1
|
Taira A, Aavikko M, Katainen R, Kaasinen E, Välimäki N, Ravantti J, Ristimäki A, Seppälä TT, Renkonen-Sinisalo L, Lepistö A, Tahkola K, Mattila A, Koskensalo S, Mecklin JP, Böhm J, Bramsen JB, Andersen CL, Palin K, Rajamäki K, Aaltonen LA, iCAN. Comprehensive metabolomic and epigenomic characterization of microsatellite stable BRAF-mutated colorectal cancer. Oncogene 2025; 44:1718-1730. [PMID: 40102611 PMCID: PMC12122379 DOI: 10.1038/s41388-025-03326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Oncogenic codon V600E mutations of the BRAF gene affect 10-15% of colorectal cancers, resulting in activation of the MAPK/ERK signaling pathway and increased cell proliferation and survival. BRAF-mutated colorectal tumors are often microsatellite unstable and characterized by high DNA methylation levels. However, the mechanistic link between BRAF mutations and hypermethylation remains controversial. Understanding this link, particularly in microsatellite stable tumors is of great interest as these often show poor survival. We characterized the metabolomic, epigenetic and transcriptomic patterns of altogether 39 microsatellite stable BRAF-mutated colorectal cancers. Metabolomic analysis of tumor tissue showed low levels of vitamin C and its metabolites in BRAF-mutated tumors. Gene expression analysis indicated dysregulation of vitamin C antioxidant activity in these lesions. As vitamin C is an important cofactor for the activity of TET DNA demethylase enzymes, low vitamin C levels could directly contribute to the high methylation levels in these tumors by decreasing enzymatic TET activity. Vitamin C transporter gene SLC23A1 expression, as well as vitamin C metabolite levels, were inversely correlated with DNA methylation levels. This work proposes a new mechanistic link between BRAF mutations and hypermethylation, inspiring further work on the role of vitamin C in the genesis of BRAF-mutated colorectal cancer.
Collapse
Affiliation(s)
- Aurora Taira
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Mervi Aavikko
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Eevi Kaasinen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Niko Välimäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Janne Ravantti
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland
| | - Toni T Seppälä
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, 00290, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital and TAYS Cancer Centre, 33520, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33100, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00014, Finland
| | - Laura Renkonen-Sinisalo
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, 00290, Finland
| | - Anna Lepistö
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, 00290, Finland
| | - Kyösti Tahkola
- Department of Surgery, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
| | - Anne Mattila
- Department of Surgery, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
| | - Selja Koskensalo
- The HUCH Gastrointestinal Clinic, Helsinki University Central Hospital, Helsinki, 00280, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
- Department of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Jan Böhm
- Department of Pathology, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
| | - Jesper Bertram Bramsen
- Department of Molecular Medicine, Aarhus University Hospital, DK-8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, DK-8200, Aarhus, Denmark
| | - Claus Lindbjerg Andersen
- Department of Molecular Medicine, Aarhus University Hospital, DK-8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, DK-8200, Aarhus, Denmark
| | - Kimmo Palin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00014, Finland
| | - Kristiina Rajamäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Lauri A Aaltonen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00014, Finland.
| | | |
Collapse
|
2
|
Cui X, Yin Q, Gao Z, Li Z, Chen X, Lv H, Chen S, Liu Q, Zeng W, Jiang R. CREATE: cell-type-specific cis-regulatory element identification via discrete embedding. Nat Commun 2025; 16:4607. [PMID: 40382355 PMCID: PMC12085597 DOI: 10.1038/s41467-025-59780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 05/02/2025] [Indexed: 05/20/2025] Open
Abstract
Cis-regulatory elements (CREs), including enhancers, silencers, promoters and insulators, play pivotal roles in orchestrating gene regulatory mechanisms that drive complex biological traits. However, current approaches for CRE identification are predominantly sequence-based and typically focus on individual CRE types, limiting insights into their cell-type-specific functions and regulatory dynamics. Here, we present CREATE, a multimodal deep learning framework based on Vector Quantized Variational AutoEncoder, tailored for comprehensive CRE identification and characterization. CREATE integrates genomic sequences, chromatin accessibility, and chromatin interaction data to generate discrete CRE embeddings, enabling accurate multi-class classification and robust characterization of CREs. CREATE excels in identifying cell-type-specific CREs, and provides quantitative and interpretable insights into CRE-specific features, uncovering the underlying regulatory codes. By facilitating large-scale prediction of CREs in specific cell types, CREATE enhances the recognition of disease- or phenotype-associated biological variabilities of CREs, thus advancing our understanding of gene regulatory landscapes and their roles in health and disease.
Collapse
Affiliation(s)
- Xuejian Cui
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, China
| | - Qijin Yin
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, China
| | - Zijing Gao
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, China
| | - Zhen Li
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, China
| | - Xiaoyang Chen
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, China
| | - Hairong Lv
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, China
| | - Shengquan Chen
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Qiao Liu
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Wanwen Zeng
- Department of Statistics, Stanford University, Stanford, CA, USA.
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Jiao Y, Sengodan K, Chen J, Palli SR. Role of histone methylation in insect development: KMT5A regulates ecdysteroid biosynthesis during metamorphosis of Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104316. [PMID: 40287070 PMCID: PMC12066215 DOI: 10.1016/j.ibmb.2025.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Methylation levels of core histones play important roles in the regulation of gene expression and impact animal development. However, the methyltransferases and demethylases that determine histone methylation levels remain largely unexplored in insects. Most of our current understanding of histone methylation comes from mammalian studies. In this study, we first identified potential histone methyltransferases and demethylases encoded in the genome of the red flour beetle Tribolium castaneum. The function of these histone methylation enzymes in the metamorphosis was investigated by knocking down genes coding for these enzymes using RNA interference (RNAi). Our results showed that a lysine methyltransferase, KMT5A, plays a critical role in T. castaneum metamorphosis by regulating the biosynthesis of ecdysteroids. Treating KMT5A-knockdown larvae with 20 hydroxyecdysone can partially rescue T. castaneum pupation. Western blot analysis showed that KMT5A catalyzes H4K20 mono-methylation. However, further studies suggest that KMT5A may regulate T. castaneum pupation through mechanisms independent of H4K20 methylation. These data uncovered the roles of histone methylation enzymes in T. castaneum metamorphosis and KMT5A as a critical regulator of ecdysteroid biosynthesis.
Collapse
Affiliation(s)
- Yaoyu Jiao
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| | - Karthi Sengodan
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jiasheng Chen
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
4
|
Xie B, Dean A. A Super Enhancer-Derived Enhancer RNA Acts Together with CTCF/Cohesin in Trans to Regulate Erythropoiesis. Genes (Basel) 2025; 16:389. [PMID: 40282349 PMCID: PMC12026470 DOI: 10.3390/genes16040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Enhancer RNAs (eRNAs) function in diverse modes and increasing studies have shown that they play important roles in normal development and disease. However, their role in erythropoiesis is not fully understood. Methods: We analyzed published RNA-seq and Promoter Capture Hi-C data from mouse E14.5 fetal liver cells to identify enhancer RNAs in erythroid cells with long-range interactions. Results: We discovered an erythroid-specific enhancer RNA (CpoxeRNA) transcribed from an enhancer region upstream of Cpox, an enzyme important for heme synthesis. CpoxeRNA is important for erythropoiesis, as the knockdown of CpoxeRNA by shRNA results in impaired enucleation and cell proliferation during terminal differentiation. CpoxeRNA interacts with cohesin and acts both in cis and trans to regulate erythroid genes. Conclusions: we have identified a trans-acting eRNA, CpoxeRNA, as a potential regulator of terminal erythropoiesis.
Collapse
Affiliation(s)
- Bingning Xie
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Waliullah ASM, Qiu K, Dziegielewska B, Tran ML, Nguyen NN, Wang L, Pan A, Segovia N, Umarino S, Zhang J, Nguyen TM, Craig J, Tenen DG, Trinh BQ. An integrated DNA interactome and transcriptome profiling reveals a PU.1/enhancer RNA-mediated Feed-forward Regulatory Loop Regulating monocyte/macrophage development and innate immune functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638695. [PMID: 40027734 PMCID: PMC11870581 DOI: 10.1101/2025.02.19.638695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
High expression of the myeloid master ETS transcription factor PU.1 drives the development of monocyte/macrophage (Mono/MΦ), a crucial cellular component of the innate immune system. Disruptions in normal expression patterns of PU.1 are linked to a variety myeloid malignancy and immune diseases. It is evidenced that PU.1 binds to and modulates enhancers of several myeloid genes. While noncoding RNAs transcribed from noncoding genes at the enhancers are increasingly reported to be involved in enhancer regulation, the crosstalk between PU.1 and noncoding RNAs in enhancer-mediated myeloid gene regulation in Mono/MΦ differentiation and immune response has not been systematically investigated. In this study, we interrogated the PU.1-mediated transcriptome and cistrome with our comprehensive collection of putative and verified enhancers. Among a repertoire of noncoding genes present at PU.1-bound enhancers, we discovered that PU.1 acts as a potent transcription factor inducer of the noncoding RNA LOUP , which we previously identified as an RNA inducer of PU.1. The genomic region within the LOUP locus occupied by PU.1 is characterized by the epigenetic features of a myeloid-specific super-enhancer. Targeted disruption of the PU.1-binding motifs resulted in the downregulation of LOUP promoter activity. Depletion of LOUP reduced the expression of Mono/MΦ cell markers as well as the transcriptional program associated with Mono/MΦ differentiation Mono/MΦ innate defense mechanisms, including phagocytosis, antimicrobial activity, and chemoattractant cytokine production. LOUP induces Mono/MΦ phagocytic activities. Collectively, our findings indicate that PU.1 and enhancer RNA LOUP are biomolecular components of an unidentified feed-forward loop that promotes their mutual expression, contributing to Mono/MΦ differentiation and innate immune functions. The identification of the PU.1/ LOUP regulatory circuit provides valuable insights into the mechanisms underlying cell-type and gene-specific enhancer activity and Mono/MΦ biology, as well as significant implications for advancing our understanding of immune diseases and myeloid malignancies.
