1
|
Du L, Sun Y, Gan Y, Wang L, Li X, Yan S, Xiao X, Li S, Jin H. Study on the mechanism of Xanthoceras sorbifolia Bunge oil in the treatment of Alzheimer's disease by an integrated "network pharmacology-metabolomics" strategy. Ann Med 2025; 57:2499700. [PMID: 40340504 PMCID: PMC12064105 DOI: 10.1080/07853890.2025.2499700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/12/2025] [Accepted: 04/17/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Xanthoceras sorbifolia Bunge oil (XSBO) has garnered significant interest from researchers due to its distinctive anti-Alzheimer's disease (AD) properties. However, the underlying molecular mechanism remain unclear. This study aims to investigate the potential mechanisms by which XSBO may exert therapeutic effects on AD by employing a combination of network pharmacology analysis and experimental validation. METHODS The chemical composition and absorbed compounds of XSBO were identified using GC-MS and LC-MS. Network pharmacology analysis was performed using various computational tools to identify hub genes and construct compound-target-pathway networks. Subsequently, both in vitro and in vivo experiments were conducted to confirm the mechanisms by which XSBO may treat AD. RESULTS The results identified 43 active compounds in XSBO, targeting a total of 223 genes, of which 191 were associated with AD. Network analysis indicated that the active constituents in XSBO, such as 9,12-octadecadienoic acid, linoelaidic acid and 11-octadecenoic acid, interact with targets including MAPK1, MAPK3, AKT1, RXRA, RXRB, PPARD and PPARA to modulate inflammation-related signalling pathways and the sphingolipid signalling pathway. In vitro investigations corroborated that XSBO can significantly influence the viability of Aβ25-35-induced SH-SY5Y cells via the MAPK pathway. CONCLUSIONS This study demonstrated that XSBO has the potential to mitigate inflammation network disorders through the MAPK pathway and to restore sphingolipid metabolite levels in AD rats, thereby laying a groundwork for future studies.
Collapse
Affiliation(s)
- Lijing Du
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan, China
| | - Yuanfang Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Gan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Leqi Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinyi Li
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shikai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan, China
| | - Shasha Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huizi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan, China
| |
Collapse
|
2
|
Huang XH, Wang Y, Wu LY, Jiang YL, Ma LJ, Shi XF, Wang X, Zheng MM, Tang L, Lou YL, Xie DL. mTORC2 is crucial for regulating the recombinant Mycobacterium tuberculosis CFP-10 protein-induced phagocytosis in macrophages. BMC Immunol 2025; 26:36. [PMID: 40340685 PMCID: PMC12063350 DOI: 10.1186/s12865-025-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis, Mtb) is a pathogenic bacterial species in the family Mycobacteriaceae and the causative agent of most cases of tuberculosis. Macrophages play essential roles in defense against invading pathogens, including M. tuberculosis. The study of M. tuberculosis-associated antigens is one of the hotspots of current research. The secreted proteins of M. tuberculosis, including early secretory antigen target 6 (ESTA6) and culture filtrate protein 10 (CFP-10), are crucial for the immunological diagnosis of tuberculosis. However, the relationship of CFP-10 alone with macrophages is still not well understood. In the present study, we report that the purified recombinant protein CFP-10 (rCFP-10) significantly enhanced the phagocytic capacity of murine macrophages. rCFP-10 induces both TNF-α and IL-6 production. Additionally, RNASeq analysis revealed that rCFP10 triggers multiple pathways involved with macrophage activation. Interestingly, neither mitochondrial reactive oxygen species nor lysosomal content had a significant difference treated with rCFP-10 in macrophages. Moreover, inhibition of the mammalian target of rapamycin (mTOR) activity was shown to significantly reverse the rCFP10-induced phagocytosis, various genes involved in lysosome acidification and TLR signaling. These findings highlight that the CFP-10 plays an essential role in the invasion of macrophages by M. tuberculosis, which is partly regulated by the mTORC2 signal pathway.
Collapse
Affiliation(s)
- Xian-Hui Huang
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Yu Wang
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Liu-Ying Wu
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
- Department of Laboratory Medicine, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, China
| | - Ye-Lin Jiang
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Ling-Jie Ma
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Xiao-Feng Shi
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Xing Wang
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Meng-Meng Zheng
- Scientific Research Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lu Tang
- Department of Urology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yong-Liang Lou
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China.
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, 325035, China.
| | - Dan-Li Xie
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China.
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
3
|
Chen L, Lu L, Xu G, Jiang Z, Guo Q, Huang F, Yan W, Zhang H, Wu Y, Xie Y, Huang L. Study on the pharmacokinetics and brain tissue distribution of eight anti-inflammatory active components in normal and neuroinflammatory rats orally administered with extract of Tinospora sinensis (Lour.) Merr. using the UPLC-MS/MS method. Fitoterapia 2025; 184:106564. [PMID: 40348033 DOI: 10.1016/j.fitote.2025.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
Tinospora sinensis (Lour.) Merr. (Tinospora sinensis) is a traditional Chinese medicine commonly used by Tibetan people in China to prevent and treat diseases such as senile dementia, neuroinflammatory, and rheumatoid arthritis. However, the pharmacokinetic characteristics and tissue distribution of Tinospora sinensis active components in vivo, especially the distribution of brain regions, are unclear. Herein, a stable and accurate ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to compare the pharmacokinetic patterns and differences in brain tissue distribution of eight anti-inflammatory active components in normal and neuroinflammatory rats after oral administration of extracts from Tinospora sinensis. ACE Excel 3 C18-AR (100 × 2.1 mm, 1.7 μm) column was used for gradient elution with 0.1 % formic acid water (A) and acetonitrile (B), rifampicin as an internal standard, electrospray ionization (ESI) positive and negative ion mode scanning, multiple reaction monitoring (MRM) determination, and DAS 2.0 software analysis. The UPLC-MS/MS method established through verification is accurate and reliable, and the methodology can meet the quantitative requirements. The pharmacokinetic results showed differences in the pharmacokinetic process and brain tissue distribution between normal rats and rats with neuroinflammation. All eight anti-inflammatory active components can be rapidly absorbed into the bloodstream (Tmax ≤ 2 h), but the plasma metabolism rate of rats with neuroinflammation is faster and the brain content is lower. Neuroinflammation has a significant impact on the in vivo process of oral administration of Tinospora sinensis in rats. The study provides experimental evidence for the quality control and clinical application of Tinospora sinensis.
