1
|
Wang W, Shan Y, Liu R, Li D, Zhou J, Lu Q, Zhao H. Coordination of IFT20 With Other IFT Components Is Required for Ciliogenesis. J Clin Lab Anal 2025; 39:e70000. [PMID: 40192002 PMCID: PMC12078756 DOI: 10.1002/jcla.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 01/26/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Primary cilia are organelles formed on the cell surface. They can act as cellular antennae to sense signals and play important roles in various biological processes. Abnormalities in primary cilia lead to a variety of diseases collectively known as ciliopathies. Intraflagellar transport protein 20 (IFT20) has been implicated in ciliogenesis. METHODS IFT20 knockout cell lines were established using the CRISPR-Cas9 gene editing technology. The GFP-IFT20 plasmid was constructed with the Gateway cloning system. Protein levels were detected via immunoblotting, and the localization of IFT20, acetylated α-tubulin, ARL13B, CP110, MKS3, IFT88, and IFT140 in wild-type and IFT20 knockout cells was examined by immunofluorescence microscopy. The fluorescence intensities were analyzed using ImageJ. Data quantifications and mass spectrometry results were analyzed using GraphPad Prism and Metascape. RESULTS The IFT20 deficiency impaired ciliogenesis and reduced cilium length. IFT20 depletion did not affect the removal of centriolar coiled-coil protein 110 (CP110) from the mother centriole or the recruitment of Meckel-Gruber syndrome type 3 (MKS3) to the transition zone. Mass spectrometry analysis revealed that proteins interacting with IFT20 were mainly IFT components. IFT20 knockout decreased the levels of both IFT88 and IFT140, and abrogated IFT88 localization at the basal body and ciliary axoneme. IFT20 knockout also impaired IFT140 localization at the ciliary axoneme but did not affect its localization at the basal body. CONCLUSIONS IFT20 is involved in ciliogenesis by regulating the level and localization of other IFT proteins and may have important implications in ciliopathies and related diseases.
Collapse
Affiliation(s)
- Weishu Wang
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Ying Shan
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Ruming Liu
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Dengwen Li
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Jun Zhou
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Quanlong Lu
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
2
|
Rao VG, Subramanianbalachandar VA, Magaj MM, Redemann S, Kulkarni SS. Mechanisms of cilia regeneration in Xenopus multiciliated epithelium in vivo. EMBO Rep 2025; 26:2192-2220. [PMID: 40087471 PMCID: PMC12019409 DOI: 10.1038/s44319-025-00414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/17/2025] Open
Abstract
Cilia regeneration is a physiological event, and while studied extensively in unicellular organisms, it remains poorly understood in vertebrates. In this study, using Xenopus multiciliated cells (MCCs), we demonstrate that, unlike unicellular organisms, deciliation removes the transition zone (TZ) and the ciliary axoneme. While MCCs immediately begin regenerating the axoneme, surprisingly, the TZ assembly is delayed. However, ciliary tip proteins, Sentan and Clamp, localize to regenerating cilia without delay. Using cycloheximide (CHX) to block protein synthesis, we show that the TZ protein B9d1 is not present in the cilia precursor pool and requires new transcription/translation, providing insights into the delayed repair of TZ. Moreover, MCCs in CHX treatment assemble fewer but near wild-type length cilia by gradually concentrating ciliogenesis proteins like IFTs at a few basal bodies. Using mathematical modeling, we show that cilia length, compared to cilia number, has a larger influence on the force generated by MCCs. Our results question the requirement of TZ in motile cilia assembly and provide insights into the fundamental question of how cells determine organelle size and number.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | | | - Magdalena M Magaj
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA
- Center for Membrane & Cell Physiology, University of Virginia, Charlottesville, VA, 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Stefanie Redemann
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA
- Center for Membrane & Cell Physiology, University of Virginia, Charlottesville, VA, 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA.
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
3
|
Yuan X, Kadowaki T. BBSome deficiency in Lotmaria passim reveals divergent functions in trypanosomatid parasites. Parasit Vectors 2025; 18:60. [PMID: 39966945 PMCID: PMC11837635 DOI: 10.1186/s13071-025-06704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The BBSome is an octameric protein complex crucial for ciliary transport, though it also participates in multiple other cellular processes. These diverse functions may result from the co-option of its ancestral roles. Studying the BBSome in flagellated protists can provide insights into these ancestral functions and their subsequent adaptations. METHODS We examined the functions of the BBSome (LpBBS1 and LpBBS2) in Lotmaria passim, a monoxenous trypanosomatid parasite infecting honey bees. The phenotypes resulting from depletion of LpBBS1 using the auxin-inducible degron system and disruption of LpBBS2 were characterized. RESULTS Parasites deficient in LpBBS2 are smaller and less motile compared with wild-type. Although intraflagellar transport of a marker membrane protein is only mildly impaired, its association with lipid rafts is significantly disrupted in the mutants. This suggests that the BBSome is essential for maintaining lipid raft integrity in L. passim. Transcriptomic comparisons between wild-type and LpBBS2-deficient parasites reveal that the BBSome may also influence processes related to metabolism, membrane localization of specific proteins, DNA repair, microtubules, and mitochondria. CONCLUSIONS In contrast to Leishmania mexicana, the BBSome in L. passim is crucial for efficient infection of the honey bee gut, demonstrating that its cellular functions vary between related trypanosomatid species. The BBSome is likely an adaptor that links multiple proteins in a species-specific manner under various cellular contexts.
Collapse
Affiliation(s)
- Xuye Yuan
- Department of Biosciences and Bioinformatics, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, 215123, Jiangsu Province, China
| | - Tatsuhiko Kadowaki
- Department of Biosciences and Bioinformatics, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, 215123, Jiangsu Province, China.
| |
Collapse
|
4
|
Yeo HR, Shin MY, Kim J, Park SJ. Giardia intraflagellar transport protein 88 is involved in flagella formation. PARASITES, HOSTS AND DISEASES 2025; 63:12-24. [PMID: 40045677 PMCID: PMC11895090 DOI: 10.3347/phd.24064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/31/2024] [Indexed: 03/14/2025]
Abstract
Intraflagellar transport (IFT) particles, a multi-protein apparatus composed of complex A and B, are known to be involved in homeostasis of flagella formation. IFT particles have recently become an interesting topic in Giardia lamblia, which has 4 pairs of flagella. In this experiment, we examined the function of giardial IFT components. When 7 components (IFT121, 140, 20, 46, 52, 81, and 88) of IFT were expressed in Giardia trophozoites as a tagged form with mNeonGreen, all of them were found in both flagella pores and cytoplasmic axonemes. In addition, motor proteins for IFT particles (kinesin-13 and kinesin-2b), were localized to a median body and cytoplasmic flagella, respectively. The CRISPRi-mediated knockdown of IFT88 significantly affected the lengths of all 4 flagella compared to the control cells, Giardia expressing dead Cas9 using control guide RNA. Decreased expression of kinesin-2b also resulted in shortening of flagella, excluding the ventral flagella. Live Giardia cells expressing IFT88-mNeonGreen clearly demonstrated fluorescence in flagella pores and cytoplasmic axonemes. These results on IFT88 and kinesin-2b indicate that IFT complex plays a role in maintenance of G. lamblia flagella.
Collapse
Affiliation(s)
- Hye Rim Yeo
- Department of Tropical Medicine, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Mee Young Shin
- Department of Tropical Medicine, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Juri Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Soon-Jung Park
- Department of Tropical Medicine, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| |
Collapse
|
5
|
Hufft-Martinez BM, Wang HH, Saadi I, Tran PV. Actin cytoskeletal regulation of ciliogenesis in development and disease. Dev Dyn 2024; 253:1076-1093. [PMID: 38958410 PMCID: PMC11611694 DOI: 10.1002/dvdy.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
Primary cilia are antenna-like sensory organelles that are evolutionarily conserved in nearly all modern eukaryotes, from the single-celled green alga, Chlamydomonas reinhardtii, to vertebrates and mammals. Cilia are microtubule-based cellular projections that have adapted to perform a broad range of species-specific functions, from cell motility to detection of light and the transduction of extracellular mechanical and chemical signals. These functions render cilia essential for organismal development and survival. The high conservation of cilia has allowed for discoveries in C. reinhardtii to inform our understanding of the basic biology of mammalian primary cilia, and to provide insight into the genetic etiology of ciliopathies. Over the last two decades, a growing number of studies has revealed that multiple aspects of ciliary homeostasis are regulated by the actin cytoskeleton, including centrosome migration and positioning, vesicle transport to the basal body, ectocytosis, and ciliary-mediated signaling. Here, we review actin regulation of ciliary homeostasis, and highlight conserved and divergent mechanisms in C. reinhardtii and mammalian cells. Further, we compare the disease manifestations of patients with ciliopathies to those with mutations in actin and actin-associated genes, and propose that primary cilia defects caused by genetic alteration of the actin cytoskeleton may underlie certain birth defects.