Collapse
|
6
|
Kaszycki J, Kim M. Epigenetic regulation of transcription factors involved in NLRP3 inflammasome and NF-kB signaling pathways. Front Immunol 2025; 16:1529756. [PMID: 40046056 PMCID: PMC11879833 DOI: 10.3389/fimmu.2025.1529756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/03/2025] [Indexed: 05/13/2025] Open
Abstract
The NLRP3 inflammasome and NF-κB signaling pathways play crucial roles in orchestrating inflammation and immune defense. This review explores the intricate relationship between these pathways and epigenetic regulation, a field of growing importance in understanding immune responses. Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), significantly influence the activity of genes involved in these pathways, thereby modulating inflammatory responses. The review provides a comprehensive overview of current research on how epigenetic mechanisms interact with and regulate the NLRP3 inflammasome and NF-κB signaling pathways. It delves into advanced epigenetic concepts such as RNA modifications and 3D genome organization, and their impact on immune regulation. Furthermore, the implications of these findings for developing novel therapeutic strategies targeting epigenetic regulators in inflammatory diseases are discussed. By synthesizing recent advancements in this rapidly evolving field, this review underscores the critical role of epigenetic regulation in immune signaling and highlights the potential for epigenetic-based therapies in treating a wide range of inflammatory conditions, including autoimmune disorders and cancer.
Collapse
Affiliation(s)
- John Kaszycki
- Department of Biological Sciences, University of Connecticut, Storrs, CT, United States
| | - Minji Kim
- School of Pharmacy, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
7
|
Li W, Feng Y, Teng Y, Montero AF, Zhou Y, Zhang X, Ao J, Chen X. P300/RNA polymerase II mediates induction of the teleost viral RNA sensor MDA5 through the interferon regulatory factor IRF11. J Biol Chem 2025; 301:108193. [PMID: 39826689 PMCID: PMC11849104 DOI: 10.1016/j.jbc.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
Melanoma differentiation-associated gene 5 (MDA5) initiates type I interferon (IFN) production by detecting cytosolic viral RNA. Mammalian MDA5 is an IFN-inducible gene and controlled by IFN regulatory factor 1 (IRF1). Teleost MDA5 also induces type I IFN production in response to viruses, yet its regulation remains largely unexplored. This study used the large yellow croaker Larimichthys crocea (Lc) as a model organism and revealed that a type I IFN (LcIFNi) triggers the expression of LcMDA5 through the JAK-STAT signaling pathway, which involves phosphorylation of LcIRF11. LcMDA5 was transcriptionally regulated by LcIRF11. Mechanistically, LcIRF11 interacts with the IFN-stimulated response element within the LcMDA5 promoter, via α3 helix and loop1, and loop2 and loop3 in its DNA binding domain. Overexpression of LcIRF11 recruits p300 and RNA polymerase II (Pol II) to the LcMDA5 promoter region. Pull-down analysis further confirmed the interaction of LcIRF11 with these two proteins. This recruitment was accompanied by increased levels of histone H3K27 acetylation (H3K27ac) and histone H3K4 trimethylation (H3K4me3), both of which are strongly associated with active transcription. Conversely, silencing LcIRF11 reduced p300 and Pol II recruitments and hindered the enrichment of H3K27ac/H3K4me3 modifications at the LcMDA5 promoter. Thus, here we present the first report of IRF11 orchestrating the activation of MDA5 transcription by binding to the IFN-stimulated response element of MDA5 promoter and forming a transcriptional complex with p300 and Pol II. Our results revealed an ancient regulatory mechanism of MDA5 in lower vertebrates, providing insights into its function and evolution.
Collapse
Affiliation(s)
- Wenxing Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Feng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Teng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Alvaro Fernandez Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuanyuan Zhou
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangyang Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingqun Ao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
8
|
Lai JCY, Hsu KW, Wu KJ. Interrogation of the interplay between DNA N6-methyladenosine (6mA) and hypoxia-induced chromatin accessibility by a randomized empirical model (EnrichShuf). Nucleic Acids Res 2024; 52:13605-13624. [PMID: 39565191 DOI: 10.1093/nar/gkae1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/12/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
N 6-Methyladenosine (6mA) is an epigenetic mark in eukaryotes regulating development, stress response and tumor progression. METTL4 has been reported as a 6mA methyltransferase induced by hypoxia. The detection and annotation of 6mA signals in mammalian cells have been hampered by the techniques and analytical methods developed so far. Here we developed a 6mA-ChIP-exo-5.1-seq to improve the sensitivity of detecting 6mAs in human cell lines. Furthermore, an EnrichShuf analysis tool for comprehensively comparing 6mA-ChIP-exo-5.1-seq, ATAC-seq, ChIP-seq and RNA-seq has been developed to annotate the functional relevance of 6mA in relation to chromatin accessibility and histone marks. Using a hypoxia-induced 6mA induction system as a model, we showed that hypoxic 6mA signals positively correlated with accessible chromatin regions. These 6mA signals correlate with their regulation by METTL4 under hypoxia, consistent with previous results. 6mAs also co-exist with H3K4me1, a histone mark for enhancers. Further analysis of enhancers using an ABC (active-by-contact) model shows that hypoxia-inducible factor-1α-induced H3K4me3 surrounds the 6mA/H3K4me1 site to augment active enhancers. These results suggest that correlation between 6mA and accessible chromatin regions plays a significant role in enhancer-promoter interactions during hypoxia-induced gene expression.
Collapse
Affiliation(s)
- Joseph Chieh-Yu Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Kai-Wen Hsu
- Institute of Translational Medicine & New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
9
|
Garnica J, Sole P, Yamanouchi J, Moro J, Mondal D, Fandos C, Serra P, Santamaria P. T-follicular helper cells are epigenetically poised to transdifferentiate into T-regulatory type 1 cells. eLife 2024; 13:RP97665. [PMID: 39576679 PMCID: PMC11584177 DOI: 10.7554/elife.97665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.
Collapse
Affiliation(s)
- Josep Garnica
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Patricia Sole
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| | - Joel Moro
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| | - Cesar Fandos
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| |
Collapse
|
10
|
Qiu K, Vu DC, Wang L, Nguyen NN, Bookstaver AK, Sol-Church K, Li H, Dinh TN, Goldfarb AN, Tenen DG, Trinh BQ. Chromatin structure and 3D architecture define the differential functions of PU.1 regulatory elements in blood cell lineages. Epigenetics Chromatin 2024; 17:33. [PMID: 39487555 PMCID: PMC11531149 DOI: 10.1186/s13072-024-00556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
The precise spatiotemporal expression of the hematopoietic ETS transcription factor PU.1, a key determinant of hematopoietic cell fates, is tightly regulated at the chromatin level. However, how chromatin signatures are linked to this dynamic expression pattern across different blood cell lineages remains uncharacterized. Here, we performed an in-depth analysis of the relationships between gene expression, chromatin structure, 3D architecture, and trans-acting factors at PU.1 cis-regulatory elements (PCREs). By identifying phylogenetically conserved DNA elements within chromatin-accessible regions in primary human blood lineages, we discovered multiple novel candidate PCREs within the upstream region of the human PU.1 locus. A subset of these elements localizes within an 8-kb-wide cluster exhibiting enhancer features, including open chromatin, demethylated DNA, enriched enhancer histone marks, present enhancer RNAs, and PU.1 occupation, presumably mediating PU.1 autoregulation. Importantly, we revealed the presence of a common 35-kb-wide CTCF-flanked insulated neighborhood that contains the PCRE cluster (PCREC), forming a chromatin territory for lineage-specific and PCRE-mediated chromatin interactions. These include functional PCRE-promoter interactions in myeloid and B cells that are absent in erythroid and T cells. By correlating chromatin structure and 3D architecture with PU.1 expression in various lineages, we were able to attribute enhancer versus silencer functions to individual elements. Our findings provide mechanistic insights into the interplay between dynamic chromatin structure and 3D architecture in the chromatin regulation of PU.1 expression. This study lays crucial groundwork for additional experimental studies that validate and dissect the role of PCREs in epigenetic regulation of normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Kevin Qiu
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Duc C Vu
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Leran Wang
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nicholas N Nguyen
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Anna K Bookstaver
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Katia Sol-Church
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hui Li
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA, 22908, USA
| | - Thang N Dinh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Adam N Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore, 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bon Q Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA, 22908, USA.
| |
Collapse
|
11
|
Zhang T, Zou L. Enhancers in T Cell development and malignant lesions. Cell Death Discov 2024; 10:406. [PMID: 39284807 PMCID: PMC11405840 DOI: 10.1038/s41420-024-02160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Enhancers constitute a vital category of cis-regulatory elements with a Mediator complex within DNA sequences, orchestrating gene expression by activating promoters. In the development of T cells, some enhancers regulate the critical genes, which might also regulate T cell malignant lesions. This review is to comprehensively elucidate the contributions of enhancers in both normal T cell development and its malignant pathogenesis, proposing the idea that the precise subunits of the Mediator complex are the potential drug target for disrupting the specific gene enhancer for T cell malignant diseases.
