1
|
Yang J, Qureshi M, Kolli R, Peacock TP, Sadeyen JR, Carter T, Richardson S, Daines R, Barclay WS, Brown IH, Iqbal M. The haemagglutinin gene of bovine-origin H5N1 influenza viruses currently retains receptor-binding and pH-fusion characteristics of avian host phenotype. Emerg Microbes Infect 2025; 14:2451052. [PMID: 39803980 PMCID: PMC11776067 DOI: 10.1080/22221751.2025.2451052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/29/2025]
Abstract
Clade 2.3.4.4b H5N1 high pathogenicity avian influenza virus (HPAIV) has caused a panzootic affecting all continents except Australia, expanding its host range to several mammalian species. In March 2024, H5N1 HPAIV was first detected in dairy cattle and goats in the United States. Over 891 dairy farms across 16 states have tested positive until 25 December 2024, with zoonotic infections reported among dairy workers. This raises concerns about the virus undergoing evolutionary changes in cattle that could enhance its zoonotic potential. The Influenza glycoprotein haemagglutinin (HA) facilitates entry into host cells through receptor binding and pH-induced fusion with cellular membranes. Adaptive changes in HA modulate virus-host cell interactions. This study compared the HA genes of cattle and goat H5N1 viruses with the dominant avian-origin clade 2.3.4.4b H5N1 in the United Kingdom, focusing on receptor binding, pH fusion, and thermostability. All the tested H5N1 viruses showed binding exclusively to avian-like receptors, with a pH fusion of 5.9, outside the pH range associated with efficient human airborne transmissibility (pH 5.0-5.5). We further investigated the impact of emerging HA substitutions seen in the ongoing cattle outbreaks, but saw little phenotypic difference, with continued exclusive binding to avian-like receptor analogues and pHs of fusion above 5.8. This suggests that the HA genes from the cattle and goat outbreaks do not pose an enhanced threat compared to circulating avian viruses. However, given the rapid evolution of H5 viruses, continuous monitoring and updated risk assessments remain essential to understanding virus zoonotic and pandemic risks.
Collapse
Affiliation(s)
| | | | | | - Thomas P. Peacock
- The Pirbright Institute, Pirbright, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | | | | | | | | | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | | | | |
Collapse
|
2
|
Zhao L, Tian M, Hu X, Fan M, Hou C, Ping J. PB2 627V and HA 217 sites synergistically affect the lethality of H9N2 in mice. Virol Sin 2025; 40:35-49. [PMID: 39701421 PMCID: PMC11963085 DOI: 10.1016/j.virs.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
The H9N2 subtype avian influenza virus (AIV) continues to propagate and undergo evolution within China, thereby posing a significant threat to the poultry industry. This study encompassed the collection of 436 samples and swabs in East China over the period spanning 2018 to 2019, from which 31 strains of the H9N2 subtype viruses were isolated and purified. We revealed that the HA and NA genes of the 31 isolates categorized within the Y280 branch, while the PB2 and M genes were associated with the G1 branch, and the remaining genes aligned with the F/98 branch. Despite this alignment, antigenic mapping demonstrated differences between the 2018 and 2019 strains, with the early vaccine strains displaying low serological reactivity toward these isolates. Notably, the CK/SH/49/19 isolate exhibited lethality in mice, characterized by a PB2 E627V mutation and a HA deletion at amino acid position 217. Mechanistically, in vitro studies showed that the influenza virus CK/SH/49/19 carrying PB2 627V and HA 217M mutations displayed enhanced replication capacity, attributed to the heightened activity of the polymerase with PB2 627V. Moreover, the absence of the amino acid at the HA 217 site obstructed viral adsorption and internalization, resulted in lower activation pH, and impeded the virus budding process. Critically, in vivo experiments revealed that CK/SH/49/19 (PB2 627V, HA 217Δ) triggered a robust activation of interferon response and interferon-stimulated genes. This study furnished a theoretical foundation for the scientific prevention and control strategies against H9N2 subtype avian influenza.
Collapse
Affiliation(s)
- Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xifeng Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Menglu Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenglin Hou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Sun X, Belser JA, Pulit-Penaloza JA, Brock N, Kieran TJ, Pappas C, Zeng H, Tumpey TM, Maines TR. Dissecting the role of the HA1-226 leucine residue in the fitness and airborne transmission of an A(H9N2) avian influenza virus. J Virol 2024; 98:e0092824. [PMID: 39495016 DOI: 10.1128/jvi.00928-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
A better understanding of viral factors that contribute to influenza A virus (IAV) airborne transmission is crucial for pandemic preparedness. A limited capacity for airborne transmission was recently observed in a human A(H9N2) virus isolate (A/Anhui-Lujiang/39/2018, AL/39) that possesses a leucine (L) residue at position HA1-226 (H3 numbering), indicative of human-like receptor binding potential. To evaluate the roles of the residue at this position in virus fitness and airborne transmission, a wild-type AL/39 (AL/39-wt) and a mutant virus (AL/39-HA1-L226Q) with a single substitution at position HA1-226 from leucine to glutamine (Q), a consensus residue in avian influenza viruses, were rescued and assessed in the ferret model. The AL/39-HA1-L226Q virus lost the ability to transmit by air, although the virus had a comparable capacity for replication, induced similar levels of host innate immune responses, and was detected at comparable levels in the air surrounding the inoculated ferrets relative to AL/39-wt virus. However, ferrets showed a lower susceptibility to AL/39-HA1-L226Q virus infection compared to the AL/39-wt virus. Furthermore, the AL/39-wt and AL/39-HA1-L226Q viruses each gained dominance in different anatomic sites in the respiratory tract in a co-infection competition model in ferrets. Taken together, our findings demonstrate that the increasing dominance of HA1-L226 residue in an avian A(H9N2) virus plays multifaceted roles in virus infection and transmission in the ferret model, including improved virus fitness and infectivity. IMPORTANCE Although the capacity for human-like receptor binding is a key prerequisite for non-human origin influenza A virus (IAV) to become airborne transmissible in mammalian hosts, the underlying molecular basis is not well understood. In this study, we investigated a naturally occurring substitution (leucine to glutamine) at residue 226 in the HA of an avian-origin A(H9N2) virus and assessed the impact on virus replication and airborne transmission in the ferret model. We demonstrate that the enhanced airborne transmission associated with the HA1-L226 virus was mainly due to the increased infectivity of the virus. Interestingly, we found that, unlike most sites in the ferret respiratory tract, ferret ethmoid turbinate lined with olfactory epithelium favors replication of the AL/39-HA1-L226Q virus, suggesting that this site may serve as a unique niche for IAV with avian-like receptor binding specificity to potentially allow the virus to spread to extrapulmonary tissues and to facilitate adaptation of the virus to human hosts.
Collapse
Affiliation(s)
- Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicole Brock
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Troy J Kieran
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Claudia Pappas
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hui Zeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Agarwal S, Veytsman B, Fletcher DA, Huber G. Kinetics and Optimality of Influenza A Virus Locomotion. PHYSICAL REVIEW LETTERS 2024; 133:248402. [PMID: 39750332 DOI: 10.1103/physrevlett.133.248402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 01/04/2025]
Abstract
Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces. This Letter demonstrates through stochastic simulations and mean-field theory, how IAVs harness a "burnt-bridge" Brownian ratchet mechanism for directed persistent translational motion. Importantly, our analysis reveals that equilibrium features of the system primarily control the dynamics, even out of equilibrium, and that asymmetric distribution of ligands on the virus allows for more robust directed transport. We show viruses occupy the optimal parameter range ("Goldilocks zone") for efficient mucous transport, possibly due to the evolutionary adaptation of enzyme kinetics. Our findings suggest novel therapeutic targets and provide insight into possible mechanisms of zoonotic transmission.
Collapse
|
5
|
Lee CY. Exploring Potential Intermediates in the Cross-Species Transmission of Influenza A Virus to Humans. Viruses 2024; 16:1129. [PMID: 39066291 PMCID: PMC11281536 DOI: 10.3390/v16071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
6
|
Yang Q, Ji J, Yang J, Zhang Y, Yin H, Dai H, Wang W, Li S. Diversity of genotypes and pathogenicity of H9N2 avian influenza virus derived from wild bird and domestic poultry. Front Microbiol 2024; 15:1402235. [PMID: 38974026 PMCID: PMC11225357 DOI: 10.3389/fmicb.2024.1402235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction The H9N2 subtype is a predominant avian influenza virus (AIV) circulating in Chinese poultry, forming various genotypes (A-W) based on gene segment origins. This study aims to investigate the genotypic distribution and pathogenic characteristics of H9N2 isolates from wild birds and domestic poultry in Yunnan Province, China. Methods Eleven H9N2 strains were isolated from fecal samples of overwintering wild birds and proximate domestic poultry in Yunnan, including four from common cranes (Grus grus), two from bar-headed geese (Anser indicus), and five from domestic poultry (Gallus gallus). Phylogenetic analysis was conducted to determine the genotypes, and representative strains were inoculated into Yunnan mallard ducks to assess pathogenicity. Results Phylogenetic analysis revealed that five isolates from domestic birds and one from a bar-headed goose belong to genotype S, while the remaining five isolates from wild birds belong to genotype A. These bird-derived strains possess deletions in the stalk domain of NA protein and the N166D mutation of HA protein, typical of poultry strains. Genotype S H9N2 demonstrated oropharyngeal shedding, while genotype A H9N2 exhibited cloacal shedding and high viral loads in the duodenum. Both strains caused significant pathological injuries, with genotype S inducing more severe damage to the thymus and spleen, while genotype A caused duodenal muscle layer rupture. Discussion These findings suggest that at least two genotypes of H9N2 are currently circulating in Yunnan, and Yunnan mallard ducks potentially act as intermediaries in interspecies transmission. These insights highlight the importance of analyzing the current epidemiological transmission characteristics of H9N2 among wild and domestic birds in China.