Collapse
Affiliation(s)
| | - Henry H Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Irfan Saadi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- Institute of Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Pamela V Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
6
|
Kuzinska MZ, Lin SYY, Klämbt V, Bufler P, Rezvani M. Ciliopathy organoid models: a comprehensive review. Am J Physiol Cell Physiol 2024; 327:C1604-C1625. [PMID: 39495251 DOI: 10.1152/ajpcell.00343.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Cilia are membrane-bound organelles found on the surface of most mammalian cell types and play numerous roles in human physiology and development, including osmo- and mechanosensation, as well as signal transduction. Ciliopathies are a large group of, usually rare, genetic disorders resulting from abnormal ciliary structure or ciliary dysfunction that have a high collective prevalence. Autosomal dominant or recessive polycystic kidney disease (ADPKD/ARPKD), Bardet-Biedl-Syndrome, and primary ciliary dyskinesia (PCD) are the most frequent etiologies. Rodent and zebrafish models have improved the understanding of ciliopathy pathophysiology. Yet, the limitations of these genetically modified animal strains include the inability to fully replicate the phenotypic heterogeneity found in humans, including variable multiorgan involvement. Organoids, self-assembled three-dimensional cell-based models derived from human induced pluripotent stem cells (iPSCs) or primary tissues, can recapitulate certain aspects of the development, architecture, and function of the target organ "in the dish." The potential of organoids to model patient-specific genotype-phenotype correlations has increased their popularity in ciliopathy research and led to the first preclinical organoid-based ciliopathy drug screens. This review comprehensively summarizes and evaluates current ciliopathy organoid models, focusing on kidney, airway, liver, and retinal organoids, as well as the specific methodologies used for their cultivation and for interrogating ciliary dysfunction.
Collapse
Affiliation(s)
- Matylda Zofia Kuzinska
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- Berlin School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Sally Yuan-Yin Lin
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
| | - Verena Klämbt
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Milad Rezvani
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin-Campus Virchow Klinikum, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Berlin Institute of Health, Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
7
|
Barbelanne M, Lu Y, Kumar K, Zhang X, Li C, Park K, Warner A, Xu XZS, Shaham S, Leroux MR. C. elegans PPEF-type phosphatase (Retinal degeneration C ortholog) functions in diverse classes of cilia to regulate nematode behaviors. Sci Rep 2024; 14:28347. [PMID: 39550471 PMCID: PMC11569196 DOI: 10.1038/s41598-024-79057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
Primary (non-motile) cilia represent structurally and functionally diverse organelles whose roles as specialized cellular antenna are central to animal cell signaling pathways, sensory physiology and development. An ever-growing number of ciliary proteins, including those found in vertebrate photoreceptors, have been uncovered and linked to human disorders termed ciliopathies. Here, we demonstrate that an evolutionarily-conserved PPEF-family serine-threonine phosphatase, not functionally linked to cilia in any organism but associated with rhabdomeric (non-ciliary) photoreceptor degeneration in the Drosophila rdgC (retinal degeneration C) mutant, is a bona fide ciliary protein in C. elegans. The nematode protein, PEF-1, depends on transition zone proteins, which make up a 'ciliary gate' in the proximal-most region of the cilium, for its compartmentalization within cilia. Animals lacking PEF-1 protein function display structural defects to several types of cilia, including potential degeneration of microtubules. They also exhibit anomalies to cilium-dependent behaviors, including impaired responses to chemical, temperature, light, and noxious CO2 stimuli. Lastly, we demonstrate that PEF-1 function depends on conserved myristoylation and palmitoylation signals. Collectively, our findings broaden the role of PPEF proteins to include cilia, and suggest that the poorly-characterized mammalian PPEF1 and PPEF2 orthologs may also have ciliary functions and thus represent ciliopathy candidates.
Collapse
Affiliation(s)
- Marine Barbelanne
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Keerthana Kumar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Xinxing Zhang
- Life Sciences Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kwangjin Park
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Adam Warner
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - X Z Shawn Xu
- Life Sciences Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
8
|
Lee M, Carpenter C, Hwang YS, Yoon J, Lu Q, Westlake CJ, Moody SA, Yamaguchi TP, Daar IO. Proliferation associated 2G4 is required for the ciliation of vertebrate motile cilia. Commun Biol 2024; 7:1430. [PMID: 39496919 PMCID: PMC11535434 DOI: 10.1038/s42003-024-07150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Motile cilia are critical structures that regulate early embryonic development and tissue homeostasis through synchronized ciliary motility. The formation of motile cilia is dependent on precisely controlled sequential processes including the generation, migration, and docking of centrioles/basal bodies as well as ciliary growth. Using the published proteomics data from various organisms, we identified proliferation-associated 2G4 as a novel regulator of ciliogenesis. Loss-of-function studies using Xenopus laevis as a model system reveal that Pa2G4 is essential for proper ciliogenesis and synchronized movement of cilia in multiciliated cells (MCCs) and the gastrocoel roof plate (GRP). Pa2G4 morphant MCCs exhibit defective basal body docking to the surface as a result of compromised Rac1 activity, apical actin network formation, and immature distal appendage generation. Interestingly, the regions that include the RNA-binding domain and the C-terminus of Pa2G4 are necessary for ciliogenesis in both MCCs and GRP cells. Our findings may provide insights into motile cilia-related genetic diseases such as Primary Ciliary Dyskinesia.
Collapse
Affiliation(s)
- Moonsup Lee
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christina Carpenter
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yoo-Seok Hwang
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jaeho Yoon
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Quanlong Lu
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, USA
| | - Terry P Yamaguchi
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
9
|
Sviben S, Polino AJ, Melena IL, Hughes JW. Immuno-scanning electron microscopy of islet primary cilia. J Cell Sci 2024; 137:jcs262038. [PMID: 38804679 PMCID: PMC11166453 DOI: 10.1242/jcs.262038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
The definitive demonstration of protein localization on primary cilia has been a challenge for cilia biologists. Primary cilia are solitary thread-like projections that have a specialized protein composition, but as the ciliary structure overlays the cell membrane and other cell parts, the identity of ciliary proteins are difficult to ascertain by conventional imaging approaches like immunofluorescence microscopy. Surface scanning electron microscopy combined with immunolabeling (immuno-SEM) bypasses some of these indeterminacies by unambiguously showing protein expression in the context of the three-dimensional ultrastructure of the cilium. Here, we apply immuno-SEM to specifically identify proteins on the primary cilia of mouse and human pancreatic islets, including post-translationally modified tubulin, intraflagellar transport (IFT)88, the small GTPase Arl13b, as well as subunits of axonemal dynein. Key parameters in sample preparation, immunolabeling and imaging acquisition are discussed to facilitate similar studies by others in the cilia research community.
Collapse
Affiliation(s)
- Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine, 660 South Euclid Ave, Saint Louis, MO 63110, USA
| | - Alexander J. Polino
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Ave, Saint Louis, MO 63110, USA
| | - Isabella L. Melena
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Ave, Saint Louis, MO 63110, USA
| | - Jing W. Hughes
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Ave, Saint Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Ave, Saint Louis, MO 63110, USA
| |
Collapse
|
10
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. J Cell Biol 2024; 223:e202404038. [PMID: 39137043 PMCID: PMC11320830 DOI: 10.1083/jcb.202404038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation. Here, we provide nanoscopic resolution of cilia in situ using large-scale electron microscopy volumes and immunostaining of mouse cerebella. In many granule cells, we found intracellular cilia, concealed from the external environment. Cilia were disassembled in differentiating granule cell neurons-in a process we call cilia deconstruction-distinct from premitotic cilia resorption in proliferating progenitors. In differentiating granule cells, cilia deconstruction involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Unlike ciliated neurons in other brain regions, our results show the deconstruction of concealed cilia in differentiating granule cells, which might prevent mitogenic hedgehog responsiveness. Ciliary deconstruction could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Vazquez N, Lee C, Valenzuela I, Phan TP, Derderian C, Chávez M, Mooney NA, Demeter J, Aziz-Zanjani MO, Cusco I, Codina M, Martínez-Gil N, Valverde D, Solarat C, Buel AL, Thauvin-Robinet C, Steichen E, Filges I, Joset P, De Geyter J, Vaidyanathan K, Gardner T, Toriyama M, Marcotte EM, Roberson EC, Jackson PK, Reiter JF, Tizzano EF, Wallingford JB. The human ciliopathy protein RSG1 links the CPLANE complex to transition zone architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614984. [PMID: 39386566 PMCID: PMC11463498 DOI: 10.1101/2024.09.25.614984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cilia are essential organelles and variants in genes governing ciliary function result in ciliopathic diseases. The Ciliogenesis and PLANar polarity Effectors (CPLANE) protein complex is essential for ciliogenesis in animals models but remains poorly defined. Notably, all but one subunit of the CPLANE complex have been implicated in human ciliopathy. Here, we identify three families in which variants in the remaining CPLANE subunit CPLANE2/RSG1 also cause ciliopathy. These patients display cleft palate, tongue lobulations and polydactyly, phenotypes characteristic of Oral-Facial-Digital Syndrome. We further show that these alleles disrupt two vital steps of ciliogenesis, basal body docking and recruitment of intraflagellar transport proteins. Moreover, APMS reveals that Rsg1 binds the CPLANE and also the transition zone protein Fam92 in a GTP-dependent manner. Finally, we show that CPLANE is generally required for normal transition zone architecture. Our work demonstrates that CPLANE2/RSG1 is a causative gene for human ciliopathy and also sheds new light on the mechanisms of ciliary transition zone assembly.
