach showing exonuclease activity, it was named ExoMeg1. The metagenomic approach has proved to be a useful tool for identifying new genes of uncultured microorganisms.
Collapse
|
46
|
The architecture of the Schizosaccharomyces pombe CCR4-NOT complex. Nat Commun 2016; 7:10433. [PMID: 26804377 PMCID: PMC4737751 DOI: 10.1038/ncomms10433] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/11/2015] [Indexed: 11/08/2022] Open
Abstract
CCR4-NOT is a large protein complex present both in cytoplasm and the nucleus of eukaryotic cells. Although it is involved in a variety of distinct processes related to expression of genetic information such as poly(A) tail shortening, transcription regulation, nuclear export and protein degradation, there is only fragmentary information available on some of its nine subunits. Here we show a comprehensive structural characterization of the native CCR4-NOT complex from Schizosaccharomyces pombe. Our cryo-EM 3D reconstruction of the complex, combined with techniques such as immunomicroscopy, RNA-nanogold labelling, docking of the available high-resolution structures and models of different subunits and domains, allow us to propose its full molecular architecture. We locate all functionally defined domains endowed with deadenylating and ubiquitinating activities, the nucleus-specific RNA-interacting subunit Mmi1, as well as surfaces responsible for protein–protein interactions. This information provides insight into cooperation of the different CCR4-NOT complex functions. CCR4-NOT is a protein complex involved in a variety of important genetic processes. Here, the authors report the mid-resolution structure of this complex, and model the positions and contacts between the subunits, providing structural support for the previously reported functions of the complex.
Collapse
|
47
|
Wangkanont K, Forest KT, Kiessling LL. The non-detergent sulfobetaine-201 acts as a pharmacological chaperone to promote folding and crystallization of the type II TGF-β receptor extracellular domain. Protein Expr Purif 2015; 115:19-25. [PMID: 26073093 PMCID: PMC4669069 DOI: 10.1016/j.pep.2015.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/01/2015] [Accepted: 06/04/2015] [Indexed: 01/07/2023]
Abstract
The roles of the extracellular domain of type II TGF-β receptor (TBRII-ECD) in physiological processes ranging from development to cancer to wound healing render it an attractive target for exploration with chemical tools. For such applications, large amounts of active soluble protein are needed, but the yields of TBRII-ECD we obtained with current folding protocols were variable. To expedite the identification of alternative folding conditions, we developed an on-plate screen. This assay indicated that effective folding additives included the non-detergent sulfobetaine-201 (NDSB-201). Although NDSB-201 can facilitate protein folding, the mode by which it does so is poorly understood. We postulated that specific interactions between NDSB-201 and TBRII-ECD might be responsible. Analysis by X-ray crystallography indicates that the TBRII-ECD possesses a binding pocket for NDSB-201. The pyridinium group of the additive stacks with a phenylalanine side chain in the binding site. The ability of NDSB-201 to occupy a pocket on the protein provides a molecular mechanism for the additive's ability to minimize TBRII-ECD aggregation and stabilize the folded state. NDSB-201 also accelerates TBRII-ECD crystallization, suggesting it may serve as a useful crystallization additive for proteins refolded with it. Our results also suggest there is a site on TBRII-ECD that could be targeted by small-molecule modulators.
Collapse
Affiliation(s)
- Kittikhun Wangkanont
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
| | - Katrina T. Forest
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, United States
,Corresponding authors at: Tel.: +1 (608) 265 3566 (K.T. Forest). Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, United States. Tel.: +1 (608) 262 0541 (L.L. Kiessling). ,
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
,Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, United States
,Corresponding authors at: Tel.: +1 (608) 265 3566 (K.T. Forest). Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, United States. Tel.: +1 (608) 262 0541 (L.L. Kiessling). ,
| |
Collapse
|
48
|
Wood ER, Bledsoe R, Chai J, Daka P, Deng H, Ding Y, Harris-Gurley S, Kryn LH, Nartey E, Nichols J, Nolte RT, Prabhu N, Rise C, Sheahan T, Shotwell JB, Smith D, Tai V, Taylor JD, Tomberlin G, Wang L, Wisely B, You S, Xia B, Dickson H. The Role of Phosphodiesterase 12 (PDE12) as a Negative Regulator of the Innate Immune Response and the Discovery of Antiviral Inhibitors. J Biol Chem 2015; 290:19681-96. [PMID: 26055709 PMCID: PMC4528132 DOI: 10.1074/jbc.m115.653113] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/20/2015] [Indexed: 11/06/2022] Open
Abstract
2',5'-Oligoadenylate synthetase (OAS) enzymes and RNase-L constitute a major effector arm of interferon (IFN)-mediated antiviral defense. OAS produces a unique oligonucleotide second messenger, 2',5'-oligoadenylate (2-5A), that binds and activates RNase-L. This pathway is down-regulated by virus- and host-encoded enzymes that degrade 2-5A. Phosphodiesterase 12 (PDE12) was the first cellular 2-5A- degrading enzyme to be purified and described at a molecular level. Inhibition of PDE12 may up-regulate the OAS/RNase-L pathway in response to viral infection resulting in increased resistance to a variety of viral pathogens. We generated a PDE12-null cell line, HeLaΔPDE12, using transcription activator-like effector nuclease-mediated gene inactivation. This cell line has increased 2-5A levels in response to IFN and poly(I-C), a double-stranded RNA mimic compared with the parental cell line. Moreover, HeLaΔPDE12 cells were resistant to viral pathogens, including encephalomyocarditis virus, human rhinovirus, and respiratory syncytial virus. Based on these results, we used DNA-encoded chemical library screening to identify starting points for inhibitor lead optimization. Compounds derived from this effort raise 2-5A levels and exhibit antiviral activity comparable with the effects observed with PDE12 gene inactivation. The crystal structure of PDE12 complexed with an inhibitor was solved providing insights into the structure-activity relationships of inhibitor potency and selectivity.