Collapse
Affiliation(s)
- Qinhong Yang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Jia Ji
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Jia Yang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Yongxian Zhang
- Animal Disease Inspection and Supervision Institution of Yunnan Province, Kunming, China
| | - Hongbin Yin
- Animal Disease Inspection and Supervision Institution of Yunnan Province, Kunming, China
| | - Hongyang Dai
- The Management Bureau of Huize Black Necked Crane National Nature Reserve, Qujing, China
| | - Wei Wang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Suhua Li
- College of Life Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
7
|
Wen F, Yan Z, Chen G, Chen Y, Wang N, Li Z, Guo J, Yu H, Liu Q, Huang S. Recent H9N2 avian influenza virus lost hemagglutination activity due to a K141N substitution in hemagglutinin. J Virol 2024; 98:e0024824. [PMID: 38466094 PMCID: PMC11019909 DOI: 10.1128/jvi.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
The H9N2 avian influenza virus (AIV) represents a significant risk to both the poultry industry and public health. Our surveillance efforts in China have revealed a growing trend of recent H9N2 AIV strains exhibiting a loss of hemagglutination activity at 37°C, posing challenges to detection and monitoring protocols. This study identified a single K141N substitution in the hemagglutinin (HA) glycoprotein as the culprit behind this diminished hemagglutination activity. The study evaluated the evolutionary dynamics of residue HA141 and studied the impact of the N141K substitution on aspects such as virus growth, thermostability, receptor-binding properties, and antigenic properties. Our findings indicate a polymorphism at residue 141, with the N variant becoming increasingly prevalent in recent Chinese H9N2 isolates. Although both wild-type and N141K mutant strains exclusively target α,2-6 sialic acid receptors, the N141K mutation notably impedes the virus's ability to bind to these receptors. Despite the mutation exerting minimal influence on viral titers, antigenicity, and pathogenicity in chicken embryos, it significantly enhances viral thermostability and reduces plaque size on Madin-Darby canine kidney (MDCK) cells. Additionally, the N141K mutation leads to decreased expression levels of HA protein in both MDCK cells and eggs. These findings highlight the critical role of the K141N substitution in altering the hemagglutination characteristics of recent H9N2 AIV strains under elevated temperatures. This emphasizes the need for ongoing surveillance and genetic analysis of circulating H9N2 AIV strains to develop effective control and prevention measures.IMPORTANCEThe H9N2 subtype of avian influenza virus (AIV) is currently the most prevalent low-pathogenicity AIV circulating in domestic poultry globally. Recently, there has been an emerging trend of H9N2 AIV strains acquiring increased affinity for human-type receptors and even losing their ability to bind to avian-type receptors, which raises concerns about their pandemic potential. In China, there has been a growing number of H9N2 AIV strains that have lost their ability to agglutinate chicken red blood cells, leading to false-negative results during surveillance efforts. In this study, we identified a K141N mutation in the HA protein of H9N2 AIV to be responsible for the loss of hemagglutination activity. This finding provides insight into the development of effective surveillance, prevention, and control strategies to mitigate the threat posed by H9N2 AIV to both animal and human health.
Collapse
MESH Headings
- Animals
- Chick Embryo
- Dogs
- Humans
- Chickens/virology
- Hemagglutination
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/growth & development
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/metabolism
- Influenza A Virus, H9N2 Subtype/pathogenicity
- Influenza in Birds/virology
- Poultry
- Female
- Mice
- Cell Line
- Amino Acid Substitution
- Evolution, Molecular
- Mutation
- Temperature
- Receptors, Virus/metabolism
Collapse
Affiliation(s)
- Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhanfei Yan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Gaojie Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yao Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Nina Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Quan Liu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
8
|
Amin F, Mukhtar N, Ali M, Shehzad R, Ayub S, Aslam A, Sheikh AA, Sultan B, Mahmood MD, Shahid MF, Yaqub S, Aslam HB, Aziz MW, Yaqub T. Mapping Genetic Markers Associated with Antigenicity and Host Range in H9N2 Influenza A Viruses Infecting Poultry in Pakistan. Avian Dis 2024; 68:43-51. [PMID: 38687107 DOI: 10.1637/aviandiseases-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/26/2023] [Indexed: 05/02/2024]
Abstract
The aim of the current study was to map the genetic diversity in the haemagglutinin (HA) glycoprotein of influenza A viruses (IAVs) of the H9N2 subtype. Twenty-five H9N2 IAVs were isolated from broiler chickens from March to July 2019. The HA gene was amplified, and phylogenetic analysis was performed to determine the evolutionary relationship. Important antigenic amino acid residues of HA attributed to immune escape and zoonotic potential were compared among H9N2 IAVs. Phylogenetic analysis revealed that sublineage B2 under the G1 lineage in Pakistan was found to be diversified, and newly sequenced H9N2 isolates were nested into two clades (A and B). Mutations linked to the antigenic variation and potential immune escape were observed as G72E (1/25, 4%), A180T (3/25, 12%), and A180V (1/25, 4%). A twofold significant reduction (P < 0.01) in log2 hemagglutination inhibition titers was observed with H9N2 IAV naturally harboring amino acid V180 instead of A180 in HA protein. Moreover, in the last 20 years, complete substitution at residues (T127D, D135N, and L150N) and partial substitution at residues (72, 74, 131, 148, 180, 183, 188, 216, 217, and 249, mature H9 HA numbering) associated with changes in antigenicity were observed. The presence of L216 in all H9N2 IAV isolates and T/V180 in four isolates in the receptor-binding site reveals the potential of these viruses to cross the species barrier to infect human or mammals. The current study observed the circulation of antigenically diverse H9N2 IAV variants that possess potential mutations that can escape the host immune system.
Collapse
Affiliation(s)
- Faisal Amin
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Grand Parent Laboratory, Lahore 54500, Pakistan
| | - Nadia Mukhtar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muzaffar Ali
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Rehman Shehzad
- Grand Parent Laboratory, Lahore 54500, Pakistan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| | - Saima Ayub
- Institute of Public Health, Lahore 54610, Pakistan
| | - Asim Aslam
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ali Ahmed Sheikh
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | | | | | - Muhammad Furqan Shahid
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Veterinary Research Institute, Lahore 54600, Pakistan
| | - Saima Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hassaan Bin Aslam
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan,
| |
Collapse
|
9
|
Sun X, Belser JA, Pulit-Penaloza JA, Brock N, Kieran TJ, Zeng H, Pappas C, Tumpey TM, Maines TR. A naturally occurring HA-stabilizing amino acid (HA1-Y17) in an A(H9N2) low-pathogenic influenza virus contributes to airborne transmission. mBio 2024; 15:e0295723. [PMID: 38112470 PMCID: PMC10790695 DOI: 10.1128/mbio.02957-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Despite the accumulation of evidence showing that airborne transmissible influenza A virus (IAV) typically has a lower pH threshold for hemagglutinin (HA) fusion activation, the underlying mechanism for such a link remains unclear. In our study, by using a pair of isogenic recombinant A(H9N2) viruses with a phenotypical difference in virus airborne transmission in a ferret model due to an acid-destabilizing mutation (HA1-Y17H) in the HA, we demonstrate that an acid-stable A(H9N2) virus possesses a multitude of advantages over its less stable counterpart, including better fitness in the ferret respiratory tract, more effective aerosol emission from infected animals, and improved host susceptibility. Our study provides supporting evidence for the requirement of acid stability in efficient airborne transmission of IAV and sheds light on fundamental mechanisms for virus airborne transmission.
Collapse
Affiliation(s)
- Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica A. Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joanna A. Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicole Brock
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Troy J. Kieran
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hui Zeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Claudia Pappas
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Terrence M. Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taronna R. Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Takeda S, Hamamuki A, Ushirogata K, Takasuka TE. Binding properties of recombinant LDL receptor and LOX-1 receptor to LDL measured using bio-layer interferometry and atomic force microscopy. Biophys Chem 2023; 300:107069. [PMID: 37385179 DOI: 10.1016/j.bpc.2023.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Oxidation of low-density lipoproteins (LDLs) triggers a recognition by scavenger receptors such as lectin-like oxidized LDL receptor-1 (LOX-1) and is related to inflammation and cardiovascular diseases. Although LDLs that are recognized by LOX-1 can be risk-related LDLs, conventional LDL detection methods using commercially available recombinant receptors remain undeveloped. Using a bio-layer interferometry (BLI), we investigated the binding of recombinant LOX-1 (reLOX-1) and LDL receptors to the oxidized LDLs. The recombinant LDL receptor preferably bound minimally modified LDLs, while the reLOX-1 recognized extensively oxidized LDLs. An inversed response of the BLI was observed during the binding in the case of reLOX-1. AFM study showed that the extensively oxidized LDLs and aggregates of LDLs were observed on the surface, supporting the results. Altogether, a combined use of these recombinant receptors and the BLI method is useful in detecting high-risk LDLs such as oxidized LDLs and modified LDLs.
Collapse
Affiliation(s)
- Seiji Takeda
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-Jo, Teine-ku, Sapporo, Hokkaido 006-8585, Japan.
| | - Ao Hamamuki
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-Jo, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
| | - Kanako Ushirogata
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0809, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0809, Japan; Global Station for Food, Land and Water Resources, Hokkaido University, Sapporo, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0809, Japan
| |
Collapse
|
11
|
Liu M, van Kuppeveld FJM, de Haan CAM, de Vries E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr Opin Virol 2023; 60:101314. [DOI: 10.1016/j.coviro.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
|
12
|
Antigenic Characterization of Human Monoclonal Antibodies for Therapeutic Use against H7N9 Avian Influenza Virus. J Virol 2023; 97:e0143122. [PMID: 36541801 PMCID: PMC9888198 DOI: 10.1128/jvi.01431-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1,500 human infections and the culling of millions of poultry. Despite large-scale poultry vaccination, H7N9 AIVs continue to circulate among poultry in China and pose a threat to human health. Previously, we isolated and generated four monoclonal antibodies (mAbs) derived from humans naturally infected with H7N9 AIV. Here, we investigated the hemagglutinin (HA) epitopes of H7N9 AIV targeted by these mAbs (L3A-44, K9B-122, L4A-14, and L4B-18) using immune escape studies. Our results revealed four key antigenic epitopes at HA amino acid positions 125, 133, 149, and 217. The mutant H7N9 viruses representing escape mutations containing an alanine-to-threonine substitution at residue 125 (A125T), a glycine-to-glutamic acid substitution at residue 133 (G133E), an asparagine-to-aspartic acid substitution at residue 149 (N149D), or a leucine-to-glutamine substitution at residue 217 (L217Q) showed reduced or completely abolished cross-reactivity with the mAbs, as measured by a hemagglutination inhibition (HI) assay. We further assessed the potential risk of these mutants to humans should they emerge following mAb treatment by measuring the impact of these HA mutations on virus fitness and evasion of host adaptive immunity. Here, we showed that the L4A-14 mAb had broad neutralizing capabilities, and its escape mutant N149D had reduced viral stability and human receptor binding and could be neutralized by both postinfection and antigen-induced sera. Therefore, the L4A-14 mAb could be a therapeutic candidate for H7N9 AIV infection in humans and warrants further investigation for therapeutic applications. IMPORTANCE Avian influenza virus (AIV) H7N9 continues to circulate and evolve in birds, posing a credible threat to humans. Antiviral drugs have proven useful for the treatment of severe influenza infections in humans; however, concerns have been raised as antiviral-resistant mutants have emerged. Monoclonal antibodies (mAbs) have been studied for both prophylactic and therapeutic applications in infectious disease control and have demonstrated great potential. For example, mAb treatment has significantly reduced the risk of people developing severe disease with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition to the protection efficiency, we should also consider the potential risk of the escape mutants generated by mAb treatment to public health by assessing their viral fitness and potential to compromise host adaptive immunity. Considering these parameters, we assessed four human mAbs derived from humans naturally infected with H7N9 AIV and showed that the mAb L4A-14 displayed potential as a therapeutic candidate.