Collapse
|
12
|
Boegholm N, Petriman NA, Tanvir NM, Lorentzen E. Architecture of RabL2-associated complexes at the ciliary base: A structural modeling perspective: Deciphering the structural organization of ciliary RabL2 complexes. Bioessays 2024; 46:e2300222. [PMID: 38991980 DOI: 10.1002/bies.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Cilia are slender, micrometer-long organelles present on the surface of eukaryotic cells. They function in signaling and locomotion and are constructed by intraflagellar transport (IFT). The assembly of IFT complexes into so-called IFT trains to initiate ciliary entry at the base of the cilium remains a matter of debate. Here, we use structural modeling to provide an architectural framework for how RabL2 is anchored at the ciliary base via CEP19 before being handed over to IFT trains for ciliary entry. Our models suggest that the N-terminal domain of CEP43 forms a homo-dimer to anchor at the subdistal appendages of cilia through a direct interaction with CEP350. A long linker region separates the N-terminal domain of CEP43 from the C-terminal domain, which captures CEP19 above the subdistal appendages and close to the distal appendages. Furthermore, we present a structural model for how RabL2-CEP19 associates with the IFT-B complex, providing insight into how RabL2 is handed over from CEP19 to the IFT complex. Interestingly, RabL2 association with the IFT-B complex appears to induce a significant conformational change in the IFT complex via a kink in the coiled-coils of the IFT81/74 proteins, which may prime the IFT machinery for entry into cilia.
Collapse
Affiliation(s)
- Niels Boegholm
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Narcis A Petriman
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Niaj M Tanvir
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
13
|
Jaiswal A, Boring A, Mukherjee A, Avidor-Reiss T. Fly Fam161 is an essential centriole and cilium transition zone protein with unique and diverse cell type-specific localizations. Open Biol 2024; 14:240036. [PMID: 39255847 PMCID: PMC11500687 DOI: 10.1098/rsob.240036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 09/12/2024] Open
Abstract
Family with sequence similarity 161 (Fam161) is an ancient family of microtubule-binding proteins located at the centriole and cilium transition zone (TZ) lumen that exhibit rapid evolution in mice. However, their adaptive role is unclear. Here, we used flies to gain insight into their cell type-specific adaptations. Fam161 is the sole orthologue of FAM161A and FAM161B found in flies. Mutating Fam161 results in reduced male reproduction and abnormal geotaxis behaviour. Fam161 localizes to sensory neuron centrioles and their specialized TZ (the connecting cilium) in a cell type-specific manner, sometimes labelling only the centrioles, sometimes labelling the centrioles and cilium TZ and sometimes labelling the TZ with varying lengths that are longer than other TZ proteins, defining a new ciliary compartment, the extra distal TZ. These findings suggest that Fam161 is an essential centriole and TZ protein with a unique cell type-specific localization in fruit flies that can produce cell type-specific adaptations.
Collapse
Affiliation(s)
- Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
| | - Andrew Boring
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH43614, USA
| | - Avik Mukherjee
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH43614, USA
| |
Collapse
|
14
|
Otani H, Nakazato R, Koike K, Ohta K, Ikegami K. Excess microtubule and F-actin formation mediates shortening and loss of primary cilia in response to a hyperosmotic milieu. J Cell Sci 2024; 137:jcs261988. [PMID: 39056167 DOI: 10.1242/jcs.261988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The primary cilium is a small organelle protruding from the cell surface that receives signals from the extracellular milieu. Although dozens of studies have reported that several genetic factors can impair the structure of primary cilia, evidence for environmental stimuli affecting primary cilia structures is limited. Here, we investigated an extracellular stress that affected primary cilia morphology and its underlying mechanisms. Hyperosmotic shock induced reversible shortening and disassembly of the primary cilia of murine intramedullary collecting duct cells. The shortening of primary cilia caused by hyperosmotic shock followed delocalization of the pericentriolar material (PCM). Excessive microtubule and F-actin formation in the cytoplasm coincided with the hyperosmotic shock-induced changes to primary cilia and the PCM. Treatment with a microtubule-disrupting agent, nocodazole, partially prevented the hyperosmotic shock-induced disassembly of primary cilia and almost completely prevented delocalization of the PCM. An actin polymerization inhibitor, latrunculin A, also partially prevented the hyperosmotic shock-induced shortening and disassembly of primary cilia and almost completely prevented delocalization of the PCM. We demonstrate that hyperosmotic shock induces reversible morphological changes in primary cilia and the PCM in a manner dependent on excessive formation of microtubule and F-actin.
Collapse
Affiliation(s)
- Hiroshi Otani
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ryota Nakazato
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kanae Koike
- Natural Science Center for Basic Research and Development , Hiroshima University, Higashi Hiroshima 739-8527, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center , Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
15
|
Patel K, Smith NJ. Primary cilia, A-kinase anchoring proteins and constitutive activity at the orphan G protein-coupled receptor GPR161: A tale about a tail. Br J Pharmacol 2024; 181:2182-2196. [PMID: 36772847 DOI: 10.1111/bph.16053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Primary cilia are non-motile antennae-like structures responsible for sensing environmental changes in most mammalian cells. Ciliary signalling is largely mediated by the Sonic Hedgehog (Shh) pathway, which acts as a master regulator of ciliary protein transit and is essential for normal embryonic development. One particularly important player in primary cilia is the orphan G protein-coupled receptor, GPR161. In this review, we introduce GPR161 in the context of Shh signalling and describe the unique features on its C-terminus such as PKA phosphorylation sites and an A-kinase anchoring protein motif, which may influence the function of the receptor, cAMP compartmentalisation and/or trafficking within primary cilia. We discuss the recent putative pairing of GPR161 and spexin-1, highlighting the additional steps needed before GPR161 could be considered 'deorphanised'. Finally, we speculate that the marked constitutive activity and unconventional regulation of GPR161 may indicate that the receptor may not require an endogenous ligand. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Kinjal Patel
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Nicola J Smith
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
16
|
Reddy Palicharla V, Mukhopadhyay S. Molecular and structural perspectives on protein trafficking to the primary cilium membrane. Biochem Soc Trans 2024; 52:1473-1487. [PMID: 38864436 PMCID: PMC11346432 DOI: 10.1042/bst20231403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The primary cilium is a dynamic subcellular compartment templated from the mother centriole or basal body. Cilia are solitary and tiny, but remarkably consequential in cellular pathways regulating proliferation, differentiation, and maintenance. Multiple transmembrane proteins such as G-protein-coupled receptors, channels, enzymes, and membrane-associated lipidated proteins are enriched in the ciliary membrane. The precise regulation of ciliary membrane content is essential for effective signal transduction and maintenance of tissue homeostasis. Surprisingly, a few conserved molecular factors, intraflagellar transport complex A and the tubby family adapter protein TULP3, mediate the transport of most membrane cargoes into cilia. Recent advances in cryogenic electron microscopy provide fundamental insights into these molecular players. Here, we review the molecular players mediating cargo delivery into the ciliary membrane through the lens of structural biology. These mechanistic insights into ciliary transport provide a framework for understanding of disease variants in ciliopathies, enable precise manipulation of cilia-mediated pathways, and provide a platform for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| |
Collapse
|
17
|
Miri Karam Z, Gohari A, Khabaz M, Yari A, Meybodi S, Attari R, Torabi M, Vafaeie F, Moraddahande F, Amiri S, Saeidi K. Identification of a Novel Deletion Variant (c.2999_3005delTGTGTGT/p.Asn1000SerfsTer4) in NPHP4 Associated With Nephronophthisis-4. J Clin Lab Anal 2024; 38:e25077. [PMID: 38895833 PMCID: PMC11252830 DOI: 10.1002/jcla.25077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Nephronophthisis-4 (NPHP4) is an inherited renal ciliopathy described by renal fibrosis and progressive impairment of kidney function. This study aimed to investigate the genetic basis and clinical manifestations of NPHP4 in two Iranian siblings. METHODS The proband was a 27-year-old male with features of end-stage renal disease, including anemia, uremia, polyuria, and polydipsia. It is worth mentioning that he has a 22-year-old sister with a similar presentation. Clinical diagnosis procedures, such as renal biopsy, brain imaging, blood and urine tests, cardiac evaluation, ophthalmic inspection, and auditory function assessment, were carried out to evaluate organ involvement and potential comorbidities. Whole-exome sequencing (WES) and segregation analysis were performed to identify and confirm genetic variants associated with the condition. Computational variant analysis was conducted to evaluate the pathogenicity of the candidate variant. Furthermore, the SWISS-MODEL server was utilized for protein modeling. RESULTS The brain, cardiac, ocular, and auditory functions were normal. Renal biopsy of the proband showed chronic interstitial inflammation and fibrosis. We found a novel homozygous 7-base pair deletion (c.2999_3005delTGTGTGT/ p.Asn1000SerfsTer4) in exon 21 of NPHP4 by WES. Segregation analysis confirmed homozygosity for the NPHP4 variant in affected individuals and heterozygous carrier status in parents, supporting autosomal recessive inheritance. 3D protein modeling indicated significant structural changes due to the variant. CONCLUSION This study expands the genetic causes and phenotypic spectrum of nephronophthisis-4 and reveals the importance of genetic analysis in diagnosing and managing rare inherited kidney disorders, particularly those involving consanguinity.