Collapse
Affiliation(s)
- Liping Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China; Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Longhui Lu
- Market Supervision Administration of Xinzhou District, Shangrao City, Shangrao, Jiangxi 334000, China
| | - Guoliang Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China; Research Center for Differentiation and Development of Basic Theory of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Zhihui Jiang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Qiujin Guo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Feijun Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Wenyan Yan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Hang Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yi Wu
- Jiangxi Provincial Institute of Food and Drug Inspection and Testing, Nanchang, Jiangxi 330004, China
| | - Yongyan Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China; Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China.
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China; Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China.
| |
Collapse
|
4
|
Park KM, Kim B, Woo W, Kim LK, Hyun YM. Polystyrene microplastics induce activation and cell death of neutrophils through strong adherence and engulfment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136100. [PMID: 39405722 DOI: 10.1016/j.jhazmat.2024.136100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 12/01/2024]
Abstract
Ingested microplastics (MPs) can accumulate throughout whole body, which may induce the dysfunction of immune system. However, it remains unclear how MP exposure affects innate immune responses at the cellular level. We found that mouse neutrophils strongly bind and then engulf polystyrene MPs. This interaction leads to proinflammatory state of neutrophils and eventually results in apoptotic cell death through toll-like receptor signaling pathway in a bacteria-recognition mimetic manner. Moreover, our data verified that orally administered polystyrene MPs reach various organs in mice, where they are interacted with and endocytosed by neutrophils. We confirmed that human neutrophils also strongly bind and internalize polystyrene MPs. Additionally, RNA sequencing analysis of polystyrene MPs-exposed human neutrophils showed the upregulation of cell death-related function. Therefore, the accumulated MPs may exacerbate inflammatory immune response by disrupting neutrophil function. These results provide novel insight into the adverse responses of neutrophils induced by MP exposure.
Collapse
Affiliation(s)
- Koung-Min Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bora Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonjin Woo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lark Kyun Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Elhassan E, Omolo CA, Gafar MA, Kiruri LW, Ibrahim UH, Ismail EA, Devnarain N, Govender T. Disease-Inspired Design of Biomimetic Tannic Acid-Based Hybrid Nanocarriers for Enhancing the Treatment of Bacterial-Induced Sepsis. Mol Pharm 2024; 21:4924-4946. [PMID: 39214595 DOI: 10.1021/acs.molpharmaceut.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study explored the development of novel biomimetic tannic acid-based hybrid nanocarriers (HNs) for targeted delivery of ciprofloxacin (CIP-loaded TAH-NPs) against bacterial-induced sepsis. The prepared CIP-loaded TAH-NPs exhibited appropriate physicochemical characteristics and demonstrated biocompatibility and nonhemolytic properties. Computational simulations and microscale thermophoresis studies validated the strong binding affinity of tannic acid (TA) and its nanoformulation to human Toll-like receptor 4, surpassing that of the natural substrate lipopolysaccharide (LPS), suggesting a potential competitive inhibition against LPS-induced inflammatory responses. CIP released from TAH-NPs displayed a sustained release profile over 72 h. The in vitro antibacterial activity studies revealed that CIP-loaded TAH-NPs exhibited enhanced antibacterial efficacy and efflux pump inhibitory activity. Specifically, they showed a 3-fold increase in biofilm eradication activity against MRSA and a 2-fold increase against P. aeruginosa compared to bare CIP. Time-killing assays demonstrated complete bacterial clearance within 8 h of treatment with CIP-loaded TAH-NPs. In vitro DPPH scavenging and anti-inflammatory investigations confirmed the ability of the prepared hybrid nanosystem to neutralize reactive oxygen species (ROS) and modulate LPS-induced inflammatory responses. Collectively, these results suggest that CIP-loaded TAH-NPs may serve as an innovative nanocarrier for the effective and targeted delivery of antibiotics against bacterial-induced sepsis.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P.O. Box 14634-00800, Nairobi 00800, Kenya
| | - Mohammed Ali Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4300, South Africa
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| |
Collapse
|
6
|
Viscovo M, Clemmensen MDL, Fosso F, Maiolo E, Autore F, Laurenti L, Hohaus S, Chiusolo P. PlentiPlex™ MYD88 Waldenström lymphoma qPCR assay: A highly sensitive method for detection of MYD88 L265P mutation. Int J Lab Hematol 2024; 46:665-669. [PMID: 38390807 DOI: 10.1111/ijlh.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
INTRODUCTION Agarose gel-based conventional and real-time allele-specific polymerase chain reaction (AS-PCR) assays are currently used for sensitive detection and quantification of MYD88 L265P mutation. Visual inspection of an agarose gel can often be ambiguous. We propose a new allele-specific quantification PCR (AS-qPCR) assay, PlentiPlex™ MYD88 Waldenström lymphoma qPCR assay, that uses Intercalating Nucleic Acid (INA®) technology for increased affinity and specificity. METHODS This study compares PlentiPlex™ MYD88 Waldenström lymphoma qPCR assay with conventional AS-PCR. We included a total of 102 peripheral and bone marrow blood samples from 94 patients with a lymphoproliferative disorder. Droplet digital PCR (ddPCR) was used as a third method in case of discrepancy. RESULTS A positive percent agreement of 100% (95% CI 0.92-1.0) and a negative percent agreement of 98% (95% CI 0.90-1.0) were found between the conventional AS-PCR and the AS-qPCR methods. Including the ddPCR results to validate the discrepant cases, the sensitivity and specificity of PlentiPlex™ MYD88 Waldenström lymphoma qPCR Assay were 1.0 (95% CI 0.97-1.0) and 1.0 (95% CI 0.96-1.0), respectively. CONCLUSION Our data demonstrate that PlentiPlex™ MYD88 Waldenström lymphoma qPCR assay is a fast, highly sensitive, and specific method for the detection of MYD88 L265P compared with conventional AS-PCR.