Collapse
|
13
|
Zhu R, Xu S, Sun W, Li Q, Wang S, Shi H, Liu X. HA gene amino acid mutations contribute to antigenic variation and immune escape of H9N2 influenza virus. Vet Res 2022; 53:43. [PMID: 35706014 PMCID: PMC9202205 DOI: 10.1186/s13567-022-01058-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Based on differences in the amino acid sequence of the protein haemagglutinin (HA), the H9N2 avian influenza virus (H9N2 virus) has been clustered into multiple lineages, and its rapidly ongoing evolution increases the difficulties faced by prevention and control programs. The HA protein, a major antigenic protein, and the amino acid mutations that alter viral antigenicity in particular have always been of interest. Likewise, it has been well documented that some amino acid mutations in HA alter viral antigenicity in the H9N2 virus, but little has been reported regarding how these antibody escape mutations affect antigenic variation. In this study, we were able to identify 15 HA mutations that were potentially relevant to viral antigenic drift, and we also found that a key amino acid mutation, A180V, at position 180 in HA (the numbering for mature H9 HA), the only site of the receptor binding sites that is not conserved, was directly responsible for viral antigenic variation. Moreover, the recombinant virus with alanine to valine substitution at position 180 in HA in the SH/F/98 backbone (rF/HAA180V virus) showed poor cross-reactivity to immune sera from animals immunized with the SH/F/98 (F/98, A180), SD/SS/94 (A180), JS/Y618/12 (T180), and rF/HAA180V (V180) viruses by microneutralization (MN) assay. The A180V substitution in the parent virus caused a significant decrease in cross-MN titres by enhancing the receptor binding activity, but it did not physically prevent antibody (Ab) binding. The strong receptor binding avidity prevented viral release from cells. Moreover, the A180V substitution promoted H9N2 virus escape from an in vitro pAb-neutralizing reaction, which also slightly affected the cross-protection in vivo. Our results suggest that the A180V mutation with a strong receptor binding avidity contributed to the low reactors in MN/HI assays and slightly affected vaccine efficacy but was not directly responsible for immune escape, which suggested that the A180V mutation might play a key role in the process of the adaptive evolution of H9N2 virus.
Collapse
Affiliation(s)
- Rui Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, Jiangsu, China
| | - Shunshun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Wangyangji Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| |
Collapse
|
14
|
Martins de Camargo M, Caetano AR, Ferreira de Miranda Santos IK. Evolutionary pressures rendered by animal husbandry practices for avian influenza viruses to adapt to humans. iScience 2022; 25:104005. [PMID: 35313691 PMCID: PMC8933668 DOI: 10.1016/j.isci.2022.104005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Commercial poultry operations produce and crowd billions of birds every year, which is a source of inexpensive animal protein. Commercial poultry is intensely bred for desirable production traits, and currently presents very low variability at the major histocompatibility complex. This situation dampens the advantages conferred by the MHC’s high genetic variability, and crowding generates immunosuppressive stress. We address the proteins of influenza A viruses directly and indirectly involved in host specificities. We discuss how mutants with increased virulence and/or altered host specificity may arise if few class I alleles are the sole selective pressure on avian viruses circulating in immunocompromised poultry. This hypothesis is testable with peptidomics of MHC ligands. Breeding strategies for commercial poultry can easily and inexpensively include high variability of MHC as a trait of interest, to help save billions of dollars as a disease burden caused by influenza and decrease the risk of selecting highly virulent strains.
Collapse
|
15
|
Applications of Surface Plasmon Resonance and Biolayer Interferometry for Virus–Ligand Binding. Viruses 2022; 14:v14040717. [PMID: 35458446 PMCID: PMC9027846 DOI: 10.3390/v14040717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/20/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Surface plasmon resonance and biolayer interferometry are two common real-time and label-free assays that quantify binding events by providing kinetic parameters. There is increased interest in using these techniques to characterize whole virus-ligand interactions, as the methods allow for more accurate characterization than that of a viral subunit-ligand interaction. This review aims to summarize and evaluate the uses of these technologies specifically in virus–ligand and virus-like particle–ligand binding cases to guide the field towards studies that apply these robust methods for whole virus-based studies.
Collapse
|
16
|
Sikht FZ, Ducatez M, Touzani CD, Rubrum A, Webby R, El Houadfi M, Tligui NS, Camus C, Fellahi S. Avian Influenza a H9N2 Viruses in Morocco, 2018–2019. Viruses 2022; 14:v14030529. [PMID: 35336936 PMCID: PMC8954086 DOI: 10.3390/v14030529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Low pathogenic H9N2 avian influenza (LPAI H9N2) is considered one of the most important diseases found in poultry (broiler, laying hens, breeding chickens, and turkeys). This infection causes considerable economic losses. The objective of this work was to monitor and assess the presence of avian influenza virus (AIV) H9N2 in eight different regions of Morocco using real-time RT-PCR, and to assess the phylogenetic and molecular evolution of the H9N2 viruses between 2016 and 2019. Field samples were collected from 108 farms suspected of being infected with LPAI H9N2 virus. Samples were analyzed using H9N2-specific real-time RT-PCR. Highly positive samples were subjected to virus isolation and seven isolates were fully sequenced. Low pathogenic H9N2 avian influenza virus was introduced in Morocco in 2016. We show that in 2018–2019, the virus was still present irrespective of vaccination status. Phylogenetic and molecular analyses showed mutations related to virulence, although our viruses were related to 2016 Moroccan viruses and grouped in the G1 lineage. Specific amino acid substitutions were identified in Moroccan H9N2 viruses that are believed to lead to increased resistance to antiviral drugs.
Collapse
Affiliation(s)
- Fatima-Zohra Sikht
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
- IHAP, Toulouse University, INRAE, ENVT, 31300 Toulouse, France;
| | | | - Charifa Drissi Touzani
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.W.)
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.W.)
| | - Mohammed El Houadfi
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| | - Nour-Said Tligui
- Anatomo-Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco;
| | - Christelle Camus
- IHAP, Toulouse University, INRAE, ENVT, 31300 Toulouse, France;
- Correspondence: ; Tel.: +33-5-61-19-38-80
| | - Siham Fellahi
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| |
Collapse
|
17
|
Spatiotemporal Dynamics, Evolutionary History and Zoonotic Potential of Moroccan H9N2 Avian Influenza Viruses from 2016 to 2021. Viruses 2022; 14:v14030509. [PMID: 35336916 PMCID: PMC8951762 DOI: 10.3390/v14030509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The H9N2 virus continues to spread in wild birds and poultry worldwide. At the beginning of 2016, the H9N2 Avian influenza virus (AIV) was detected in Morocco for the first time; despite the implementation of vaccination strategies to control the disease, the virus has become endemic in poultry in the country. The present study was carried out to investigate the origins, zoonotic potential, as well as the impact of vaccination on the molecular evolution of Moroccan H9N2 viruses. Twenty-eight (28) H9N2 viruses collected from 2016 to 2021 in Moroccan poultry flocks were isolated and their whole genomes sequenced. Phylogenetic and evolutionary analyses showed that Moroccan H9N2 viruses belong to the G1-like lineage and are closely related to viruses isolated in Africa and the Middle East. A high similarity among all the 2016–2017 hemagglutinin sequences was observed, while the viruses identified in 2018–2019 and 2020–2021 were separated from their 2016–2017 ancestors by long branches. Mutations in the HA protein associated with antigenic drift and increased zoonotic potential were also found. The Bayesian phylogeographic analyses revealed the Middle East as being the region where the Moroccan H9N2 virus may have originated, before spreading to the other African countries. Our study is the first comprehensive analysis of the evolutionary history of the H9N2 viruses in the country, highlighting their zoonotic potential and pointing out the importance of implementing effective monitoring systems.
Collapse
|
18
|
Cui H, Che G, de Jong MCM, Li X, Liu Q, Yang J, Teng Q, Li Z, Beerens N. The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus. Virol J 2022; 19:20. [PMID: 35078489 PMCID: PMC8788113 DOI: 10.1186/s12985-022-01745-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/12/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Reassortment between human and avian influenza viruses (AIV) may result in novel viruses with new characteristics that may threaten human health when causing the next flu pandemic. A particular risk may be posed by avian influenza viruses of subtype H9N2 that are currently massively circulating in domestic poultry in Asia and have been shown to infect humans. In this study, we investigate the characteristics and compatibility of a human H1N1 virus with avian H9N2 derived genes. METHODS The polymerase activity of the viral ribonucleoprotein (RNP) complex as combinations of polymerase-related gene segments derived from different reassortment events was tested in luciferase reporter assays. Reassortant viruses were generated by reverse genetics. Gene segments of the human WSN-H1N1 virus (A/WSN/1933) were replaced by gene segments of the avian A2093-H9N2 virus (A/chicken/Jiangsu/A2093/2011), which were both the Hemagglutinin (HA) and Neuraminidase (NA) gene segments in combination with one of the genes involved in the RNP complex (either PB2, PB1, PA or NP). The growth kinetics and virulence of reassortant viruses were tested on cell lines and mice. The reassortant viruses were then passaged for five generations in MDCK cells and mice lungs. The HA gene of progeny viruses from different passaging paths was analyzed using Next-Generation Sequencing (NGS). RESULTS We discovered that the avian PB1 gene of H9N2 increased the polymerase activity of the RNP complex in backbone of H1N1. Reassortant viruses were able to replicate in MDCK and DF1 cells and mice. Analysis of the NGS data showed a higher substitution rate for the PB1-reassortant virus. In particular, for the PB1-reassortant virus, increased virulence for mice was measured by increased body weight loss after infection in mice. CONCLUSIONS The higher polymerase activity and increased mutation frequency measured for the PB1-reassortant virus suggests that the avian PB1 gene of H9N2 may drive the evolution and adaptation of reassortant viruses to the human host. This study provides novel insights in the characteristics of viruses that may arise by reassortment of human and avian influenza viruses. Surveillance for infections with H9N2 viruses and the emergence of the reassortant viruses in humans is important for pandemic preparedness.
