1
|
Melnik BC, Weiskirchen R, John SM, Stremmel W, Leitzmann C, Weiskirchen S, Schmitz G. White Adipocyte Stem Cell Expansion Through Infant Formula Feeding: New Insights into Epigenetic Programming Explaining the Early Protein Hypothesis of Obesity. Int J Mol Sci 2025; 26:4493. [PMID: 40429638 DOI: 10.3390/ijms26104493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Prolonged breastfeeding (BF), as opposed to artificial infant formula feeding (FF), has been shown to prevent the development of obesity later in life. The aim of our narrative review is to investigate the missing molecular link between postnatal protein overfeeding-often referred to as the "early protein hypothesis"-and the subsequent transcriptional and epigenetic changes that accelerate the expansion of adipocyte stem cells (ASCs) in the adipose vascular niche during postnatal white adipose tissue (WAT) development. To achieve this, we conducted a search on the Web of Science, Google Scholar, and PubMed databases from 2000 to 2025 and reviewed 750 papers. Our findings revealed that the overactivation of mechanistic target of rapamycin complex 1 (mTORC1) and S6 kinase 1 (S6K1), which inhibits wingless (Wnt) signaling due to protein overfeeding, serves as the primary pathway promoting ASC commitment and increasing preadipocyte numbers. Moreover, excessive protein intake, combined with the upregulation of the fat mass and obesity-associated gene (FTO) and a deficiency of breast milk-derived microRNAs from lactation, disrupts the proper regulation of FTO and Wnt pathway components. This disruption enhances ASC expansion in WAT while inhibiting brown adipose tissue development. While BF has been shown to have protective effects against obesity, the postnatal transcriptional and epigenetic changes induced by excessive protein intake from FF may predispose infants to early and excessive ASC commitment in WAT, thereby increasing the risk of obesity later in life.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | | | - Claus Leitzmann
- Institut für Ernährungswissenschaft, Universität Gießen, D-35392 Gießen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025; 26:371-388. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Chen Y, Wang S, Zhang C. The Differentiation Fate of Granulosa Cells and the Regulatory Mechanism in Ovary. Reprod Sci 2025; 32:1414-1426. [PMID: 39192066 DOI: 10.1007/s43032-024-01682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Granulosa cells (GCs) are important drives of the reproductive process, not only the supporting cells for nutrition, but also cells with endocrine functions. Their differentiation and development parallel the entire menstruation period and even during pregnancy, making it tightly linked to the fate of the follicle. To elucidate the underlying mechanism is of great significance for related researches. The life course of GCs is briefly divided into five stages, from epithelial cells to pre-granulosa cells, GCs, mural and cumulus cells, lutein cells, and eventually disappear. A wide variety of genes and transcription factors participate in the regulation of different stages, and more importantly, various hormones secreted by the pituitary gland and GCs themselves play a leading role. These endogenous and exogenous signalling molecules interact to form a cross-linked communication network, promoting the development of GCs. Together with oocytes, theca cells and other functional cells in the ovary, GCs drive one of the most vital biological processes in women.
Collapse
Affiliation(s)
- Yilin Chen
- Queen Mary School, Nanchang University, Nanchang, 330006, China
| | - Shimeng Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Cheng J, Yang L, Wang S, Luo K, Luo S, Dong Y, Ning Y, Wang W. Phylogenetic Insights into the Evolutionary History of the RSPO Gene Family in Metazoa. Genes (Basel) 2025; 16:477. [PMID: 40428299 DOI: 10.3390/genes16050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background: The RSPO gene family encodes secreted glycoproteins that are rich in cysteine, which generally serve as activators of the Wnt signaling pathway in animals. Four types of this family have been identified in a few model species. However, the evolution of the family remains unclear. Methods: In this study, we identified a total of 1496 RSPO homologs through an extensive survey of the RSPO genes in 430 animals. Gene family clustering and phylogenetic analysis identified four major subtypes of the family (RSPO1-RSPO4) and clarified their distribution of copy number in different species. Results and Conclusions: Members of the RSPO4 subfamily that were closest to ancestral forms existed in both Deuterostomes and Protostomates, and we speculate that representatives of this subfamily already existed in Urbilatera, the last common ancestor of Deuterostomes. Particularly, in some RSPO3 subtypes of Actinopterygii (ray-finned fishes), an FU repeated motif with three conserved cysteines was identified. Further conservative analysis of amino acids and alignment of tertiary protein structure revealed the potential functional sites for each subgroup. The results provide insight into the phylogenetic relationships and evolutionary patterns of conserved motifs of RSPO family genes in animal kingdoms, which will guide further studies on the biological functions of RSPO in other non-model species.
Collapse
Affiliation(s)
- Jia Cheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Ling Yang
- Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Shiping Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China
- Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Kaiyong Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Senlin Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Ya Ning
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Weibin Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Smith NR, Giske NR, Sengupta SK, Conley P, Swain JR, Nair A, Fowler KL, Klocke C, Yoo YJ, Anderson AN, Sanati N, Torkenczy K, Adey AC, Fischer JM, Wu G, Wong MH. Dual states of murine Bmi1-expressing intestinal stem cells drive epithelial development utilizing non-canonical Wnt signaling. Dev Cell 2025:S1534-5807(25)00177-7. [PMID: 40262610 DOI: 10.1016/j.devcel.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 11/07/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Intestinal epithelial development and homeostasis critically rely upon balanced stem cell proliferation, involving slow-cycling/label-retaining and active-cycling/canonical Wnt-dependent intestinal stem cell (ISC) subtypes. ISC regulation during development remains poorly understood but has important implications for establishing key mechanisms governing tissue maintenance. Herein, we identify Bmi1+ cells as functional stem cells present in early murine intestinal development, prior to Lgr5-expressing ISCs. Lineage tracing and single-cell RNA sequencing identify that Bmi1+ ISCs can trace to Lgr5+ ISCs and other differentiated lineages. Initially highly proliferative, Bmi1+ ISCs transition to slow-cycling states as Lgr5+ ISCs emerge. Non-canonical Wnt signaling regulates the proliferative Bmi1+ cell state. These findings highlight the dynamic interplay between stem cell populations and the opposing Wnt pathways that govern proliferation-ultimately having implications for tissue development, homeostasis, regeneration, and tumorigenesis. Understanding these fundamental developmental mechanisms is critical for understanding adult intestinal maintenance.
Collapse
Affiliation(s)
- Nicholas R Smith
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nicole R Giske
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Sidharth K Sengupta
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - John R Swain
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashvin Nair
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Kathryn L Fowler
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher Klocke
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yeon Jung Yoo
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashley N Anderson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nasim Sanati
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kristof Torkenczy
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jared M Fischer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97201 USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H Wong
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
6
|
Ranganathan R, Sari F, Wang SX, Thiery A, Buzzi AL, Guerra R, Moody SA, Streit A. Targets of the transcription factor Six1 identify previously unreported candidate deafness genes. Development 2025; 152:dev204533. [PMID: 40213817 PMCID: PMC12045605 DOI: 10.1242/dev.204533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/12/2025] [Indexed: 05/03/2025]
Abstract
Branchio-otic (BOS) and branchio-oto-renal (BOR) syndromes are autosomal dominant disorders featuring multiple birth defects including ear, renal and branchial malformations. Mutations in the homeodomain transcription factor SIX1 and its co-factor EYA1 have been identified in about 50% of individuals with BOS or BOR, while causative mutations are unknown in the other half. We hypothesise that SIX1 target genes represent new BOS and BOR candidates. Using published transcriptomic and epigenomic data from chick ear progenitors, we first identify putative Six1 targets. Next, we provide evidence that Six1 directly regulates some of these candidates: Six1 binds to their enhancers, and functional experiments in Xenopus and chick confirm that Six1 controls their expression. Finally, we show that most putative chick Six1 targets are also expressed in the human developing ear and are associated with known deafness loci. Together, our results not only characterise the molecular mechanisms that mediate Six1 function in the developing ear, but also provide new candidates for human congenital deafness.
Collapse
Affiliation(s)
- Ramya Ranganathan
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Fereshteh Sari
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Alexandre Thiery
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Ailin Leticia Buzzi
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Rosalinda Guerra
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Sally A. Moody
- Department of Anatomy & Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
7
|
Wong GP, Hartmann S, Nonn O, Cannon P, Nguyen TV, Kandel M, de Alwis N, Murphy CN, Pritchard N, Dechend R, Hannan NJ, Tong S, Simmons DG, Kaitu'u-Lino TJ. Stem Cell Markers LGR5, LGR4 and Their Immediate Signalling Partners are Dysregulated in Preeclampsia. Stem Cell Rev Rep 2025; 21:872-896. [PMID: 39688759 DOI: 10.1007/s12015-024-10831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Leucine-rich repeat-containing G protein-coupled receptors 5/4 (LGR5/LGR4) are critical stem cell markers in epithelial tissues including intestine. They agonise wingless-related integration site (WNT) signalling. Until now, LGR5/LGR4 were uncharacterised in placenta, where analogous functions may exist. We characterised LGR5/LGR4, their ligands/targets in human placenta, with further assessments on dysregulation in preeclampsia/fetal growth restriction (FGR). LGR5 mRNA was unaltered in first trimester (n = 11), preterm (n = 9) and term (n = 11) placental lysate. LGR5 was enriched in human trophoblast stem cells (hTSCs) and downregulated with differentiation to extravillous trophoblasts (p < 0.0215) and syncytiotrophoblasts (p < 0.0350). In situ hybridisation localised LGR5 to unique, proliferative MKI67 + mononuclear trophoblasts underlying syncytium which concurred with proposed progenitor identities in single-cell transcriptomics. LGR5 expression was significantly reduced in placentas from early-onset preeclampsia (p < 0.0001, n = 81 versus n = 19 controls), late-onset preeclampsia (p = 0.0046, n = 20 versus n = 33 controls) and FGR (p = 0.0031, n = 34 versus n = 17 controls). LGR4 was elevated in first trimester versus preterm and term placentas (p = 0.0412), in placentas with early-onset preeclampsia (p = 0.0148) and in FGR (p = 0.0417). Transcriptomic analysis and in vitro hTSC differentiation to both trophoblast lineages suggested LGR4 increases with differentiation. Single-nucleus RNA sequencing of placental villous samples supported LGR5 and LGR4 localisation findings. Hypoxia/proinflammatory cytokine treatment modelling elements experienced by the placenta in placental insufficiency pathogenesis did not significantly alter LGR5/LGR4. Ligands R-spondins 1/3/4, and neutralising targets ring finger protein 43 (RNF43) and zinc and ring finger 3 (ZNRF3) were also reduced in placentas from preeclamptic pregnancies. This study is the first to describe LGR5/LGR4 and their signalling partner expression in human placenta. Their dysregulations in the preeclamptic placenta allude to disruptions to integral trophoblast stem cell function/differentiation that may occur during placental development related to WNT signalling.