Collapse
Affiliation(s)
- Zahra Miri Karam
- Department of Medical Genetics, Afzalipour Faculty of MedicineKerman University of Medical SciencesKermanIran
- Neuroscience Research CenterInstitute of Neuropharmacology, Kerman University of Medical SciencesKermanIran
| | - Atieh Karimi Gohari
- Department of Medical Genetics, Afzalipour Faculty of MedicineKerman University of Medical SciencesKermanIran
| | | | - Abolfazl Yari
- Department of Medical Genetics, Afzalipour Faculty of MedicineKerman University of Medical SciencesKermanIran
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Seyed Mahdi Emami Meybodi
- Yazd Cardiovascular Research CenterNon‐Communicable Diseases Research Institute, Shahid Sadoughi University of Medical SciencesYazdIran
| | | | - Maryam Torabi
- Department of Biology, Faculty of Science, Agriculture and New Technologies, Shiraz BranchIslamic Azad UniversityShirazIran
| | - Farzane Vafaeie
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Fateme Moradi Moraddahande
- Department of Medical Laboratory SciencesSchool of Allied Medical Sciences, Shahid Beheshti University of Medical SciencesTehranIran
| | - Sara Amiri
- Department of Biology, Kerman BranchIslamic Azad UniversityKermanIran
| | - Kolsoum Saeidi
- Department of Medical Genetics, Afzalipour Faculty of MedicineKerman University of Medical SciencesKermanIran
- Neuroscience Research CenterInstitute of Neuropharmacology, Kerman University of Medical SciencesKermanIran
| |
Collapse
|
18
|
Houston BJ, Merriner DJ, Stathatos GG, Nguyen JH, O'Connor AE, Lopes AM, Conrad DF, Baker M, Dunleavy JE, O'Bryan MK. Genetic mutation of Cep76 results in male infertility due to abnormal sperm tail composition. Life Sci Alliance 2024; 7:e202302452. [PMID: 38570187 PMCID: PMC10992998 DOI: 10.26508/lsa.202302452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The transition zone is a specialised gate at the base of cilia/flagella, which separates the ciliary compartment from the cytoplasm and strictly regulates protein entry. We identified a potential new regulator of the male germ cell transition zone, CEP76. We demonstrated that CEP76 was involved in the selective entry and incorporation of key proteins required for sperm function and fertility into the ciliary compartment and ultimately the sperm tail. In the mutant, sperm tails were shorter and immotile as a consequence of deficits in essential sperm motility proteins including DNAH2 and AKAP4, which accumulated at the sperm neck in the mutant. Severe annulus, fibrous sheath, and outer dense fibre abnormalities were also detected in sperm lacking CEP76. Finally, we identified that CEP76 dictates annulus positioning and structure. This study suggests CEP76 as a male germ cell transition zone protein and adds further evidence to the hypothesis that the spermatid transition zone and annulus are part of the same functional structure.
Collapse
Affiliation(s)
- Brendan J Houston
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - D Jo Merriner
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - G Gemma Stathatos
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Joseph H Nguyen
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Anne E O'Connor
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology & Immunology, University of Porto, Porto, Portugal
| | - Donald F Conrad
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Mark Baker
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Jessica Em Dunleavy
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
19
|
Mercey O, Mukherjee S, Guichard P, Hamel V. The molecular architecture of the ciliary transition zones. Curr Opin Cell Biol 2024; 88:102361. [PMID: 38648677 DOI: 10.1016/j.ceb.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
Cilia and flagella are specialized eukaryotic organelles projecting from the surface of eukaryotic cells that play a central role in various physiological processes, including cell motility, sensory perception, and signal transduction. At the base of these structures lies the ciliary transition zone, a pivotal region that functions as a gatekeeper and communication hub for ciliary activities. Despite its crucial role, the intricacies of its architecture remain poorly understood, especially given the variations in its organization across different cell types and species. In this review, we explore the molecular architecture of the ciliary transition zone, with a particular focus on recent findings obtained using cryotomography and super-resolution imaging techniques.
Collapse
Affiliation(s)
- Olivier Mercey
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Souradip Mukherjee
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
20
|
Chen H, Wu Z, Yan Z, Chen C, Zhang Y, Wang Q, Gao Y, Ling K, Hu J, Wei Q. The ARPKD Protein DZIP1L Regulates Ciliary Protein Entry by Modulating the Architecture and Function of Ciliary Transition Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308820. [PMID: 38634253 PMCID: PMC11200010 DOI: 10.1002/advs.202308820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Serving as the cell's sensory antennae, primary cilia are linked to numerous human genetic diseases when they malfunction. DZIP1L, identified as one of the genetic causes of human autosomal recessive polycystic kidney disease (ARPKD), is an evolutionarily conserved ciliary basal body protein. Although it has been reported that DZIP1L is involved in the ciliary entry of PKD proteins, the underlying mechanism remains elusive. Here, an uncharacterized role of DZIP1L is reported in modulating the architecture and function of transition fibers (TFs), striking ciliary base structures essential for selective cilia gating. Using C. elegans as a model, C01G5.7 (hereafter termed DZIP-1) is identified as the sole homolog of DZIP1L, which specifically localizes to TFs. While DZIP-1 or ANKR-26 (the ortholog of ANKRD26) deficiency shows subtle impact on TFs, co-depletion of DZIP-1 and ANKR-26 disrupts TF assembly and cilia gating for soluble and membrane proteins, including the ortholog of ADPKD protein polycystin-2. Notably, the synergistic role for DZIP1L and ANKRD26 in the formation and function of TFs is highly conserved in mammalian cilia. Hence, the findings illuminate an evolutionarily conserved role of DZIP1L in TFs architecture and function, highlighting TFs as a vital part of the ciliary gate implicated in ciliopathies ARPKD.
Collapse
Affiliation(s)
- Huicheng Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary BiologyCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100039China
- Center for Energy Metabolism and ReproductionInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences (CAS)Shenzhen518055China
| | - Zhimao Wu
- Center for Energy Metabolism and ReproductionInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences (CAS)Shenzhen518055China
| | - Ziwei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary BiologyCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100039China
| | - Chuan Chen
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMN55905USA
| | - Yingying Zhang
- Center for Energy Metabolism and ReproductionInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences (CAS)Shenzhen518055China
| | - Qiaoling Wang
- Institute of Medicine and Pharmaceutical SciencesZhengzhou UniversityZhengzhou430000China
| | - Yuqing Gao
- Center for Energy Metabolism and ReproductionInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences (CAS)Shenzhen518055China
| | - Kun Ling
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMN55905USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMN55905USA
| | - Qing Wei
- Center for Energy Metabolism and ReproductionInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences (CAS)Shenzhen518055China
- School of Synthetic BiologyShanxi Key Laboratory of Nucleic Acid BiopesticidesShanxi UniversityTaiyuan030006China
| |
Collapse
|
21
|
Agborbesong E, Zhou JX, Zhang H, Li LX, Harris PC, Calvet JP, Li X. SMYD3 Controls Ciliogenesis by Regulating Distinct Centrosomal Proteins and Intraflagellar Transport Trafficking. Int J Mol Sci 2024; 25:6040. [PMID: 38892227 PMCID: PMC11172885 DOI: 10.3390/ijms25116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The primary cilium is a microtubule-based sensory organelle that plays a critical role in signaling pathways and cell cycle progression. Defects in the structure and/or function of the primary cilium result in developmental diseases collectively known as ciliopathies. However, the constituents and regulatory mechanisms of the primary cilium are not fully understood. In recent years, the activity of the epigenetic modifier SMYD3 has been shown to play a key role in the regulation of cell cycle progression. However, whether SMYD3, a histone/lysine methyltransferase, contributes to the regulation of ciliogenesis remains unknown. Here, we report that SMYD3 drives ciliogenesis via the direct and indirect regulation of cilia-associated components. We show that SMYD3 is a novel component of the distal appendage and is required for centriolar appendage assembly. The loss of SMYD3 decreased the percentage of ciliated cells and resulted in the formation of stumpy cilia. We demonstrated that SMYD3 modulated the recruitment of centrosome proteins (Cep164, Fbf1, Ninein, Ttbk2 and Cp110) and the trafficking of intraflagellar transport proteins (Ift54 and Ift140) important for cilia formation and maintenance, respectively. In addition, we showed that SMYD3 regulated the transcription of cilia genes and bound to the promoter regions of C2cd3, Cep164, Ttbk2, Dync2h1 and Cp110. This study provides insights into the role of SMYD3 in cilia biology and suggests that SMYD3-mediated cilia formation/function may be relevant for cilia-dependent signaling in ciliopathies.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongbing Zhang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C. Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Liu X, Yam PT, Schlienger S, Cai E, Zhang J, Chen WJ, Torres Gutierrez O, Jimenez Amilburu V, Ramamurthy V, Ting AY, Branon TC, Cayouette M, Gen R, Marks T, Kong JH, Charron F, Ge X. Numb positively regulates Hedgehog signaling at the ciliary pocket. Nat Commun 2024; 15:3365. [PMID: 38664376 PMCID: PMC11045789 DOI: 10.1038/s41467-024-47244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Hedgehog (Hh) signaling relies on the primary cilium, a cell surface organelle that serves as a signaling hub for the cell. Using proximity labeling and quantitative proteomics, we identify Numb as a ciliary protein that positively regulates Hh signaling. Numb localizes to the ciliary pocket and acts as an endocytic adaptor to incorporate Ptch1 into clathrin-coated vesicles, thereby promoting Ptch1 exit from the cilium, a key step in Hh signaling activation. Numb loss impedes Sonic hedgehog (Shh)-induced Ptch1 exit from the cilium, resulting in reduced Hh signaling. Numb loss in spinal neural progenitors reduces Shh-induced differentiation into cell fates reliant on high Hh activity. Genetic ablation of Numb in the developing cerebellum impairs the proliferation of granule cell precursors, a Hh-dependent process, resulting in reduced cerebellar size. This study highlights Numb as a regulator of ciliary Ptch1 levels during Hh signal activation and demonstrates the key role of ciliary pocket-mediated endocytosis in cell signaling.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | - Patricia T Yam
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Sabrina Schlienger
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Eva Cai
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | - Wei-Ju Chen
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Biology, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Oscar Torres Gutierrez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | | | - Vasanth Ramamurthy
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Alice Y Ting
- Departments of Genetics, of Biology, and by courtesy, of Chemistry, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Tess C Branon
- Departments of Genetics, of Biology, and by courtesy, of Chemistry, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Interline Therapeutics, South San Francisco, CA, USA
| | - Michel Cayouette
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Risako Gen
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Tessa Marks
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Jennifer H Kong
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0G4, Canada.