Collapse
Affiliation(s)
- Hongrui Cui
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
- Quantitative Veterinary Epidemiology, Animal Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Guangsheng Che
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology, Animal Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Office Room D301, Ziyue Road 518, Minhang District, Shanghai, 200241, China.
| | - Nancy Beerens
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221RA, Lelystad, The Netherlands.
| |
Collapse
|
19
|
Gu M, Zhao Y, Ge Z, Li Y, Gao R, Wang X, Hu J, Liu X, Hu S, Peng D, Liu X. Effects of HA2 154 Deglycosylation and NA V202I Mutation on Biological Property of H5N6 Subtype Avian Influenza Virus. Vet Microbiol 2022; 266:109353. [DOI: 10.1016/j.vetmic.2022.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
|
20
|
de Vries E, Guo H, Du W, Liu M, van Kuppeveld FJM, de Haan CAM. Quantification of Receptor Association, Dissociation, and NA-Dependent Motility of Influenza A Particles by Biolayer Interferometry. Methods Mol Biol 2022; 2556:123-140. [PMID: 36175631 DOI: 10.1007/978-1-0716-2635-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We describe a method for real-time analysis and quantification of influenza A virus (IAV)-receptor interactions by biolayer interferometry (BLI). Biotinylated synthetic sialoglycans or sialoglycoproteins (biotinylated or Fc-tagged) were immobilized on the tip of biosensors (coated with streptavidin or protein A) that were subsequently dipped into IAV particle solutions in 96-well plates. Association and/or dissociation of IAV particles was recorded in consecutive steps in buffers of choice. From the association and dissociation curves, parameters can be derived that describe IAV particle-receptor interactions in absence or presence of neuraminidase activity. Overall, the method provides a quantitative description of the hemagglutinin-neuraminidase balance that determines the interaction kinetics of IAV with specific sialoglycan receptors.
Collapse
Affiliation(s)
- Erik de Vries
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Hongbo Guo
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Jiangsu, People's Republic of China
| | - Wenjuan Du
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mengying Liu
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Sun Y, Cong Y, Yu H, Ding Z, Cong Y. Assessing the effects of a two-amino acid flexibility in the Hemagglutinin 220-loop receptor-binding domain on the fitness of Influenza A(H9N2) viruses. Emerg Microbes Infect 2021; 10:822-832. [PMID: 33866955 PMCID: PMC8812783 DOI: 10.1080/22221751.2021.1919566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023]
Abstract
The enzootic and zoonotic nature of H9N2 avian influenza viruses poses a persistent threat to the global poultry industry and public health. In particular, the emerging sublineage h9.4.2.5 of H9N2 viruses has drawn great attention. In this study, we determined the effects of the flexibility at residues 226 and 227 in the hemagglutinin on the receptor avidity and immune evasion of H9N2 viruses. The solid-phase direct binding assay showed that residue 226 plays a core role in the receptor preference of H9N2 viruses, while residue 227 affects the preference of the virus for a receptor. Consequently, each of these two successive residues can modulate the receptor avidity of H9N2 viruses and influence their potential of zoonotic infection. The antigenic map based on the cross-hemagglutination inhibition (HI) titers revealed that amino acid substitutions at positions 226 or 227 appear to be involved in antigenic drift, potentially resulting in the emergence of H9N2 immune evasion mutants. Further analysis suggested that increased receptor avidity facilitated by residue 226Q or 227M resulted in a reduction in the HI titer. Among the four naturally-occurring amino acid combinations comprising QQ, MQ, LQ, and LM, the number of viruses with LM accounted for 79.64% of the sublineage h9.4.2.5 and the rescued virus with LM exhibited absolute advantages of in vitro and in vivo replication and transmission. Collectively, these data demonstrate that residues 226 and 227 are under selective pressure and their synergistic regulation of receptor avidity and antigenicity is related to the evolution of circulating H9N2 viruses.
Collapse
Affiliation(s)
- Yixue Sun
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, People’s Republic of China
- JilinResearch & Development Center of Biomedical Engineering, Chanchung University, Changchun, People's Republic of China
| | - Yulin Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, People’s Republic of China
| | - Haiying Yu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, People’s Republic of China
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, People’s Republic of China
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
22
|
Ripa RN, Sealy JE, Raghwani J, Das T, Barua H, Masuduzzaman M, Saifuddin A, Huq MR, Uddin MI, Iqbal M, Brown I, Lewis NS, Pfeiffer D, Fournie G, Biswas PK. Molecular epidemiology and pathogenicity of H5N1 and H9N2 avian influenza viruses in clinically affected chickens on farms in Bangladesh. Emerg Microbes Infect 2021; 10:2223-2234. [PMID: 34753400 PMCID: PMC8635652 DOI: 10.1080/22221751.2021.2004865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Avian influenza virus (AIV) subtypes H5N1 and H9N2 co-circulate in poultry in Bangladesh, causing significant bird morbidity and mortality. Despite their importance to the poultry value chain, the role of farms in spreading and maintaining AIV infections remains poorly understood in most disease-endemic settings. To address this crucial gap in our knowledge, we conducted a cross-sectional study between 2017 and 2019 in the Chattogram Division of Bangladesh in clinically affected and dead chickens in farms with suspected AIV infection. Viral prevalence of each subtype was approximately 10% among farms for which veterinary advice was sought, indicating a high level of virus circulation in chicken farms despite the low number of reported outbreaks. The level of co-circulation of both subtypes on farms was high, with our study suggesting that in the field, the co-circulation of H5N1 and H9N2 can modulate disease severity, which could facilitate an underestimated level of AIV transmission in the poultry value chain. Finally, using newly generated whole-genome sequences, we investigate the evolutionary history of a small subset of H5N1 and H9N2 viruses. Our analyses revealed that for both subtypes, the sampled viruses were genetically most closely related to other viruses isolated in Bangladesh and represented multiple independent incursions. However, due to lack of longitudinal surveillance in this region, it is difficult to ascertain whether these viruses emerged from endemic strains circulating in Bangladesh or from neighbouring countries. We also show that amino acids at putative antigenic residues underwent a distinct replacement during 2012 which coincides with the use of H5N1 vaccines.
Collapse
Affiliation(s)
- Ripatun Nahar Ripa
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Joshua E Sealy
- Avian influenza viruses group, the Pirbright institute, Ash road, Pirbright, Woking, GU24 0NF, United Kingdom
| | | | - Tridip Das
- Poultry Research and Training Centre, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Himel Barua
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Masuduzzaman
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Akm Saifuddin
- Department of Physiology, Biochemistry and Pharmacology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Reajul Huq
- District Livestock Office, Chattogram, Department of Livestock Services, Bangladesh
| | - Mohammad Inkeyas Uddin
- Poultry Research and Training Centre, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Munir Iqbal
- Avian influenza viruses group, the Pirbright institute, Ash road, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Ian Brown
- Animal and Plant Health Agency-Weybridge, Woodham lane, Addlestone, KT15 3NB, United Kingdom
| | - Nicola S Lewis
- The Royal Veterinary College, Hawkshead lane, Brookmans park, Hatfield, AL9 7TA, United Kingdom.,Animal and Plant Health Agency-Weybridge, Woodham lane, Addlestone, KT15 3NB, United Kingdom
| | - Dirk Pfeiffer
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, China
| | - Guillaume Fournie
- The Royal Veterinary College, Hawkshead lane, Brookmans park, Hatfield, AL9 7TA, United Kingdom
| | - Paritosh Kumar Biswas
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
23
|
Sealy JE, Howard WA, Molesti E, Iqbal M, Temperton NJ, Banks J, Slomka MJ, Barclay WS, Long JS. Amino acid substitutions in the H5N1 avian influenza haemagglutinin alter pH of fusion and receptor binding to promote a highly pathogenic phenotype in chickens. J Gen Virol 2021; 102. [PMID: 34726594 PMCID: PMC8742987 DOI: 10.1099/jgv.0.001672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Highly pathogenic H5N1 avian influenza viruses cause devastating outbreaks in farmed poultry with serious consequences for animal welfare and economic losses. Zoonotic infection of humans through close contact with H5N1 infected birds is often severe and fatal. England experienced an outbreak of H5N1 in turkeys in 1991 that led to thousands of farmed bird mortalities. Isolation of clonal populations of one such virus from this outbreak uncovered amino acid differences in the virus haemagglutinin (HA) gene whereby the different genotypes could be associated with distinct pathogenic outcomes in chickens; both low pathogenic (LP) and high pathogenic (HP) phenotypes could be observed despite all containing a multi-basic cleavage site (MBCS) in the HA gene. Using reverse genetics, three amino acid substitutions in HA were examined for their ability to affect pathogenesis in the chicken. Restoration of amino acid polymorphisms close to the receptor binding site that are commonly found in H5 viruses only partially improved viral fitness in vitro and in vivo. A third novel substitution in the fusion peptide, HA2G4R, enabled the HP phenotype. HA2G4R decreased the pH stability of HA and increased the pH of HA fusion. The substitutions close to the receptor binding site optimised receptor binding while modulating the pH of HA fusion. Importantly, this study revealed pathogenic determinants beyond the MBCS.
Collapse
Affiliation(s)
- Joshua E Sealy
- Avian Influenza Group, The Pirbright Institute, Woking, GU24 0NF, UK
| | - Wendy A Howard
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Eleonora Molesti
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, UK.,VisMederi Research S.r.l., Siena, Italy
| | - Munir Iqbal
- Avian Influenza Group, The Pirbright Institute, Woking, GU24 0NF, UK
| | - Nigel J Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, UK
| | - Jill Banks
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Marek J Slomka
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, UK
| | - Jason S Long
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK.,Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, UK.,Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| |
Collapse
|
24
|
Abstract
Avian influenza viruses pose a continuous threat to both poultry and human health, with significant economic impact. The ability of viruses to reassort and jump the species barrier into mammalian hosts generates a constant pandemic threat. H10Nx avian viruses have been shown to replicate in mammalian species without prior adaptation and have caused significant human infection and fatalities. They are able to rapidly reassort with circulating poultry strains and go undetected due to their low pathogenicity in chickens. Novel detections of both human reassortant strains and increasing endemicity of H10Nx poultry infections highlight the increasing need for heightened surveillance and greater understanding of the distribution, tropism, and infection capabilities of these viruses. In this minireview, we highlight the gap in the current understanding of this subtype and its prevalence across a vast range of host species and geographical locations.