Collapse
Affiliation(s)
- Georgia P Wong
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| | - Sunhild Hartmann
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charitè Campus Buch, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Berlin, Germany
| | - Olivia Nonn
- Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charitè Campus Buch, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Berlin, Germany
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ping Cannon
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tuong-Vi Nguyen
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Manju Kandel
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natasha de Alwis
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ciara N Murphy
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natasha Pritchard
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ralf Dechend
- Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charitè Campus Buch, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Klinikum, Berlin Buch, Germany
| | - Natalie J Hannan
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Stephen Tong
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - David G Simmons
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
8
|
Stojanovic M, Agrawal DK. CDC42 Regulatory Patterns Related To Inflammatory Bowel Disease and Hyperglycemia. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2025; 8:17-28. [PMID: 40183002 PMCID: PMC11967731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
As a member of the rat sarcoma virus homolog (Rho) guanosine triphosphatases (GTPases) family, Cdc42 represents a "switch" molecule, by changing from inactive (GDP-associated) to active form (GTP-associated) and vice versa. Cdc42 is activated by the guanine nucleotide exchange factors (GEFs), in contrast to GTPase-activating proteins (GAPs) which are responsable for formation of GDP-binding, inactive form of Cdc42. Some of the fundamental cellular functions are regulated by Cdc42 such as cytosceleton dynamics, cell cycling, transcription and cellular trafficking. In the gastrointestinal system, Cdc42 participates in maintenance of the functional epithelial barrier by controling intestinal epithelial cell polarity and interconnections. In addition, Cdc42 expression in pancreatic β-cells is of great importance for glucose-stimulated insulin secretion. From the pathophysiological point of view, literature data provide some evidence for Cdc42 sigaling in inflammatory bowel disease, as well as in hyperglycemic conditions related to diabetes mellitus. However, whether and by which mechanism Cdc42 contributes to the IBD patophysiology in hyperglycemic conditions is still not fully understood. Therefore, we performed bioinformatics analysis to predict transcriptional factor-gene interactions related to Cdc42 signaling in inflammatory bowel disease in hyperglycemic conditions. In silico analysis predicts various interactions between input genes and output transcriptional factors, and therefore reveals the molecules with the highest predicted effect on particular genes. Based on the predictive interactions with the intracellular molecules, carefully designed in vitro or in vivo studies are required to get better insight in the pathways of interest. Better understanding of Cdc42 molecular pathway in inflammatory bowel disease and hyperglycemia will help identifying potential targets for therapeutical modifications in clinical setting resulting in better control of the disease progression.
Collapse
Affiliation(s)
- Marija Stojanovic
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
9
|
Filipowska J, Cisneros Z, Varghese SS, Leon-Rivera N, Wang P, Kang R, Lu G, Yuan YC, Shih HP, Bhattacharya S, Dhawan S, Garcia-Ocaña A, Kondegowda NG, Vasavada RC. LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK. Mol Metab 2025; 92:102097. [PMID: 39788290 PMCID: PMC11788739 DOI: 10.1016/j.molmet.2025.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVE Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The Leucine-rich repeat-containing G-protein-coupled receptor (GPCR) 4 (LGR4) is expressed in β-cells and is the fourth most abundant GPCR in human islets. Although LGR4 has regenerative, anti-inflammatory, and anti-apoptotic effects in other tissues, its functional significance in β-cells remains unknown. We have previously identified Receptor Activator of Nuclear Factor Kappa B (NFκB) (RANK) as a negative regulator of β-cell health. In this study, we assessed the regulation of Lgr4 in islets, and the role of LGR4 and LGR4/RANK stoichiometry in β-cell health under basal and stress-induced conditions, in vitro and in vivo. METHODS We evaluated Lgr4 expression in mouse and human islets in response to acute (proinflammatory cytokines), or chronic (high fat fed mice, db/db mice, and aging) stress. To determine the role of LGR4 we employed in vitro Lgr4 loss and gain of function in primary rodent and human β-cells and examined its mechanism of action in the rodent INS1 cell line. Using Lgr4fl/fl and Lgr4fl/fl/Rankfl/fl × Ins1-Cre mice we generated β-cell-specific conditional knockout (cko) mice to test the role of LGR4 and its interaction with RANK in vivo under basal and stress-induced conditions. RESULTS Lgr4 expression in rodent and human islets was reduced by multiple stressors. In vitro, Lgr4 knockdown decreased proliferation and survival in rodent β-cells, while overexpression protected against cytokine-induced cell death in rodent and human β-cells. Mechanistically, LGR4 protects β-cells by suppressing RANK- Tumor necrosis factor receptor associated factor 6 (TRAF6) interaction and subsequent activation of NFκB. Lgr4cko mice exhibit normal glucose homeostasis but increased β-cell death in both sexes and decreased β-cell proliferation and maturation only in females. Male Lgr4cko mice under stress displayed reduced β-cell proliferation and a further increase in β-cell death. The impaired β-cell phenotype in Lgr4cko mice was rescued in Lgr4/Rank double ko (dko) mice. Upon aging, both male and female Lgr4cko mice displayed impaired β-cell homeostasis, however, only female mice became glucose intolerant with decreased plasma insulin. CONCLUSIONS These data demonstrate a novel role for LGR4 as a positive regulator of β-cell health under basal and stress-induced conditions, through suppressing the negative effects of RANK.
Collapse
Affiliation(s)
- Joanna Filipowska
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Zelda Cisneros
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Sneha S Varghese
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Nancy Leon-Rivera
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, and Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy Kang
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Geming Lu
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Computational Quantitative Medicine, City of Hope, Duarte, CA 91010, USA
| | - Hung-Ping Shih
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Supriyo Bhattacharya
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA 91010, USA
| | - Sangeeta Dhawan
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Adolfo Garcia-Ocaña
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Nagesha Guthalu Kondegowda
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Rupangi C Vasavada
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
10
|
Ordaz-Ramos A, Diaz-Blancas J, Martínez-Cruz A, Castro-Oropeza R, Zampedri C, Romero-Rodríguez DP, Rodriguez-Dorantes M, Melendez-Zajgla J, Maldonado V, Vazquez-Santillan K. RANKL regulates differentially breast cancer stem cell properties through its RANK and LGR4 receptors. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119888. [PMID: 39662745 DOI: 10.1016/j.bbamcr.2024.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Breast cancer stem cells (BCSC) are a subpopulation responsible for cancer resistance and relapse. The receptor activator of nuclear factor kappa-Β ligand (RANKL) is a cytokine capable of activating RANK and LGR4 receptors. RANKL/RANK signaling maintains the self-renewal of BCSCs, however, the effect of RANKL via LGR4 remains unclear. Evidence from osteoclasts suggests that RANKL/LGR4 axis disrupts RANK signaling, leading to opposing cellular responses. Anti-RANKL inhibitors are potential agents for eradicating CSCs, but their effect on RANKL/LGR4 signal has not been demonstrated. OBJECTIVE This project aimed to elucidate the role of RANKL in regulating stemness depending on the expression of its receptors. METHODS We use in vitro and in vivo approaches to evaluate the effects of RANKL inhibition in stemness in low or high-LGR4 expressing cells. Furthermore, we analyze the effects of RANKL stimulation on the stemness of LGR4 or RANK overexpressing cells. Additionally, we evaluated the impact of RANKL/LGR4 signaling in the activity of Wnt/β-catenin and NF-κB signaling pathways. RESULTS Our findings indicated that elevated RANKL expression is related to a favorable prognosis in patients with high LGR4 levels. Furthermore, RANKL inhibition decreased BCSC properties in LGR4-low cell lines, while it promoted migration in LGR4-high cells. Additionally, the RANKL/RANK axis activated NF-κB signaling and enhanced BCSCs in RANK-overexpressing cells. In contrast, in LGR4-overexpressing cells, RANKL failed to activate NF-κB but instead inhibited the Wnt/β-catenin pathway, leading to a reduction in BCSCs. CONCLUSION Our findings suggest that RANKL exerts different responses according to the expression of its receptors.
Collapse
Affiliation(s)
- Alejandro Ordaz-Ramos
- Innovation and Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Jorge Diaz-Blancas
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Aketzalli Martínez-Cruz
- Innovation and Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Rosario Castro-Oropeza
- Molecular Oncology Laboratory, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncologia, Centro Medico Nacional Siglo XXI, IMSS, Avenida Cuahuhtemoc 330, Col Doctores, Cuauhtemoc, Mexico City C.P. 06720, Mexico
| | - Cecilia Zampedri
- Multidisciplinary Zebrafish Laboratory, Department of Bioengineer, Escuela de Ingenieria y Ciencias, Instituto Tecnologico y de Estudios Superiores Monterrey, Mexico City, Mexico
| | - Damaris P Romero-Rodríguez
- Flow Citometry Laboratory, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosió Villegas", Calzada de Tlalpan 4502, Col Belisario Dominguez Secc 16, Tlalpan, C.P. 14080, Mexico; Laboratorio Nacional Conahcyt de Investigación y Diagnóstico por Inmunocitofluorometría (LANCIDI), Mexico City, Mexico
| | - Mauricio Rodriguez-Dorantes
- Oncogenomics Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Jorge Melendez-Zajgla
- Functional Cancer Genomics Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14160, Mexico
| | - Vilma Maldonado
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Karla Vazquez-Santillan
- Innovation and Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico.
| |
Collapse
|
11
|
Valenzuela-Bezanilla D, Mardones MD, Galassi M, Arredondo SB, Santibanez SH, Gutierrez-Jimenez S, Merino-Véliz N, Bustos FJ, Varela-Nallar L. RSPO/LGR signaling regulates proliferation of adult hippocampal neural stem cells. Stem Cells 2025; 43:sxae065. [PMID: 39432578 DOI: 10.1093/stmcls/sxae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
In the dentate gyrus of the adult hippocampus, neurogenesis from neural stem cells (NSCs) is regulated by Wnt signals from the local microenvironment. The Wnt/β-catenin pathway is active in NSCs, where it regulates proliferation and fate commitment, and subsequently its activity is strongly attenuated. The mechanisms controlling Wnt activity are poorly understood. In stem cells from adult peripheral tissues, secreted R-spondin proteins (RSPO1-4) interact with LGR4-6 receptors and control Wnt signaling strength. Here, we found that RSPO1-3 and LGR4-6 are expressed in the adult dentate gyrus and in cultured NSCs isolated from the adult mouse hippocampus. LGR4-5 expression decreased in cultured NSCs upon differentiation, concomitantly with the reported decrease in Wnt activity. Treatment with RSPO1-3 increased NSC proliferation and the expression of Cyclin D1 but did not induce the expression of Axin2 or RNF43, 2 well-described Wnt target genes. However, RSPOs enhanced the effect of Wnt3a on Axin2 and RNF43 expression as well as on Wnt/β-catenin reporter activity, indicating that they can potentiate Wnt activity in NSCs. Moreover, RSPO1-3 was found to be expressed by cultured dentate gyrus astrocytes, a crucial component of the neurogenic niche. In co-culture experiments, the astrocyte-induced proliferation of NSCs was prevented by RSPO2 knockdown in astrocytes and LGR5 knockdown in hippocampal NSCs. Additionally, RSPO2 knockdown in the adult mouse dentate gyrus reduced proliferation of neural stem and progenitor cells in vivo. Altogether, our results indicate that RSPO/LGR signaling is present in the dentate gyrus and plays a crucial role in regulating neural precursor cell proliferation.