Collapse
Affiliation(s)
- Tong Zhang
- Clinical Medicine Research Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Postgraduate School in Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Zou
- Clinical Medicine Research Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| |
Collapse
|
12
|
Cai X, Yu X, Tang T, Xu Y, Wu T. JMJD2A promotes the development of castration-resistant prostate cancer by activating androgen receptor enhancer and inhibiting the cGAS-STING pathway. Mol Carcinog 2024; 63:1682-1696. [PMID: 38818897 DOI: 10.1002/mc.23753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Exploring targets for inhibiting androgen receptor (AR) activity is an effective strategy for suppressing the development of castration-resistant prostate cancer (CRPC). Upregulation of histone demethylase JMJD2A activity is an important factor in increasing AR expression in CRPC. Based on our research, we found that the binding affinity between JMJD2A and AR increases in CRPC, while the level of AR histone methylation decreases and the H3K27ac level increases in the AR enhancer region. Further investigations revealed that overexpression of the histone demethylase JMJD2A increased the binding affinity between JMJD2A and AR, decreased AR histone methylation levels, upregulated H3K27ac in the AR enhancer region, and increased AR activity. Conversely, knocking down JMJD2A effectively reversed these effects. Additionally, in CRPC, JMJD2A expression was upregulated, the tumor-intrinsic immune cGAS-STING signaling pathway was suppressed, the tumor microenvironment was altered, and AR expression was upregulated. However, both knocking down JMJD2A and inhibiting the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS-STING) signaling pathway reversed these effects. In summary, our study indicates that in CRPC, JMJD2A can directly bind to AR and activate residual AR enhancers through its demethylation activity, thereby promoting AR expression. Furthermore, upregulation of JMJD2A expression inhibits the innate immune cGAS-STING signaling pathway of the tumor, leading to a decrease in antitumor immune function, and further promoting AR expression.
Collapse
Affiliation(s)
- Xiang Cai
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaodong Yu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tielong Tang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Wu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
13
|
Hurton MD, Miller JM, Lee MT. H3K4me2 distinguishes a distinct class of enhancers during the maternal-to-zygotic transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609713. [PMID: 39253505 PMCID: PMC11383010 DOI: 10.1101/2024.08.26.609713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
After egg fertilization, an initially silent embryonic genome is transcriptionally activated during the maternal-to-zygotic transition. In zebrafish, maternal vertebrate pluripotency factors Nanog, Pou5f3 (OCT4 homolog), and Sox19b (SOX2 homolog) (NPS) play essential roles in orchestrating embryonic genome activation, acting as "pioneers" that open condensed chromatin and mediate acquisition of activating histone modifications. However, some embryonic gene transcription still occurs in the absence of these factors, suggesting the existence of other mechanisms regulating genome activation. To identify chromatin signatures of these unknown pathways, we profiled the histone modification landscape of zebrafish embryos using CUT&RUN. Our regulatory map revealed two subclasses of enhancers distinguished by presence or absence of H3K4me2. Enhancers lacking H3K4me2 tend to require NPS factors for de novo activation, while enhancers bearing H3K4me2 are epigenetically bookmarked by DNA hypomethylation to recapitulate gamete activity in the embryo, independent of NPS pioneering. Thus, parallel enhancer activation pathways combine to induce transcriptional reprogramming to pluripotency in the early embryo.
Collapse
Affiliation(s)
- Matthew D Hurton
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| | - Jennifer M Miller
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| | - Miler T Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| |
Collapse
|
14
|
Yu H, Lesch BJ. Functional Roles of H3K4 Methylation in Transcriptional Regulation. Mol Cell Biol 2024; 44:505-515. [PMID: 39155435 PMCID: PMC11529435 DOI: 10.1080/10985549.2024.2388254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Histone 3 lysine 4 methylation (H3K4me) is a highly evolutionary conserved chromatin modification associated with active transcription, and its three methylation states-mono, di, and trimethylation-mark distinct regulatory elements. However, whether H3K4me plays functional roles in transcriptional regulation or is merely a by-product of histone methyltransferases recruited to actively transcribed loci is still under debate. Here, we outline the studies that have addressed this question in yeast, Drosophila, and mammalian systems. We review evidence from histone residue mutation, histone modifier manipulation, and epigenetic editing, focusing on the relative roles of H3K4me1 and H3K4me3. We conclude that H3K4me1 and H3K4me3 may have convergent functions in establishing open chromatin and promoting transcriptional activation during cell differentiation.
Collapse
Affiliation(s)
- Haoming Yu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Kocher AA, Dutrow EV, Uebbing S, Yim KM, Rosales Larios MF, Baumgartner M, Nottoli T, Noonan JP. CpG island turnover events predict evolutionary changes in enhancer activity. Genome Biol 2024; 25:156. [PMID: 38872220 PMCID: PMC11170920 DOI: 10.1186/s13059-024-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. CpG islands (CGIs) have recently been shown to influence enhancer activity, and here we test how their turnover across species contributes to enhancer evolution. RESULTS We integrate maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and find that CGI content in enhancers is strongly associated with increased histone modification levels. CGIs show widespread turnover across species and species-specific CGIs are strongly enriched for enhancers exhibiting species-specific activity across all tissues and species. Genes associated with enhancers with species-specific CGIs show concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. CONCLUSIONS Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.
Collapse
Affiliation(s)
- Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Division of Molecular Genetics and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emily V Dutrow
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Zoetis, Inc, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Kristina M Yim
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | | | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
16
|
Liu B, He Y, Wu X, Lin Z, Ma J, Qiu Y, Xiang Y, Kong F, Lai F, Pal M, Wang P, Ming J, Zhang B, Wang Q, Wu J, Xia W, Shen W, Na J, Torres-Padilla ME, Li J, Xie W. Mapping putative enhancers in mouse oocytes and early embryos reveals TCF3/12 as key folliculogenesis regulators. Nat Cell Biol 2024; 26:962-974. [PMID: 38839978 DOI: 10.1038/s41556-024-01422-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation. Gene deserts harbour prevalent putative enhancers in fully grown oocytes linked to oocyte-specific genes and repeat activation. Embryo-specific enhancers are primed before zygotic genome activation and are restricted by oocyte-inherited H3K27me3. Putative enhancers in oocytes often manifest H3K4me3, bidirectional transcription, Pol II binding and can drive transcription in STARR-seq and a reporter assay. Finally, motif analysis of these elements identified crucial regulators of oogenesis, TCF3 and TCF12, the deficiency of which impairs activation of key oocyte genes and folliculogenesis. These data reveal distinctive regulatory landscapes and their interacting transcription factors that underpin the development of mammalian oocytes and early embryos.
Collapse
Affiliation(s)
- Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China
| | - Xiaotong Wu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jing Ma
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yunlong Xiang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
| | - Peizhe Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Jia Ming
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jingyi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weikun Xia
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weimin Shen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | | | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
17
|
Korczmar EA, Bookstaver AK, Ober E, Goldfarb AN, Tenen DG, Trinh BQ. Transcriptional Regulation of the Lineage-Determining Gene PU.1 in Normal and Malignant Hematopoiesis: Current Understanding and Therapeutic Perspective. Front Biosci (Schol Ed) 2024; 16:10. [PMID: 38939973 DOI: 10.31083/j.fbs1602010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 06/29/2024]
Abstract
The ETS transcription factor PU.1 plays an essential role in blood cell development. Its precise expression pattern is governed by cis-regulatory elements (CRE) acting at the chromatin level. CREs mediate the fine-tuning of graded levels of PU.1, deviations of which can cause acute myeloid leukemia. In this review, we perform an in-depth analysis of the regulation of PU.1 expression in normal and malignant hematopoiesis. We elaborate on the role of trans-acting factors and the biomolecular interplays in mediating local chromatin dynamics. Moreover, we discuss the current understanding of CRE bifunctionality exhibiting enhancer or silencer activities in different blood cell lineages and future directions toward gene-specific chromatin-targeted therapeutic development.
Collapse
Affiliation(s)
- Emilia A Korczmar
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Anna K Bookstaver
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ellison Ober
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam N Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, 117599 Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
18
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
19
|
Wu Z, Gao H, Liu Z. COMPASS core subunits MpSet1 and MpSwd3 regulate Monascus pigments synthesis in Monascus purpureus. J Basic Microbiol 2024; 64:e2300686. [PMID: 38362934 DOI: 10.1002/jobm.202300686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
In eukaryotes, methylation of histone H3 at lysine 4 (H3K4me) catalyzed by the complex of proteins associated with Set1 (COMPASS) is crucial for the transcriptional regulation of genes and the development of organisms. In Monascus, the functions of COMPASS in establishing H3K4me remain unclear. This study first identified the conserved COMPASS core subunits MpSet1 and MpSwd3 in Monascus purpureus and confirmed their roles in establishing H3K4me2/3. Loss of MpSet1 and MpSwd3 resulted in slower growth and development and inhibited the formation of cleistothecia, ascospores, and conidia. The loss of these core subunits also decreased the production of extracellular and intracellular Monascus pigments (MPs) by 94.2%, 93.5%, 82.7%, and 82.5%, respectively. In addition, RNA high-throughput sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) showed that the loss of MpSet1 and MpSwd3 altered the expression of 2646 and 2659 genes, respectively, and repressed the transcription of MPs synthesis-related genes. In addition, the ΔMpset1 and ΔMpswd3 strains demonstrated increased sensitivity to cell wall stress with the downregulation of chitin synthase-coding genes. These results indicated that the COMPASS core subunits MpSet1 and MpSwd3 help establish H3K4me2/3 for growth and development, spore formation, and pigment synthesis in Monascus. These core subunits also assist in maintaining cell wall integrity.
Collapse
Affiliation(s)
- Zhongling Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Hongyan Gao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| |
Collapse
|
20
|
Jiang T, Zhou ZM, Ling ZQ, Zhang Q, Wu ZZ, Yang JW, Yang SY, Yang B, Huang LS. Pig H3K4me3, H3K27ac, and gene expression profiles reveal reproductive tissue-specific activity of transposable elements. Zool Res 2024; 45:138-151. [PMID: 38155423 PMCID: PMC10839656 DOI: 10.24272/j.issn.2095-8137.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 12/30/2023] Open
Abstract
Regulatory sequences and transposable elements (TEs) account for a large proportion of the genomic sequences of species; however, their roles in gene transcription, especially tissue-specific expression, remain largely unknown. Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations. Here, we conducted an integrated analysis using H3K27ac ChIP-seq, H3K4me3 ChIP-seq, and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs. We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages. Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity, results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3. Furthermore, 1.45% of TEs overlapped with either the H3K27ac or H3K4me3 peaks, with the majority displaying tissue-specific activity. Notably, a TE subfamily (LTR4C_SS), containing binding motifs for SIX1 and SIX4, showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries. RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes, including 4 688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression. Of note, 1 967 TE-containing transcripts were enriched in the testes. We identified a long terminal repeat (LTR), MLT1F1, acting as a testis-specific alternative promoter in SRPK2 (a cell cycle-related protein kinase) in our pig dataset. This element was also conserved in humans and mice, suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns. Collectively, our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions, particularly in the reproductive organs.