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
| | - Xuecai Ge
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA.
| |
Collapse
|
23
|
Lai B, Jiang H, Gao Y, Zhou X. Skeletal ciliopathy: pathogenesis and related signaling pathways. Mol Cell Biochem 2024; 479:811-823. [PMID: 37188988 DOI: 10.1007/s11010-023-04765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Cilia are tiny organelles with conserved structures and components in eukaryotic cells. Ciliopathy is a set of diseases resulting from cilium dysfunction classified into first-order and second-order ciliopathy. With the advancement of clinical diagnosis and radiography, numerous skeletal phenotypes, including polydactyly, short limbs, short ribs, scoliosis, a narrow thorax, and numerous anomalies in bone and cartilage, have been discovered in ciliopathies. Mutation in genes encoding cilia core components or other cilia-related molecules have been found in skeletal ciliopathies. Meanwhile, various signaling pathways associated with cilia and skeleton development have been deemed to be significant for the occurrence and progression of diseases. Herein, we review the structure and key components of the cilium and summarize several skeletal ciliopathies with their presumable pathology. We also emphasize the signaling pathways involved in skeletal ciliopathies, which may assist in developing potential therapies for these diseases.
Collapse
Affiliation(s)
- Bowen Lai
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Yuan Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China.
| |
Collapse
|
24
|
Ryu S, Ko D, Shin B, Rhee K. The intercentriolar fibers function as docking sites of centriolar satellites for cilia assembly. J Cell Biol 2024; 223:e202105065. [PMID: 38416111 PMCID: PMC10901237 DOI: 10.1083/jcb.202105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/09/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Two mother centrioles in an animal cell are linked by intercentriolar fibers that have CROCC/rootletin as their main building block. Here, we investigated the regulatory role of intercentriolar/rootlet fibers in cilia assembly. The cilia formation rates were significantly reduced in the CEP250/C-NAP1 and CROCC/rootletin knockout (KO) cells, irrespective of the departure of the young mother centrioles from the basal bodies. In addition, centriolar satellites were dispersed throughout the cytoplasm in the CEP250 and CROCC KO cells. We observed that PCM1 directly binds to CROCC. Their interaction is critical not only for the accumulation of centriolar satellites near the centrosomes/basal bodies but also for cilia formation. Finally, we observed that the centriolar satellite proteins are localized at the intercentriolar/rootlet fibers in the kidney epithelial cells. Based on these findings, we propose that the intercentriolar/rootlet fibers function as docking sites for centriolar satellites near the centrosomes/basal bodies and facilitate the cilia assembly process.
Collapse
Affiliation(s)
- Sungjin Ryu
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Donghee Ko
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Byungho Shin
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
25
|
Schueder F, Rivera-Molina F, Su M, Marin Z, Kidd P, Rothman JE, Toomre D, Bewersdorf J. Unraveling cellular complexity with transient adapters in highly multiplexed super-resolution imaging. Cell 2024; 187:1769-1784.e18. [PMID: 38552613 DOI: 10.1016/j.cell.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Mapping the intricate spatial relationships between the many different molecules inside a cell is essential to understanding cellular functions in all their complexity. Super-resolution fluorescence microscopy offers the required spatial resolution but struggles to reveal more than four different targets simultaneously. Exchanging labels in subsequent imaging rounds for multiplexed imaging extends this number but is limited by its low throughput. Here, we present a method for rapid multiplexed super-resolution microscopy that can, in principle, be applied to a nearly unlimited number of molecular targets by leveraging fluorogenic labeling in conjunction with transient adapter-mediated switching for high-throughput DNA-PAINT (FLASH-PAINT). We demonstrate the versatility of FLASH-PAINT with four applications: mapping nine proteins in a single mammalian cell, elucidating the functional organization of primary cilia by nine-target imaging, revealing the changes in proximity of thirteen different targets in unperturbed and dissociated Golgi stacks, and investigating and quantifying inter-organelle contacts at 3D super-resolution.
Collapse
Affiliation(s)
- Florian Schueder
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
| | | | - Maohan Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Zach Marin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Phylicia Kidd
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Physics, Yale University, New Haven, CT, USA.
| |
Collapse
|
26
|
Chen J, Liu M. Centriolar appendages evolve into the inner sheath of mammalian flagella. J Cell Biol 2024; 223:e202401149. [PMID: 38381149 PMCID: PMC10880463 DOI: 10.1083/jcb.202401149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
The annulus, a septin-based structure in vertebrate sperm connecting the MP and PP, has unclear migration mechanics. In this issue, Hoque et al. (https://doi.org/10.1083/jcb.202307147) report that the CBY3/CIBAR1 complex ensures its precise positioning by regulating membrane properties.
Collapse
Affiliation(s)
- Jinyi Chen
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Wu Z, Chen H, Zhang Y, Wang Y, Wang Q, Augière C, Hou Y, Fu Y, Peng Y, Durand B, Wei Q. Cep131-Cep162 and Cby-Fam92 complexes cooperatively maintain Cep290 at the basal body and contribute to ciliogenesis initiation. PLoS Biol 2024; 22:e3002330. [PMID: 38442096 PMCID: PMC10914257 DOI: 10.1371/journal.pbio.3002330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Cilia play critical roles in cell signal transduction and organ development. Defects in cilia function result in a variety of genetic disorders. Cep290 is an evolutionarily conserved ciliopathy protein that bridges the ciliary membrane and axoneme at the basal body (BB) and plays critical roles in the initiation of ciliogenesis and TZ assembly. How Cep290 is maintained at BB and whether axonemal and ciliary membrane localized cues converge to determine the localization of Cep290 remain unknown. Here, we report that the Cep131-Cep162 module near the axoneme and the Cby-Fam92 module close to the membrane synergistically control the BB localization of Cep290 and the subsequent initiation of ciliogenesis in Drosophila. Concurrent deletion of any protein of the Cep131-Cep162 module and of the Cby-Fam92 module leads to a complete loss of Cep290 from BB and blocks ciliogenesis at its initiation stage. Our results reveal that the first step of ciliogenesis strictly depends on cooperative and retroactive interactions between Cep131-Cep162, Cby-Fam92 and Cep290, which may contribute to the complex pathogenesis of Cep290-related ciliopathies.
Collapse
Affiliation(s)
- Zhimao Wu
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Huicheng Chen
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yingying Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yaru Wang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Qiaoling Wang
- Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Céline Augière
- University Claude Bernard Lyon 1, MeLiS—UCBL—CNRS UMR 5284—INSERM U1314, Lyon, France
| | - Yanan Hou
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Ying Peng
- Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bénédicte Durand
- University Claude Bernard Lyon 1, MeLiS—UCBL—CNRS UMR 5284—INSERM U1314, Lyon, France
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, China
- School of Synthetic Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, China
| |
Collapse
|
28
|
Jayarajan RO, Chakraborty S, Raghu KG, Purushothaman J, Veleri S. Joubert syndrome causing mutation in C2 domain of CC2D2A affects structural integrity of cilia and cellular signaling molecules. Exp Brain Res 2024; 242:619-637. [PMID: 38231387 DOI: 10.1007/s00221-023-06762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
Cilia are organelles extend from cells to sense external signals for tuning intracellular signaling for optimal cellular functioning. They have evolved sensory and motor roles in various cells for tissue organization and homeostasis in development and post-development. More than a thousand genes are required for cilia function. Mutations in them cause multisystem disorders termed ciliopathies. The null mutations in CC2D2A result in Meckel syndrome (MKS), which is embryonic lethal, whereas patients who have missense mutations in the C2 domain of CC2D2A display Joubert syndrome (JBTS). They survive with blindness and mental retardation. How C2 domain defects cause disease conditions is not understood. To answer this question, C2 domain of Cc2d2a (mice gene) was knocked down (KD) in IMCD-3 cells by shRNA. This resulted in defective cilia morphology observed by immunofluorescence analysis. To further probe the cellular signaling alteration in affected cells, gene expression profiling was done by RNAseq and compared with the controls. Bioinformatics analysis revealed that the differentially expressed genes (DEGs) have functions in cilia. Among the 61 cilia DEGs identified, 50 genes were downregulated and 11 genes were upregulated. These cilia genes are involved in cilium assembly, protein trafficking to the cilium, intraflagellar transport (IFT), cellular signaling like polarity patterning, and Hedgehog signaling pathway. This suggests that the C2 domain of CC2D2A plays a critical role in cilia assembly and molecular signaling hosted in cilia for cellular homeostasis. Taken together, the missense mutations in the C2 domain of CC2D2A seen in JBTS might have affected cilia-mediated signaling in neurons of the retina and brain.