Collapse
Affiliation(s)
- Marcello Viscovo
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | | | - Federica Fosso
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A Gemelli IRCC, Rome, Italy
| | - Elena Maiolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A Gemelli IRCC, Rome, Italy
| | - Francesco Autore
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A Gemelli IRCC, Rome, Italy
| | - Luca Laurenti
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A Gemelli IRCC, Rome, Italy
| | - Stefan Hohaus
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A Gemelli IRCC, Rome, Italy
| | - Patrizia Chiusolo
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A Gemelli IRCC, Rome, Italy
| |
Collapse
|
7
|
DeWolf SE, Hawkes AA, Kurian SM, Gorial DE, Hepokoski ML, Almeida SS, Posner IR, McKay DB. Human pulmonary microvascular endothelial cells respond to DAMPs from injured renal tubular cells. Pulm Circ 2024; 14:e12379. [PMID: 38962184 PMCID: PMC11220341 DOI: 10.1002/pul2.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 07/05/2024] Open
Abstract
Acute kidney injury (AKI) causes distant organ dysfunction through yet unknown mechanisms, leading to multiorgan failure and death. The lungs are one of the most common extrarenal organs affected by AKI, and combined lung and kidney injury has a mortality as high as 60%-80%. One mechanism that has been implicated in lung injury after AKI involves molecules released from injured kidney cells (DAMPs, or damage-associated molecular patterns) that promote a noninfectious inflammatory response by binding to pattern recognition receptors (PRRs) constitutively expressed on the pulmonary endothelium. To date there are limited data investigating the role of PRRs and DAMPs in the pulmonary endothelial response to AKI. Understanding these mechanisms holds great promise for therapeutics aimed at ameliorating the devastating effects of AKI. In this study, we stimulate primary human microvascular endothelial cells with DAMPs derived from injured primary renal tubular epithelial cells (RTECs) as an ex-vivo model of lung injury following AKI. We show that DAMPs derived from injured RTECs cause activation of Toll-Like Receptor and NOD-Like Receptor signaling pathways as well as increase human primary pulmonary microvascular endothelial cell (HMVEC) cytokine production, cell signaling activation, and permeability. We further show that cytokine production in HMVECs in response to DAMPs derived from RTECs is reduced by the inhibition of NOD1 and NOD2, which may have implications for future therapeutics. This paper adds to our understanding of PRR expression and function in pulmonary HMVECs and provides a foundation for future work aimed at developing therapeutic strategies to prevent lung injury following AKI.
Collapse
Affiliation(s)
- Sean E. DeWolf
- Department of Pulmonary and Critical Care MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
- Department of ImmunologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Alana A. Hawkes
- Department of ImmunologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Sunil M. Kurian
- Scripps Clinic Bio‐Repository & Bio‐Informatics Core, Scripps HealthLa JollaCaliforniaUSA
- Department of SurgeryScripps Clinic and Green HospitalLa JollaCaliforniaUSA
| | - Diana E. Gorial
- Department of ImmunologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Mark L. Hepokoski
- Department of Pulmonary and Critical Care MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
- Department of Pulmonary and Critical Care MedicineVeterans AdministrationSan DiegoCaliforniaUSA
| | | | - Isabella R. Posner
- Department of ImmunologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Dianne B. McKay
- Department of ImmunologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of SurgeryScripps Clinic and Green HospitalLa JollaCaliforniaUSA
| |
Collapse
|
8
|
Yilmaz M, He Q, Demir E, Teräsjärvi J, Gürsoy UK. Salivary IL-33 and sST2 levels in relation to TLR2 rs111200466 polymorphism and periodontitis. Oral Dis 2024; 30:2254-2261. [PMID: 37427857 DOI: 10.1111/odi.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Toll-like receptor-2 (TLR2) signalling pathway is involved in the regulation of interleukin (IL)-33 and its receptor suppression of tumorigenicity-2 (ST2). This study aimed to compare salivary IL-33 and soluble ST2 (sST2) levels of periodontitis patients with those of periodontally healthy individuals in relation to their TLR2 rs111200466 23-bp insertion/deletion polymorphism within the promoter region. MATERIALS AND METHODS Unstimulated saliva samples were collected, and periodontal parameters were recorded from 35 periodontally healthy individuals and 44 periodontitis patients. Non-surgical treatments were applied to periodontitis patients, and sample collections and clinical measurements were repeated 3 months following therapy. Salivary IL-33 and sST2 levels were measured with enzyme-linked immunosorbent assay kits, and TLR2 rs111200466 polymorphism was detected by polymerase chain reaction. RESULTS Elevated salivary IL-33 (p = 0.007) and sST2 (p = 0.020) levels were observed in periodontitis patients, in comparison to controls. sST2 levels declined 3-months following treatment (p < 0.001). Increased salivary IL-33 and sST2 levels were found to be associated with periodontitis, with no significant relation to the TLR2 polymorphism. CONCLUSION Periodontitis, but not TLR2 rs111200466 polymorphism, is associated with elevated salivary sST2 and possibly IL-33 levels, and periodontal treatment is effective in reducing salivary sST2 levels.
Collapse
Affiliation(s)
- Mustafa Yilmaz
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Periodontology, Faculty of Dentistry, Biruni University, Istanbul, Turkey
| | - Qiushui He
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
- InFLAMES Research Flagship Centre, University of Turku, Turku, Finland
| | - Esra Demir
- Department of Periodontology, Faculty of Dentistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Johanna Teräsjärvi
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Rumpel N, Riechert G, Schumann J. miRNA-Mediated Fine Regulation of TLR-Induced M1 Polarization. Cells 2024; 13:701. [PMID: 38667316 PMCID: PMC11049089 DOI: 10.3390/cells13080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Macrophage polarization to the M1 spectrum is induced by bacterial cell wall components through stimulation of Toll-like family (TLR) receptors. By orchestrating the expression of relevant mediators of the TLR cascade, as well as associated pathways and feedback loops, macrophage polarization is coordinated to ensure an appropriate immune response. This is central to the successful control of pathogens and the maintenance of health. Macrophage polarization is known to be modulated at both the transcriptional and post-transcriptional levels. In recent years, the miRNA-based post-transcriptional regulation of M1 polarization has received increasing attention from the scientific community. Comparative studies have shown that TLR stimulation alters the miRNA profile of macrophages and that macrophages from the M1 or the M2 spectrum differ in terms of miRNAs expressed. Simultaneously, miRNAs are considered critical post-transcriptional regulators of macrophage polarization. In particular, miRNAs are thought to play a regulatory role in the switch between the early proinflammatory response and the resolution phase. In this review, we will discuss the current state of knowledge on the complex interaction of transcriptional and post-transcriptional regulatory mechanisms that ultimately determine the functionality of macrophages.