Collapse
Affiliation(s)
- Daniela Valenzuela-Bezanilla
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Muriel D Mardones
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Maximiliano Galassi
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Sebastian B Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Sebastian H Santibanez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Stephanie Gutierrez-Jimenez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Nicolás Merino-Véliz
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Fernando J Bustos
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), 8370071 Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), 8370071 Santiago, Chile
| |
Collapse
|
12
|
Menon NA, Kumar CD, Ramachandran P, Blaize B, Gautam M, Cordani M, Lekha Dinesh Kumar. Small-molecule inhibitors of WNT signalling in cancer therapy and their links to autophagy and apoptosis. Eur J Pharmacol 2025; 986:177137. [PMID: 39551337 DOI: 10.1016/j.ejphar.2024.177137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Cancer represents an intricate and heterogeneous ailment that evolves from a multitude of epigenetic and genetic variations that disrupt normal cellular function. The WNT/β-catenin pathway is essential in maintaining the balance between cell renewal and differentiation in various tissues. Abnormal activation of this pathway can lead to uncontrolled cell growth and initiate cancer across a variety of tissues such as the colon, skin, liver, and ovary. It enhances characteristics that lead to cancer progression, including angiogenesis, invasion and metastasis. Processes like autophagy and apoptosis which regulate cell death and play a crucial role in maintaining cellular equilibrium are also intimately linked with WNT/ β-catenin pathway. Thus, targeting WNT pathway has become a key strategy in developing antitumor therapies. Employing small molecule inhibitors has emerged as a targeted therapy to improve the clinical outcome compared to conventional cancer treatments. Many strategies using small molecule inhibitors for modulating the WNT/β-catenin pathway, such as hindering WNT ligands' secretion or interaction, disrupting receptor complex, and blocking the nuclear translocation of β-catenin have been investigated. These interventions have shown promise in both preclinical and clinical settings. This review provides a comprehensive understanding of the role of WNT/β-catenin signalling pathway's role in cancer, emphasizing its regulation of autophagy and apoptosis. Our goal is to highlight the potential of specific small molecule inhibitors targeting this pathway, fostering the development of novel, tailored cancer treatments.
Collapse
Affiliation(s)
- Nayana A Menon
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore, 632004, Tamil Nadu, India
| | - Pournami Ramachandran
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Britny Blaize
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Mridul Gautam
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Lekha Dinesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
13
|
Wang L, Hu F, Cui Q, Qiao H, Li L, Geng T, Li Y, Sun Z, Zhou S, Lan Z, Guo S, Hu Y, Wang J, Yang Q, Wang Z, Dai Y, Geng Y. Structural insights into the LGR4-RSPO2-ZNRF3 complexes regulating WNT/β-catenin signaling. Nat Commun 2025; 16:362. [PMID: 39753551 PMCID: PMC11698847 DOI: 10.1038/s41467-024-55431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
WNT/β-catenin signaling plays key roles in development and cancer1,2. ZNRF3/RNF43 modulates Frizzleds through ubiquitination, dampening WNT/β-catenin signaling. Conversely, RSPO1-4 binding to LGR4-6 and ZNRF3/RNF43 enhances WNT/β-catenin signaling3-5. Here, we elucidate the overall landscape of architectures in multiple LGR4, RSPO2, and ZNRF3 assemblies, showcasing varying stoichiometries and arrangements. These structures reveal that LGR4 and RSPO2 capture distinct states of ZNRF3. The intrinsic heterogeneity of the LGR4-RSPO2-ZNRF3 assembly is influenced by LGR4 content. Particularly, in the assembly complex with a 2:2:2 ratio, two LGR4 protomers induce and stabilize the inactive state of ZNRF3, characterized by a wide inward-open conformation of two transmembrane helices (TM helices). This specific assembly promotes a stable complex, facilitating LGR4-induced endocytosis of ZNRF3. In contrast, the active dimeric ZNRF3, bound by a single LGR4, adopts a coiled-coil TM helices conformation and dimerization of RING domains. Our findings unveil how LGR4 content mediates diverse assemblies, leading to conformational rearrangements in ZNRF3 to regulate WNT/β-catenin signaling, and provide a structural foundation for drug development targeting Wnt-driven cancers.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fangzheng Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huarui Qiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lingyun Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Center for Cognitive Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Tengjie Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuying Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zengchao Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Siyu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhongyun Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shaojue Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Hu
- Center for Cognitive Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Qilun Yang
- Shanghai Kailuo Biotechnology Co. Ltd, Shanghai, China
| | - Zenan Wang
- Center for Cognitive Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Yuanyuan Dai
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital of Chinese Academy of Medical Sciences, Langfang Campus, Langfang, China.
| | - Yong Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Shen Y, Wang J, Dai Y, Wan X, Zhang J, Le Q. RSPO3 Promotes Proliferation and Self-Renewal of Limbal Epithelial Stem Cells Through a WNT/β-Catenin-Independent Signaling Pathway. Invest Ophthalmol Vis Sci 2025; 66:8. [PMID: 39760688 PMCID: PMC11717127 DOI: 10.1167/iovs.66.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose R-spondin3 (RSPO3), a mammalian-specific amplifier of WNT signaling pathway, maintains the homeostasis of various adult stem cells. However, its expression at the limbus and the effect on limbal epithelial stem cells (LESCs) remains unclear. We investigated the impact of RSPO3 on the proliferation and self-renewal of LESCs and explored its molecular mechanisms. Methods The expression of four RSPO subtypes at the limbus were detected. Co-cultured with RSPO3 in vitro, the cell outgrowth area and cell density of human LESCs (hLESCs) were measured, along with EdU assay and evaluation of biomarkers of cell proliferation (Ki67) and stemness (△Np63 and ABCG2). The expression of key molecules in WNT/β-catenin signaling pathway were investigated in RSPO3-co-incubated hLESCs and controls. The effect of RSPO3 on corneal epithelium wound recovery in vivo was investigated in a mouse model of corneal epithelium injury. Results Among four subtypes of RSPO protein, only the RSPO3 isoform was stably expressed at the human limbus. RSPO3 promoted the proliferation and stemness maintenance of hLESCs in vitro in a dose-dependent manner when its concentration ≤ 100 ng/mL, and this effect was not impaired when the activation of β-catenin was inhibited by XAV939, indicating that the effect of RSPO3 on hLESCs was not dependent on canonical WNT/β-catenin signaling pathway. Exogenous RSPO3 accelerated epithelial wound healing by enhancing the proliferation and self-renewal of residual LESCs. Conclusions RSPO3 promotes the proliferation and self-renewal of LESCs through a WNT/β-catenin-independent signaling pathway which might have translational significance in the treatment of corneal epithelium injury and limbal stem cell deficiency.
Collapse
Affiliation(s)
- Yan Shen
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Department of Ophthalmology, Huadong Hospital of Fudan University, Shanghai, China
| | - Jiajia Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Yiqin Dai
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Research Centre, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Xichen Wan
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Research Centre, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Qihua Le
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Research Centre, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Eye, Ear, Nose and Throat Hospital of Fudan University, Shanghai, China
| |
Collapse
|
15
|
Chang YH, Wu KC, Wang KH, Ding DC. Role of Leucine-Rich Repeat-Containing G-Protein-Coupled Receptors 4-6 (LGR4-6) in the Ovary and Other Female Reproductive Organs: A Literature Review. Cell Transplant 2025; 34:9636897241303441. [PMID: 39874091 PMCID: PMC11776010 DOI: 10.1177/09636897241303441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Leucine-rich repeat-containing G-protein-coupled receptors regulate stem cell activity and tissue homeostasis within female reproductive organs, primarily through their interaction with the Wnt/β-catenin signaling pathway. LGR4-6 are increasingly recognized for their roles in organ development, regeneration, and cancer. This review aims to provide a comprehensive overview of the roles of LGR4-6 in female reproductive organs, highlighting their significance in normal physiology and disease states, specifically in the context of ovarian cancer. LGR4 is essential for the proper development of the female reproductive system; its deficiency leads to significant reproductive abnormalities, including delayed menarche and follicle development issues. LGR5 is a well-established marker of stem cells in the ovary and fallopian tubes. It has been implicated in the pathogenesis of high-grade serous ovarian cancer. LGR6, while less studied, shares functional similarities with LGR5 and can maintain stemness. It contributes to chemoresistance in ovarian cancer. LGR6 is a marker for fallopian tube stem cells and is involved in stem cell maintenance and differentiation. LGR4-6 regulate the pathophysiology of female reproductive tissues. LGR4-6 are promising therapeutic targets for treating reproductive cancers and other related disorders. Molecular mechanisms underlying the functions of LGR4-6 should be studied.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
- Institute of Medical Sciences, Tzu Chi University, Hualien
| |
Collapse
|
16
|
Yue F, Ku AT, Stevens PD, Michalski MN, Jiang W, Tu J, Shi Z, Dou Y, Wang Y, Feng XH, Hostetter G, Wu X, Huang S, Shroyer NF, Zhang B, Williams BO, Liu Q, Lin X, Li Y. Loss of ZNRF3/RNF43 Unleashes EGFR in Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574969. [PMID: 38260423 PMCID: PMC10802575 DOI: 10.1101/2024.01.10.574969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
ZNRF3 and RNF43 are closely related transmembrane E3 ubiquitin ligases with significant roles in development and cancer. Conventionally, their biological functions have been associated with regulating WNT signaling receptor ubiquitination and degradation. However, our proteogenomic studies have revealed EGFR as the protein most negatively correlated with ZNRF3/RNF43 mRNA levels in multiple human cancers. Through biochemical investigations, we demonstrate that ZNRF3/RNF43 interact with EGFR via their extracellular domains, leading to EGFR ubiquitination and subsequent degradation facilitated by the E3 ligase RING domain. Overexpression of ZNRF3 reduces EGFR levels and suppresses cancer cell growth in vitro and in vivo, whereas knockout of ZNRF3/RNF43 stimulates cell growth and tumorigenesis through upregulated EGFR signaling. Together, these data highlight ZNRF3 and RNF43 as novel E3 ubiquitin ligases of EGFR and establish the inactivation of ZNRF3/RNF43 as a driver of increased EGFR signaling, ultimately promoting cancer progression. This discovery establishes a connection between two fundamental signaling pathways, EGFR and WNT, at the level of cytoplasmic membrane receptors, uncovering a novel mechanism underlying the frequent co-activation of EGFR and WNT signaling in development and cancer.
Collapse
Affiliation(s)
- Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy T. Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Payton D. Stevens
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
- Biological Sciences Department, Miami University, Oxford, Ohio, 45056, USA
| | - Megan N. Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
| | - Weiyu Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jianghua Tu
- Texas Therapeutics Institute and Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Galen Hostetter
- Van Andel Institute, Core Technologies and Services, Grand Rapids, Michigan 49503, USA
| | - Xiangwei Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shixia Huang
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Education, Innovation & Technology, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Noah F. Shroyer
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bart O. Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
- Van Andel Institute, Core Technologies and Services, Grand Rapids, Michigan 49503, USA
| | - Qingyun Liu
- Texas Therapeutics Institute and Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Xia Lin
- The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
17
|
Kappler M, Thielemann L, Glaß M, Caggegi L, Güttler A, Pyko J, Blauschmidt S, Gutschner T, Taubert H, Otto S, Eckert AW, Tavassol F, Bache M, Vordermark D, Kaune T, Rot S. Functional and Biological Characterization of the LGR5Δ5 Splice Variant in HEK293T Cells. Int J Mol Sci 2024; 25:13417. [PMID: 39769183 PMCID: PMC11678308 DOI: 10.3390/ijms252413417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The regulator of the canonical Wnt pathway, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), is expressed in the stem cell compartment of several tissues and overexpressed in different human carcinomas. The isoform of the stem cell marker LGR5, named LGR5Δ5 and first described by our group, is associated with prognosis and metastasis in oral squamous cell carcinoma (OSCC) and soft tissue sarcoma (STS). In a proof-of-principle analysis, the function of LGR5Δ5 was investigated in HEK293T cells, a model cell line of the Wnt pathway, compared to full-length LGR5 (FL) expression. The CRISPR/CAS knockout of LGR5 and LGR4 (thereby avoiding the side effects of LGR4) resulted in a loss of Wnt activity that cannot be restored by LGR5Δ5 but by LGR5FL rescue. The ability to migrate was not affected by LGR5Δ5, but was reduced by LGR5FL overexpression. The CRISPR/CAS of LGR4 and 5 induced radiosensitization, which was enhanced by the overexpression of LGR5FL or LGR5Δ5. RNA sequencing analysis revealed a significant increase in the ligand R-spondin 1 (RSPO1) level by LGR5Δ5. Furthermore, LGR5Δ5 appears to be involved in the regulation of genes related to the cytoskeleton, extracellular matrix stiffness, and angiogenesis, while LGR5FL is associated with the regulation of collagens and histone proteins.