Collapse
|
25
|
Cáceres CJ, Rajao DS, Perez DR. Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals. Viruses 2021; 13:v13101919. [PMID: 34696349 PMCID: PMC8540072 DOI: 10.3390/v13101919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAV) are widespread viruses affecting avian and mammalian species worldwide. IAVs from avian species can be transmitted to mammals including humans and, thus, they are of inherent pandemic concern. Most of the efforts to understand the pathogenicity and transmission of avian origin IAVs have been focused on H5 and H7 subtypes due to their highly pathogenic phenotype in poultry. However, IAV of the H9 subtype, which circulate endemically in poultry flocks in some regions of the world, have also been associated with cases of zoonotic infections. In this review, we discuss the mammalian transmission of H9N2 and the molecular factors that are thought relevant for this spillover, focusing on the HA segment. Additionally, we discuss factors that have been associated with the ability of these viruses to transmit through the respiratory route in mammalian species. The summarized information shows that minimal amino acid changes in the HA and/or the combination of H9N2 surface genes with internal genes of human influenza viruses are enough for the generation of H9N2 viruses with the ability to transmit via aerosol.
Collapse
|
26
|
Russell CJ. Hemagglutinin Stability and Its Impact on Influenza A Virus Infectivity, Pathogenicity, and Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Viruses 2021; 13:746. [PMID: 33923198 PMCID: PMC8145662 DOI: 10.3390/v13050746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Genetically diverse influenza A viruses (IAVs) circulate in wild aquatic birds. From this reservoir, IAVs sporadically cause outbreaks, epidemics, and pandemics in wild and domestic avians, wild land and sea mammals, horses, canines, felines, swine, humans, and other species. One molecular trait shown to modulate IAV host range is the stability of the hemagglutinin (HA) surface glycoprotein. The HA protein is the major antigen and during virus entry, this trimeric envelope glycoprotein binds sialic acid-containing receptors before being triggered by endosomal low pH to undergo irreversible structural changes that cause membrane fusion. The HA proteins from different IAV isolates can vary in the pH at which HA protein structural changes are triggered, the protein causes membrane fusion, or outside the cell the virion becomes inactivated. HA activation pH values generally range from pH 4.8 to 6.2. Human-adapted HA proteins tend to have relatively stable HA proteins activated at pH 5.5 or below. Here, studies are reviewed that report HA stability values and investigate the biological impact of variations in HA stability on replication, pathogenicity, and transmissibility in experimental animal models. Overall, a stabilized HA protein appears to be necessary for human pandemic potential and should be considered when assessing human pandemic risk.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
27
|
Genetic determinants of receptor-binding preference and zoonotic potential of H9N2 avian influenza viruses. J Virol 2021; 95:JVI.01651-20. [PMID: 33268517 PMCID: PMC8092835 DOI: 10.1128/jvi.01651-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Receptor recognition and binding is the first step of viral infection and a key determinant of host specificity. The inability of avian influenza viruses to effectively bind human-like sialylated receptors is a major impediment to their efficient transmission in humans and pandemic capacity. Influenza H9N2 viruses are endemic in poultry across Asia and parts of Africa where they occasionally infect humans and are therefore considered viruses with zoonotic potential. We previously described H9N2 viruses, including several isolated from human zoonotic cases, showing a preference for human-like receptors. Here we take a mutagenesis approach, making viruses with single or multiple substitutions in H9 haemagglutinin and test binding to avian and human receptor analogues using biolayer interferometry. We determine the genetic basis of preferences for alternative avian receptors and for human-like receptors, describing amino acid motifs at positions 190, 226 and 227 that play a major role in determining receptor specificity, and several other residues such as 159, 188, 193, 196, 198 and 225 that play a smaller role. Furthermore, we show changes at residues 135, 137, 147, 157, 158, 184, 188, and 192 can also modulate virus receptor avidity and that substitutions that increased or decreased the net positive charge around the haemagglutinin receptor-binding site show increases and decreases in avidity, respectively. The motifs we identify as increasing preference for the human-receptor will help guide future H9N2 surveillance efforts and facilitate our understanding of the emergence of influenza viruses with increased zoonotic potential.IMPORTANCE As of 2020, over 60 infections of humans by H9N2 influenza viruses have been recorded in countries where the virus is endemic. Avian-like cellular receptors are the primary target for these viruses. However, given that human infections have been detected on an almost monthly basis since 2015, there may be a capacity for H9N2 viruses to evolve and gain the ability to target human-like cellular receptors. Here we identify molecular signatures that can cause viruses to bind human-like receptors, and we identify the molecular basis for the distinctive preference for sulphated receptors displayed by the majority of recent H9N2 viruses. This work will help guide future surveillance by providing markers that signify the emergence of viruses with enhanced zoonotic potential as well as improving understanding of the basis of influenza virus receptor-binding.
Collapse
|
28
|
Liu Y, Li S, Sun H, Pan L, Cui X, Zhu X, Feng Y, Li M, Yu Y, Wu M, Lin J, Xu F, Yuan S, Huang S, Sun H, Liao M. Variation and Molecular Basis for Enhancement of Receptor Binding of H9N2 Avian Influenza Viruses in China Isolates. Front Microbiol 2020; 11:602124. [PMID: 33391219 PMCID: PMC7773702 DOI: 10.3389/fmicb.2020.602124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Currently, H9N2 avian influenza viruses (H9N2 AIVs) globally circulate in poultry and have acquired some adaptation to mammals. However, it is not clear what the molecular basis is for the variation in receptor-binding features of the H9N2 AIVs. The receptor-binding features of 92 H9N2 AIVs prevalent in China during 1994-2017 were characterized through solid-phase ELISA assay and reverse genetics. H9N2 AIVs that circulated in this period mostly belonged to clade h9.4.2. Two increasing incidents occurred in the ability of H9N2 AIVs to bind to avian-like receptors in 2002-2005 and 2011-2014. Two increasing incidents occurred in the strength of H9N2 AIVs to bind to human-like receptors in 2002-2005 and 2011-2017. We found that Q227M, D145G/N, S119R, and R246K mutations can significantly increase H9N2 AIVs to bind to both avian- and human-like receptors. A160D/N, Q156R, T205A, Q226L, V245I, V216L, D208E, T212I, R172Q, and S175N mutations can significantly enhance the strength of H9N2 AIVs to bind to human-like receptors. Our study also identified mutations T205A, D208E, V216L, Q226L, and V245I as the key sites leading to enhanced receptor binding of H9N2 AIVs during 2002-2005 and mutations S119R, D145G, Q156R, A160D, T212I, Q227M, and R246K as the key sites leading to enhanced receptor binding of H9N2 AIVs during 2011-2017. These findings further illustrate the receptor-binding characteristics of avian influenza viruses, which can be a potential threat to public health.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Huapeng Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Liangqi Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Xinxin Cui
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Xuhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Yaling Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Mingliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Yanan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Meihua Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Jiate Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Fengxiang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Shaohua Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| |
Collapse
|
29
|
Blaurock C, Scheibner D, Landmann M, Vallbracht M, Ulrich R, Böttcher-Friebertshäuser E, Mettenleiter TC, Abdelwhab EM. Non-basic amino acids in the hemagglutinin proteolytic cleavage site of a European H9N2 avian influenza virus modulate virulence in turkeys. Sci Rep 2020; 10:21226. [PMID: 33277593 PMCID: PMC7718272 DOI: 10.1038/s41598-020-78210-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/20/2020] [Indexed: 01/26/2023] Open
Abstract
H9N2 avian influenza virus (AIV) is the most widespread low pathogenic (LP) AIV in poultry and poses a serious zoonotic risk. Vaccination is used extensively to mitigate the economic impact of the virus. However, mutations were acquired after long-term circulation of H9N2 virus in poultry, particularly in the hemagglutinin (HA) proteolytic cleavage site (CS), a main virulence determinant of AIV. Compared to chickens, little is known about the genetic determinants for adaptation of H9N2 AIV to turkeys. Here, we describe 36 different CS motifs in Eurasian H9N2 viruses identified from 1966 to 2019. The European H9N2 viruses specify unique HACS with particular polymorphism by insertion of non-basic amino acids at position 319. Recombinant viruses carrying single HACS mutations resembling field viruses were constructed (designated G319, A319, N319, S319, D319 and K319). Several viruses replicated to significantly higher titers in turkey cells than in chicken cells. Serine proteases were more efficient than trypsin to support multicycle replication in mammalian cells. Mutations affected cell-to-cell spread and pH-dependent HA fusion activity. In contrast to chickens, mutations in the HACS modulated clinical signs in inoculated and co-housed turkeys. G319 exhibited the lowest virulence, however, it replicated to significantly higher titers in contact-turkeys and in vitro. Interestingly, H9N2 viruses, particularly G319, replicated in brain cells of turkeys and to a lesser extent in mammalian brain cells independent of trypsin. Therefore, the silent circulation of potentially zoonotic H9N2 viruses in poultry should be monitored carefully. These results are important for understanding the adaptation of H9N2 in poultry and replication in mammalian cells.