Collapse
Affiliation(s)
| | | | - Julia Schumann
- University Clinic and Outpatient Clinic for Anesthesiology and Operative Intensive Care, University Medicine Halle (Saale), Franzosenweg 1a, 06112 Halle (Saale), Germany
| |
Collapse
|
10
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
11
|
Lee JH, Ko YB, Choi YM, Kim J, Cho HD, Choi H, Song HY, Han JM, Cha GH, Lee YH, Kim JM, Kim WS, Byun EB, Yuk JM. CM1, a Chrysin Derivative, Protects from Endotoxin-Induced Lethal Shock by Regulating the Excessive Activation of Inflammatory Responses. Nutrients 2024; 16:641. [PMID: 38474770 DOI: 10.3390/nu16050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Interestingly, CM1 attenuated the Toll-like receptor 4 (TLR4)-induced production of inflammatory cytokines by inhibiting the extracellular-signal-regulated kinase (ERK)/MAPK and nuclear factor kappa B (NF-κB) signalling pathways. In addition, CM1 induced the expression of TNFAIP3 and SIRT1 on TLR4-stimulated primary macrophages; however, the anti-inflammatory effect of CM1 was abolished by the siRNA-mediated silencing of TNFAPI3 or by the genetic or pharmacologic inhibition of SIRT1. Importantly, intravenous administration of CM1 resulted in decreased susceptibility to endotoxin-induced sepsis, thereby attenuating the production of pro-inflammatory cytokines and neutrophil infiltration into the lung compared to control mice. Collectively, these findings demonstrate that CM1 has therapeutic potential for diverse inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Jae-Hyung Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Young-Bok Ko
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Obstetrics & Gynecology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Yong-Min Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jinju Kim
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwan-Doo Cho
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyeonil Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ha-Yeon Song
- Korea Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Jeong-Moo Han
- Korea Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Guang-Ho Cha
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Young-Ha Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Woo-Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Eui-Baek Byun
- Korea Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Jae-Min Yuk
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
12
|
Tsai ST, Yang CC, Liao HY, Lin YW. Electroacupuncture Reduces Fibromyalgia Pain via Neuronal/Microglial Inactivation and Toll-like Receptor 4 in the Mouse Brain: Precise Interpretation of Chemogenetics. Biomedicines 2024; 12:387. [PMID: 38397989 PMCID: PMC10886830 DOI: 10.3390/biomedicines12020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Fibromyalgia (FM) is a complex, chronic, widespread pain syndrome that can cause significant health and economic burden. Emerging evidence has shown that neuroinflammation is an underlying pathological mechanism in FM. Toll-like receptors (TLRs) are key mediators of the immune system. TLR4 is expressed primarily in microglia and regulates downstream signaling pathways, such as MyD88/NF-κB and TRIF/IRF3. It remains unknown whether electroacupuncture (EA) has therapeutic benefit in attenuating FM pain and what role the TLR4 pathway may play in this effect. We compared EA with sham EA to eliminate the placebo effect due to acupuncture. We demonstrated that intermittent cold stress significantly induced an increase in mechanical and thermal FM pain in mice (mechanical: 2.48 ± 0.53 g; thermal: 5.64 ± 0.32 s). EA but not sham EA has an analgesic effect on FM mice. TLR4 and inflammatory mediator-related molecules were increased in the thalamus, medial prefrontal cortex, somatosensory cortex (SSC), and amygdala of FM mice, indicating neuroinflammation and microglial activation. These molecules were reduced by EA but not sham EA. Furthermore, a new chemogenetics method was used to precisely inhibit SSC activity that displayed an anti-nociceptive effect through the TLR4 pathway. Our results imply that the analgesic effect of EA is associated with TLR4 downregulation. We provide novel evidence that EA modulates the TLR4 signaling pathway, revealing potential therapeutic targets for FM pain.
Collapse
Affiliation(s)
- Sheng-Ta Tsai
- Department of Neurology, China Medical University Hospital, Taichung 404332, Taiwan;
- School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Chia-Chun Yang
- Department of General Psychiatry, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan 330035, Taiwan;
| | - Hsien-Yin Liao
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Acupuncture, China Medical University Hospital, Taichung 404328, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
13
|
Liu J, Chen QX, Wu WF, Wang D, Zhao SY, Li JH, Chang YQ, Zeng SG, Hu JY, Li YJ, Du JX, Jiao SM, Xiao HC, Zhang Q, Xu J, Zhao JF, Zhou HB, Wang YH, Zou J, Sun PH. Novel ligustilide derivatives target quorum sensing system LasR/LasB and relieve inflammatory response against Pseudomonas aeruginosa infection. Eur J Med Chem 2024; 263:115972. [PMID: 37995562 DOI: 10.1016/j.ejmech.2023.115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The increasing antibiotic resistance driven by Pseudomonas aeruginosa typically leads to uncontrolled and persistent inflammatory damage, which is primarily attributed to the virulence and biofilms produced by the bacteria. Herein, we present a novel anti-infective drug strategy designed to inhibit the bacterial quorum sensing system, thereby attenuating P. aeruginosa virulence, and modulating inflammation from drug-resistant bacterial infections. We discovered new quorum sensing LasR/LasB inhibitors derived from the structural modification of a ligustilide derivative library. Of these compounds, 5f demonstrated significant inhibitory activity against LasB (LasB-gfp, IC50 = 8.7 μM) and a moderate inhibitory effect on P. aeruginosa biofilms (IC50 = 7.4 μM). Through live image analysis in a fluorescent protein-labeled zebrafish larva model, we observed that compound 5f significantly inhibited the migration of macrophages. Moreover, compound 5f effectively attenuated quorum sensing-mediated virulence factors and biofilm formation by P. aeruginosa. It also alleviated the inflammatory response by P. aeruginosa-infected macrophages through the downregulation of mitogen-activated protein kinase and NF-κB signal-transduction pathways. Notably, in vivo experiments, this compound demonstrated marked therapeutic effects in acute lung injury models induced by lipopolysaccharides from P. aeruginosa. These results indicate that compound 5f has the potential to be a novel anti-infective candidate against drug-resistant infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Jun Liu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Qiu-Xian Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Wen-Fu Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Dong Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Si-Yu Zhao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jia-Hao Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yi-Qun Chang
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shao-Gao Zeng
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jia-Yi Hu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yu-Jie Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jia-Xin Du
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Shu-Meng Jiao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Hai-Chuan Xiao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Qiang Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jian-Fu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Hai-Bo Zhou
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Yong-Heng Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Jian Zou
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Ping-Hua Sun
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; College of Pharmacy, Shihezi University, Xinjiang, 832099, PR China; Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China.