Collapse
Affiliation(s)
- Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Laura Thielemann
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany;
| | - Laura Caggegi
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Antje Güttler
- Department of Radiotherapy, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (A.G.); (M.B.); (D.V.)
| | - Jonas Pyko
- Institute of Molecular Medicine, Section for RNA Biology and Pathogenesis, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (J.P.); (T.G.)
| | - Sarah Blauschmidt
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Tony Gutschner
- Institute of Molecular Medicine, Section for RNA Biology and Pathogenesis, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (J.P.); (T.G.)
| | - Helge Taubert
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig Maximilians University, 80337 Munich, Germany;
| | - Alexander W. Eckert
- Department of Cranio Maxillofacial Surgery, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Frank Tavassol
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Matthias Bache
- Department of Radiotherapy, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (A.G.); (M.B.); (D.V.)
| | - Dirk Vordermark
- Department of Radiotherapy, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (A.G.); (M.B.); (D.V.)
| | - Tom Kaune
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Swetlana Rot
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| |
Collapse
|
18
|
Ma H, Gao G, Palti Y, Tripathi V, Birkett JE, Weber GM. Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro. Int J Mol Sci 2024; 25:12683. [PMID: 39684392 DOI: 10.3390/ijms252312683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Gonadotropins and progestins are the primary regulators of follicle maturation and ovulation in fish, and they require complex communication among the oocyte and somatic cells of the follicle. The major progestin and the maturation-inducing hormone in salmonids is 17α,20β-dihdroxy-4-pregnen-3-one (17,20βP), and traditional nuclear receptors and membrane steroid receptors for the progestin have been identified within the follicle. Herein, RNA-seq was used to conduct a comprehensive survey of changes in gene expression throughout the intact follicle in response to in vitro treatment with these hormones to provide a foundation for understanding the coordination of their actions in regulating follicle maturation and preparation for ovulation. A total of 5292 differentially expressed genes were identified from our transcriptome sequencing datasets comparing four treatments: fresh tissue; untreated control; 17,20βP-treated; and salmon pituitary homogenate-treated follicles. Extensive overlap in affected genes suggests many gonadotropin actions leading to the acquisition of maturational and ovulatory competence are mediated in part by gonadotropin induction of 17,20βP synthesis. KEGG analysis identified signaling pathways, including MAPK, TGFβ, FoxO, and Wnt signaling pathways, among the most significantly enriched pathways altered by 17,20βP treatment, suggesting pervasive influences of 17,20βP on actions of other endocrine and paracrine factors in the follicle complex.
Collapse
Affiliation(s)
- Hao Ma
- US Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA 50010, USA
| | - Guangtu Gao
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Yniv Palti
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Vibha Tripathi
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Jill E Birkett
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Gregory M Weber
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
19
|
Li S, Niu J, Smits R. RNF43 and ZNRF3: Versatile regulators at the membrane and their role in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189217. [PMID: 39551397 DOI: 10.1016/j.bbcan.2024.189217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
RNF43 and ZNRF3 are recognized as important regulators of Wnt/β-catenin signaling by maintaining Wnt-receptors at minimal essential levels. In various cancer types, particularly gastrointestinal tumors, mutations in these genes lead to abnormal Wnt-dependent activation of β-catenin signaling. However, recent findings implicate RNF43/ZNRF3 also in the regulation of other tumor-related proteins, including EGFR, BRAF, and the BMP-signaling pathway, which may have important implications for tumor biology. Additionally, we describe in detail how phosphorylation and ubiquitination may finetune RNF43 and ZNRF3 activity. We also address the variety of mutations observed in cancers and the mechanism through which they support tumor growth, and challenge the prevailing view that specific missense mutations in the R-spondin and RING domains may possess dominant-negative activity in contributing to tumor formation.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Jiahui Niu
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands..
| |
Collapse
|
20
|
King JS, Wan M, Wagley Y, Stestiv M, Kalajzic I, Hankenson KD, Sanjay A. Signaling pathways associated with Lgr6 to regulate osteogenesis. Bone 2024; 187:117207. [PMID: 39033993 DOI: 10.1016/j.bone.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Fracture management largely relies on the bone's inherent healing capabilities and, when necessary, surgical intervention. Currently, there are limited osteoinductive therapies to promote healing, making targeting skeletal stem/progenitor cells (SSPCs) a promising avenue for therapeutic development. A limiting factor for this approach is our incomplete understanding of the molecular mechanisms governing SSPCs' behavior. We have recently identified that the Leucine-rich repeat-containing G-protein coupled receptor 6 (Lgr6) is expressed in sub-populations of SSPCs, and is required for maintaining bone volume during adulthood and for proper fracture healing. Lgr family members (Lgr4-6) are markers of stem cell niches and play a role in tissue regeneration primarily by binding R-Spondin (Rspo1-4). This interaction promotes canonical Wnt (cWnt) signaling by stabilizing Frizzled receptors. Interestingly, our findings here indicate that Lgr6 may also influence cWnt-independent pathways. Remarkably, Lgr6 expression was enhanced during Bmp-mediated osteogenesis of both human and murine cells. Using biochemical approaches, RNA sequencing, and bioinformatic analysis of published single-cell data, we found that elements of BMP signaling, including its target gene, pSMAD, and gene ontology pathways, are downregulated in the absence of Lgr6. Our findings uncover a molecular interdependency between the Bmp pathway and Lgr6, offering new insights into osteogenesis and potential targets for enhancing fracture healing.
Collapse
Affiliation(s)
- Justin S King
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Matthew Wan
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Marta Stestiv
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Archana Sanjay
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA.
| |
Collapse
|
21
|
Niehrs C, Seidl C, Lee H. An "R-spondin code" for multimodal signaling ON-OFF states. Bioessays 2024; 46:e2400144. [PMID: 39180250 DOI: 10.1002/bies.202400144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
R-spondins (RSPOs) are a family of secreted proteins and stem cell growth factors that are potent co-activators of Wnt signaling. Recently, RSPO2 and RSPO3 were shown to be multifunctional, not only amplifying Wnt- but also binding BMP- and FGF receptors to downregulate signaling. The common mechanism underlying these diverse functions is that RSPO2 and RSPO3 act as "endocytosers" that link transmembrane proteins to ZNRF3/RNF43 E3 ligases and trigger target internalization. Thus, RSPOs are natural protein targeting chimeras for cell surface proteins. Conducting data mining and cell surface binding assays we report additional candidate RSPO targets, including SMO, PTC1,2, LGI1, ROBO4, and PTPR(F/S). We propose that there is an "R-spondin code" that imparts combinatorial signaling ON-OFF states of multiple growth factors. This code involves the modular RSPO domains, notably distinct motifs in the divergent RSPO-TSP1 domains to mediate target interaction and internalization. The RSPO code offers a novel framework for the understanding how diverse signaling pathways may be coordinately regulated in development and disease.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Kayama H, Takeda K. Regulation of intestinal epithelial homeostasis by mesenchymal cells. Inflamm Regen 2024; 44:42. [PMID: 39327633 PMCID: PMC11426228 DOI: 10.1186/s41232-024-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
23
|
Tourigny DS, Altieri B, Secener KA, Sbiera S, Schauer MP, Arampatzi P, Herterich S, Sauer S, Fassnacht M, Ronchi CL. Cellular landscape of adrenocortical carcinoma at single-nuclei resolution. Mol Cell Endocrinol 2024; 590:112272. [PMID: 38759836 DOI: 10.1016/j.mce.2024.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare yet devastating tumour of the adrenal gland with a molecular pathology that remains incompletely understood. To gain novel insights into the cellular landscape of ACC, we generated single-nuclei RNA sequencing (snRNA-seq) data sets from twelve ACC tumour samples and analysed these alongside snRNA-seq data sets from normal adrenal glands (NAGs). We find the ACC tumour microenvironment to be relatively devoid of immune cells compared to NAG tissues, consistent with known high tumour purity values for ACC as an immunologically "cold" tumour. Our analysis identifies three separate groups of ACC samples that are characterised by different relative compositions of adrenocortical cell types. These include cell populations that are specifically enriched in the most clinically aggressive and hormonally active tumours, displaying hallmarks of reorganised cell mechanobiology and dysregulated steroidogenesis, respectively. We also identified and validated a population of mitotically active adrenocortical cells that strongly overexpress genes POLQ, DIAPH3 and EZH2 to support tumour expansion alongside an LGR4+ progenitor-like or cell-of-origin candidate for adrenocortical carcinogenesis. Trajectory inference suggests the fate adopted by malignant adrenocortical cells upon differentiation is associated with the copy number or allelic balance state of the imprinted DLK1/MEG3 genomic locus, which we verified by assessing bulk tumour DNA methylation status. In conclusion, our results therefore provide new insights into the clinical and cellular heterogeneity of ACC, revealing how genetic perturbations to healthy adrenocortical renewal and zonation provide a molecular basis for disease pathogenesis.
Collapse
Affiliation(s)
- David S Tourigny
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Kerim A Secener
- Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany; Institute of Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University Berlin, Berlin, 14195, Germany
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Marc P Schauer
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany; Center for Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, 97080, Germany
| | | | - Sabine Herterich
- Central Laboratory, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Cristina L Ronchi
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, B15 2GW, UK.
| |
Collapse
|
24
|
de Jaime-Soguero A, Hattemer J, Bufe A, Haas A, van den Berg J, van Batenburg V, Das B, di Marco B, Androulaki S, Böhly N, Landry JJM, Schoell B, Rosa VS, Villacorta L, Baskan Y, Trapp M, Benes V, Chabes A, Shahbazi M, Jauch A, Engel U, Patrizi A, Sotillo R, van Oudenaarden A, Bageritz J, Alfonso J, Bastians H, Acebrón SP. Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress. Nat Commun 2024; 15:7404. [PMID: 39191776 DOI: 10.1038/s41467-024-51821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Human development relies on the correct replication, maintenance and segregation of our genetic blueprints. How these processes are monitored across embryonic lineages, and why genomic mosaicism varies during development remain unknown. Using pluripotent stem cells, we identify that several patterning signals-including WNT, BMP, and FGF-converge into the modulation of DNA replication stress and damage during S-phase, which in turn controls chromosome segregation fidelity in mitosis. We show that the WNT and BMP signals protect from excessive origin firing, DNA damage and chromosome missegregation derived from stalled forks in pluripotency. Cell signalling control of chromosome segregation declines during lineage specification into the three germ layers, but re-emerges in neural progenitors. In particular, we find that the neurogenic factor FGF2 induces DNA replication stress-mediated chromosome missegregation during the onset of neurogenesis, which could provide a rationale for the elevated chromosomal mosaicism of the developing brain. Our results highlight roles for morphogens and cellular identity in genome maintenance that contribute to somatic mosaicism during mammalian development.