Collapse
Affiliation(s)
- Tao Jiang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhi-Min Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zi-Qi Ling
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Qing Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhong-Zi Wu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jia-Wen Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Si-Yu Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Bin Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| | - Lu-Sheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| |
Collapse
|
21
|
Terzi Çizmecioğlu N. Roles and Regulation of H3K4 Methylation During Mammalian Early Embryogenesis and Embryonic Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:73-96. [PMID: 38231346 DOI: 10.1007/5584_2023_794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
From generation of germ cells, fertilization, and throughout early mammalian embryonic development, the chromatin undergoes significant alterations to enable precise regulation of gene expression and genome use. Methylation of histone 3 lysine 4 (H3K4) correlates with active regions of the genome, and it has emerged as a dynamic mark throughout this timeline. The pattern and the level of H3K4 methylation are regulated by methyltransferases and demethylases. These enzymes, as well as their protein partners, play important roles in early embryonic development and show phenotypes in embryonic stem cell self-renewal and differentiation. The various roles of H3K4 methylation are interpreted by dedicated chromatin reader proteins, linking this modification to broader molecular and cellular phenotypes. In this review, we discuss the regulation of different levels of H3K4 methylation, their distinct accumulation pattern, and downstream molecular roles with an early embryogenesis perspective.
Collapse
|
22
|
Qiu K, Vu D, Wang L, Bookstaver A, Dinh TN, Goldfarb AN, Tenen DG, Trinh BQ. Chromatin structure and 3D architecture define differential functions of PU.1 cis regulatory elements in human blood cell lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573782. [PMID: 38260486 PMCID: PMC10802337 DOI: 10.1101/2024.01.01.573782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The precise spatio-temporal expression of the hematopoietic ETS transcription factor PU.1 that determines the hematopoietic cell fates is tightly regulated at the chromatin level. However, it remains elusive as to how chromatin signatures are linked to this dynamic expression pattern of PU.1 across blood cell lineages. Here we performed an unbiased and in-depth analysis of the relationship between human PU.1 expression, the presence of trans-acting factors, and 3D architecture at various cis-regulatory elements (CRE) proximal to the PU.1 locus. We identified multiple novel CREs at the upstream region of the gene following an integrative inspection for conserved DNA elements at the chromatin-accessible regions in primary human blood lineages. We showed that a subset of CREs localize within a 10 kb-wide cluster that exhibits that exhibit molecular features of a myeloid-specific super-enhancer involved in mediating PU.1 autoregulation, including open chromatin, unmethylated DNA, histone enhancer marks, transcription of enhancer RNAs, and occupancy of the PU.1 protein itself. Importantly, we revealed the presence of common 35-kb-wide CTCF-bound insulated neighborhood that contains the CRE cluster, forming the chromatin territory for lineage-specific and CRE-mediated chromatin interactions. These include functional CRE-promoter interactions in myeloid and B cells but not in erythroid and T cells. Our findings also provide mechanistic insights into the interplay between dynamic chromatin structure and 3D architecture in defining certain CREs as enhancers or silencers in chromatin regulation of PU.1 expression. The study lays the groundwork for further examination of PU.1 CREs as well as epigenetic regulation in malignant hematopoiesis.
Collapse
|
23
|
Li R, Zhao H, Huang X, Zhang J, Bai R, Zhuang L, Wen S, Wu S, Zhou Q, Li M, Zeng L, Zhang S, Deng S, Su J, Zuo Z, Chen R, Lin D, Zheng J. Super-enhancer RNA m 6A promotes local chromatin accessibility and oncogene transcription in pancreatic ductal adenocarcinoma. Nat Genet 2023; 55:2224-2234. [PMID: 37957340 DOI: 10.1038/s41588-023-01568-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
The biological functions of noncoding RNA N6-methyladenosine (m6A) modification remain poorly understood. In the present study, we depict the landscape of super-enhancer RNA (seRNA) m6A modification in pancreatic ductal adenocarcinoma (PDAC) and reveal a regulatory axis of m6A seRNA, H3K4me3 modification, chromatin accessibility and oncogene transcription. We demonstrate the cofilin family protein CFL1, overexpressed in PDAC, as a METTL3 cofactor that helps seRNA m6A methylation formation. The increased seRNA m6As are recognized by the reader YTHDC2, which recruits H3K4 methyltransferase MLL1 to promote H3K4me3 modification cotranscriptionally. Super-enhancers with a high level of H3K4me3 augment chromatin accessibility and facilitate oncogene transcription. Collectively, these results shed light on a CFL1-METTL3-seRNA m6A-YTHDC2/MLL1 axis that plays a role in the epigenetic regulation of local chromatin state and gene expression, which strengthens our knowledge about the functions of super-enhancers and their transcripts.
Collapse
Affiliation(s)
- Rui Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hongzhe Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Lisha Zhuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shujuan Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shaojia Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Quanbo Zhou
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingxing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shaoping Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shuang Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jiachun Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Rufu Chen
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Kent D, Marchetti L, Mikulasova A, Russell LJ, Rico D. Broad H3K4me3 domains: Maintaining cellular identity and their implication in super-enhancer hijacking. Bioessays 2023; 45:e2200239. [PMID: 37350339 DOI: 10.1002/bies.202200239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
The human and mouse genomes are complex from a genomic standpoint. Each cell has the same genomic sequence, yet a wide array of cell types exists due to the presence of a plethora of regulatory elements in the non-coding genome. Recent advances in epigenomic profiling have uncovered non-coding gene proximal promoters and distal enhancers of transcription genome-wide. Extension of promoter-associated H3K4me3 histone mark across the gene body, known as a broad H3K4me3 domain (H3K4me3-BD), is a signature of constitutive expression of cell-type-specific regulation and of tumour suppressor genes in healthy cells. Recently, it has been discovered that the presence of H3K4me3-BDs over oncogenes is a cancer-specific feature associated with their dysregulated gene expression and tumourigenesis. Moreover, it has been shown that the hijacking of clusters of enhancers, known as super-enhancers (SE), by proto-oncogenes results in the presence of H3K4me3-BDs over the gene body. Therefore, H3K4me3-BDs and SE crosstalk in healthy and cancer cells therefore represents an important mechanism to identify future treatments for patients with SE driven cancers.
Collapse
Affiliation(s)
- Daniel Kent
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Letizia Marchetti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Aneta Mikulasova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lisa J Russell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Rico
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
25
|
Malfait J, Wan J, Spicuglia S. Epromoters are new players in the regulatory landscape with potential pleiotropic roles. Bioessays 2023; 45:e2300012. [PMID: 37246247 DOI: 10.1002/bies.202300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Precise spatiotemporal control of gene expression during normal development and cell differentiation is achieved by the combined action of proximal (promoters) and distal (enhancers) cis-regulatory elements. Recent studies have reported that a subset of promoters, termed Epromoters, works also as enhancers to regulate distal genes. This new paradigm opened novel questions regarding the complexity of our genome and raises the possibility that genetic variation within Epromoters has pleiotropic effects on various physiological and pathological traits by differentially impacting multiple proximal and distal genes. Here, we discuss the different observations pointing to an important role of Epromoters in the regulatory landscape and summarize the evidence supporting a pleiotropic impact of these elements in disease. We further hypothesize that Epromoter might represent a major contributor to phenotypic variation and disease.
Collapse
Affiliation(s)
- Juliette Malfait
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, LIGUE, Marseille, France
| | - Jing Wan
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, LIGUE, Marseille, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, LIGUE, Marseille, France
| |
Collapse
|
26
|
Qiu X, Liang G, Zhou W, Sen R, Atchison ML. Multiple lineage-specific epigenetic landscapes at the antigen receptor loci. AGING RESEARCH (HONG KONG, CHINA) 2023; 1:9340010. [PMID: 38770228 PMCID: PMC11103674 DOI: 10.26599/agr.2023.9340010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Antigen receptors (AgRs) expressed on B and T cells provide the adaptive immune system with ability to detect numerous foreign antigens. Epigenetic features of B cell receptor (BCR) and T cell receptor (TCR) genes were previously studied in lymphocytes, but little is known about their epigenetic features in other cells. Here, we explored histone modifications and transcription markers at the BCR and TCR loci in lymphocytes (pro-B, DP T cells, and mature CD4+ T cells), compared to embryonic stem (ES) cells and neurons. In B cells, the BCR loci exhibited active histone modifications and transcriptional markers indicative of active loci. Similar results were observed at the TCR loci in T cells. All loci were largely inactive in neurons. Surprisingly, in ES cells all AgR loci displayed a high degree of active histone modifications and markers of active transcription. Locations of these active histone modifications in ES cells were largely distinct from those in pro-B cells, and co-localized at numerous binding locations for transcription factors Oct4, Sox2, and Nanog. ES and pro-B cells also showed distinct binding patterns for the ubiquitous transcription factor YY1 and chromatin remodeler Brg1. On the contrary, there were many overlapping CCCTC-binding factor (CTCF) binding patterns when comparing ES cells, pro-B cells, and neurons. Our study identifies epigenetic features in ES cells and lymphocytes that may be related to ES cell pluripotency and lymphocyte tissue-specific activation at the AgR loci.