| |
Collapse
|
14
|
Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop Med Infect Dis 2024; 9:13. [PMID: 38251210 PMCID: PMC10818686 DOI: 10.3390/tropicalmed9010013] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Interleukins (ILs) are signaling molecules that are crucial in regulating immune responses during infectious diseases. Pro-inflammatory ILs contribute to the activation and recruitment of immune cells, whereas anti-inflammatory ILs help to suppress excessive inflammation and promote tissue repair. Here, we provide a comprehensive overview of the role of pro-inflammatory and anti-inflammatory ILs in infectious diseases, with a focus on the mechanisms underlying their effects, their diagnostic and therapeutic potential, and emerging trends in IL-based therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed Ali Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
15
|
Kunitatsu K, Yamamoto Y, Nasu S, Taniji A, Kawashima S, Yamagishi N, Ito T, Inoue S, Kanai Y. Novel Peritoneal Sclerosis Rat Model Developed by Administration of Bleomycin and Lansoprazole. Int J Mol Sci 2023; 24:16108. [PMID: 38003303 PMCID: PMC10671295 DOI: 10.3390/ijms242216108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
In our preliminary experiment, peritoneal sclerosis likely induced by peritoneal dialysis was unexpectedly observed in the livers of rats given bleomycin and lansoprazole. We examined whether this peritoneal thickening around the liver was time-dependently induced by administration of both drugs. Male Wistar rats were injected with bleomycin and/or lansoprazole for 2 or 4 weeks. The 3YB-1 cell line derived from rat fibroblasts was treated by bleomycin and/or lansoprazole for 24 h. The administration of both drugs together, but not individually, thickened the peritoneal tissue around the liver. There was accumulation of collagen fibers, macrophages, and eosinophils under mesothelial cells. Expressions of Col1a1, Mcp1 and Mcp3 genes were increased in the peritoneal tissue around the liver and in 3YB-1 cells by the administration of both drugs together, and Opn genes had increased expressions in this tissue and 3YB-1 cells. Mesothelial cells indicated immunoreactivity against both cytokeratin, a mesothelial cell marker, and αSMA, a fibroblast marker, around the livers of rats given both drugs. Administration of both drugs induced the migration of macrophages and eosinophils and induced fibrosis associated with the possible activation of fibroblasts and the possible promotion of the mesothelial-mesenchymal transition. This might become a novel model of peritoneal sclerosis for peritoneal dialysis.
Collapse
Affiliation(s)
- Kosei Kunitatsu
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Yuta Yamamoto
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shota Nasu
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Akira Taniji
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shuji Kawashima
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Naoko Yamagishi
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Takao Ito
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Yoshimitsu Kanai
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
16
|
Aass KR, Tryggestad SS, Mjelle R, Kastnes MH, Nedal TMV, Misund K, Standal T. IL-32 is induced by activation of toll-like receptors in multiple myeloma cells. Front Immunol 2023; 14:1107844. [PMID: 36875074 PMCID: PMC9978100 DOI: 10.3389/fimmu.2023.1107844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Multiple myeloma (MM) is a hematological cancer characterized by accumulation of malignant plasma cells in the bone marrow. The patients are immune suppressed and suffer from recurrent and chronic infections. Interleukin-32 is a non-conventional, pro-inflammatory cytokine expressed in a subgroup of MM patients with a poor prognosis. IL-32 has also been shown to promote proliferation and survival of the cancer cells. Here we show that activation of toll-like receptors (TLRs) promotes expression of IL-32 in MM cells through NFκB activation. In patient-derived primary MM cells, IL-32 expression is positively associated with expression of TLRs. Furthermore, we found that several TLR genes are upregulated from diagnosis to relapse in individual patients, predominantly TLRs sensing bacterial components. Interestingly, upregulation of these TLRs coincides with an increase in IL-32. Taken together, these results support a role for IL-32 in microbial sensing in MM cells and suggest that infections can induce expression of this pro-tumorigenic cytokine in MM patients.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Synne Stokke Tryggestad
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robin Mjelle
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Bioinformatics Core Facility - BioCore, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology, St. Olavs University Hospital, Trondheim, Norway
| | - Martin H Kastnes
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tonje Marie Vikene Nedal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Misund
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
17
|
Kalyan M, Tousif AH, Sonali S, Vichitra C, Sunanda T, Praveenraj SS, Ray B, Gorantla VR, Rungratanawanich W, Mahalakshmi AM, Qoronfleh MW, Monaghan TM, Song BJ, Essa MM, Chidambaram SB. Role of Endogenous Lipopolysaccharides in Neurological Disorders. Cells 2022; 11:cells11244038. [PMID: 36552802 PMCID: PMC9777235 DOI: 10.3390/cells11244038] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide (LPS) is a cell-wall immunostimulatory endotoxin component of Gram-negative bacteria. A growing body of evidence reveals that alterations in the bacterial composition of the intestinal microbiota (gut dysbiosis) disrupt host immune homeostasis and the intestinal barrier function. Microbial dysbiosis leads to a proinflammatory milieu and systemic endotoxemia, which contribute to the development of neurodegenerative diseases and metabolic disorders. Two important pathophysiological hallmarks of neurodegenerative diseases (NDDs) are oxidative/nitrative stress and inflammation, which can be initiated by elevated intestinal permeability, with increased abundance of pathobionts. These changes lead to excessive release of LPS and other bacterial products into blood, which in turn induce chronic systemic inflammation, which damages the blood-brain barrier (BBB). An impaired BBB allows the translocation of potentially harmful bacterial products, including LPS, and activated neutrophils/leucocytes into the brain, which results in neuroinflammation and apoptosis. Chronic neuroinflammation causes neuronal damage and synaptic loss, leading to memory impairment. LPS-induced inflammation causes inappropriate activation of microglia, astrocytes, and dendritic cells. Consequently, these alterations negatively affect mitochondrial function and lead to increases in oxidative/nitrative stress and neuronal senescence. These cellular changes in the brain give rise to specific clinical symptoms, such as impairment of locomotor function, muscle weakness, paralysis, learning deficits, and dementia. This review summarizes the contributing role of LPS in the development of neuroinflammation and neuronal cell death in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjunath Kalyan
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ahmed Hediyal Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sankar Simla Praveenraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Vasavi Rakesh Gorantla
- Department of Anatomical sciences, School of Medicine, St. George’s University Grenada, West Indies FZ818, Grenada
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research & Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917, USA
- 21 Health Street, Consulting Services, 1 Christian Fields, London SW16 3JY, UK
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| |
Collapse
|
18
|
Long J, Ying T, Zhang L, Yu T, Wu J, Liu Y, Li X, You G, Zhang L, Bi Y. Discovery of fusidic acid derivatives as novel STING inhibitors for treatment of sepsis. Eur J Med Chem 2022; 244:114814. [DOI: 10.1016/j.ejmech.2022.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
19
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
20
|
Yang FM, Shen L, Fan DD, Bai Y, Li B, Lee J. YAP9/A20 complex suppresses proinflammatory responses and provides novel anti-inflammatory therapeutic potentials. Front Immunol 2022; 13:914381. [PMID: 36045678 PMCID: PMC9420849 DOI: 10.3389/fimmu.2022.914381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Innate anti-inflammatory mechanisms are essential for immune homeostasis and can present opportunities to intervene inflammatory diseases. In this report, we found that YAP isoform 9 (YAP9) is an essential negative regulator of the potent inflammatory stimuli such as TNFα, IL-1β, and LPS. YAP9 constitutively interacts with another anti-inflammatory regulator A20 (TNFAIP3) to suppress inflammatory responses, but A20 and YAP can function only in the presence of the other. YAP9 uses a short stretch of amino acids in the proline-rich domain (PRD) and transactivation domain (TAD) suppress the inflammatory signaling while A20 mainly uses the zinc finger domain 7 (ZF7). Cell-penetrating synthetic PRD, TAD, and ZF7 peptides act as YAP9 and A20 mimetics respectively to suppress the proinflammatory responses at the cellular level and in mice. Our data uncover a novel anti-inflammatory axis and anti-inflammatory agents that can be developed to treat acute or chronic conditions where TNFα, IL-1β, or LPS plays a key role in initiating and/or perpetuating inflammation.