Collapse
Affiliation(s)
- Roopasree O Jayarajan
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soura Chakraborty
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Kozhiparambil Gopalan Raghu
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayamurthy Purushothaman
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shobi Veleri
- Drug Safety Division, National Institute of Nutrition, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Govt. of India, Hyderabad, 500007, India.
| |
Collapse
|
29
|
Fujii Y, Ikenouchi J. Cytoplasmic zoning in membrane blebs. J Biochem 2024; 175:133-140. [PMID: 37943501 DOI: 10.1093/jb/mvad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Blebs are membrane structures formed by the detachment of the plasma membrane from the underlying actin cytoskeleton. It is now clear that a wide variety of cells, including cancer cells, actively form blebs for cell migration and cell survival. The expansion of blebs has been regarded as the passive ballooning of the plasma membrane by an abrupt increase in intracellular pressure. However, recent studies revealed the importance of 'cytoplasmic zoning', i.e. local changes in the hydrodynamic properties and the ionic and protein content of the cytoplasm. In this review, we summarize the current understanding of the molecular mechanisms behind cytoplasmic zoning and its role in bleb expansion.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
Sviben S, Polino AJ, Melena I, Hughes JW. Immuno-Scanning Electron Microscopy of Islet Primary Cilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580695. [PMID: 38405740 PMCID: PMC10888824 DOI: 10.1101/2024.02.16.580695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The definitive demonstration of protein localization on primary cilia has been a challenge for cilia biologists. Primary cilia are solitary thread-like projections that contain specialized protein composition, but as the ciliary structure overlays the cell membrane and other cell parts, the identity of ciliary proteins are difficult to ascertain by conventional imaging approaches like immunofluorescence microscopy. Surface scanning electron microscopy combined with immuno-labeling (immuno-SEM) bypasses some of these indeterminacies by unambiguously showing protein expression in the context of the 3D ultrastructure of the cilium. Here we apply immuno-SEM to specifically identify proteins on the primary cilia of mouse and human pancreatic islets, including post-translationally modified tubulin, intraflagellar transport (IFT) 88, the small GTPase Arl13b, as well as subunits of axonemal dynein. Key parameters in sample preparation, immuno-labeling, and imaging acquisition are discussed to facilitate similar studies by others in the cilia research community.
Collapse
|
31
|
Luxmi R, King SM. Cilia Provide a Platform for the Generation, Regulated Secretion, and Reception of Peptidergic Signals. Cells 2024; 13:303. [PMID: 38391915 PMCID: PMC10886904 DOI: 10.3390/cells13040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Cilia are microtubule-based cellular projections that act as motile, sensory, and secretory organelles. These structures receive information from the environment and transmit downstream signals to the cell body. Cilia also release vesicular ectosomes that bud from the ciliary membrane and carry an array of bioactive enzymes and peptide products. Peptidergic signals represent an ancient mode of intercellular communication, and in metazoans are involved in the maintenance of cellular homeostasis and various other physiological processes and responses. Numerous peptide receptors, subtilisin-like proteases, the peptide-amidating enzyme, and bioactive amidated peptide products have been localized to these organelles. In this review, we detail how cilia serve as specialized signaling organelles and act as a platform for the regulated processing and secretion of peptidergic signals. We especially focus on the processing and trafficking pathways by which a peptide precursor from the green alga Chlamydomonas reinhardtii is converted into an amidated bioactive product-a chemotactic modulator-and released from cilia in ectosomes. Biochemical dissection of this complex ciliary secretory pathway provides a paradigm for understanding cilia-based peptidergic signaling in mammals and other eukaryotes.
Collapse
Affiliation(s)
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| |
Collapse
|
32
|
Wu S, Liu M, Zhang M, Ye X, Gu H, Jiang C, Zhu H, Ye X, Li Q, Huang X, Cao M. The gene expression of CALD1, CDH2, and POSTN in fibroblast are related to idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1275064. [PMID: 38370408 PMCID: PMC10869495 DOI: 10.3389/fimmu.2024.1275064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung dysfunction due to excessive collagen production and tissue scarring. Despite recent advancements, the molecular mechanisms remain unclear. Methods RNA sequencing identified 475 differentially expressed genes (DEGs) in the TGF-β1-induced primary lung fibrosis model. Gene expression chips GSE101286 and GSE110147 from NCBI gene expression omnibus (GEO) database were analyzed using GEO2R, revealing 94 DEGs in IPF lung tissue samples. The gene ontology (GO) and pathway enrichment, Protein-protein interaction (PPI) network construction, and Maximal Clique Centrality (MCC) scoring were performed. Experimental validation included RT-qPCR, Immunohistochemistry (IHC), and Western Blot, with siRNA used for gene knockdown. A co-expression network was constructed by GeneMANIA. Results GO enrichment highlighted significant enrichment of DEGs in TGF-β cellular response, connective tissue development, extracellular matrix components, and signaling pathways such as the AGE-RAGE signaling pathway and ECM-receptor interaction. PPI network analysis identified hub genes, including FN1, COL1A1, POSTN, KIF11, and ECT2. CALD1 (Caldesmon 1), CDH2 (Cadherin 2), and POSTN (Periostin) were identified as dysregulated hub genes in both the RNA sequencing and GEO datasets. Validation experiments confirmed the upregulation of CALD1, CDH2, and POSTN in TGF-β1-treated fibroblasts and IPF lung tissue samples. IHC experiments probed tissue-level expression patterns of these three molecules. Knockdown of CALD1, CDH2, and POSTN attenuated the expression of fibrotic markers (collagen I and α-SMA) in response to TGF-β1 stimulation in primary fibroblasts. Co-expression analysis revealed interactions between hub genes and predicted genes involved in actin cytoskeleton regulation and cell-cell junction organization. Conclusions CALD1, CDH2, and POSTN, identified as potential contributors to pulmonary fibrosis, present promising therapeutic targets for IPF patients.
Collapse
Affiliation(s)
- Shufei Wu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengying Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingrui Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Huimin Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Cheng Jiang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Huihui Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qi Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| |
Collapse
|
33
|
Kalot R, Sentell Z, Kitzler TM, Torban E. Primary cilia and actin regulatory pathways in renal ciliopathies. FRONTIERS IN NEPHROLOGY 2024; 3:1331847. [PMID: 38292052 PMCID: PMC10824913 DOI: 10.3389/fneph.2023.1331847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Ciliopathies are a group of rare genetic disorders caused by defects to the structure or function of the primary cilium. They often affect multiple organs, leading to brain malformations, congenital heart defects, and anomalies of the retina or skeletal system. Kidney abnormalities are among the most frequent ciliopathic phenotypes manifesting as smaller, dysplastic, and cystic kidneys that are often accompanied by renal fibrosis. Many renal ciliopathies cause chronic kidney disease and often progress to end-stage renal disease, necessitating replacing therapies. There are more than 35 known ciliopathies; each is a rare hereditary condition, yet collectively they account for a significant proportion of chronic kidney disease worldwide. The primary cilium is a tiny microtubule-based organelle at the apex of almost all vertebrate cells. It serves as a "cellular antenna" surveying environment outside the cell and transducing this information inside the cell to trigger multiple signaling responses crucial for tissue morphogenesis and homeostasis. Hundreds of proteins and unique cellular mechanisms are involved in cilia formation. Recent evidence suggests that actin remodeling and regulation at the base of the primary cilium strongly impacts ciliogenesis. In this review, we provide an overview of the structure and function of the primary cilium, focusing on the role of actin cytoskeleton and its regulators in ciliogenesis. We then describe the key clinical, genetic, and molecular aspects of renal ciliopathies. We highlight what is known about actin regulation in the pathogenesis of these diseases with the aim to consider these recent molecular findings as potential therapeutic targets for renal ciliopathies.
Collapse
Affiliation(s)
- Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Zachary Sentell
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M. Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Health Center, Montreal, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
34
|
Bear RM, Caspary T. Uncovering cilia function in glial development. Ann Hum Genet 2024; 88:27-44. [PMID: 37427745 PMCID: PMC10776815 DOI: 10.1111/ahg.12519] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
Primary cilia play critical roles in regulating signaling pathways that underlie several developmental processes. In the nervous system, cilia are known to regulate signals that guide neuron development. Cilia dysregulation is implicated in neurological diseases, and the underlying mechanisms remain poorly understood. Cilia research has predominantly focused on neurons and has overlooked the diverse population of glial cells in the brain. Glial cells play essential roles during neurodevelopment, and their dysfunction contributes to neurological disease; however, the relationship between cilia function and glial development is understudied. Here we review the state of the field and highlight the glial cell types where cilia are found and the ciliary functions that are linked to glial development. This work uncovers the importance of cilia in glial development and raises outstanding questions for the field. We are poised to make progress in understanding the function of glial cilia in human development and their contribution to neurological diseases.