Collapse
Affiliation(s)
| | - Janina Hattemer
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anja Bufe
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Alexander Haas
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jeroen van den Berg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vincent van Batenburg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Biswajit Das
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Barbara di Marco
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefania Androulaki
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Nicolas Böhly
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Brigitte Schoell
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Laura Villacorta
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yagmur Baskan
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center at the University of Heidelberg, Bioquant, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josephine Bageritz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Holger Bastians
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
25
|
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers. Front Cell Dev Biol 2024; 12:1440091. [PMID: 39239558 PMCID: PMC11374967 DOI: 10.3389/fcell.2024.1440091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behnaz Riazalhosseini
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tuba Zendehboudi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Food Control Laboratory, Food and Drug Deputy, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
26
|
Kubrak O, Jørgensen AF, Koyama T, Lassen M, Nagy S, Hald J, Mazzoni G, Madsen D, Hansen JB, Larsen MR, Texada MJ, Hansen JL, Halberg KV, Rewitz K. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance. Nat Commun 2024; 15:6126. [PMID: 39033139 PMCID: PMC11271308 DOI: 10.1038/s41467-024-50468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.
Collapse
Affiliation(s)
- Olga Kubrak
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Anne F Jørgensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Jacob Hald
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | | | - Dennis Madsen
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark.
| |
Collapse
|
27
|
Tu J, Toh Y, Aldana AM, Wen JJ, Wu L, Jacob J, Li L, Pan S, Carmon KS, Liu QJ. Antitumor Activity of a Pyrrolobenzodiazepine Antibody-Drug Conjugate Targeting LGR5 in Preclinical Models of Neuroblastoma. Pharmaceutics 2024; 16:943. [PMID: 39065640 PMCID: PMC11279891 DOI: 10.3390/pharmaceutics16070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Neuroblastoma (NB) is a cancer of the peripheral nervous system found in children under 15 years of age. It is the most frequently diagnosed cancer during infancy, accounting for ~12% of all cancer-related deaths in children. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a membrane receptor that is associated with the primary tumor formation and metastasis of cancers in the gastrointestinal system. Remarkably, high levels of LGR5 are found in NB tumor cells, and high LGR5 expression is strongly correlated with poor survival. Antibody-drug conjugates (ADCs) are monoclonal antibodies that are covalently linked to cell-killing cytotoxins to deliver the payloads into cancer cells. We generated an ADC with an anti-LGR5 antibody and pyrrolobenzodiazepine (PBD) dimer-based payload SG3199 using a chemoenzymatic conjugation method. The resulting anti-LGR5 ADC was able to inhibit the growth of NB cells expressing LGR5 with high potency and specificity. Importantly, the ADC was able to completely inhibit the growth of NB xenograft tumors in vivo at a clinically relevant dose for the PBD class of ADCs. The findings support the potential of targeting LGR5 using the PBD class of payload for the treatment of high-risk NBs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qingyun J. Liu
- The Brown Foundation Institute of Molecular Medicine, Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
28
|
Yang J, Tang C, Li C, Li X, Yang W. Construction of an immune-related gene prognostic model with experimental validation and analysis of immune cell infiltration in lung adenocarcinoma. Oncol Lett 2024; 28:297. [PMID: 38751753 PMCID: PMC11094586 DOI: 10.3892/ol.2024.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 05/18/2024] Open
Abstract
There is a correlation between tumors and immunity with the degree of immune cell infiltration in tumors being closely related to tumor growth and progression. Therefore, the present study identified immune-related prognostic genes and evaluated the immune infiltration level in lung adenocarcinoma (LUAD). This study performed Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and Gene Set Enrichment Analysis (GSEA) enrichment analyses on differential immune-associated genes. A risk model was created and validated using six immune-related prognostic genes. Reverse transcription-quantitative PCR was used to assess the prognostic gene expression in non-small cell lung cancer cells. Immune cell infiltration in LUAD was analyzed using the CIBERSORT method. Single sample GSEA was used to compare Tumor Immune Dysfunction and Exclusion (TIDE) scores between high and low-risk groups and to assess the activation of thirteen immune-related pathways. Multifactor Cox proportional hazards model analysis identified six prognostic risk genes (S100A16, FURIN, FGF2, LGR4, TNFRSF11A and VIPR1) to construct a risk model. The survival and receiver operating characteristic curves indicated that patients with higher risk scores had lower overall survival rates. The expression levels of prognostic genes S100A16, FURIN, LGR4, TNFRSF11A and VIPR1 were significantly increased in LUAD. B cells naive, plasma cells, T cells CD4 memory activated, T cells follicular helper, T cells regulatory, NK cells activated, macrophages M1, macrophages M2, and Dendritic cells resting cells showed elevated expression in LUAD. The prognostic genes were differentially associated with individual immune cells. Immune-related function scores, such as those for antigen presenting cell (APC) co-stimulation, APC co-inhibition, check-point, Cytolytic-activity, chemokine receptor, parainflammation, major histocompatibility complex-class-I, type-I-IFN-reponse and T-cell-co-inhibition, were higher in the high-risk group compared with the low-risk group. Furthermore, the TIDE score of the high-risk group was significantly lower than the low-risk group. This immune-related gene prognostic model has the potential to predict the prognosis of LUAD patients, supporting the development of a personalized clinical diagnosis and treatment plan.
Collapse
Affiliation(s)
- Jialei Yang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Medical Laboratory Medicine, Dehong Prefecture People's Hospital of Yunnan Province, Mangshi, Yunnan 678400, P.R. China
| | - Chao Tang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chengxia Li
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xuesen Li
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Yang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
29
|
Sawaguchi H, Uehara T, Iwaya M, Asaka S, Nakajima T, Kamakura M, Nagaya T, Yoshizawa T, Ota H, Umemura T. Leucine-rich repeat-containing G protein-coupled receptor 5 expression in lymph node metastases of colorectal cancer: Clinicopathological insights and prognostic implications. Pathol Int 2024; 74:387-393. [PMID: 38787285 PMCID: PMC11551821 DOI: 10.1111/pin.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), a significant cancer stem cell marker in colorectal cancer (CRC), lacks lymph node (LN) expression studies. In this study, we identified LGR5 expression by RNAscope, a highly sensitive RNA in situ method, and analyzed its association with clinicopathological characteristics. Tissue microarrays were generated from primary tumors (PTs) and LN metastases in paraffin-embedded blocks of 38 CRC surgical resection materials. LGR5 expression by RNAscope was evaluated by dividing the expression levels into negative and positive expression. In all but two cases of LN metastasis, LGR5-positive dots were detected in tumor cells, and there was a wide range of LGR5-positive cells. More LGR5-positive dots were identified in the gland-forming region. Twenty-three cases were classified into a high LGR5-expression group, and 15 cases were classified into a low LGR5-expression group. In the high LGR5-expression group, the histological grade was lower than in the low LGR5-expression group (p = 0.0159), while necrosis was significantly more prevalent (p = 0.0326), and the tumor, node, metastasis stage was significantly lower (p = 0.0302). There was no association between LGR5 expression levels in LN metastases and LGR5 expression levels in PT tissue. LGR5 expression in LN metastases may influence prognosis. Further analysis may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Hiroshi Sawaguchi
- Department of Medicine, Division of Gastroenterology and HepatologyShinshu University School of MedicineMatsumotoJapan
| | - Takeshi Uehara
- Department of Laboratory MedicineShinshu University School of MedicineMatsumotoJapan
| | - Mai Iwaya
- Department of Laboratory MedicineShinshu University School of MedicineMatsumotoJapan
| | - Shiho Asaka
- Department of Laboratory MedicineShinshu University School of MedicineMatsumotoJapan
- Department of Laboratory MedicineNagano Children's HospitalAzuminoJapan
| | - Tomoyuki Nakajima
- Department of Laboratory MedicineShinshu University School of MedicineMatsumotoJapan
| | - Masato Kamakura
- Department of Medicine, Division of Gastroenterology and HepatologyShinshu University School of MedicineMatsumotoJapan
| | - Tadanobu Nagaya
- Department of Medicine, Division of Gastroenterology and HepatologyShinshu University School of MedicineMatsumotoJapan
| | - Takahiro Yoshizawa
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Hiroyoshi Ota
- Department of Laboratory MedicineShinshu University School of MedicineMatsumotoJapan
- Department of Biomedical Laboratory MedicineShinshu University School of MedicineMatsumotoJapan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and HepatologyShinshu University School of MedicineMatsumotoJapan
| |
Collapse
|
30
|
Gao C, Ge H, Kuan SF, Cai C, Lu X, Esni F, Schoen RE, Wang JH, Chu E, Hu J. FAK loss reduces BRAF V600E-induced ERK phosphorylation to promote intestinal stemness and cecal tumor formation. eLife 2024; 13:RP94605. [PMID: 38921956 PMCID: PMC11208045 DOI: 10.7554/elife.94605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a 'just-right' level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vil1-Cre;BRAFLSL-V600E/+;Ptk2fl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a 'just-right' ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.
Collapse
Affiliation(s)
- Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Huaibin Ge
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of PittsburghPittsburghUnited States
| | - Shih-Fan Kuan
- Department of Pathology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Chunhui Cai
- Department of Biomedical Informatics, University of PittsburghPittsburghUnited States
| | - Xinghua Lu
- Department of Biomedical Informatics, University of PittsburghPittsburghUnited States
| | - Farzad Esni
- Department of Surgery, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Robert E Schoen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jing H Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of PittsburghPittsburghUnited States
| | - Edward Chu
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of PittsburghPittsburghUnited States
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| |
Collapse
|
31
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q, Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol 2024; 17:46. [PMID: 38886806 PMCID: PMC11184729 DOI: 10.1186/s13045-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in various physiological processes, encompassing development, tissue homeostasis, and cell proliferation. Under normal physiological conditions, the Wnt/β-catenin signaling pathway is meticulously regulated. However, aberrant activation of this pathway and downstream target genes can occur due to mutations in key components of the Wnt/β-catenin pathway, epigenetic modifications, and crosstalk with other signaling pathways. Consequently, these dysregulations contribute significantly to tumor initiation and progression. Therapies targeting the Wnt/β-catenin signaling transduction have exhibited promising prospects and potential for tumor treatment. An increasing number of medications targeting this pathway are continuously being developed and validated. This comprehensive review aims to summarize the latest advances in our understanding of the role played by the Wnt/β-catenin signaling pathway in carcinogenesis and targeted therapy, providing valuable insights into acknowledging current opportunities and challenges associated with targeting this signaling pathway in cancer research and treatment.
Collapse
Affiliation(s)
- Pan Song
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Zirui Gao
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yige Bao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuhe Huang
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yanyan Liu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
32
|
Liang Y, Luo C, Sun L, Feng T, Yin W, Zhang Y, Mulholland MW, Zhang W, Yin Y. Reduction of specific enterocytes from loss of intestinal LGR4 improves lipid metabolism in mice. Nat Commun 2024; 15:4393. [PMID: 38782937 PMCID: PMC11116434 DOI: 10.1038/s41467-024-48622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Whether intestinal Leucine-rich repeat containing G-protein-coupled receptor 4 (LGR4) impacts nutrition absorption and energy homeostasis remains unknown. Here, we report that deficiency of Lgr4 (Lgr4iKO) in intestinal epithelium decreased the proportion of enterocytes selective for long-chain fatty acid absorption, leading to reduction in lipid absorption and subsequent improvement in lipid and glucose metabolism. Single-cell RNA sequencing demonstrates the heterogeneity of absorptive enterocytes, with a decrease in enterocytes selective for long-chain fatty acid-absorption and an increase in enterocytes selective for carbohydrate absorption in Lgr4iKO mice. Activation of Notch signaling and concurrent inhibition of Wnt signaling are observed in the transgenes. Associated with these alterations is the substantial reduction in lipid absorption. Decrement in lipid absorption renders Lgr4iKO mice resistant to high fat diet-induced obesity relevant to wild type littermates. Our study thus suggests that targeting intestinal LGR4 is a potential strategy for the intervention of obesity and liver steatosis.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, 100191, Beijing, China
| | - Chao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, 100191, Beijing, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, 100191, Beijing, China
| | - Tiange Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, 100191, Beijing, China
| | - Wenzhen Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, 100191, Beijing, China
| | - Yunhua Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, 100191, Beijing, China
| | - Michael W Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109-0346, USA
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, 100191, Beijing, China.