Collapse
|
21
|
Miura S, Oyanagi E, Watanabe C, Hamada H, Aoki T, Kremenik MJ, Yano H. Acetyl-L-carnitine attenuates Poly I: C- induced sickness behavior in mice. Biosci Biotechnol Biochem 2022; 86:1423-1430. [PMID: 35945649 DOI: 10.1093/bbb/zbac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022]
Abstract
Fatigue is accompanied by a decrease in physical activity or malaise, and might be reduced by acetyl-L-carnitine (ALC) administration. The purpose of this study was to investigate the preventive effects of ALC on Poly I: C-induced sickness behavior in mice. For the experiment, male C3H/HeN mice were used and treated with ALC for 5 days before Poly I: C administration. ALC administration attenuated the decrease in wheel behavior activity of mice at 24 h after Poly I: C administration, and ALC treated mice quickly recovered from the sickness behavior. The gene expression of brain-derived neurotrophic factor (BDNF) in the cerebrum and hippocampus, which is associated with physical activity, was higher in the ALC-treated group. Translocator protein 18kDa (TSPO), which has cytoprotective effects, was up-regulated in the cerebrum and hippocampus, suggesting that ALC suppressed the decrease in activity induced by Poly I: C treatment through enhancement of cytoprotective effects in the brain.
Collapse
Affiliation(s)
- Suzuka Miura
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Eri Oyanagi
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Chihiro Watanabe
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Hiroki Hamada
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Takafumi Aoki
- Department of Clinical Nutrition, Kawasaki University of Medical Welfare, Kurashiki, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Michael J Kremenik
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Hiromi Yano
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| |
Collapse
|
22
|
Paracatu LC, Monlish DA, Greenberg ZJ, Fisher DAC, Walter MJ, Oh ST, Schuettpelz LG. Toll-like receptor and cytokine expression throughout the bone marrow differs between patients with low- and high-risk myelodysplastic syndromes. Exp Hematol 2022; 110:47-59. [PMID: 35367529 PMCID: PMC9590644 DOI: 10.1016/j.exphem.2022.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022]
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders, the pathogenesis of which involves enhanced immune signaling that promotes or selects for mutant hematopoietic stem and progenitor cells (HSPCs). In particular, toll-like receptor (TLR) expression and signaling are enhanced in MDS, and their inhibition is an attractive therapeutic strategy. Although prior studies have reported increased expression of TLR2 and its binding partners TLR1 and TLR6 in the CD34+ cells of patients with MDS (especially those with low-risk disease), TLR expression in other cell types throughout the bone marrow is largely unknown. To address this, we used mass cytometry to assess the expression of TLR1, TLR2, and TLR6 and cytokines in the bone marrow hematopoietic cells of six low/intermediate-risk and six high-risk unmatched MDS bone marrow samples, as well as healthy controls, both at baseline and in response to TLR agonists. We observed several consistent differences between the groups. Most notably, TLR expression was upregulated in multiple cell populations in the low/intermediate-risk, but not high-risk, patients. In addition, many cytokines, including interleukin-6, interleukin-8, tumor necrosis factor α, transforming growth factor β, macrophage inflammatory protein 1β, and granzyme B, were highly expressed from various cell types in low/intermediate-risk patients. However, these same cytokines, with the exception of transforming growth factor β, were expressed at lower levels in high-risk MDS. Together, these findings highlight the differential role of inflammation, and specifically TLR expression, in low/intermediate- versus high-risk MDS, and suggest that elevated TLR expression and cytokine production in multiple cell types likely influences the pathogenesis of MDS in lower-risk patients.
Collapse
Affiliation(s)
- Luana Chiquetto Paracatu
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO
| | - Darlene A Monlish
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO
| | - Zev J Greenberg
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO
| | - Daniel A C Fisher
- Department of Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, MO
| | - Matthew J Walter
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Stephen T Oh
- Department of Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, MO
| | - Laura G Schuettpelz
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
23
|
Tang H, Yang D, Zhu L, Shi F, Ye G, Guo H, Deng H, Zhao L, Xu Z, Li Y. Paeonol Interferes With Quorum-Sensing in Pseudomonas aeruginosa and Modulates Inflammatory Responses In Vitro and In Vivo. Front Immunol 2022; 13:896874. [PMID: 35686124 PMCID: PMC9170885 DOI: 10.3389/fimmu.2022.896874] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022] Open
Abstract
Developing quorum-sensing (QS) based anti-infection drugs is one of the most powerful strategies to combat multidrug-resistant bacteria. Paeonol has been proven to attenuate the QS-controlled virulence factors of P. aeruginosa by down-regulating the transcription of QS signal molecules. This research aimed to assess the anti-virulence activity and mechanism of paeonol against P. aeruginosa infection in vitro and in vivo. In this study, paeonol was found to reduce the adhesion and invasion of P.aeruginosa to macrophages and resist the cytotoxicity induced by P.aeruginosa. Paeonol reduced the expression of virulence factors of P.aeruginosa by inhibiting QS, thereby reducing the LDH release and damage of P.aeruginosa-infected macrophages. Paeonol can inhibit bacterial virulence and enhance the ability of macrophages to clear P.aeruginosa. In addition, paeonol exerts anti-inflammatory activity by reducing the expression of inflammatory cytokines and increasing the production of anti-inflammatory cytokines. Paeonol treatment significantly inhibited the activation of TLR4/MyD88/NF-κB signaling pathway and decreased the inflammation response of P. aeruginosa-infected macrophages. Paeonol also significantly reduced the ability of P.aeruginosa to infect mice and reduced the inflammatory response. These data suggest that paeonol can inhibit the virulence of P.aeruginosa and decrease the inflammation response in P.aeruginosa-infected macrophages and mice, which can decrease the damage induced by P.aeruginosa infection and enhance the ability of macrophages to clear bacteria. This study supports the further development of new potential anti-infective drugs based on inhibition of QS and virulence factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Komal S, Komal N, Mujtaba A, Wang SH, Zhang LR, Han SN. Potential therapeutic strategies for myocardial infarction: the role of Toll-like receptors. Immunol Res 2022; 70:607-623. [PMID: 35608723 DOI: 10.1007/s12026-022-09290-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
Myocardial infarction (MI) is a life-threatening condition among patients with cardiovascular diseases. MI increases the risk of stroke and heart failure and is a leading cause of morbidity and mortality worldwide. Several genetic and epigenetic factors contribute to the development of MI, suggesting that further understanding of the pathomechanism of MI might help in the early management and treatment of this disease. Toll-like receptors (TLRs) are well-known members of the pattern recognition receptor (PRR) family and contribute to both adaptive and innate immunity. Collectively, studies suggest that TLRs have a cardioprotective effect. However, prolonged TLR activation in the response to signals generated by damage-associated molecular patterns (DAMPs) results in the release of inflammatory cytokines and contributes to the development and exacerbation of myocardial inflammation, MI, ischemia-reperfusion injury, myocarditis, and heart failure. The objective of this review is to discuss and summarize the association of TLRs with MI, highlighting their therapeutic potential for the development of advanced TLR-targeted therapies for MI.