Collapse
Affiliation(s)
- Rachel M. Bear
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
- Graduate Program in Neuroscience
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
| |
Collapse
|
35
|
Udupa P, Ghosh DK. The emerging functions of intraflagellar transport 52 in ciliary transport and ciliopathies. Traffic 2024; 25:e12929. [PMID: 38272449 DOI: 10.1111/tra.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Ciliary transport in eukaryotic cells is an intricate and conserved process involving the coordinated assembly and functioning of a multiprotein intraflagellar transport (IFT) complex. Among the various IFT proteins, intraflagellar transport 52 (IFT52) plays a crucial role in ciliary transport and is implicated in various ciliopathies. IFT52 is a core component of the IFT-B complex that facilitates movement of cargoes along the ciliary axoneme. Stable binding of the IFT-B1 and IFT-B2 subcomplexes by IFT52 in the IFT-B complex regulates recycling of ciliary components and maintenance of ciliary functions such as signal transduction and molecular movement. Mutations in the IFT52 gene can disrupt ciliary trafficking, resulting in dysfunctional cilia and affecting cellular processes in ciliopathies. Such ciliopathies caused by IFT52 mutations exhibit a wide range of clinical features, including skeletal developmental abnormalities, retinal degeneration, respiratory failure and neurological abnormalities in affected individuals. Therefore, IFT52 serves as a promising biomarker for the diagnosis of various ciliopathies, including short-rib thoracic dysplasia 16 with or without polydactyly. Here, we provide an overview of the IFT52-mediated molecular mechanisms underlying ciliary transport and describe the IFT52 mutations that cause different disorders associated with cilia dysfunction.
Collapse
Affiliation(s)
- Prajna Udupa
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
36
|
Ceglowski J, Hoffman HK, Neumann AJ, Hoff KJ, McCurdy BL, Moore JK, Prekeris R. TTLL12 is required for primary ciliary axoneme formation in polarized epithelial cells. EMBO Rep 2024; 25:198-227. [PMID: 38177908 PMCID: PMC10883266 DOI: 10.1038/s44319-023-00005-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
The primary cilium is a critical sensory organelle that is built of axonemal microtubules ensheathed by a ciliary membrane. In polarized epithelial cells, primary cilia reside on the apical surface and must extend these microtubules directly into the extracellular space and remain a stable structure. However, the factors regulating cross-talk between ciliation and cell polarization, as well as axonemal microtubule growth and stabilization in polarized epithelia, are not fully understood. In this study, we find TTLL12, a previously uncharacterized member of the Tubulin Tyrosine Ligase-Like (TTLL) family, localizes to the base of primary cilia and is required for cilia formation in polarized renal epithelial cells. We also show that TTLL12 directly binds to the α/β-tubulin heterodimer in vitro and regulates microtubule dynamics, stability, and post-translational modifications (PTMs). While all other TTLLs catalyze the addition of glutamate or glycine to microtubule C-terminal tails, TTLL12 uniquely affects tubulin PTMs by promoting both microtubule lysine acetylation and arginine methylation. Together, this work identifies a novel microtubule regulator and provides insight into the requirements for apical extracellular axoneme formation.
Collapse
Affiliation(s)
- Julia Ceglowski
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Huxley K Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Andrew J Neumann
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Katie J Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Bailey L McCurdy
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA.
| |
Collapse
|
37
|
Bhat S, Dietz A, Senf K, Nietzsche S, Hirabayashi Y, Westermann M, Neuhaus EM. GPRC5C regulates the composition of cilia in the olfactory system. BMC Biol 2023; 21:292. [PMID: 38110903 PMCID: PMC10729543 DOI: 10.1186/s12915-023-01790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Olfactory sensory neurons detect odourants via multiple long cilia that protrude from their dendritic endings. The G protein-coupled receptor GPRC5C was identified as part of the olfactory ciliary membrane proteome, but its function and localization is unknown. RESULTS High-resolution confocal and electron microscopy revealed that GPRC5C is located at the base of sensory cilia in olfactory neurons, but not in primary cilia of immature neurons or stem cells. Additionally, GPRC5C localization in sensory cilia parallels cilia formation and follows the formation of the basal body. In closer examination, GPRC5C was found in the ciliary transition zone. GPRC5C deficiency altered the structure of sensory cilia and increased ciliary layer thickness. However, primary cilia were unaffected. Olfactory sensory neurons from Gprc5c-deficient mice exhibited altered localization of olfactory signalling cascade proteins, and of ciliary phosphatidylinositol-4,5-bisphosphat. Sensory neurons also exhibited increased neuronal activity as well as altered mitochondrial morphology, and knockout mice had an improved ability to detect food pellets based on smell. CONCLUSIONS Our study shows that GPRC5C regulates olfactory cilia composition and length, thereby controlling odour perception.
Collapse
Affiliation(s)
- Sneha Bhat
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - André Dietz
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Katja Senf
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Sandor Nietzsche
- Centre for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Yoshio Hirabayashi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, 279-0021, Japan
- RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Martin Westermann
- Centre for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Eva Maria Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany.
| |
Collapse
|
38
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.565988. [PMID: 38106104 PMCID: PMC10723395 DOI: 10.1101/2023.12.07.565988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While essential during early developmental stages, the fate of granule cell cilia is unknown. Here, we provide nanoscopic resolution of ciliary dynamics in situ by studying developmental changes in granule cell cilia using large-scale electron microscopy volumes and immunostaining of mouse cerebella. We found that many granule cell primary cilia were intracellular and concealed from the external environment. Cilia were disassembed in differentiating granule cell neurons in a process we call cilia deconstruction that was distinct from pre-mitotic cilia resorption in proliferating progenitors. In differentiating granule cells, ciliary loss involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Cilia did not reform from the docked centrioles, rather, in adult mice granule cell neurons remained unciliated. Many neurons in other brain regions require cilia to regulate function and connectivity. In contrast, our results show that granule cell progenitors had concealed cilia that underwent deconstruction potentially to prevent mitogenic hedgehog responsiveness. The ciliary deconstruction mechanism we describe could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M. Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tri M. Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Current affiliation, Zetta AI LLC, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
39
|
Liu J, Xie H, Wu M, Hu Y, Kang Y. The role of cilia during organogenesis in zebrafish. Open Biol 2023; 13:230228. [PMID: 38086423 PMCID: PMC10715920 DOI: 10.1098/rsob.230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Cilia are hair-like organelles that protrude from the surface of eukaryotic cells and are present on the surface of nearly all human cells. Cilia play a crucial role in signal transduction, organ development and tissue homeostasis. Abnormalities in the structure and function of cilia can lead to a group of human diseases known as ciliopathies. Currently, zebrafish serves as an ideal model for studying ciliary function and ciliopathies due to its relatively conserved structure and function of cilia compared to humans. In this review, we will summarize the different types of cilia that present in embryonic and adult zebrafish, and provide an overview of the advantages of using zebrafish as a vertebrate model for cilia research. We will specifically focus on the roles of cilia during zebrafish organogenesis based on recent studies. Additionally, we will highlight future prospects for ciliary research in zebrafish.
Collapse
Affiliation(s)
- Junjun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haibo Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mengfan Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yidan Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yunsi Kang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
40
|
Syu JJ, Chang CH, Chang PY, Liu CH, Yu CJ, Jou TS. Lipid raft interacting galectin 8 regulates primary ciliogenesis. FASEB J 2023; 37:e23300. [PMID: 37997673 DOI: 10.1096/fj.202301943r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Primary cilium is a specialized sensory organelle that transmits environmental information into cells. Its length is tightly controlled by various mechanisms such as the frequency or the cargo size of the intraflagellar transport trains which deliver the building materials such as tubulin subunits essential for the growing cilia. Here, we show the sialoglycan interacting galectin 8 regulates the process of primary ciliogenesis. As the epithelia become polarized, there are more galectin 8 being apically secreted and these extracellular galectin 8 molecules apparently bind to a lipid raft enriched domain at the base of the primary cilia through interacting with lipid raft components, such as GD3 ganglioside and scaffold protein caveolin 1. Furthermore, the binding of galectin 8 at this critical region triggers rapid growth of primary cilia by perturbing the barrier function of the transition zone (TZ). Our study also demonstrates the functionality of this barrier depends on intact organization of lipid rafts at the cilia as genetically knockout of Cav1 and pharmacologically inhibition of lipid raft both phenocopy the effect of apical addition of recombinant galectin 8; that is, rapid elongation of primary cilia and redistribution of cilia proteins from TZ to the growing axoneme. Indeed, as cilia elongated, endogenous galectin 8, caveolin 1, and TZ component, TMEM231, also transited from the TZ to the growing axoneme. We also noted that the interaction between caveolin 1 and TMEM231 could be perturbed by exogenous galectin 8. Taken together, we proposed that galectin 8 promoted primary cilia elongation through impeding the barrier function of the TZ by interfering with the interaction between caveolin 1 and TMEM231.
Collapse
Affiliation(s)
- Jhan-Jhang Syu
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh-Hsiang Chang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Chang
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsiung Liu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzuu-Shuh Jou
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Chatzifrangkeskou M, Kouis P, Skourides PA. JNK regulates ciliogenesis through the interflagellar transport complex and actin networks. J Cell Biol 2023; 222:e202303052. [PMID: 37851005 PMCID: PMC10585068 DOI: 10.1083/jcb.202303052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/16/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK) regulates various important physiological processes. Although the JNK pathway has been under intense investigation for over 20 yr, its complexity is still perplexing, with multiple protein partners underlying the diversity of its activity. We show that JNK is associated with the basal bodies in both primary and motile cilia. Loss of JNK disrupts basal body migration and docking and leads to severe ciliogenesis defects. JNK's involvement in ciliogenesis stems from a dual role in the regulation of the actin networks of multiciliated cells (MCCs) and the establishment of the intraflagellar transport-B core complex. JNK signaling is also critical for the maintenance of the actin networks and ciliary function in mature MCCs. JNK is implicated in the development of diabetes, neurodegeneration, and liver disease, all of which have been linked to ciliary dysfunction. Our work uncovers a novel role of JNK in ciliogenesis and ciliary function that could have important implications for JNK's role in the disease.