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109-0346, USA.
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, 100191, Beijing, China.
| |
Collapse
|
33
|
Filipowska J, Cisneros Z, Leon-Rivera N, Wang P, Kang R, Lu G, Yuan YC, Bhattacharya S, Dhawan S, Garcia-Ocaña A, Kondegowda NG, Vasavada RC. LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593645. [PMID: 38798561 PMCID: PMC11118322 DOI: 10.1101/2024.05.10.593645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Pancreatic β-cell stress contributes to diabetes progression. This study demonstrates that Leucine-rich repeat-containing G-protein-coupled-receptor-4 (LGR4) is critical for maintaining β-cell health and is modulated by stressors. In vitro , Lgr4 knockdown decreases proliferation and survival in rodent β-cells, while overexpression protects against cytokine-induced cell death in rodent and human β-cells. Mechanistically, LGR4 suppresses Receptor Activator of Nuclear Factor Kappa B (NFκB) (RANK) and its subsequent activation of NFκB to protect β-cells. β-cell-specific Lgr4 -conditional knockout (cko) mice exhibit normal glucose homeostasis but increased β-cell death in both sexes and decreased proliferation only in females. Male Lgr4 cko mice under stress display reduced β-cell proliferation and a further increase in β-cell death. Upon aging, both male and female Lgr4 cko mice display impaired β-cell homeostasis, however, only female mice are glucose intolerant with decreased plasma insulin. We show that LGR4 is required for maintaining β-cell health under basal and stress-induced conditions, through suppression of RANK. Teaser LGR4 receptor is critical for maintaining β-cell health under basal and stressed conditions, through suppression of RANK.
Collapse
|
34
|
Eltorky H, AbdelMageed M, Ismail H, Zahran F, Guirgis A, Olsson L, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. LGR6 is a prognostic biomarker for less differentiated tumors in lymph nodes of colon cancer patients. Front Oncol 2024; 14:1393075. [PMID: 38715790 PMCID: PMC11074358 DOI: 10.3389/fonc.2024.1393075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION The aim was to investigate whether the stem cell marker LGR6 has prognostic value in colon cancer, alone or in combination with the prognostic biomarkers CEA and CXCL16. METHODS LGR6 mRNA levels were determined in 370 half lymph nodes of 121 colon cancer patients. Ability to predict relapse after curative surgery was estimated by Kaplan-Meier survival model and Cox regression analyses. RESULTS Patients with high LGR6 levels [LGR6(+)] had a decreased mean survival time of 11 months at 5-year follow-up and 47 months at 12-year follow-up, respectively, with hazard ratios of 3.2 and 2.8. LGR6 mRNA analysis added prognostic value to CEA and CXCL16 mRNA analysis. In the poor prognosis groups CEA(+) and CXCL16(+), further division was achieved by LGR6 analysis. LGR6(+) patients had a very poor prognosis. LGR6 also identified a small number of CEA(-), TNM stage I patients who relapsed suggesting stem cell origin of these tumors. LGR6 and LGR5 levels correlated strongly in lymph nodes of stage I and IV patients but not in stage II patients, suggesting that these stem cell markers are differentially regulated. CONCLUSION This study highlights LGR6 as a useful prognostic biomarker independently and in combination with CEA, CXCL16 or LGR5 identifying different risk groups.
Collapse
Affiliation(s)
- Hagar Eltorky
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Manar AbdelMageed
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hager Ismail
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Faten Zahran
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Adel Guirgis
- Department of Molecular Biology, Genetic Engineering, and Biotechnology Research Institute, University of Sadat City, Sadat, Menoufia, Egypt
| | - Lina Olsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Gudrun Lindmark
- Institution of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Sten Hammarström
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Basel Sitohy
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Rao X, Zhang Z, Pu Y, Han G, Gong H, Hu H, Ji Q, Liu N. RSPO3 induced by Helicobacter pylori extracts promotes gastric cancer stem cell properties through the GNG7/β-catenin signaling pathway. Cancer Med 2024; 13:e7092. [PMID: 38581123 PMCID: PMC10997846 DOI: 10.1002/cam4.7092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) accounts for the majority of gastric cancer (GC) cases globally. The present study found that H. pylori promoted GC stem cell (CSC)-like properties, therefore, the regulatory mechanism of how H. pylori promotes GC stemness was explored. METHODS Spheroid-formation experiments were performed to explore the self-renewal capacity of GC cells. The expression of R-spondin 3 (RSPO3), Nanog homeobox, organic cation/carnitine transporter-4 (OCT-4), SRY-box transcription factor 2 (SOX-2), CD44, Akt, glycogen synthase kinase-3β (GSK-3β), p-Akt, p-GSK-3β, β-catenin, and G protein subunit gamma 7 (GNG7) were detected by RT-qPCR, western blotting, immunohistochemistry (IHC), and immunofluorescence. Co-immunoprecipitation (CoIP) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were performed to identify proteins interacting with RSPO3. Lentivirus-based RNA interference constructed short hairpin (sh)-RSPO3 GC cells. Small interfering RNA transfection was performed to inhibit GNG7. The in vivo mechanism was verified using a tumor peritoneal seeding model in nude mice. RESULTS H. pylori extracts promoted a CSC-like phenotype in GC cells and elevated the expression of RSPO3. RSPO3 knockdown significantly reduced the CSC-like properties induced by H. pylori. Previous studies have demonstrated that RSPO3 potentiates the Wnt/β-catenin signaling pathway, but the inhibitor of Wnt cannot diminish the RSPO3-induced activation of β-catenin. CoIP and LC-MS/MS revealed that GNG7 is one of the transmembrane proteins interacting with RSPO3, and it was confirmed that RSPO3 directly interacted with GNG7. Recombinant RSPO3 protein increased the phosphorylation level of Akt and GSK-3β, and the expression of β-catenin in GC cells, but this regulatory effect of RSPO3 could be blocked by GNG7 knockdown. Of note, GNG7 suppression could diminish the promoting effect of RSPO3 to CSC-like properties. In addition, RSPO3 suppression inhibited MKN45 tumor peritoneal seeding in vivo. IHC staining also showed that RSPO3, CD44, OCT-4, and SOX-2 were elevated in H. pylori GC tissues. CONCLUSION RSPO3 enhanced the stemness of H. pylori extracts-infected GC cells through the GNG7/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiwu Rao
- Department of OncologyThe First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhipeng Zhang
- Department of OncologyThe First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yunzhou Pu
- Department of OncologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Gang Han
- Department of OncologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hangjun Gong
- Department of GastroenterologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hao Hu
- Department of GastroenterologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qing Ji
- Department of OncologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ningning Liu
- Department of OncologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
36
|
Bi Y, Zhang L, Song Y, Sun L, Mulholland MW, Yin Y, Zhang W. Rspo2-LGR4 exacerbates hepatocellular carcinoma progression via activation of Wnt/β-catenin signaling pathway. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:352-365. [PMID: 37437654 PMCID: PMC10863972 DOI: 10.1016/j.gastrohep.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND The leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4) plays an important role in stem cell differentiation, organ development and cancer. Whether LGR4 affects the progression of hepatocellular carcinoma (HCC) remains unknown. This study aimed to reveal the role of LGR4 in HCC. METHODS Clinical samples of HCC were collected to assess the expression of LGR4 and its correlation with patients' clinical characteristics. The expression level of LGR4 in HCC cells was altered by pharmacological and genetic methods, and the role of LGR4 in HCC progression was analyzed by in vivo and in vitro assays. HCC was induced by diethylnitrosamine (DEN) and carbon tetrachloride (CCl4) in wild-type and LGR4 deficient mice, the effect of LGR4 on HCC was examined by histopathological evaluation and biochemical assays. RESULTS LGR4 expression was up-regulated in HCC samples, and its expression level was positively correlated with tumor size, microvascular invasion (MVI), TNM stage and pathological differentiation grade of HCC patients. In the mouse HCC model induced by DEN+CCl4, knockdown of LGR4 effectively inhibited the progression of HCC. Silencing of LGR4 inhibited the proliferation, migration, invasion, stem cell-like properties and Warburg effect of HCC cells. These phenotypes were promoted by R-spondin2 (Rspo2), an endogenous ligand for LGR4. Rspo2 markedly increased the nuclear translocation of β-catenin, whereas IWR-1, an inhibitor of Wnt/β-catenin signaling, reversed its effect. Deficiency of LGR4 significantly reduced the nuclear translocation of β-catenin and the expression of its downstream target genes cyclinD1 and c-Myc. CONCLUSIONS LGR4 promotes HCC progression via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yanghui Bi
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liping Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yan Song
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijun Sun
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Michael W Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China.
| | - Weizhen Zhang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Lee EJ, Kim MW, Gil HN, Chung YJ, Kim EM. In vitro hair growth-promoting effect of Lgr5-binding octapeptide in human primary hair cells. J Cosmet Dermatol 2024; 23:986-998. [PMID: 37905348 DOI: 10.1111/jocd.16036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Hair loss occurs due to various biological and environmental causes, which can have psychosocial consequences. The Wnt/β-catenin signaling is well-known for its role in hair growth and regeneration, as it induces the proliferation and differentiation of hair cells. When the leucine-rich G protein-coupled receptor 5 (Lgr5) interacts with the R-spondins, the frizzled receptor (FZD), a Wnt receptor, becomes stabilized, resulting in an increased β-catenin activity. AIM We investigated whether the octapeptide that binds to Lgr5 enhances proliferation and differentiation of human primary hair cells through the activation of Wnt/β-catenin signaling. METHODS The binding affinity of the octapeptide to Lgr5 was evaluated using surface plasmon resonance (SPR). We confirmed changes in proliferation and related factors like β-catenin activation and growth factors (GFs) expression in human hair follicle dermal papilla cells (HHFDPCs). Additionally, we observed the proliferation and the expression of differentiation markers in human hair follicle outer root sheath cells (HHFORSCs), human hair follicle germinal matrix cells (HHFGMCs), and human hair follicle stem cells (HHFSCs). We used three-dimensional HHFDPC spheroid culture treated with dihydrotestosterone (DHT) to create in vitro conditions that mimic androgenetic alopecia, and we studied the effects of octapeptide on Wnt expression and HHFSC differentiation. RESULTS The binding of the octapeptide to Lgr5 was confirmed using SPR analysis. In HHFDPCs, treatment with octapeptide resulted in a concentration-dependent increase in proliferation. We also observed increased nuclear translocation of β-catenin and increased expression of its downstream targets. HHFDPCs treated with octapeptide exhibited increased expression of growth factors and phosphorylation of Akt and ERK. In addition, we confirmed that octapeptide increased proliferation and induced differentiation in HHFORSCs, HHFGMCs, and HHFSCs. Under the HHFDPC spheroid culture conditions, we found that octapeptide restored the inhibition of Wnt-5a and Wnt-10b expressions by DHT. In HHFSCs treated with HHFDPC spheroid culture media, we observed that octapeptide recovered the inhibition of differentiation by DHT. CONCLUSION We found that octapeptides activated the Wnt/β-catenin signaling and induced the proliferation and differentiation of human primary hair cells by acting as an exogenous ligand for Lgr5. In addition, octapeptides recovered inhibited hair regeneration characters by DHT in androgenetic alopecia-mimic in vitro model. These findings suggest that octapeptides may be a promising therapeutic option for treating hair loss.