Collapse
Affiliation(s)
- Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Nimrah Komal
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Ali Mujtaba
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
25
|
Kashani NR, Azadbakht J, Ehteram H, Kashani HH, Rajabi-Moghadam H, Ahmad E, Nikzad H, Hosseini ES. Molecular and Clinical Investigation of COVID-19: From Pathogenesis and Immune Responses to Novel Diagnosis and Treatment. Front Mol Biosci 2022; 9:770775. [PMID: 35664675 PMCID: PMC9161360 DOI: 10.3389/fmolb.2022.770775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 04/04/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus-related severe acute respiratory syndrome (SARS-CoV) in 2002/2003, the Middle East respiratory syndrome (MERS-CoV) in 2012/2013, and especially the current 2019/2021 severe acute respiratory syndrome-2 (SARS-CoV-2) negatively affected the national health systems worldwide. Different SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and recently Omicron (B.1.1.529), have emerged resulting from the high rate of genetic recombination and S1-RBD/S2 mutation/deletion in the spike protein that has an impact on the virus activity. Furthermore, genetic variability in certain genes involved in the immune system might impact the level of SARS-CoV-2 recognition and immune response against the virus among different populations. Understanding the molecular mechanism and function of SARS-CoV-2 variants and their different epidemiological outcomes is a key step for effective COVID-19 treatment strategies, including antiviral drug development and vaccine designs, which can immunize people with genetic variabilities against various strains of SARS-CoV-2. In this review, we center our focus on the recent and up-to-date knowledge on SARS-CoV-2 (Alpha to Omicron) origin and evolution, structure, genetic diversity, route of transmission, pathogenesis, new diagnostic, and treatment strategies, as well as the psychological and economic impact of COVID-19 pandemic on individuals and their lives around the world.
Collapse
Affiliation(s)
- Narjes Riahi Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Ehteram
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Rajabi-Moghadam
- Department of Cardiovascular Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ejaz Ahmad
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
26
|
Helicobacter pylori Infection Mediates Inflammation and Tumorigenesis-Associated Genes Through miR-155-5p: An Integrative Omics and Bioinformatics-Based Investigation. Curr Microbiol 2022; 79:192. [PMID: 35551487 DOI: 10.1007/s00284-022-02880-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
Helicobacter pylori (H. pylori) is a major human pathogenic bacterium that survives in the gastric mucosa. The aim of this study is to evaluate the expression of the target gene network of miR-155-5p in H. pylori-related gastritis using a combination of public gene expression datasets and web-based platforms. To evaluate the expression of genes related to gastritis, we used two datasets from Gene Expression Omnibus (GEO) database. Then, we determined the overlaps between the predicted miR-155-5p target genes and gastritis-dysregulated GEO datasets genes; in the next step, we identified the possible miR-155-5p target-DEGs (Target-Differentially Expressed Genes). Also, we performed multiple bioinformatics analyses to identify the most important targets and downstream pathways associated with this miRNA. Using the UCSC cancer genomic browser analysis tool, we investigated the expression of hub genes in relation to gastric cancer and H. pylori infection, as well as the potential role of hub genes in gastritis, inflammation, and cancer. In this regard, 28 differentially expressed target genes of miR-155-5p were identified. Most of the captured target genes were correlated with the host immune response and inflammation. Based on the specific patterns of expression in gastritis and cancer, CD9, MST1R, and ADAM10 were candidates for the most probable targets of miR-155-5p. Although the focus of this study is primarily on bioinformatics, we think that our findings should be experimentally validated before they can be used as potential therapeutic and diagnostic tools.
Collapse
|
27
|
Idelfonso-García OG, Alarcón-Sánchez BR, Vásquez-Garzón VR, Baltiérrez-Hoyos R, Villa-Treviño S, Muriel P, Serrano H, Pérez-Carreón JI, Arellanes-Robledo J. Is Nucleoredoxin a Master Regulator of Cellular Redox Homeostasis? Its Implication in Different Pathologies. Antioxidants (Basel) 2022; 11:antiox11040670. [PMID: 35453355 PMCID: PMC9030443 DOI: 10.3390/antiox11040670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Nucleoredoxin (NXN), an oxidoreductase enzyme, contributes to cellular redox homeostasis by regulating different signaling pathways in a redox-dependent manner. By interacting with seven proteins so far, namely disheveled (DVL), protein phosphatase 2A (PP2A), phosphofructokinase-1 (PFK1), translocation protein SEC63 homolog (SEC63), myeloid differentiation primary response gene-88 (MYD88), flightless-I (FLII), and calcium/calmodulin-dependent protein kinase II type alpha (CAMK2A), NXN is involved in the regulation of several key cellular processes, including proliferation, organogenesis, cell cycle progression, glycolysis, innate immunity and inflammation, motility, contraction, protein transport into the endoplasmic reticulum, neuronal plasticity, among others; as a result, NXN has been implicated in different pathologies, such as cancer, alcoholic and polycystic liver disease, liver fibrogenesis, obesity, Robinow syndrome, diabetes mellitus, Alzheimer’s disease, and retinitis pigmentosa. Together, this evidence places NXN as a strong candidate to be a master redox regulator of cell physiology and as the hub of different redox-sensitive signaling pathways and associated pathologies. This review summarizes and discusses the current insights on NXN-dependent redox regulation and its implication in different pathologies.