Collapse
Affiliation(s)
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Paris A. Skourides
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
42
|
Kruczek K, Swaroop A. Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies. Curr Top Dev Biol 2023; 155:127-163. [PMID: 38043950 PMCID: PMC12050124 DOI: 10.1016/bs.ctdb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.
Collapse
Affiliation(s)
- Kamil Kruczek
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
43
|
Chen Y, Zhang Y, Zhou X. Non-classical functions of nuclear pore proteins in ciliopathy. Front Mol Biosci 2023; 10:1278976. [PMID: 37908226 PMCID: PMC10614291 DOI: 10.3389/fmolb.2023.1278976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Nucleoporins (NUPs) constitute integral nuclear pore protein (NPC) elements. Although traditional NUP functions have been extensively researched, evidence of additional vital non-NPC roles, referred to herein as non-classical NUP functions, is also emerging. Several NUPs localise at the ciliary base. Indeed, Nup188, Nup93 or Nup205 knockdown results in cilia loss, impacting cardiac left-right patterning in models and cell lines. Genetic variants of Nup205 and Nup188 have been identified in patients with congenital heart disease and situs inversus totalis or heterotaxy, a prevalent human ciliopathy. These findings link non-classical NUP functions to human diseases. This mini-review summarises pivotal NUP interactions with NIMA-related kinases or nephronophthisis proteins that regulate ciliary function and explores other NUPs potentially implicated in cilia-related disorders. Overall, elucidating the non-classical roles of NUPs will enhance comprehension of ciliopathy aetiology.
Collapse
Affiliation(s)
- Yan Chen
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Zhang
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
44
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Quadri N, Upadhyai P. Primary cilia in skeletal development and disease. Exp Cell Res 2023; 431:113751. [PMID: 37574037 DOI: 10.1016/j.yexcr.2023.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton. We discuss how signaling effectors in mechanotransduction and bone development, such as Hedgehog, Wnt, Fibroblast growth factor and second messenger pathways operate at least in part at the primary cilium. The relevance of primary cilia in bone formation and maintenance is underscored by a growing list of rare genetic skeletal ciliopathies. We collate these findings and summarize the current understanding of molecular factors and mechanisms governing primary ciliogenesis and ciliary function in skeletal development and disease.
Collapse
Affiliation(s)
- Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
46
|
Saito M, Otsu W, Miyadera K, Nishimura Y. Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets. Front Mol Biosci 2023; 10:1232188. [PMID: 37780208 PMCID: PMC10538646 DOI: 10.3389/fmolb.2023.1232188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
The primary cilium is a single immotile microtubule-based organelle that protrudes into the extracellular space. Malformations and dysfunctions of the cilia have been associated with various forms of syndromic and non-syndromic diseases, termed ciliopathies. The primary cilium is therefore gaining attention due to its potential as a therapeutic target. In this review, we examine ciliary receptors, ciliogenesis, and ciliary trafficking as possible therapeutic targets. We first discuss the mechanisms of selective distribution, signal transduction, and physiological roles of ciliary receptors. Next, pathways that regulate ciliogenesis, specifically the Aurora A kinase, mammalian target of rapamycin, and ubiquitin-proteasome pathways are examined as therapeutic targets to regulate ciliogenesis. Then, in the photoreceptors, the mechanism of ciliary trafficking which takes place at the transition zone involving the ciliary membrane proteins is reviewed. Finally, some of the current therapeutic advancements highlighting the role of large animal models of photoreceptor ciliopathy are discussed.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Mie University Research Center for Cilia and Diseases, Tsu, Mie, Japan
| |
Collapse
|
47
|
Albisetti AC, Douglas RL, Welch MD. FAZ assembly in bloodstream form Trypanosoma brucei requires kinesin KIN-E. Mol Biol Cell 2023; 34:ar103. [PMID: 37531263 PMCID: PMC10551704 DOI: 10.1091/mbc.e23-01-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, uses its flagellum for movement, cell division, and signaling. The flagellum is anchored to the cell body membrane via the flagellum attachment zone (FAZ), a complex of proteins, filaments, and microtubules that spans two membranes with elements on both flagellum and cell body sides. How FAZ components are carried into place to form this complex is poorly understood. Here, we show that the trypanosome-specific kinesin KIN-E is required for building the FAZ in bloodstream-form parasites. KIN-E is localized along the flagellum with a concentration at its distal tip. Depletion of KIN-E by RNAi rapidly inhibits flagellum attachment and leads to cell death. A detailed analysis reveals that KIN-E depletion phenotypes include failure in cytokinesis completion, kinetoplast DNA missegregation, and transport vesicle accumulation. Together with previously published results in procyclic form parasites, these data suggest KIN-E plays a critical role in FAZ assembly in T. brucei.
Collapse
Affiliation(s)
- Anna C. Albisetti
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Robert L. Douglas
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Matthew D. Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
48
|
Clearman KR, Haycraft CJ, Croyle MJ, Collawn JF, Yoder BK. Functions of the primary cilium in the kidney and its connection with renal diseases. Curr Top Dev Biol 2023; 155:39-94. [PMID: 38043952 DOI: 10.1016/bs.ctdb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nonmotile primary cilium is a sensory structure found on most mammalian cell types that integrates multiple signaling pathways involved in tissue development and postnatal function. As such, mutations disrupting cilia activities cause a group of disorders referred to as ciliopathies. These disorders exhibit a wide spectrum of phenotypes impacting nearly every tissue. In the kidney, primary cilia dysfunction caused by mutations in polycystin 1 (Pkd1), polycystin 2 (Pkd2), or polycystic kidney and hepatic disease 1 (Pkhd1), result in polycystic kidney disease (PKD), a progressive disorder causing renal functional decline and end-stage renal disease. PKD affects nearly 1 in 1000 individuals and as there is no cure for PKD, patients frequently require dialysis or renal transplantation. Pkd1, Pkd2, and Pkhd1 encode membrane proteins that all localize in the cilium. Pkd1 and Pkd2 function as a nonselective cation channel complex while Pkhd1 protein function remains uncertain. Data indicate that the cilium may act as a mechanosensor to detect fluid movement through renal tubules. Other functions proposed for the cilium and PKD proteins in cyst development involve regulation of cell cycle and oriented division, regulation of renal inflammation and repair processes, maintenance of epithelial cell differentiation, and regulation of mitochondrial structure and metabolism. However, how loss of cilia or cilia function leads to cyst development remains elusive. Studies directed at understanding the roles of Pkd1, Pkd2, and Pkhd1 in the cilium and other locations within the cell will be important for developing therapeutic strategies to slow cyst progression.
Collapse
Affiliation(s)
- Kelsey R Clearman
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
49
|
Dobbelaere J, Su TY, Erdi B, Schleiffer A, Dammermann A. A phylogenetic profiling approach identifies novel ciliogenesis genes in Drosophila and C. elegans. EMBO J 2023; 42:e113616. [PMID: 37317646 PMCID: PMC10425847 DOI: 10.15252/embj.2023113616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Cilia are cellular projections that perform sensory and motile functions in eukaryotic cells. A defining feature of cilia is that they are evolutionarily ancient, yet not universally conserved. In this study, we have used the resulting presence and absence pattern in the genomes of diverse eukaryotes to identify a set of 386 human genes associated with cilium assembly or motility. Comprehensive tissue-specific RNAi in Drosophila and mutant analysis in C. elegans revealed signature ciliary defects for 70-80% of novel genes, a percentage similar to that for known genes within the cluster. Further characterization identified different phenotypic classes, including a set of genes related to the cartwheel component Bld10/CEP135 and two highly conserved regulators of cilium biogenesis. We propose this dataset defines the core set of genes required for cilium assembly and motility across eukaryotes and presents a valuable resource for future studies of cilium biology and associated disorders.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
| | - Tiffany Y Su
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Balazs Erdi
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC)ViennaAustria
| | | |
Collapse
|
50
|
Guan YT, Zhang C, Zhang HY, Wei WL, Yue W, Zhao W, Zhang DH. Primary cilia: Structure, dynamics, and roles in cancer cells and tumor microenvironment. J Cell Physiol 2023; 238:1788-1807. [PMID: 37565630 DOI: 10.1002/jcp.31092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
Despite the initiation of tumor arises from tumorigenic transformation signaling in cancer cells, cancer cell survival, invasion, and metastasis also require a dynamic and reciprocal association with extracellular signaling from tumor microenvironment (TME). Primary cilia are the antenna-like structure that mediate signaling sensation and transduction in different tissues and cells. Recent studies have started to uncover that the heterogeneous ciliation in cancer cells and cells from the TME in tumor growth impels asymmetric paracellular signaling in the TME, indicating the essential functions of primary cilia in homeostasis maintenance of both cancer cells and the TME. In this review, we discussed recent advances in the structure and assembly of primary cilia, and the role of primary cilia in tumor and TME formation, as well as the therapeutic potentials that target ciliary dynamics and signaling from the cells in different tumors and the TME.
Collapse
Affiliation(s)
- Yi-Ting Guan
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Chong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Hong-Yong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Wen-Lu Wei
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
- Department of Posthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Dong-Hui Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| |
Collapse
|