Collapse
Affiliation(s)
- Xiang Qiu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Guanxiang Liang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Michael L. Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
27
|
Sansbury SE, Serebrenik YV, Lapidot T, Burslem GM, Shalem O. Pooled tagging and hydrophobic targeting of endogenous proteins for unbiased mapping of unfolded protein responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548611. [PMID: 37503003 PMCID: PMC10370017 DOI: 10.1101/2023.07.13.548611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
System-level understanding of proteome organization and function requires methods for direct visualization and manipulation of proteins at scale. We developed an approach enabled by high-throughput gene tagging for the generation and analysis of complex cell pools with endogenously tagged proteins. Proteins are tagged with HaloTag to enable visualization or direct perturbation. Fluorescent labeling followed by in situ sequencing and deep learning-based image analysis identifies the localization pattern of each tag, providing a bird's-eye-view of cellular organization. Next, we use a hydrophobic HaloTag ligand to misfold tagged proteins, inducing spatially restricted proteotoxic stress that is read out by single cell RNA sequencing. By integrating optical and perturbation data, we map compartment-specific responses to protein misfolding, revealing inter-compartment organization and direct crosstalk, and assigning proteostasis functions to uncharacterized genes. Altogether, we present a powerful and efficient method for large-scale studies of proteome dynamics, function, and homeostasis.
Collapse
|
28
|
Wang X, Liu D, Luo J, Kong D, Zhang Y. Exploring the Role of Enhancer-Mediated Transcriptional Regulation in Precision Biology. Int J Mol Sci 2023; 24:10843. [PMID: 37446021 PMCID: PMC10342031 DOI: 10.3390/ijms241310843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
The emergence of precision biology has been driven by the development of advanced technologies and techniques in high-resolution biological research systems. Enhancer-mediated transcriptional regulation, a complex network of gene expression and regulation in eukaryotes, has attracted significant attention as a promising avenue for investigating the underlying mechanisms of biological processes and diseases. To address biological problems with precision, large amounts of data, functional information, and research on the mechanisms of action of biological molecules is required to address biological problems with precision. Enhancers, including typical enhancers and super enhancers, play a crucial role in gene expression and regulation within this network. The identification and targeting of disease-associated enhancers hold the potential to advance precision medicine. In this review, we present the concepts, progress, importance, and challenges in precision biology, transcription regulation, and enhancers. Furthermore, we propose a model of transcriptional regulation for multi-enhancers and provide examples of their mechanisms in mammalian cells, thereby enhancing our understanding of how enhancers achieve precise regulation of gene expression in life processes. Precision biology holds promise in providing new tools and platforms for discovering insights into gene expression and disease occurrence, ultimately benefiting individuals and society as a whole.
Collapse
Affiliation(s)
- Xueyan Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Danli Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Jing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Dashuai Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Yubo Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| |
Collapse
|
29
|
Shah RN, Ruthenburg AJ. Specificity Guides Interpretation: On H3K4 Methylation at Enhancers and Broad Promoters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524067. [PMID: 36711866 PMCID: PMC9882130 DOI: 10.1101/2023.01.16.524067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In 2018, we used internally calibrated chromatin immunoprecipitation (ICeChIP) to find that many of the most commonly used antibodies against H3K4 methylforms had significant off-target binding, which compromised the findings of at least eight literature paradigms that used these antibodies for ChIP-seq (Shah et al., 2018). In many cases, we were able to recapitulate the prior findings in K562 cells with the original, low-quality antibody, only to find that the models did not hold up to scrutiny with highly specific reagents and quantitative calibration. In a recent preprint originally prepared as a Letter to the Editor of Molecular Cell, though they agree with our overarching conclusions, Pekowska and colleagues take issue with analyses presented for two relatively minor points of the paper (Pekowska et al., 2023). We are puzzled by the assertion that these two points constitute the "bulk" of our findings, nor is it clear which components of our "analytical design" they find problematic. We feel their critique, however mild, is misguided.
Collapse
Affiliation(s)
- Rohan N. Shah
- Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Alexander J. Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
30
|
Stroynowska-Czerwinska AM, Klimczak M, Pastor M, Kazrani AA, Misztal K, Bochtler M. Clustered PHD domains in KMT2/MLL proteins are attracted by H3K4me3 and H3 acetylation-rich active promoters and enhancers. Cell Mol Life Sci 2023; 80:23. [PMID: 36598580 PMCID: PMC9813062 DOI: 10.1007/s00018-022-04651-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
Histone lysine-specific methyltransferase 2 (KMT2A-D) proteins, alternatively called mixed lineage leukemia (MLL1-4) proteins, mediate positive transcriptional memory. Acting as the catalytic subunits of human COMPASS-like complexes, KMT2A-D methylate H3K4 at promoters and enhancers. KMT2A-D contain understudied highly conserved triplets and a quartet of plant homeodomains (PHDs). Here, we show that all clustered (multiple) PHDs localize to the well-defined loci of H3K4me3 and H3 acetylation-rich active promoters and enhancers. Surprisingly, we observe little difference in binding pattern between PHDs from promoter-specific KMT2A-B and enhancer-specific KMT2C-D. Fusion of the KMT2A CXXC domain to the PHDs drastically enhances their preference for promoters over enhancers. Hence, the presence of CXXC domains in KMT2A-B, but not KMT2C-D, may explain the promoter/enhancer preferences of the full-length proteins. Importantly, targets of PHDs overlap with KMT2A targets and are enriched in genes involved in the cancer pathways. We also observe that PHDs of KMT2A-D are mutated in cancer, especially within conserved folding motifs (Cys4HisCys2Cys/His). The mutations cause a domain loss-of-function. Taken together, our data suggest that PHDs of KMT2A-D guide the full-length proteins to active promoters and enhancers, and thus play a role in positive transcriptional memory.
Collapse
Affiliation(s)
| | - Magdalena Klimczak
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Michal Pastor
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Asgar Abbas Kazrani
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Katarzyna Misztal
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
31
|
Fritsche K, Boccellato F, Schlaermann P, Koeppel M, Denecke C, Link A, Malfertheiner P, Gut I, Meyer TF, Berger H. DNA methylation in human gastric epithelial cells defines regional identity without restricting lineage plasticity. Clin Epigenetics 2022; 14:193. [PMID: 36585699 PMCID: PMC9801550 DOI: 10.1186/s13148-022-01406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epigenetic modifications in mammalian DNA are commonly manifested by DNA methylation. In the stomach, altered DNA methylation patterns have been observed following chronic Helicobacter pylori infections and in gastric cancer. In the context of epigenetic regulation, the regional nature of the stomach has been rarely considered in detail. RESULTS Here, we establish gastric mucosa derived primary cell cultures as a reliable source of native human epithelium. We describe the DNA methylation landscape across the phenotypically different regions of the healthy human stomach, i.e., antrum, corpus, fundus together with the corresponding transcriptomes. We show that stable regional DNA methylation differences translate to a limited extent into regulation of the transcriptomic phenotype, indicating a largely permissive epigenetic regulation. We identify a small number of transcription factors with novel region-specific activity and likely epigenetic impact in the stomach, including GATA4, IRX5, IRX2, PDX1 and CDX2. Detailed analysis of the Wnt pathway reveals differential regulation along the craniocaudal axis, which involves non-canonical Wnt signaling in determining cell fate in the proximal stomach. By extending our analysis to pre-neoplastic lesions and gastric cancers, we conclude that epigenetic dysregulation characterizes intestinal metaplasia as a founding basis for functional changes in gastric cancer. We present insights into the dynamics of DNA methylation across anatomical regions of the healthy stomach and patterns of its change in disease. Finally, our study provides a well-defined resource of regional stomach transcription and epigenetics.
Collapse
Affiliation(s)
- Kristin Fritsche
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Philipp Schlaermann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Max Koeppel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Denecke
- Center for Bariatric and Metabolic Surgery, Center of Innovative Surgery (ZIC), Department of Surgery, Campus Virchow Klinikum and Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, Magdeburg, Germany
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Barcelona, Spain
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| |
Collapse
|
32
|
Adelipour M, Cheraghzadeh M, Rashidi M. Polyphenols as epigenetic modulators in treating or preventing of cancers. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Fischer DK, Krick KS, Han C, Woolf MT, Heller EA. Cocaine regulation of Nr4a1 chromatin bivalency and mRNA in male and female mice. Sci Rep 2022; 12:15735. [PMID: 36130958 PMCID: PMC9492678 DOI: 10.1038/s41598-022-19908-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Cocaine epigenetically regulates gene expression via changes in histone post-translational modifications (HPTMs). We previously found that the immediate early gene Nr4a1 is epigenetically activated by cocaine in mouse brain reward regions. However, few studies have examined multiple HPTMs at a single gene. Bivalent gene promoters are simultaneously enriched in both activating (H3K4me3 (K4)) and repressive (H3K27me3 (K27)) HPTMs. As such, bivalent genes are lowly expressed but poised for activity-dependent gene regulation. In this study, we identified K4&K27 bivalency at Nr4a1 following investigator-administered cocaine in male and female mice. We applied sequential chromatin immunoprecipitation and qPCR to define Nr4a1 bivalency and expression in striatum (STR), prefrontal cortex (PFC), and hippocampus (HPC). We used Pearson's correlation to quantify relationships within each brain region across treatment conditions for each sex. In female STR, cocaine increased Nr4a1 mRNA while maintaining Nr4a1 K4&K27 bivalency. In male STR, cocaine enriched repressive H3K27me3 and K4&K27 bivalency at Nr4a1 and maintained Nr4a1 mRNA. Furthermore, cocaine epigenetically regulated a putative NR4A1 target, Cartpt, in male PFC. This study defined the epigenetic regulation of Nr4a1 in reward brain regions in male and female mice following cocaine, and, thus, shed light on the biological relevance of sex to cocaine use disorder.
Collapse
Affiliation(s)
- Delaney K Fischer
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keegan S Krick
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chloe Han
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Morgan T Woolf
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Heller
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
F. V, V. D. P, C. M, M. LI, C. D, G. P, D. C, A. T, M. G, S. DF, M. T, V. V, G. S. Targeting epigenetic alterations in cancer stem cells. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1011882. [PMID: 39086963 PMCID: PMC11285701 DOI: 10.3389/fmmed.2022.1011882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 08/02/2024]
Abstract
Oncogenes or tumor suppressor genes are rarely mutated in several pediatric tumors and some early stage adult cancers. This suggests that an aberrant epigenetic reprogramming may crucially affect the tumorigenesis of these tumors. Compelling evidence support the hypothesis that cancer stem cells (CSCs), a cell subpopulation within the tumor bulk characterized by self-renewal capacity, metastatic potential and chemo-resistance, may derive from normal stem cells (NSCs) upon an epigenetic deregulation. Thus, a better understanding of the specific epigenetic alterations driving the transformation from NSCs into CSCs may help to identify efficacious treatments to target this aggressive subpopulation. Moreover, deepening the knowledge about these alterations may represent the framework to design novel therapeutic approaches also in the field of regenerative medicine in which bioengineering of NSCs has been evaluated. Here, we provide a broad overview about: 1) the role of aberrant epigenetic modifications contributing to CSC initiation, formation and maintenance, 2) the epigenetic inhibitors in clinical trial able to specifically target the CSC subpopulation, and 3) epigenetic drugs and stem cells used in regenerative medicine for cancer and diseases.