Collapse
Affiliation(s)
| | | | - Jing Chai
- ELT Boston, GlaxoSmithKline, Waltham, Massachusetts 02451
| | - Philias Daka
- Antiviral Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, North Carolina 27709 and
| | - Hongfeng Deng
- ELT Boston, GlaxoSmithKline, Waltham, Massachusetts 02451
| | - Yun Ding
- ELT Boston, GlaxoSmithKline, Waltham, Massachusetts 02451
| | | | | | | | | | | | - Ninad Prabhu
- ELT Boston, GlaxoSmithKline, Waltham, Massachusetts 02451
| | - Cecil Rise
- ELT Boston, GlaxoSmithKline, Waltham, Massachusetts 02451
| | - Timothy Sheahan
- Antiviral Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, North Carolina 27709 and
| | - J Brad Shotwell
- Antiviral Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, North Carolina 27709 and
| | | | - Vince Tai
- Antiviral Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, North Carolina 27709 and
| | | | | | | | | | - Shihyun You
- Antiviral Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, North Carolina 27709 and
| | - Bing Xia
- ELT Boston, GlaxoSmithKline, Waltham, Massachusetts 02451
| | - Hamilton Dickson
- Antiviral Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, North Carolina 27709 and
| |
Collapse
|
49
|
The enzyme activities of Caf1 and Ccr4 are both required for deadenylation by the human Ccr4-Not nuclease module. Biochem J 2015; 469:169-76. [PMID: 25944446 PMCID: PMC4613498 DOI: 10.1042/bj20150304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/06/2015] [Indexed: 01/02/2023]
Abstract
In eukaryotic cells, the shortening and removal of the poly(A) tail (deadenylation) of cytoplasmic mRNA is a key event in regulated mRNA degradation. A major enzyme involved in deadenylation is the Ccr4-Not deadenylase complex, which can be recruited to its target mRNA by RNA-binding proteins or the miRNA repression complex. In addition to six non-catalytic components, the complex contains two enzymatic subunits with ribonuclease activity: Ccr4 and Caf1 (Pop2). In vertebrates, each deadenylase subunit is encoded by two paralogues: Caf1, which can interact with the anti-proliferative protein BTG2, is encoded by CNOT7 and CNOT8, whereas Ccr4 is encoded by the highly similar genes CNOT6 and CNOT6L. Currently, it is unclear whether the catalytic subunits work co-operatively or whether the nuclease components have unique roles in deadenylation. We therefore developed a method to express and purify a minimal human BTG2-Caf1-Ccr4 nuclease sub-complex from bacterial cells. By using chemical inhibition and well-characterized inactivating amino acid substitutions, we demonstrate that the enzyme activities of Caf1 and Ccr4 are both required for deadenylation in vitro. These results indicate that Caf1 and Ccr4 cooperate in mRNA deadenylation and suggest that the enzyme activities of Caf1 and Ccr4 are regulated via allosteric interactions within the nuclease module.
Collapse
|
50
|
Suzuki Y, Arae T, Green PJ, Yamaguchi J, Chiba Y. AtCCR4a and AtCCR4b are Involved in Determining the Poly(A) Length of Granule-bound starch synthase 1 Transcript and Modulating Sucrose and Starch Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:863-74. [PMID: 25630334 DOI: 10.1093/pcp/pcv012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/21/2015] [Indexed: 05/11/2023]
Abstract
Removing the poly(A) tail is the first and rate-limiting step of mRNA degradation and apparently an effective step not only for modulating mRNA stability but also for translation of many eukaryotic transcripts. Carbon catabolite repressor 4 (CCR4) has been identified as a major cytoplasmic deadenylase in Saccharomyces cerevisiae. The Arabidopsis thaliana homologs of the yeast CCR4, AtCCR4a and AtCCR4b, were identified by sequence-based analysis; however, their role and physiological significance in plants remain to be elucidated. In this study, we revealed that AtCCR4a and AtCCR4b are localized to cytoplasmic mRNA processing bodies, which are specific granules consisting of many enzymes involved in mRNA turnover. Double mutants of AtCCR4a and AtCCR4b exhibited tolerance to sucrose application but not to glucose. The levels of sucrose in the seedlings of the atccr4a/4b double mutants were reduced, whereas no difference was observed in glucose levels. Further, amylose levels were slightly but significantly increased in the atccr4a/4b double mutants. Consistent with this observation, we found that the transcript encoding granule-bound starch synthase 1 (GBSS1), which is responsible for amylose synthesis, is accumulated to a higher level in the atccr4a/4b double mutant plants than in the control plants. Moreover, we revealed that GBSS1 has a longer poly(A) tail in the double mutant than in the control plant, suggesting that AtCCR4a and AtCCR4b can influence the poly(A) length of transcripts related to starch metabolism. Our results collectively suggested that AtCCR4a and AtCCR4b are involved in sucrose and starch metabolism in A. thaliana.
Collapse
Affiliation(s)
- Yuya Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Toshihiro Arae
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Pamela J Green
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Junji Yamaguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan JST PRESTO, Kawaguchi, 332-0012 Japan
| |
Collapse
|