Collapse
Affiliation(s)
- Claudia Blaurock
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - David Scheibner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Maria Landmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103, Leipzig, Germany
| | - Melina Vallbracht
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103, Leipzig, Germany
| | | | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
30
|
Chang P, Sealy JE, Sadeyen JR, Bhat S, Lukosaityte D, Sun Y, Iqbal M. Immune Escape Adaptive Mutations in the H7N9 Avian Influenza Hemagglutinin Protein Increase Virus Replication Fitness and Decrease Pandemic Potential. J Virol 2020; 94:e00216-20. [PMID: 32699084 PMCID: PMC7495387 DOI: 10.1128/jvi.00216-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
H7N9 avian influenza viruses (AIVs) continue to evolve and remain a huge threat to human health and the poultry industry. Previously, serially passaging the H7N9 A/Anhui/1/2013 virus in the presence of homologous ferret antiserum resulted in immune escape viruses containing amino acid substitutions alanine to threonine at residues 125 (A125T) and 151 (A151T) and leucine to glutamine at residue 217 (L217Q) in the hemagglutinin (HA) protein. These HA mutations have also been found in field isolates in 2019. To investigate the potential threat of serum escape mutant viruses to humans and poultry, the impact of these HA substitutions, either individually or in combination, on receptor binding, pH of fusion, thermal stability, and virus replication were investigated. Our results showed the serum escape mutant formed large plaques in Madin-Darby canine kidney (MDCK) cells and grew robustly in vitro and in ovo They had a lower pH of fusion and increased thermal stability. Of note, the serum escape mutant completely lost the ability to bind to human-like receptor analogues. Further analysis revealed that N-linked glycosylation, as a result of A125T or A151T substitutions in HA, resulted in reduced receptor-binding avidity toward both human and avian-like receptor analogues, and the A125T+A151T mutations completely abolished human-like receptor binding. The L217Q mutation enhanced the H7N9 acid and thermal stability while the A151T mutation dramatically decreased H7N9 HA thermal stability. To conclude, H7N9 AIVs that contain A125T+A151T+L217Q mutations in the HA protein may pose a reduced pandemic risk but remain a heightened threat for poultry.IMPORTANCE Avian influenza H7N9 viruses have been causing disease outbreaks in poultry and humans. We previously determined that propagation of H7N9 virus in virus-specific antiserum gives rise to mutant viruses carrying mutations A125T+A151T+L217Q in their hemagglutinin protein, enabling the virus to overcome vaccine-induced immunity. As predicted, these immune escape mutations were also observed in the field viruses that likely emerged in the immunized or naturally exposed birds. This study demonstrates that the immune escape mutants also (i) gained greater replication ability in cultured cells and in chicken embryos as well as (ii) increased acid and thermal stability but (iii) lost preferences for binding to human-type receptor while maintaining binding for the avian-like receptor. Therefore, they potentially pose reduced pandemic risk. However, the emergent virus variants containing the indicated mutations remain a significant risk to poultry due to antigenic drift and improved fitness for poultry.
Collapse
Affiliation(s)
| | | | | | - Sushant Bhat
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Yipeng Sun
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Munir Iqbal
- The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
31
|
H9N2 Influenza Virus Infections in Human Cells Require a Balance between Neuraminidase Sialidase Activity and Hemagglutinin Receptor Affinity. J Virol 2020; 94:JVI.01210-20. [PMID: 32641475 PMCID: PMC7459563 DOI: 10.1128/jvi.01210-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
H9N2 avian influenza (AI) virus, one of the most prevalent AI viruses, has caused repeated poultry and human infections, posing a huge public health risk. The H9N2 virus has diversified into multiple lineages, with the G1 lineage being the most prevalent worldwide. In this study, we isolated G1 variants carrying an 8-amino-acid deletion in their NA stalk, which is, to our knowledge, the longest deletion found in H9N2 viruses in the field. The NA stalk length was found to modulate G1 virus entry into host cells, with the effects being species specific and dependent on the corresponding HA binding affinity. Our results suggest that, in nature, H9N2 G1 viruses balance their HA and NA functions by the NA stalk length, leading to the possible association of host range and virulence in poultry and mammals during the evolution of G1 lineage viruses. Some avian influenza (AI) viruses have a deletion of up to 20 to 30 amino acids in their neuraminidase (NA) stalk. This has been associated with changes in virus replication and host range. Currently prevalent H9N2 AI viruses have only a 2- or 3-amino-acid deletion, and such deletions were detected in G1 and Y280 lineage viruses, respectively. The effect of an NA deletion on the H9N2 phenotype has not been fully elucidated. In this study, we isolated G1 mutants that carried an 8-amino-acid deletion in their NA stalk. To systematically analyze the effect of NA stalk length and concomitant (de)glycosylation on G1 replication and host range, we generated G1 viruses that had various NA stalk lengths and that were either glycosylated or not glycosylated. The stalk length was correlated with NA sialidase activity, using low-molecular-weight substrates, and with virus elution efficacy from erythrocytes. G1 virus replication in avian cells and eggs was positively correlated with the NA stalk length but was negatively correlated in human cells and mice. NA stalk length modulated G1 virus entry into host cells, with shorter stalks enabling more efficient G1 entry into human cells. However, with a hemagglutinin (HA) with a higher α2,6-linked sialylglycan affinity, the effect of NA stalk length on G1 virus infection was reversed, with shorter NA stalks reducing virus entry into human cells. These results indicate that a balance between HA binding affinity and NA sialidase activity, modulated by NA stalk length, is required for optimal G1 virus entry into human airway cells. IMPORTANCE H9N2 avian influenza (AI) virus, one of the most prevalent AI viruses, has caused repeated poultry and human infections, posing a huge public health risk. The H9N2 virus has diversified into multiple lineages, with the G1 lineage being the most prevalent worldwide. In this study, we isolated G1 variants carrying an 8-amino-acid deletion in their NA stalk, which is, to our knowledge, the longest deletion found in H9N2 viruses in the field. The NA stalk length was found to modulate G1 virus entry into host cells, with the effects being species specific and dependent on the corresponding HA binding affinity. Our results suggest that, in nature, H9N2 G1 viruses balance their HA and NA functions by the NA stalk length, leading to the possible association of host range and virulence in poultry and mammals during the evolution of G1 lineage viruses.
Collapse
|
32
|
Genetically and Antigenically Divergent Influenza A(H9N2) Viruses Exhibit Differential Replication and Transmission Phenotypes in Mammalian Models. J Virol 2020; 94:JVI.00451-20. [PMID: 32611751 DOI: 10.1128/jvi.00451-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
Low-pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Cocirculation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses.IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world and for over 20 years have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported, and it was found to exhibit properties of adaptation to humans and, importantly, it shows similarities to strains isolated from the live bird markets of Vietnam.
Collapse
|
33
|
Everest H, Hill SC, Daines R, Sealy JE, James J, Hansen R, Iqbal M. The Evolution, Spread and Global Threat of H6Nx Avian Influenza Viruses. Viruses 2020; 12:v12060673. [PMID: 32580412 PMCID: PMC7354632 DOI: 10.3390/v12060673] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Avian influenza viruses of the subtype H6Nx are being detected globally with increasing frequency. Some H6Nx lineages are becoming enzootic in Asian poultry and sporadic incursions into European poultry are occurring more frequently. H6Nx viruses that contain mammalian adaptation motifs pose a zoonotic threat and have caused human cases. Although currently understudied globally, H6Nx avian influenza viruses pose a substantial threat to both poultry and human health. In this review we examine the current state of knowledge of H6Nx viruses including their global distribution, tropism, transmission routes and human health risk.
Collapse
Affiliation(s)
- Holly Everest
- The Pirbright Institute, Woking GU24 0NF, UK
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Sarah C Hill
- Department of Zoology, University of Oxford, Oxford OX1 3SZ UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Rebecca Daines
- The Pirbright Institute, Woking GU24 0NF, UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | | | - Joe James
- Department of Virology, Animal and Plant Health Agency, Addlestone KT15 3NB, UK
| | - Rowena Hansen
- Department of Virology, Animal and Plant Health Agency, Addlestone KT15 3NB, UK
| | - Munir Iqbal
- The Pirbright Institute, Woking GU24 0NF, UK
| |
Collapse
|
34
|
Adaptation of H9N2 Influenza Viruses to Mammalian Hosts: A Review of Molecular Markers. Viruses 2020; 12:v12050541. [PMID: 32423002 PMCID: PMC7290818 DOI: 10.3390/v12050541] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022] Open
Abstract
As the number of human infections with avian and swine influenza viruses continues to rise, the pandemic risk posed by zoonotic influenza viruses cannot be underestimated. Implementation of global pandemic preparedness efforts has largely focused on H5 and H7 avian influenza viruses; however, the pandemic threat posed by other subtypes of avian influenza viruses, especially the H9 subtype, should not be overlooked. In this review, we summarize the literature pertaining to the emergence, prevalence and risk assessment of H9N2 viruses, and add new molecular analyses of key mammalian adaptation markers in the hemagglutinin and polymerase proteins. Available evidence has demonstrated that H9N2 viruses within the Eurasian lineage continue to evolve, leading to the emergence of viruses with an enhanced receptor binding preference for human-like receptors and heightened polymerase activity in mammalian cells. Furthermore, the increased prevalence of certain mammalian adaptation markers and the enhanced transmissibility of selected viruses in mammalian animal models add to the pandemic risk posed by this virus subtype. Continued surveillance of zoonotic H9N2 influenza viruses, inclusive of close genetic monitoring and phenotypic characterization in animal models, should be included in our pandemic preparedness efforts.
Collapse
|
35
|
Richards SJ, Baker AN, Walker M, Gibson MI. Polymer-Stabilized Sialylated Nanoparticles: Synthesis, Optimization, and Differential Binding to Influenza Hemagglutinins. Biomacromolecules 2020; 21:1604-1612. [PMID: 32191036 PMCID: PMC7173702 DOI: 10.1021/acs.biomac.0c00179] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/19/2020] [Indexed: 12/31/2022]
Abstract
During influenza infection, hemagglutinins (HAs) on the viral surface bind to sialic acids on the host cell's surface. While all HAs bind sialic acids, human influenza targets terminal α2,6 sialic acids and avian influenza targets α2,3 sialic acids. For interspecies transmission (zoonosis), HA must mutate to adapt to these differences. Here, multivalent gold nanoparticles bearing either α2,6- or α2,3-sialyllactosamine have been developed to interrogate a panel of HAs from pathogenic human, low pathogenic avian, and other species' influenza. This method exploits the benefits of multivalent glycan presentation compared to monovalent presentation to increase affinity and investigate how multivalency affects selectivity. Using a library-orientated approach, parameters including polymer coating and core diameter were optimized for maximal binding and specificity were probed using galactosylated particles and a panel of biophysical techniques [ultraviolet-visible spectroscopy, dynamic light scattering, and biolayer interferometry]. The optimized particles were then functionalized with sialyllactosamine and their binding analyzed against a panel of HAs derived from pathogenic influenza strains including low pathogenic avian strains. This showed significant specificity crossover, which is not observed in monovalent formats, with binding of avian HAs to human sialic acids and vice versa in agreement with alternate assay formats. These results demonstrate that precise multivalent presentation is essential to dissect the interactions of HAs and may aid the discovery of tools for disease and zoonosis transmission.