Collapse
Affiliation(s)
- Verona F.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Pantina V. D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Modica C.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Lo Iacono M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - D’Accardo C.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Porcelli G.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cricchio D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Turdo A.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaggianesi M.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Di Franco S.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Todaro M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veschi V.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stassi G.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
35
|
Xiao Q, Xiao Y, Li LY, Chen MK, Wu M. Multifaceted regulation of enhancers in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194839. [PMID: 35750313 DOI: 10.1016/j.bbagrm.2022.194839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
Enhancer is one kind of cis-elements regulating gene transcription, whose activity is tightly controlled by epigenetic enzymes and histone modifications. Active enhancers are classified into typical enhancers, super-enhancers and over-active enhancers, according to the enrichment and location of histone modifications. Epigenetic factors control the level of histone modifications on enhancers to determine their activity, such as histone methyltransferases and acetylases. Transcription factors, cofactors and mediators co-operate together and are required for enhancer functions. In turn, abnormalities in these trans-acting factors affect enhancer activity. Recent studies have revealed enhancer dysregulation as one of the important features for cancer. Variations in enhancer regions and mutations of enhancer regulatory genes are frequently observed in cancer cells, and altering the activity of onco-enhancers is able to repress oncogene expression, and suppress tumorigenesis and metastasis. Here we summarize the recent discoveries about enhancer regulation in cancer and discuss their potential application in diagnosis and treatment.
Collapse
Affiliation(s)
- Qiong Xiao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Yong Xiao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Ming-Kai Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
36
|
Mikulasova A, Kent D, Trevisan-Herraz M, Karataraki N, Fung KTM, Ashby C, Cieslak A, Yaccoby S, van Rhee F, Zangari M, Thanendrarajan S, Schinke C, Morgan GJ, Asnafi V, Spicuglia S, Brackley CA, Corcoran AE, Hambleton S, Walker BA, Rico D, Russell LJ. Epigenomic translocation of H3K4me3 broad domains over oncogenes following hijacking of super-enhancers. Genome Res 2022; 32:1343-1354. [PMID: 34933939 PMCID: PMC9341503 DOI: 10.1101/gr.276042.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
Chromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called enhancer hijacking We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with hijacking of super-enhancers of other common oncogenes in B cell (MAF, MYC, and FGFR3/NSD2) and T cell malignancies (LMO2, TLX3, and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, in which the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.
Collapse
Affiliation(s)
- Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Daniel Kent
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Marco Trevisan-Herraz
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nefeli Karataraki
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Kent T M Fung
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Cody Ashby
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Shmuel Yaccoby
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Maurizio Zangari
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | - Carolina Schinke
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Gareth J Morgan
- NYU Langone Medical Center, Perlmutter Cancer Center, NYU Langone Health, New York, New York 10016, USA
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Anne E Corcoran
- Lymphocyte Signalling and Development Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, Indiana 46202, USA
| | - Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Lisa J Russell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
37
|
Belhocine M, Simonin M, Abad Flores JD, Cieslak A, Manosalva I, Pradel L, Smith C, Mathieu EL, Charbonnier G, Martens JHA, Stunnenberg HG, Maqbool MA, Mikulasova A, Russell LJ, Rico D, Puthier D, Ferrier P, Asnafi V, Spicuglia S. Dynamics of broad H3K4me3 domains uncover an epigenetic switch between cell identity and cancer-related genes. Genome Res 2022; 32:1328-1342. [PMID: 34162697 PMCID: PMC9341507 DOI: 10.1101/gr.266924.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/05/2021] [Indexed: 01/03/2023]
Abstract
Broad domains of H3K4 methylation have been associated with consistent expression of tissue-specific, cell identity, and tumor suppressor genes. Here, we identified broad domain-associated genes in healthy human thymic T cell populations and a collection of T cell acute lymphoblastic leukemia (T-ALL) primary samples and cell lines. We found that broad domains are highly dynamic throughout T cell differentiation, and their varying breadth allows the distinction between normal and neoplastic cells. Although broad domains preferentially associate with cell identity and tumor suppressor genes in normal thymocytes, they flag key oncogenes in T-ALL samples. Moreover, the expression of broad domain-associated genes, both coding and noncoding, is frequently deregulated in T-ALL. Using two distinct leukemic models, we showed that the ectopic expression of T-ALL oncogenic transcription factor preferentially impacts the expression of broad domain-associated genes in preleukemic cells. Finally, an H3K4me3 demethylase inhibitor differentially targets T-ALL cell lines depending on the extent and number of broad domains. Our results show that the regulation of broad H3K4me3 domains is associated with leukemogenesis, and suggest that the presence of these structures might be used for epigenetic prioritization of cancer-relevant genes, including long noncoding RNAs.
Collapse
Affiliation(s)
- Mohamed Belhocine
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
- Molecular Biology and Genetics Laboratory, Dubai, United Arab Emirates
| | - Mathieu Simonin
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - José David Abad Flores
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Iris Manosalva
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Lydie Pradel
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Charlotte Smith
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Eve-Lyne Mathieu
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Guillaume Charbonnier
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Joost H A Martens
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Muhammad Ahmad Maqbool
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Aderley Park, Macclesfield SK104TG, United Kingdom
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Lisa J Russell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Denis Puthier
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Pierre Ferrier
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13288 Marseille, France
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| |
Collapse
|
38
|
Mulero Hernández J, Fernández-Breis JT. Analysis of the landscape of human enhancer sequences in biological databases. Comput Struct Biotechnol J 2022; 20:2728-2744. [PMID: 35685360 PMCID: PMC9168495 DOI: 10.1016/j.csbj.2022.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/01/2022] Open
Abstract
The process of gene regulation extends as a network in which both genetic sequences and proteins are involved. The levels of regulation and the mechanisms involved are multiple. Transcription is the main control mechanism for most genes, being the downstream steps responsible for refining the transcription patterns. In turn, gene transcription is mainly controlled by regulatory events that occur at promoters and enhancers. Several studies are focused on analyzing the contribution of enhancers in the development of diseases and their possible use as therapeutic targets. The study of regulatory elements has advanced rapidly in recent years with the development and use of next generation sequencing techniques. All this information has generated a large volume of information that has been transferred to a growing number of public repositories that store this information. In this article, we analyze the content of those public repositories that contain information about human enhancers with the aim of detecting whether the knowledge generated by scientific research is contained in those databases in a way that could be computationally exploited. The analysis will be based on three main aspects identified in the literature: types of enhancers, type of evidence about the enhancers, and methods for detecting enhancer-promoter interactions. Our results show that no single database facilitates the optimal exploitation of enhancer data, most types of enhancers are not represented in the databases and there is need for a standardized model for enhancers. We have identified major gaps and challenges for the computational exploitation of enhancer data.
Collapse
Affiliation(s)
- Juan Mulero Hernández
- Dept. Informática y Sistemas, Universidad de Murcia, CEIR Campus Mare Nostrum, IMIB-Arrixaca, Spain
| | | |
Collapse
|
39
|
Kenny C, Dilshat R, Seberg HE, Van Otterloo E, Bonde G, Helverson A, Franke CM, Steingrímsson E, Cornell RA. TFAP2 paralogs facilitate chromatin access for MITF at pigmentation and cell proliferation genes. PLoS Genet 2022; 18:e1010207. [PMID: 35580127 PMCID: PMC9159589 DOI: 10.1371/journal.pgen.1010207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/01/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
In developing melanocytes and in melanoma cells, multiple paralogs of the Activating-enhancer-binding Protein 2 family of transcription factors (TFAP2) contribute to expression of genes encoding pigmentation regulators, but their interaction with Microphthalmia transcription factor (MITF), a master regulator of these cells, is unclear. Supporting the model that TFAP2 facilitates MITF's ability to activate expression of pigmentation genes, single-cell seq analysis of zebrafish embryos revealed that pigmentation genes are only expressed in the subset of mitfa-expressing cells that also express tfap2 paralogs. To test this model in SK-MEL-28 melanoma cells we deleted the two TFAP2 paralogs with highest expression, TFAP2A and TFAP2C, creating TFAP2 knockout (TFAP2-KO) cells. We then assessed gene expression, chromatin accessibility, binding of TFAP2A and of MITF, and the chromatin marks H3K27Ac and H3K27Me3 which are characteristic of active enhancers and silenced chromatin, respectively. Integrated analyses of these datasets indicate TFAP2 paralogs directly activate enhancers near genes enriched for roles in pigmentation and proliferation, and directly repress enhancers near genes enriched for roles in cell adhesion. Consistently, compared to WT cells, TFAP2-KO cells proliferate less and adhere to one another more. TFAP2 paralogs and MITF co-operatively activate a subset of enhancers, with the former necessary for MITF binding and chromatin accessibility. By contrast, TFAP2 paralogs and MITF do not appear to co-operatively inhibit enhancers. These studies reveal a mechanism by which TFAP2 profoundly influences the set of genes activated by MITF, and thereby the phenotype of pigment cells and melanoma cells.