Collapse
Affiliation(s)
| | | | - Ha-Na Gil
- Caregen R&D center, Anyang-si, Korea
| | | | | |
Collapse
|
38
|
Srivastava A, Rikhari D, Srivastava S. RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Genes Dis 2024; 11:788-806. [PMID: 37692504 PMCID: PMC10491879 DOI: 10.1016/j.gendis.2023.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/16/2023] [Indexed: 09/12/2023] Open
Abstract
R-spondins are secretory proteins localized in the endoplasmic reticulum and Golgi bodies and are processed through the secretory pathway. Among the R-spondin family, RSPO2 has emanated as a novel regulator of Wnt signaling, which has now been acknowledged in numerous in vitro and in vivo studies. Cancer is an abnormal growth of cells that proliferates and spreads uncontrollably due to the accumulation of genetic and epigenetic factors that constitutively activate Wnt signaling in various types of cancer. Colorectal cancer (CRC) begins when cells in the colon and rectum follow an indefinite pattern of division due to aberrant Wnt activation as one of the key hallmarks. Decades-long progress in research on R-spondins has demonstrated their oncogenic function in distinct cancer types, particularly CRC. As a critical regulator of the Wnt pathway, it modulates several phenotypes of cells, such as cell proliferation, invasion, migration, and cancer stem cell properties. Recently, RSPO mutations, gene rearrangements, fusions, copy number alterations, and altered gene expression have also been identified in a variety of cancers, including CRC. In this review, we addressed the recent updates regarding the recurrently altered R-spondins with special emphasis on the RSPO2 gene and its involvement in potentiating Wnt signaling in CRC. In addition to the compelling physiological and biological roles in cellular fate and regulation, we propose that RSPO2 would be valuable as a potential biomarker for prognostic, diagnostic, and therapeutic use in CRC.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Deeksha Rikhari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| |
Collapse
|
39
|
Pappas MP, Kawakami H, Corcoran D, Chen KQ, Scott EP, Wong J, Gearhart MD, Nishinakamura R, Nakagawa Y, Kawakami Y. Sall4 regulates posterior trunk mesoderm development by promoting mesodermal gene expression and repressing neural genes in the mesoderm. Development 2024; 151:dev202649. [PMID: 38345319 PMCID: PMC10946440 DOI: 10.1242/dev.202649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue. Analysis of gene expression and SALL4 binding suggests that Sall4 directly or indirectly regulates genes involved in presomitic mesoderm differentiation, somite formation and somite differentiation. Furthermore, ATAC-seq in TCre; Sall4 mutant posterior trunk mesoderm shows that Sall4 knockout reduces chromatin accessibility. We found that Sall4-dependent open chromatin status drives activation and repression of WNT signaling activators and repressors, respectively, to promote WNT signaling. Moreover, footprinting analysis of ATAC-seq data suggests that Sall4-dependent chromatin accessibility facilitates CTCF binding, which contributes to the repression of neural genes within the mesoderm. This study unveils multiple mechanisms by which Sall4 regulates paraxial mesoderm development by directing activation of mesodermal genes and repression of neural genes.
Collapse
Affiliation(s)
- Matthew P. Pappas
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine Q. Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Parker Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Wong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D. Gearhart
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasushi Nakagawa
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Lee H, Camuto CM, Niehrs C. R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient. Nat Commun 2024; 15:1003. [PMID: 38307837 PMCID: PMC10837206 DOI: 10.1038/s41467-024-44951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Establishment of the left-right (LR, sinistral, dextral) body axis in many vertebrate embryos relies on cilia-driven leftward fluid flow within an LR organizer (LRO). A cardinal question is how leftward flow triggers symmetry breakage. The chemosensation model posits that ciliary flow enriches a signaling molecule on the left side of the LRO that promotes sinistral cell fate. However, the nature of this sinistralizing signal has remained elusive. In the Xenopus LRO, we identified the stem cell growth factor R-Spondin 2 (Rspo2) as a symmetrically expressed, sinistralizing signal. As predicted for a flow-mediated signal, Rspo2 operates downstream of leftward flow but upstream of the asymmetrically expressed gene dand5. Unexpectedly, in LR patterning, Rspo2 acts as an FGF receptor antagonist: Rspo2 via its TSP1 domain binds Fgfr4 and promotes its membrane clearance by Znrf3-mediated endocytosis. Concordantly, we find that at flow-stage, FGF signaling is dextralizing and forms a gradient across the LRO, high on the dextral- and low on the sinistral side. Rspo2 gain- and loss-of function equalize this FGF signaling gradient and sinistralize and dextralize development, respectively. We propose that leftward flow of Rspo2 produces an FGF signaling gradient that governs LR-symmetry breakage.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Celine Marie Camuto
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
41
|
Ünal P, Lu Y, Bueno-de-Mesquita B, van Eijck CHJ, Talar-Wojnarowska R, Szentesi A, Gazouli M, Kreivenaite E, Tavano F, Małecka-Wojciesko E, Erőss B, Oliverius M, Bunduc S, Nóbrega Aoki M, Vodickova L, Boggi U, Giaccherini M, Kondrackiene J, Chammas R, Palmieri O, Theodoropoulos GE, Bijlsma MF, Basso D, Mohelnikova-Duchonova B, Soucek P, Izbicki JR, Kiudelis V, Vanella G, Arcidiacono PG, Włodarczyk B, Hackert T, Schöttker B, Uzunoglu FG, Bambi F, Goetz M, Hlavac V, Brenner H, Perri F, Carrara S, Landi S, Hegyi P, Dijk F, Maiello E, Capretti G, Testoni SGG, Petrone MC, Stocker H, Ermini S, Archibugi L, Gentiluomo M, Cavestro GM, Pezzilli R, Di Franco G, Milanetto AC, Sperti C, Neoptolemos JP, Morelli L, Vokacova K, Pasquali C, Lawlor RT, Bazzocchi F, Kupcinskas J, Capurso G, Campa D, Canzian F. Polymorphisms in transcription factor binding sites and enhancer regions and pancreatic ductal adenocarcinoma risk. Hum Genomics 2024; 18:12. [PMID: 38308339 PMCID: PMC10837899 DOI: 10.1186/s40246-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
Genome-wide association studies (GWAS) are a powerful tool for detecting variants associated with complex traits and can help risk stratification and prevention strategies against pancreatic ductal adenocarcinoma (PDAC). However, the strict significance threshold commonly used makes it likely that many true risk loci are missed. Functional annotation of GWAS polymorphisms is a proven strategy to identify additional risk loci. We aimed to investigate single-nucleotide polymorphisms (SNP) in regulatory regions [transcription factor binding sites (TFBSs) and enhancers] that could change the expression profile of multiple genes they act upon and thereby modify PDAC risk. We analyzed a total of 12,636 PDAC cases and 43,443 controls from PanScan/PanC4 and the East Asian GWAS (discovery populations), and the PANDoRA consortium (replication population). We identified four associations that reached study-wide statistical significance in the overall meta-analysis: rs2472632(A) (enhancer variant, OR 1.10, 95%CI 1.06,1.13, p = 5.5 × 10-8), rs17358295(G) (enhancer variant, OR 1.16, 95%CI 1.10,1.22, p = 6.1 × 10-7), rs2232079(T) (TFBS variant, OR 0.88, 95%CI 0.83,0.93, p = 6.4 × 10-6) and rs10025845(A) (TFBS variant, OR 1.88, 95%CI 1.50,1.12, p = 1.32 × 10-5). The SNP with the most significant association, rs2472632, is located in an enhancer predicted to target the coiled-coil domain containing 34 oncogene. Our results provide new insights into genetic risk factors for PDAC by a focused analysis of polymorphisms in regulatory regions and demonstrating the usefulness of functional prioritization to identify loci associated with PDAC risk.
Collapse
Affiliation(s)
- Pelin Ünal
- Genomic Epidemiology Group, German Cancer Research Center, In Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ye Lu
- Genomic Epidemiology Group, German Cancer Research Center, In Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Edita Kreivenaite
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | | | - Bálint Erőss
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Curitiba, PR, Brazil
| | - Ludmila Vodickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzeň, Czech Republic
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ugo Boggi
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | | | - Jurate Kondrackiene
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Roger Chammas
- Department of Radiology and Oncology, Institute of Cancer of São Paulo, São Paulo, Brazil
| | - Orazio Palmieri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | - George E Theodoropoulos
- First Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center of Experimental Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Daniela Basso
- Department of Medicine, Laboratory Medicine, University of Padova, Padua, Italy
| | | | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzeň, Czech Republic
| | - Jakob R Izbicki
- Department of General Visceral and Thoracic Surgery, University of Hamburg Medical Institutions, Hamburg, Germany
| | - Vytautas Kiudelis
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Giuseppe Vanella
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, S. Andrea Hospital, Rome, Italy
| | - Paolo Giorgio Arcidiacono
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Włodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Thilo Hackert
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Faik G Uzunoglu
- Department of General Visceral and Thoracic Surgery, University of Hamburg Medical Institutions, Hamburg, Germany
| | - Franco Bambi
- Blood Transfusion Service, Meyer Children's Hospital, Florence, Italy
| | - Mara Goetz
- Department of General Visceral and Thoracic Surgery, University of Hamburg Medical Institutions, Hamburg, Germany
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzeň, Czech Republic
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | - Silvia Carrara
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Frederike Dijk
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | - Giovanni Capretti
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sabrina Gloria Giulia Testoni
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Petrone
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Stefano Ermini
- Blood Transfusion Service, Meyer Children's Hospital, Florence, Italy
| | - Livia Archibugi
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, S. Andrea Hospital, Rome, Italy
| | | | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - John P Neoptolemos
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Klara Vokacova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Claudio Pasquali
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Rita T Lawlor
- Department of Diagnostics and Public Health, ARC-Net Centre for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Francesca Bazzocchi
- Department of Surgery, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | - Juozas Kupcinskas
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gabriele Capurso
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, S. Andrea Hospital, Rome, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, In Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
42
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
43
|
Gao C, Ge H, Kuan SF, Cai C, Lu X, Esni F, Schoen R, Wang J, Chu E, Hu J. FAK loss reduces BRAF V600E-induced ERK phosphorylation to promote intestinal stemness and cecal tumor formation. RESEARCH SQUARE 2024:rs.3.rs-2531119. [PMID: 36778401 PMCID: PMC9915899 DOI: 10.21203/rs.3.rs-2531119/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
BRAF V600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a "just-right" level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vill-Cre;BRAFV600E/+;Fakfl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a "just-right" ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Wang
- UPMC Hillman Cancer Center/University of Pittsburgh
| | | | | |
Collapse
|
44
|
Gao C, Ge H, Kuan SF, Cai C, Lu X, Esni F, Schoen R, Wang J, Chu E, Hu J. FAK loss reduces BRAF V600E-induced ERK phosphorylation to promote intestinal stemness and cecal tumor formation. RESEARCH SQUARE 2024:rs.3.rs-2531119. [PMID: 36778401 PMCID: PMC9915899 DOI: 10.21203/rs.3.rs-2531119/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BRAF V600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a "just-right" level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vill-Cre;BRAFV600E/+;Fakfl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a "just-right" ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Wang
- UPMC Hillman Cancer Center/University of Pittsburgh
| | | | | |
Collapse
|
45
|
Lyons-Abbott S, Abramov A, Chan CL, Deer JR, Fu G, Hassouneh W, Koch T, Misquith A, O'Neill J, Simon SA, Wolf A, Yeh R, Vernet E. Choice of fusion proteins, expression host, and analytics solves difficult-to-produce protein challenges in discovery research. Biotechnol J 2024; 19:e2300162. [PMID: 37802118 DOI: 10.1002/biot.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
High quality biological reagents are a prerequisite for pharmacological research. Herein a protein production screening approach, including quality assessment methods, for protein-based discovery research is presented. Trends from 2895 expression constructs representing 253 proteins screened in mammalian and bacterial hosts-91% of which are successfully expressed and purified-are discussed. Mammalian expression combined with the use of solubility-promoting fusion proteins is deemed suitable for most targets. Furthermore, cases utilizing stable cell line generation and choice of fusion protein for higher yield and quality of difficult-to-produce proteins (Leucine-rich repeat-containing G-protein coupled receptor 4 (LGR4) and Neurturin) are presented and discussed. In the case of Neurturin, choice of fusion protein impacted the target binding 80-fold. These results highlight the need for exploration of construct designs and careful Quality Control (QC) of difficult-to-produce protein reagents.