Collapse
Affiliation(s)
| | | | - Marc Walker
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
36
|
de Vries E, Du W, Guo H, de Haan CA. Influenza A Virus Hemagglutinin-Neuraminidase-Receptor Balance: Preserving Virus Motility. Trends Microbiol 2020; 28:57-67. [PMID: 31629602 PMCID: PMC7172302 DOI: 10.1016/j.tim.2019.08.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
Influenza A viruses (IAVs) occasionally cross the species barrier and adapt to novel host species. This requires readjustment of the functional balance of the sialic acid receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA) to the sialoglycan-receptor repertoire of the new host. Novel techniques have revealed mechanistic details of this HA-NA-receptor balance, emphasizing a previously underappreciated crucial role for NA in driving the motility of receptor-associated IAV particles. Motility enables virion penetration of the sialylated mucus layer as well as attachment to, and uptake into, underlying epithelial cells. As IAVs are essentially irreversibly bound in the absence of NA activity, the fine-tuning of the HA-NA-receptor balance rather than the binding avidity of IAV particles per se is an important factor in determining host species tropism.
Collapse
Affiliation(s)
- Erik de Vries
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands.
| | - Wenjuan Du
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Hongbo Guo
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Cornelis A.M. de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands,Correspondence:
| |
Collapse
|
37
|
Influenza Virus with Increased pH of Hemagglutinin Activation Has Improved Replication in Cell Culture but at the Cost of Infectivity in Human Airway Epithelium. J Virol 2019; 93:JVI.00058-19. [PMID: 31189708 PMCID: PMC6694820 DOI: 10.1128/jvi.00058-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/02/2019] [Indexed: 01/09/2023] Open
Abstract
The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle. Pandemic H1N1 (pH1N1) influenza virus emerged from swine in 2009 with an adequate capability to infect and transmit between people. In subsequent years, it has circulated as a seasonal virus and evolved further human-adapting mutations. Mutations in the hemagglutinin (HA) stalk that increase pH stability have been associated with human adaptation and airborne transmission of pH1N1 virus. Yet, our understanding of how pH stability impacts virus-host interactions is incomplete. Here, using recombinant viruses with point mutations that alter the pH stability of pH1N1 HA, we found distinct effects on virus phenotypes in different experimental models. Increased pH sensitivity enabled viruses to uncoat in endosomes more efficiently, manifesting as increased replication rate in typical continuous cell cultures under single-cycle conditions. A more acid-labile HA also conferred a small reduction in sensitivity to antiviral therapeutics that act at the pH-sensitive HA fusion step. Conversely, in primary human airway epithelium cultured at the air-liquid interface, increased pH sensitivity attenuated multicycle viral replication by compromising virus survival in the extracellular microenvironment. In a mouse model of influenza pathogenicity, there was an optimum HA activation pH, and viruses with either more- or less-pH-stable HA were less virulent. Opposing pressures inside and outside the host cell that determine pH stability may influence zoonotic potential. The distinct effects that changes in pH stability exert on viral phenotypes underscore the importance of using the most appropriate systems for assessing virus titer and fitness, which has implications for vaccine manufacture, antiviral drug development, and pandemic risk assessment. IMPORTANCE The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle.
Collapse
|
38
|
A Global Perspective on H9N2 Avian Influenza Virus. Viruses 2019; 11:v11070620. [PMID: 31284485 PMCID: PMC6669617 DOI: 10.3390/v11070620] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in affected countries and have been found in poultry in many new regions in recent years. In this review, we examine the current global spread of H9N2 avian influenza viruses as well as their host range, tropism, transmission routes and the risk posed by these viruses to human health.
Collapse
|
39
|
Chang P, Sealy JE, Sadeyen JR, Iqbal M. Amino Acid Residue 217 in the Hemagglutinin Glycoprotein Is a Key Mediator of Avian Influenza H7N9 Virus Antigenicity. J Virol 2019; 93:e01627-18. [PMID: 30282714 PMCID: PMC6288333 DOI: 10.1128/jvi.01627-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022] Open
Abstract
Avian influenza viruses continue to evolve and acquire mutations that facilitate antigenic drift and virulence change. In 2017, low-pathogenicity H7N9 avian influenza viruses evolved to a high-pathogenicity phenotype in China. Comparative antigenic analysis of the low- and high-pathogenicity virus strains showed marked variability. In order to identify residues that may be linked to the antigenic change among the H7N9 viruses, we serially passaged the viruses in the presence of homologous ferret antiserum. Progeny viruses able to overcome the neutralizing capacity of the antiserum were sequenced. The analysis showed that the emergent immune escape viruses contained mutations A125T, A151T, and L217Q in the hemagglutinin (HA) glycoprotein as early as passage 5 and that these mutations persisted until passage 10. The results revealed that a single mutation, L217Q, in the HA of H7N9 virus led to 23- and 8-fold reductions in hemagglutination inhibition (HI) titer with ferret and chicken antisera, respectively. Further analysis showed that this change also contributed to antigenic differences between the low- and high-pathogenicity H7N9 viruses, thus playing a major role in their antigenic diversification. Therefore, evolutionary changes at amino acid position 217 in the H7N9 viruses can serve as a genetic marker for virus antigenic diversity during vaccine seed matching and selection. The in vitro immune escape mutant selection method used in this study could also aid in the prediction of emerging antigenic variants in naturally infected or immunized animals.IMPORTANCE Avian influenza H7N9 viruses circulating in poultry and wild birds continue to evolve and acquire important phenotypic changes. Mutations to the virus hemagglutinin (HA) glycoprotein can modulate virus antigenicity and facilitate virus escape from natural or vaccine-induced immunity. The focus of this study was to identify evolutionary markers in the HA of H7N9 that drive escape from antibody-based immunity. To achieve this, we propagated low-pathogenicity H7N9 virus in the presence of polyclonal antiserum derived from ferrets infected with the same strain of virus (homologous antiserum). This selection process was repeated 10 times. The HA gene sequences of viruses recovered after the fifth passage showed that the viruses readily acquired mutations at three different amino acid positions (A125T, A151T, and L217Q). Further functional analysis of these mutations confirmed that the mutation at residue 217 in the HA was responsible for mediating changes to the immunological properties of the H7N9 virus.
Collapse
Affiliation(s)
| | | | | | - Munir Iqbal
- The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
40
|
Peacock TP, Harvey WT, Sadeyen JR, Reeve R, Iqbal M. The molecular basis of antigenic variation among A(H9N2) avian influenza viruses. Emerg Microbes Infect 2018; 7:176. [PMID: 30401826 PMCID: PMC6220119 DOI: 10.1038/s41426-018-0178-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 01/02/2023]
Abstract
Avian influenza A(H9N2) viruses are an increasing threat to global poultry production and, through zoonotic infection, to human health where they are considered viruses with pandemic potential. Vaccination of poultry is a key element of disease control in endemic countries, but vaccine effectiveness is persistently challenged by the emergence of antigenic variants. Here we employed a combination of techniques to investigate the genetic basis of H9N2 antigenic variability and evaluate the role of different molecular mechanisms of immune escape. We systematically tested the influence of published H9N2 monoclonal antibody escape mutants on chicken antisera binding, determining that many have no significant effect. Substitutions introducing additional glycosylation sites were a notable exception, though these are relatively rare among circulating viruses. To identify substitutions responsible for antigenic variation in circulating viruses, we performed an integrated meta-analysis of all published H9 haemagglutinin sequences and antigenic data. We validated this statistical analysis experimentally and allocated several new residues to H9N2 antigenic sites, providing molecular markers that will help explain vaccine breakdown in the field and inform vaccine selection decisions. We find evidence for the importance of alternative mechanisms of immune escape, beyond simple modulation of epitope structure, with substitutions increasing glycosylation or receptor-binding avidity, exhibiting the largest impacts on chicken antisera binding. Of these, meta-analysis indicates avidity regulation to be more relevant to the evolution of circulating viruses, suggesting that a specific focus on avidity regulation is required to fully understand the molecular basis of immune escape by influenza, and potentially other viruses.
Collapse
Affiliation(s)
- Thomas P Peacock
- Avian Influenza Group, The Pirbright Institute, Pirbright, Woking, UK, GU24 0NF.,Department of Virology, Imperial College, London, UK, W2 1NY
| | - William T Harvey
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK, G12 8QQ
| | - Jean-Remy Sadeyen
- Avian Influenza Group, The Pirbright Institute, Pirbright, Woking, UK, GU24 0NF
| | - Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK, G12 8QQ.
| | - Munir Iqbal
- Avian Influenza Group, The Pirbright Institute, Pirbright, Woking, UK, GU24 0NF
| |
Collapse
|
41
|
Russell CJ, Hu M, Okda FA. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk. Trends Microbiol 2018; 26:841-853. [PMID: 29681430 PMCID: PMC6150828 DOI: 10.1016/j.tim.2018.03.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023]
Abstract
For decades, hemagglutinin (HA) protein structure and its refolding mechanism have served as a paradigm for understanding protein-mediated membrane fusion. HA trimers are in a high-energy state and are functionally activated by low pH. Over the past decade, HA stability (or the pH at which irreversible conformational changes are triggered) has emerged as an important determinant in influenza virus host range, infectivity, transmissibility, and human pandemic potential. Here, we review HA protein structure, assays to measure its stability, measured HA stability values, residues and mutations that regulate its stability, the effect of HA stability on interspecies adaptation and transmissibility, and mechanistic insights into this process. Most importantly, HA stabilization appears to be necessary for adapting emerging influenza viruses to humans.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA; Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meng Hu
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Faten A Okda
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
42
|
de Vries RP, Tzarum N, Peng W, Thompson AJ, Ambepitiya Wickramasinghe IN, de la Pena ATT, van Breemen MJ, Bouwman KM, Zhu X, McBride R, Yu W, Sanders RW, Verheije MH, Wilson IA, Paulson JC. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. EMBO Mol Med 2018; 9:1314-1325. [PMID: 28694323 PMCID: PMC5582370 DOI: 10.15252/emmm.201707726] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non‐fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human‐type receptor specificity could enable transmission in the human population. Despite mutations in the receptor‐binding pocket of the human H6N1 isolate, it has retained avian‐type (NeuAcα2‐3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human‐type (NeuAcα2‐6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human‐type receptor, stabilizing human receptor binding.