Collapse
Affiliation(s)
- Colin Kenny
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hannah E. Seberg
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Eric Van Otterloo
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Gregory Bonde
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Annika Helverson
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher M. Franke
- Department of Surgery, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Robert A. Cornell
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
40
|
Xie Y, Chen Y, Li Z, Zhu J, Liu M, Zhang Y, Dong Z. Enhancer transcription detected in the nascent transcriptomic landscape of bread wheat. Genome Biol 2022; 23:109. [PMID: 35501845 PMCID: PMC9063354 DOI: 10.1186/s13059-022-02675-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
The precise spatiotemporal gene expression is orchestrated by enhancers that lack general sequence features and thus are difficult to be computationally identified. By nascent RNA sequencing combined with epigenome profiling, we detect active transcription of enhancers from the complex bread wheat genome. We find that genes associated with transcriptional enhancers are expressed at significantly higher levels, and enhancer RNA is more precise and robust in predicting enhancer activity compared to chromatin features. We demonstrate that sub-genome-biased enhancer transcription could drive sub-genome-biased gene expression. This study highlights enhancer transcription as a hallmark in regulating gene expression in wheat.
Collapse
Affiliation(s)
- Yilin Xie
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiafu Zhu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Min Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
41
|
Rodríguez-Caparrós A, Álvarez-Santiago J, López-Castellanos L, Ruiz-Rodríguez C, Valle-Pastor MJ, López-Ros J, Angulo Ú, Andrés-León E, Suñé C, Hernández-Munain C. Differently Regulated Gene-Specific Activity of Enhancers Located at the Boundary of Subtopologically Associated Domains: TCRα Enhancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:910-928. [PMID: 35082160 DOI: 10.4049/jimmunol.2000864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/05/2021] [Indexed: 11/19/2022]
Abstract
Enhancers activate transcription through long-distance interactions with their cognate promoters within a particular subtopologically associated domain (sub-TAD). The TCRα enhancer (Eα) is located at the sub-TAD boundary between the TCRα and DAD1 genes and regulates transcription toward both sides in an ∼1-Mb region. Analysis of Eα activity in transcribing the unrearranged TCRα gene at the 5'-sub-TAD has defined Eα as inactive in CD4-CD8- thymocytes, active in CD4+CD8+ thymocytes, and strongly downregulated in CD4+ and CD8+ thymocytes and αβ T lymphocytes. Despite its strongly reduced activity, Eα is still required for high TCRα transcription and expression of TCRαβ in mouse and human T lymphocytes, requiring collaboration with distant sequences for such functions. Because VαJα rearrangements in T lymphocytes do not induce novel long-range interactions between Eα and other genomic regions that remain in cis after recombination, strong Eα connectivity with the 3'-sub-TAD might prevent reduced transcription of the rearranged TCRα gene. Our analyses of transcriptional enhancer dependence during T cell development and non-T lineage tissues at the 3'-sub-TAD revealed that Eα can activate the transcription of specific genes, even when it is inactive to transcribe the TCRα gene at the 5'-sub-TAD. Hence distinct requirements for Eα function are necessary at specific genes at both sub-TADs, implying that enhancers do not merely function as chromatin loop anchors that nucleate the formation of factor condensates to increase gene transcription initiated at their cognate promoters. The observed different regulated Eα activity for activating specific genes at its flanking sub-TADs may be a general feature for enhancers located at sub-TAD boundaries.
Collapse
Affiliation(s)
- Alonso Rodríguez-Caparrós
- Institute of Parasitology and Biomedicine López-Neyra-Spanish National Research Council and Health Science Technology Park, Granada, Spain
| | - Jesús Álvarez-Santiago
- Institute of Parasitology and Biomedicine López-Neyra-Spanish National Research Council and Health Science Technology Park, Granada, Spain
| | - Laura López-Castellanos
- Institute of Parasitology and Biomedicine López-Neyra-Spanish National Research Council and Health Science Technology Park, Granada, Spain
| | - Candela Ruiz-Rodríguez
- Institute of Parasitology and Biomedicine López-Neyra-Spanish National Research Council and Health Science Technology Park, Granada, Spain
| | - María Jesús Valle-Pastor
- Institute of Parasitology and Biomedicine López-Neyra-Spanish National Research Council and Health Science Technology Park, Granada, Spain
| | - Jennifer López-Ros
- Institute of Parasitology and Biomedicine López-Neyra-Spanish National Research Council and Health Science Technology Park, Granada, Spain
| | - Úrsula Angulo
- Institute of Parasitology and Biomedicine López-Neyra-Spanish National Research Council and Health Science Technology Park, Granada, Spain
| | - Eduardo Andrés-León
- Institute of Parasitology and Biomedicine López-Neyra-Spanish National Research Council and Health Science Technology Park, Granada, Spain
| | - Carlos Suñé
- Institute of Parasitology and Biomedicine López-Neyra-Spanish National Research Council and Health Science Technology Park, Granada, Spain
| | - Cristina Hernández-Munain
- Institute of Parasitology and Biomedicine López-Neyra-Spanish National Research Council and Health Science Technology Park, Granada, Spain
| |
Collapse
|
42
|
GLI transcriptional repression is inert prior to Hedgehog pathway activation. Nat Commun 2022; 13:808. [PMID: 35145123 PMCID: PMC8831537 DOI: 10.1038/s41467-022-28485-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
The Hedgehog (HH) pathway regulates a spectrum of developmental processes through the transcriptional mediation of GLI proteins. GLI repressors control tissue patterning by preventing sub-threshold activation of HH target genes, presumably even before HH induction, while lack of GLI repression activates most targets. Despite GLI repression being central to HH regulation, it is unknown when it first becomes established in HH-responsive tissues. Here, we investigate whether GLI3 prevents precocious gene expression during limb development. Contrary to current dogma, we find that GLI3 is inert prior to HH signaling. While GLI3 binds to most targets, loss of Gli3 does not increase target gene expression, enhancer acetylation or accessibility, as it does post-HH signaling. Furthermore, GLI repression is established independently of HH signaling, but after its onset. Collectively, these surprising results challenge current GLI pre-patterning models and demonstrate that GLI repression is not a default state for the HH pathway. GLI repression has been presumed to be the default transcriptional state and important for pre-patterning tissues. Challenging current models, the authors show that GLI3 repression is inert in the limb bud before the onset of Hedgehog signaling.
Collapse
|
43
|
Jia Y, Zhou J, Tan TK, Chung TH, Chen Y, Chooi JY, Sanda T, Fullwood MJ, Xiong S, Toh SHM, Balan K, Wong RWJ, Lim JSL, Zhang E, Cai Z, Shen P, Chng WJ. Super Enhancer-Mediated Upregulation of HJURP Promotes Growth and Survival of t(4;14)-Positive Multiple Myeloma. Cancer Res 2022; 82:406-418. [PMID: 34893510 PMCID: PMC9397631 DOI: 10.1158/0008-5472.can-21-0921] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/05/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Multiple myeloma is an incurable malignancy with marked clinical and genetic heterogeneity. The cytogenetic abnormality t(4;14) (p16.3;q32.3) confers aggressive behavior in multiple myeloma. Recently, essential oncogenic drivers in a wide range of cancers have been shown to be controlled by super-enhancers (SE). We used chromatin immunoprecipitation sequencing of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs in t(4;14)-translocated multiple myeloma. The histone chaperone HJURP was aberrantly overexpressed in t(4;14)-positive multiple myeloma due to transcriptional activation by a distal SE induced by the histone lysine methyltransferase NSD2. Silencing of HJURP with short hairpin RNA or CRISPR interference of SE function impaired cell viability and led to apoptosis. Conversely, HJURP overexpression promoted cell proliferation and abrogated apoptosis. Mechanistically, the NSD2/BRD4 complex positively coregulated HJURP transcription by binding the promoter and active elements of its SE. In summary, this study introduces SE profiling as an efficient approach to identify new targets and understand molecular pathogenesis in specific subtypes of cancer. Moreover, HJURP could be a valuable therapeutic target in patients with t(4;14)-positive myeloma. SIGNIFICANCE: A super-enhancer screen in t(4;14) multiple myeloma serves to identify genes that promote growth and survival of myeloma cells, which may be evaluated in future studies as therapeutic targets.
Collapse
Affiliation(s)
- Yunlu Jia
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Melissa J Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Sabrina H M Toh
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Kalpnaa Balan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Regina W J Wong
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Julia S L Lim
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Enfan Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shen
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, Republic of Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Republic of Singapore
| |
Collapse
|
44
|
Mbadhi MN, Tang JM, Zhang JX. Histone Lysine Methylation and Long Non-Coding RNA: The New Target Players in Skeletal Muscle Cell Regeneration. Front Cell Dev Biol 2021; 9:759237. [PMID: 34926450 PMCID: PMC8678087 DOI: 10.3389/fcell.2021.759237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Satellite stem cell availability and high regenerative capacity have made them an ideal therapeutic approach for muscular dystrophies and neuromuscular diseases. Adult satellite stem cells remain in a quiescent state and become activated upon muscular injury. A series of molecular mechanisms succeed under the control of epigenetic regulation and various myogenic regulatory transcription factors myogenic regulatory factors, leading to their differentiation into skeletal muscles. The regulation of MRFs via various epigenetic factors, including DNA methylation, histone modification, and non-coding RNA, determine the fate of myogenesis. Furthermore, the development of histone deacetylation inhibitors (HDACi) has shown promising benefits in their use in clinical trials of muscular diseases. However, the complete application of using satellite stem cells in the clinic is still not achieved. While therapeutic advancements in the use of HDACi in clinical trials have emerged, histone methylation modulations and the long non-coding RNA (lncRNA) are still under study. A comprehensive understanding of these other significant epigenetic modulations is still incomplete. This review aims to discuss some of the current studies on these two significant epigenetic modulations, histone methylation and lncRNA, as potential epigenetic targets in skeletal muscle regeneration. Understanding the mechanisms that initiate myoblast differentiation from its proliferative state to generate new muscle fibres will provide valuable information to advance the field of regenerative medicine and stem cell transplant.