Collapse
Affiliation(s)
| | - Ariel Abramov
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| | - Chung-Leung Chan
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| | - Jen Running Deer
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| | - Guangsen Fu
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| | - Wafa Hassouneh
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| | - Tyree Koch
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| | - Ayesha Misquith
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| | - Jason O'Neill
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| | | | - Anitra Wolf
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| | - Ronald Yeh
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| | - Erik Vernet
- Novo Nordisk Research Center Seattle, Inc, Seattle, Washington, USA
| |
Collapse
|
46
|
He Z, Zhang J, Ma J, Zhao L, Jin X, Li H. R-spondin family biology and emerging linkages to cancer. Ann Med 2023; 55:428-446. [PMID: 36645115 PMCID: PMC9848353 DOI: 10.1080/07853890.2023.2166981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The R-spondin protein family comprises four members (RSPO1-4), which are agonists of the canonical Wnt/β-catenin pathway. Emerging evidence revealed that RSPOs should not only be viewed as agonists of the Wnt/β-catenin pathway but also as regulators for tumor development and progression. Aberrant expression of RSPOs is related to tumorigenesis and tumor development in multiple cancers and their expression of RSPOs has also been correlated with anticancer immune cell signatures. More importantly, the role of RSPOs as potential target therapies and their implication in cancer progressions has been studied in the preclinical and clinical settings. These findings highlight the possible therapeutic value of RSPOs in cancer medicine. However, the expression pattern, effects, and mechanisms of RSPO proteins in cancer remain elusive. Investigating the many roles of RSPOs is likely to expand and improve our understanding of the oncogenic mechanisms mediated by RSPOs. Here, we reviewed the recent advances in the functions and underlying molecular mechanisms of RSPOs in tumor development, cancer microenvironment regulation, and immunity, and discussed the therapeutic potential of targeting RSPOs for cancer treatment. In addition, we also explored the biological feature and clinical relevance of RSPOs in cancer mutagenesis, transcriptional regulation, and immune correlation by bioinformatics analysis.KEY MESSAGESAberrant expressions of RSPOs are detected in various human malignancies and are always correlated with oncogenesis.Although extensive studies of RSPOs have been conducted, their precise molecular mechanism remains poorly understood.Bioinformatic analysis revealed that RSPOs may play a part in the development of the immune composition of the tumor microenvironment.
Collapse
Affiliation(s)
- Zhimin He
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
47
|
Alsaadi A, Artibani M, Hu Z, Wietek N, Morotti M, Gonzalez LS, Alazzam M, Jiang J, Abdul B, Soleymani Majd H, Blazer LL, Adams J, Silvestri F, Sidhu SS, Brugge JS, Ahmed AA. Single-cell transcriptomics identifies a WNT7A-FZD5 signaling axis that maintains fallopian tube stem cells in patient-derived organoids. Cell Rep 2023; 42:113354. [PMID: 37917586 DOI: 10.1016/j.celrep.2023.113354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023] Open
Abstract
The study of fallopian tube (FT) function in health and disease has been hampered by limited knowledge of FT stem cells and lack of in vitro models of stem cell renewal and differentiation. Using optimized organoid culture conditions to address these limitations, we find that FT stem cell renewal is highly dependent on WNT/β-catenin signaling and engineer endogenous WNT/β-catenin signaling reporter organoids to biomark, isolate, and characterize these cells. Using functional approaches, as well as bulk and single-cell transcriptomics analyses, we show that an endogenous hormonally regulated WNT7A-FZD5 signaling axis is critical for stem cell renewal and that WNT/β-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in extracellular matrix (ECM) remodeling and integrin signaling pathways. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.
Collapse
Affiliation(s)
- Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Matteo Morotti
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Laura Santana Gonzalez
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Moiad Alazzam
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Jason Jiang
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Beena Abdul
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Hooman Soleymani Majd
- Medical Sciences Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Levi L Blazer
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Jarret Adams
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | | | - Sachdev S Sidhu
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK.
| |
Collapse
|
48
|
Colozza G, Lee H, Merenda A, Wu SHS, Català-Bordes A, Radaszkiewicz TW, Jordens I, Lee JH, Bamford AD, Farnhammer F, Low TY, Maurice MM, Bryja V, Kim J, Koo BK. Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2. SCIENCE ADVANCES 2023; 9:eadh9673. [PMID: 38000028 PMCID: PMC10672176 DOI: 10.1126/sciadv.adh9673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate β-catenin-dependent (canonical) or -independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells.
Collapse
Affiliation(s)
- Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Heetak Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
| | | | - Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Andrea Català-Bordes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Tomasz W. Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ingrid Jordens
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ji-Hyun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
| | - Aileen-Diane Bamford
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Fiona Farnhammer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Division of Metabolism and Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), University Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Madelon M. Maurice
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jihoon Kim
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
49
|
Zheng S, Zhang X, Pang Z, Liu J, Liu S, Sheng R. Anti-Pan-Rspo Chimeric Protein-Conjugated Albumin Nanoparticle Provides Promising Opportunities in Cancer Targeted Therapy. Adv Healthc Mater 2023; 12:e2301441. [PMID: 37414582 DOI: 10.1002/adhm.202301441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Indexed: 07/08/2023]
Abstract
Rspos (R-spondins) belong to a family of secreted proteins that causes various cancers via interacting the corresponding receptors. However, targeted therapeutic approaches against Rspos are largely lacking. In this study, a chimeric protein Rspo-targeting anticancer chimeric protein (RTAC) is originally designed, engineered, and characterized. RTAC shows satisfactory anticancer effects through inhibition of pan-Rspo-mediated Wnt/β-catenin signaling activation both in vitro and in vivo. Furthermore, a conceptually novel antitumor strategy distinct from traditional drug delivery systems that release drugs inside tumor cells is proposed. A special "firewall" nano-system is designed to enrich on tumor cell surface and cover the plasma membrane, rather than undergoing endocytosis, to block oncogenic Rspos from binding to receptors. Cyclic RGD (Arg-Gly-Asp) peptide-linked globular cluster serum albumin nanoparticles (SANP) are integrated as a vehicle for conjugating RTAC (SANP-RTAC/RGD) for tumor tissue targeting. These nanoparticles can adhere to the tumor cell surface and enable RTAC to locally capture free Rspos with high spatial efficiency and selectivity to antagonize cancer progression. Therefore, this approach offers a new nanomedical anticancer route and obtains the "dual-targeting" capability for effective tumor clearance and low potential toxicity. This study presents a proof-of-concept for anti-pan-Rspo therapy and a nanoparticle-integrated paradigm for targeted cancer treatment.
Collapse
Affiliation(s)
- Shaoqin Zheng
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Shenyang, Liaoning, 110819, China
| | - Xi Zhang
- College of Science, Northeastern University, 3-11 Wenhua Road, Shenyang, Liaoning, 110004, China
| | - Zhongqiu Pang
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Shenyang, Liaoning, 110819, China
| | - Jidong Liu
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Shenyang, Liaoning, 110819, China
| | - Siyu Liu
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Shenyang, Liaoning, 110819, China
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Shenyang, Liaoning, 110819, China
| |
Collapse
|
50
|
Zhang L, Adu IK, Zhang H, Wang J. The WNT/β-catenin system in chronic kidney disease-mineral bone disorder syndrome. Int Urol Nephrol 2023; 55:2527-2538. [PMID: 36964322 DOI: 10.1007/s11255-023-03569-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND The WNT/β-catenin system is an evolutionarily conserved signaling pathway that plays a crucial role in morphogenesis and cell tissue formation during embryogenesis. Although usually suppressed in adulthood, it can be reactivated during organ damage and regeneration. Transient activation of the WNT/β-catenin pathway stimulates tissue regeneration after acute kidney injury, while persistent (uncontrolled) activation can promote the development of chronic kidney disease (CKD). CKD-MBD is a clinical syndrome that develops with systemic mineral and bone metabolism disorders caused by CKD, characterized by abnormal bone mineral metabolism and/or extraosseous calcification, as well as cardiovascular disease associated with CKD, including vascular stiffness and calcification. OBJECTIVE This paper aims to comprehensively review the WNT/β-catenin signaling pathway in relation to CKD-MBD, focusing on its components, regulatory molecules, and regulatory mechanisms. Additionally, this review highlights the challenges and opportunities for using small molecular compounds to target the WNT/β-catenin signaling pathway in CKD-MBD therapy. METHODS We conducted a comprehensive literature review using various scientific databases, including PubMed, Scopus, and Web of Science, to identify relevant articles. We searched for articles that discussed the WNT/β-catenin signaling pathway, CKD-MBD, and their relationship. We also reviewed articles that discussed the components of the WNT/β-catenin signaling pathway, its regulatory molecules, and regulatory mechanisms. RESULTS The WNT/β-catenin signaling pathway plays a crucial role in CKD-MBD by promoting vascular calcification and bone mineral metabolism disorders. The pathway's components include WNT ligands, Frizzled receptors, and LRP5/6 co-receptors, which initiate downstream signaling cascades leading to the activation of β-catenin. Several regulatory molecules, including GSK-3β, APC, and Axin, modulate β-catenin activation. The WNT/β-catenin signaling pathway also interacts with other signaling pathways, such as the BMP pathway, to regulate CKD-MBD. CONCLUSIONS The WNT/β-catenin signaling pathway is a potential therapeutic target for CKD-MBD. Small molecular compounds that target the components or regulatory molecules of the pathway may provide a promising approach to treat CKD-MBD. However, more research is needed to identify safe and effective compounds and to determine the optimal dosages and treatment regimens.
Collapse
Affiliation(s)
- Lingbo Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
| | - Isaac Kumi Adu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
- Department of Internal Medicine, Kings and Queens University College and Teaching Hospital, Akosombo, Ghana
| | - Haifeng Zhang
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
| | - Jiancheng Wang
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China.
| |
Collapse
|