Collapse
Affiliation(s)
- Robert P de Vries
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Wenjie Peng
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew J Thompson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Alba T Torrents de la Pena
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marielle J van Breemen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kim M Bouwman
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan McBride
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Microbiology and Immunology, Weil Medical College of Cornell University, New York, NY, USA
| | - Monique H Verheije
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, The Scripps Research Institute, La Jolla, CA, USA .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James C Paulson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
43
|
Sun W, Li J, Hu J, Jiang D, Xing C, Zhan T, Liu X. Genetic analysis and biological characteristics of different internal gene origin H5N6 reassortment avian influenza virus in China in 2016. Vet Microbiol 2018; 219:200-211. [PMID: 29778197 DOI: 10.1016/j.vetmic.2018.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 01/22/2023]
Abstract
Clade 2.3.4.4 of H5N6 subtype Avian Influenza Viruses (AIVs) has become dominant clade in South-East Asia. So far, a total of 16 cases of human infection, including 6 deaths, have been confirmed since 2014. In this study, we systematically investigated the genetic evolution and biological characteristics of these viruses. We first carried out phylogenetic and statistical analysis of all H5N6 viruses that were downloaded from Influenza Research Database, GISAID and isolates from our lab. We found that H5N6 AIVs continued to reassort with other AIVs subtypes since 2014. Among these H5N6 reassortments, four main gene types were identified: A (internal genes of H5N1-origin), B (PB2 of H6-origin, and others of H5N1-origin), C (internal genes of H9-origin) and D (PB2 of H6-origin and PB1of H3-origin, and others of H5N1). In addition, after several years of evolution, gene type D is currently the dominant gene type. To systematically compare the genetic and evolutionary characteristics and pathogenicity of these viruses, four H5N6 AIVs of different gene types were selected for further analysis. S4, XZ6, GD1602 and YZ587 virus represented gene type A, B, C and D, respectively. Their NA genes were all originated from H6 and their whole genome showed a high similarity with human isolates. All these isolates could both bind with SA-α2,3 Gal and SA-α2,6 Gal receptors. Pathogenicity test showed that these viruses were highly pathogenic in chickens, while YZ587 showed the lowest virulence. Moreover, XZ6 and S4 viruses were highly pathogenic in ducks and moderately pathogenic in mice, while GD1602 and YZ587 viruses were no-pathogenic in these animals. Interestingly, GD1602 and YZ587-like viruses were responsible for 4 and 2 human infection cases in 2016, respectively. Therefore, our study showed that the YZ587 virus which has mixed internal genes, showed lower virulence in avian species and mammals compared to other genotype viruses. Overall, our findings suggest that the H5N6 avian influenza virus is undergoing constantly evolving and reassortment. Thus, our study highlights the necessary of continued surveillance of the H5N6 AIVs in birds and paying close attention to the spread of these novel reassortment viruses.
Collapse
Affiliation(s)
- Wenqiang Sun
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiaxin Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Daxiu Jiang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Chaonan Xing
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
44
|
Sealy JE, Yaqub T, Peacock TP, Chang P, Ermetal B, Clements A, Sadeyen JR, Mehboob A, Shelton H, Bryant JE, Daniels RS, McCauley JW, Iqbal M. Association of Increased Receptor-Binding Avidity of Influenza A(H9N2) Viruses with Escape from Antibody-Based Immunity and Enhanced Zoonotic Potential. Emerg Infect Dis 2018; 25:63-72. [PMID: 30561311 PMCID: PMC6302589 DOI: 10.3201/eid2501.180616] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We characterized 55 influenza A(H9N2) viruses isolated in Pakistan during 2014-2016 and found that the hemagglutinin gene is of the G1 lineage and that internal genes have differentiated into a variety of novel genotypes. Some isolates had up to 4-fold reduction in hemagglutination inhibition titers compared with older viruses. Viruses with hemagglutinin A180T/V substitutions conveyed this antigenic diversity and also caused up to 3,500-fold greater binding to avian-like and >20-fold greater binding to human-like sialic acid receptor analogs. This enhanced binding avidity led to reduced virus replication in primary and continuous cell culture. We confirmed that altered receptor-binding avidity of H9N2 viruses, including enhanced binding to human-like receptors, results in antigenic variation in avian influenza viruses. Consequently, current vaccine formulations might not induce adequate protective immunity in poultry, and emergence of isolates with marked avidity for human-like receptors increases the zoonotic risk.
Collapse
|
45
|
Genetic characterization of H9N2 avian influenza viruses isolated from poultry in Poland during 2013/2014. Virus Genes 2017; 54:67-76. [PMID: 29052126 PMCID: PMC5847159 DOI: 10.1007/s11262-017-1513-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022]
Abstract
The study presents molecular characterization of H9N2 avian influenza (AI) isolates from field outbreaks in turkeys that occurred in Poland in 2013–2014. Sequences of all gene segments of one isolate from 2013 (A/turkey/Poland/14/2013(H9N2)) and two isolates from 2014 (A/turkey/Poland/08/2014(H9N2), A/turkey/Poland/09/2014(H9N2)) were obtained and analyzed in search of the phylogenetic relationship and molecular markers of zoonotic potential or increased pathogenicity. All gene segments were shown to originate from the wild bird reservoir and the close relationship of the analyzed isolates proved the link between the outbreaks in 2013 and 2014. However, remarkable molecular differences between isolates from 2013 to 2014 were identified, including mutation in the HA cleavage site (CS) leading to conversion from the PAASNR*GLF to the PAASKR*GLF motif and truncation of the PB1-F2 protein. Additionally, T97I substitution in the PA protein in A/turkey/Poland/08/2014 was detected which can be responsible for enhanced activity of viral polymerase in mammalian cells. However, experimental infection of mice with both isolates from 2014 showed their low pathogenicity, and no statistically significant differences in virus replication were observed between the viruses. Nevertheless, these findings indicate the dynamic evolution of H9N2 in the field emphasizing the need for monitoring of the situation in terms of H9N2 AI in Europe.
Collapse
|
46
|
Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness In Vivo and Display Enhanced Zoonotic Characteristics. J Virol 2017; 91:JVI.00218-17. [PMID: 28468875 PMCID: PMC5487547 DOI: 10.1128/jvi.00218-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/20/2017] [Indexed: 01/19/2023] Open
Abstract
H9N2 avian influenza viruses are enzootic in poultry across Asia and North Africa, where they pose a threat to human health as both zoonotic agents and potential pandemic candidates. Poultry vaccination against H9N2 viruses has been employed in many regions; however, vaccine effectiveness is frequently compromised due to antigenic drift arising from amino acid substitutions in the major influenza virus antigen hemagglutinin (HA). Using selection with HA-specific monoclonal antibodies, we previously identified H9N2 antibody escape mutants that contained deletions of amino acids in the 220 loop of the HA receptor binding sites (RBSs). Here we analyzed the impact of these deletions on virus zoonotic infection characteristics and fitness. We demonstrated that mutant viruses with RBS deletions are able to escape polyclonal antiserum binding and are able to infect and be transmitted between chickens. We showed that the deletion mutants have increased binding to human-like receptors and greater replication in primary human airway cells; however, the mutant HAs also displayed reduced pH and thermal stability. In summary, we infer that variant influenza viruses with deletions in the 220 loop could arise in the field due to immune selection pressure; however, due to reduced HA stability, we conclude that these viruses are unlikely to be transmitted from human to human by the airborne route, a prerequisite for pandemic emergence. Our findings underscore the complex interplay between antigenic drift and viral fitness for avian influenza viruses as well as the challenges of predicting which viral variants may pose the greatest threats for zoonotic and pandemic emergence.IMPORTANCE Avian influenza viruses, such as H9N2, cause disease in poultry as well as occasionally infecting humans and are therefore considered viruses with pandemic potential. Many countries have introduced vaccination of poultry to try to control the disease burden; however, influenza viruses are able to rapidly evolve to escape immune pressure in a process known as "antigenic drift." Previously, we experimentally generated antigenic-drift variants in the laboratory, and here, we test our "drifted" viruses to assess their zoonotic infection characteristics and transmissibility in chickens. We found that the drifted viruses were able to infect and be transmitted between chickens and showed increased binding to human-like receptors. However, the drift mutant viruses displayed reduced stability, and we predict that they are unlikely to be transmitted from human to human and cause an influenza pandemic. These results demonstrate the complex relationship between antigenic drift and the potential of avian influenza viruses to infect humans.
Collapse
|
47
|
Daidoji T, Watanabe Y, Arai Y, Kajikawa J, Hirose R, Nakaya T. Unique Infectious Strategy of H5N1 Avian Influenza Virus Is Governed by the Acid-Destabilized Property of Hemagglutinin. Viral Immunol 2017; 30:398-407. [PMID: 28654310 DOI: 10.1089/vim.2017.0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 virus emerged in 1997 as a zoonotic disease in Hong Kong. It has since spread to Asia and Europe and is a serious threat to both the poultry industry and human health. For effective surveillance and possible prevention/control of HPAI H5N1 viruses, it is necessary to understand the molecular mechanism underlying HPAI H5N1 pathogenesis. The hemagglutinin (HA) protein of influenza A viruses (IAVs) is one of the major determinants of host adaptation, transmissibility, and viral virulence. The main function of the HA protein is to facilitate viral entry and viral genome release within host cells before infection. To achieve viral infection, IAVs belonging to different subtypes or strains induce viral-cell membrane fusion at different endosomal pH levels after internalization through endocytosis. However, host-specific endosomal pH also affects induction of membrane fusion followed by infection. The HA protein of HPAI H5N1 has a higher pH threshold for membrane fusion than the HA protein of classical avian influenza viruses. Although this particular property of HA (which governs viral infection) is prone to deactivation in the avian intestine or in an ambient environment, it facilitates efficient infection of host cells, resulting in a broad host tropism, regardless of the pH in the host endosome. Accumulated knowledge, together with further research, about the HA-governed mechanism underlying HPAI H5N1 virulence (i.e., receptor tropism and pH-dependent viral-cell membrane fusion) will be helpful for developing effective surveillance strategies and for prevention/control of HPAI H5N1 infection.
Collapse
Affiliation(s)
- Tomo Daidoji
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yohei Watanabe
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Yasuha Arai
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan .,2 Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University , Osaka, Japan
| | - Junichi Kajikawa
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Ryohei Hirose
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan .,3 Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Takaaki Nakaya
- 1 Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan
| |
Collapse
|