Collapse
Affiliation(s)
- Magdaleena Naemi Mbadhi
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jing-Xuan Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
45
|
Wolfe JC, Mikheeva LA, Hagras H, Zabet NR. An explainable artificial intelligence approach for decoding the enhancer histone modifications code and identification of novel enhancers in Drosophila. Genome Biol 2021; 22:308. [PMID: 34749786 PMCID: PMC8574042 DOI: 10.1186/s13059-021-02532-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Enhancers are non-coding regions of the genome that control the activity of target genes. Recent efforts to identify active enhancers experimentally and in silico have proven effective. While these tools can predict the locations of enhancers with a high degree of accuracy, the mechanisms underpinning the activity of enhancers are often unclear. RESULTS Using machine learning (ML) and a rule-based explainable artificial intelligence (XAI) model, we demonstrate that we can predict the location of known enhancers in Drosophila with a high degree of accuracy. Most importantly, we use the rules of the XAI model to provide insight into the underlying combinatorial histone modifications code of enhancers. In addition, we identified a large set of putative enhancers that display the same epigenetic signature as enhancers identified experimentally. These putative enhancers are enriched in nascent transcription, divergent transcription and have 3D contacts with promoters of transcribed genes. However, they display only intermediary enrichment of mediator and cohesin complexes compared to previously characterised active enhancers. We also found that 10-15% of the predicted enhancers display similar characteristics to super enhancers observed in other species. CONCLUSIONS Here, we applied an explainable AI model to predict enhancers with high accuracy. Most importantly, we identified that different combinations of epigenetic marks characterise different groups of enhancers. Finally, we discovered a large set of putative enhancers which display similar characteristics with previously characterised active enhancers.
Collapse
Affiliation(s)
- Jareth C Wolfe
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Liudmila A Mikheeva
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
- Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Hani Hagras
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK.
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK.
| |
Collapse
|
46
|
Trinh BQ, Ummarino S, Zhang Y, Ebralidze AK, Bassal MA, Nguyen TM, Heller G, Coffey R, Tenen DE, van der Kouwe E, Fabiani E, Gurnari C, Wu CS, Angarica VE, Yang H, Chen S, Zhang H, Thurm AR, Marchi F, Levantini E, Staber PB, Zhang P, Voso MT, Pandolfi PP, Kobayashi SS, Chai L, Di Ruscio A, Tenen DG. Myeloid lncRNA LOUP mediates opposing regulatory effects of RUNX1 and RUNX1-ETO in t(8;21) AML. Blood 2021; 138:1331-1344. [PMID: 33971010 PMCID: PMC8525335 DOI: 10.1182/blood.2020007920] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/18/2021] [Indexed: 11/20/2022] Open
Abstract
The mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. Here, we investigate whether RNAs coordinate with transcription factors to drive myeloid gene transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent RNA and DNA interactions with the broadly expressed Runt-related transcription factor 1 (RUNX1), we identified the long noncoding RNA (lncRNA) originating from the upstream regulatory element of PU.1 (LOUP). This myeloid-specific and polyadenylated lncRNA induces myeloid differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia (AML), wherein RUNX1 is fused to ETO, the resulting oncogenic fusion protein, RUNX1-ETO, limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important role of the interplay between cell-type-specific RNAs and transcription factors, as well as their oncogenic derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of transcription factors represent alternative targets for therapeutic development.
Collapse
Affiliation(s)
- Bon Q Trinh
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
| | - Simone Ummarino
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
| | - Yanzhou Zhang
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
| | - Alexander K Ebralidze
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Harvard University, Boston, MA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tuan M Nguyen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Rory Coffey
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
| | - Danielle E Tenen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Emiel van der Kouwe
- Division of Hematology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Saint Camillus International University of Health Sciences, Rome, Italy
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Chan-Shuo Wu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sisi Chen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
| | - Hong Zhang
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
| | - Abby R Thurm
- Harvard Stem Cell Institute, Harvard University, Boston, MA
- Stanford University School of Medicine, Stanford, CA
| | - Francisco Marchi
- Harvard Stem Cell Institute, Harvard University, Boston, MA
- University of Florida, Gainesville, FL
| | - Elena Levantini
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Harvard University, Boston, MA
- Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, Pisa, Italy
| | - Philipp B Staber
- Division of Hematology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Pu Zhang
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Pier Paolo Pandolfi
- Department of Pathology, Beth Israel Deaconess Cancer Center, Harvard Medical School Boston, MA
| | - Susumu S Kobayashi
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Harvard University, Boston, MA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Li Chai
- Harvard Stem Cell Institute, Harvard University, Boston, MA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Annalisa Di Ruscio
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA; and
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Daniel G Tenen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
- Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
47
|
Parrello D, Vlasenok M, Kranz L, Nechaev S. Targeting the Transcriptome Through Globally Acting Components. Front Genet 2021; 12:749850. [PMID: 34603400 PMCID: PMC8481634 DOI: 10.3389/fgene.2021.749850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription is a step in gene expression that defines the identity of cells and its dysregulation is associated with diseases. With advancing technologies revealing molecular underpinnings of the cell with ever-higher precision, our ability to view the transcriptomes may have surpassed our knowledge of the principles behind their organization. The human RNA polymerase II (Pol II) machinery comprises thousands of components that, in conjunction with epigenetic and other mechanisms, drive specialized programs of development, differentiation, and responses to the environment. Parts of these programs are repurposed in oncogenic transformation. Targeting of cancers is commonly done by inhibiting general or broadly acting components of the cellular machinery. The critical unanswered question is how globally acting or general factors exert cell type specific effects on transcription. One solution, which is discussed here, may be among the events that take place at genes during early Pol II transcription elongation. This essay turns the spotlight on the well-known phenomenon of promoter-proximal Pol II pausing as a step that separates signals that establish pausing genome-wide from those that release the paused Pol II into the gene. Concepts generated in this rapidly developing field will enhance our understanding of basic principles behind transcriptome organization and hopefully translate into better therapies at the bedside.
Collapse
Affiliation(s)
- Damien Parrello
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Maria Vlasenok
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lincoln Kranz
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| |
Collapse
|
48
|
Bachleitner S, Sulyok M, Sørensen JL, Strauss J, Studt L. The H4K20 methyltransferase Kmt5 is involved in secondary metabolism and stress response in phytopathogenic Fusarium species. Fungal Genet Biol 2021; 155:103602. [PMID: 34214671 DOI: 10.1016/j.fgb.2021.103602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Fusarium fujikuroi and Fusarium graminearum are agronomically important plant pathogens, both infecting important staple food plants and thus leading to huge economic losses worldwide. F.fujikuroi belongs to the Fusarium fujikuroi species complex (FFSC) and causes bakanae disease on rice, whereas F.graminearum, a member of the Fusarium graminearum species complex (FGSC), is the causal agent of Fusarium Head Blight (FHB) disease on wheat, barley and maize. In recent years, the importance of chromatin regulation became evident in the plant-pathogen interaction. Several processes, including posttranslational modifications of histones, have been described as regulators of virulence and the biosynthesis of secondary metabolites. In this study, we have functionally characterised methylation of lysine 20 histone 4 (H4K20me) in both Fusarium species. We identified the respective genes solely responsible for H4K20 mono-, di- and trimethylation in F.fujikuroi (FfKMT5) and F.graminearum (FgKMT5). We show that loss of Kmt5 affects colony growth in F.graminearum while this is not the case for F.fujikuroi. Similarly, FgKmt5 is required for full virulence in F.graminearum as Δfgkmt5 is hypovirulent on wheat, whereas the F.fujikuroi Δffkmt5 strain did not deviate from the wild type during rice infection. Lack of Kmt5 had distinct effects on the secondary metabolism in both plant pathogens with the most pronounced effects on fusarin biosynthesis in F.fujikuroi and zearalenone biosynthesis in F.graminearum. Next to this, loss of Kmt5 resulted in an increased tolerance towards oxidative and osmotic stress in both species.
Collapse
Affiliation(s)
- Simone Bachleitner
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, Tulln 3430, Austria
| | - Jens Laurids Sørensen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, DK-9000 Aalborg, Denmark
| | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Lena Studt
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
49
|
Zhu M, Peng R, Liang X, Lan Z, Tang M, Hou P, Song JH, Mak CSL, Park J, Zheng SE, Huang A, Ma X, Chen R, Chang Q, Logothetis CJ, Jain AK, Lin SH, Katayama H, Hanash S, Wang G. P4HA2-induced prolyl hydroxylation suppresses YAP1-mediated prostate cancer cell migration, invasion, and metastasis. Oncogene 2021; 40:6049-6056. [PMID: 34471235 PMCID: PMC8526415 DOI: 10.1038/s41388-021-02000-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Yes-associated protein 1 (YAP1), a key player in the Hippo pathway, has been shown to play a critical role in tumor progression. However, the role of YAP1 in prostate cancer cell invasion, migration, and metastasis is not well defined. Through functional, transcriptomic, epigenomic, and proteomic analyses, we showed that prolyl hydroxylation of YAP1 plays a critical role in the suppression of cell migration, invasion, and metastasis in prostate cancer. Knockdown (KD) or knockout (KO) of YAP1 led to an increase in cell migration, invasion, and metastasis in prostate cancer cells. Microarray analysis showed that the EMT pathway was activated in Yap1-KD cells. ChIP-seq analysis showed that YAP1 target genes are enriched in pathways regulating cell migration. Mass spectrometry analysis identified P4H prolyl hydroxylase in the YAP1 complex and YAP1 was hydroxylated at multiple proline residues. Proline-to-alanine mutations of YAP1 isoform 3 identified proline 174 as a critical residue, and its hydroxylation suppressed cell migration, invasion, and metastasis. KO of P4ha2 led to an increase in cell migration and invasion, which was reversed upon Yap1 KD. Our study identified a novel regulatory mechanism of YAP1 by which P4HA2-dependent prolyl hydroxylation of YAP1 determines its transcriptional activities and its function in prostate cancer metastasis.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruiqing Peng
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin Liang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhengdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian H. Song
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Celia Sze Ling Mak
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiwon Park
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shui-er Zheng
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ailing Huang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruidong Chen
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhinav K. Jain
- Department of Epigenetics and Molecular Carcinogenesis & Epigenomics Profiling Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
50
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|