Collapse
Affiliation(s)
- Osiris Germán Idelfonso-García
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City 09340, Mexico;
| | - Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Verónica Rocío Vásquez-Garzón
- Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, ‘Benito Juárez’ Autonomous University of Oaxaca–UABJO, Oaxaca 68020, Mexico; (V.R.V.-G.); (R.B.-H.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, ‘Benito Juárez’ Autonomous University of Oaxaca–UABJO, Oaxaca 68020, Mexico; (V.R.V.-G.); (R.B.-H.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Héctor Serrano
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City 09340, Mexico;
| | - Julio Isael Pérez-Carreón
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
- Correspondence: ; Tel.: +52-55-5350-1900 (ext. 1218)
| |
Collapse
|
28
|
Avbelj M, Hafner-Bratkovič I, Lainšček D, Manček-Keber M, Peternelj TT, Panter G, Treon SP, Gole B, Potočnik U, Jerala R. Cleavage-Mediated Regulation of Myd88 Signaling by Inflammasome-Activated Caspase-1. Front Immunol 2022; 12:790258. [PMID: 35069570 PMCID: PMC8767097 DOI: 10.3389/fimmu.2021.790258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023] Open
Abstract
Coordination among multiple signaling pathways ensures an appropriate immune response, where a signaling pathway may impair or augment another signaling pathway. Here, we report a negative feedback regulation of signaling through the key innate immune mediator MyD88 by inflammasome-activated caspase-1. NLRP3 inflammasome activation impaired agonist- or infection-induced TLR signaling and cytokine production through the proteolytic cleavage of MyD88 by caspase-1. Site-specific mutagenesis was used to identify caspase-1 cleavage site within MyD88 intermediary segment. Different cleavage site location within MyD88 defined the functional consequences of MyD88 cleavage between mouse and human cells. LPS/monosodium urate–induced mouse inflammation model corroborated the physiological role of this mechanism of regulation, that could be reversed by chemical inhibition of NLRP3. While Toll/interleukin-1 receptor (TIR) domain released by MyD88 cleavage additionally contributed to the inhibition of signaling, Waldenström’s macroglobulinemia associated MyD88L265P mutation is able to evade the caspase-1-mediated inhibition of MyD88 signaling through the ability of its TIRL265P domain to recruit full length MyD88 and facilitate signaling. The characterization of this mechanism reveals an additional layer of innate immunity regulation.
Collapse
Affiliation(s)
- Monika Avbelj
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Tina Tinkara Peternelj
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gabriela Panter
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Steven P Treon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Boris Gole
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Uroš Potočnik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Laboratory of Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
29
|
Hwang E, Kim H, Truong AD, Kim SJ, Song KD. Suppression of the Toll-like receptors 3 mediated pro-inflammatory gene expressions by progenitor cell differentiation and proliferation factor in chicken DF-1 cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:123-134. [PMID: 35174347 PMCID: PMC8819319 DOI: 10.5187/jast.2021.e130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs), as a part of innate immunity, plays an important role in detecting pathogenic molecular patterns (PAMPs) which are structural components or product of pathogens and initiate host defense systems or innate immunity. Precise negative feedback regulations of TLR signaling are important in maintaining homeostasis to prevent tissue damage by uncontrolled inflammation during innate immune responses. In this study, we identified and characterized the function of the pancreatic progenitor cell differentiation and proliferation factor (PPDPF) as a negative regulator for TLR signal-mediated inflammation in chicken. Bioinformatics analysis showed that the structure of chicken PPDPF evolutionarily conserved amino acid sequences with domains, i.e., SH3 binding sites and CDC-like kinase 2 (CLK2) binding sites, suggesting that relevant signaling pathways might contribute to suppression of inflammation. Our results showed that stimulation with polyinosinic:polycytidylic acids (Poly [I:C]), a synthetic agonist for TLR3 signaling, increased the mRNA expression of PPDPF in chicken fibroblasts DF-1 but not in chicken macrophage-like cells HD11. In addition, the expression of pro-inflammatory genes stimulated by Poly(I:C) were reduced in DF-1 cells which overexpress PPDPF. Future studies warrant to reveal the molecular mechanisms responsible for the anti-inflammatory capacity of PPDPF in chicken as well as a potential target for controlling viral resistance.
Collapse
Affiliation(s)
- Eunmi Hwang
- Division of Cosmetics and Biotechnology,
College of Life and Health Sciences, Hoseo University, Asan
31499, Korea
| | - Hyungkuen Kim
- Division of Cosmetics and Biotechnology,
College of Life and Health Sciences, Hoseo University, Asan
31499, Korea
| | - Anh Duc Truong
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Sung-Jo Kim
- Division of Cosmetics and Biotechnology,
College of Life and Health Sciences, Hoseo University, Asan
31499, Korea
| | - Ki-Duk Song
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
30
|
Shin S, Park J, Lee YE, Ko H, Youn HS. Isobavachalcone suppresses the TRIF-dependent signaling pathway of Toll-like receptors. Arch Pharm (Weinheim) 2021; 355:e2100404. [PMID: 34964142 DOI: 10.1002/ardp.202100404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022]
Abstract
Toll-like receptors (TLRs) are integral membrane-bound receptors that are central to innate and adaptive immune responses. They are known to activate a cascade of downstream signals to induce the secretion of inflammatory cytokines, chemokines, and type I interferons. Dysregulated activation of TLR signaling pathways can induce the activation of various transcription factors, such as nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). TLRs act via MyD88- and TRIF-mediated pathways to induce inflammatory responses. To evaluate the therapeutic potential of isobavachalcone (IBC), a natural chalcone component of Angelica keiskei, we examined its effects on signal transduction via TLR signaling pathways. IBC inhibited the activation of NF-κB and IRF3 induced by TLR agonists and their target genes. IBC also inhibited the activation of NF-κB and IRF3 induced by overexpression of downstream signaling components of TLR signaling pathways. These results suggest that IBC can regulate both MyD88- and TRIF-dependent signaling pathways of TLRs, resulting in a dramatic increase of new therapeutic options for various inflammatory diseases involving TLRs.
Collapse
Affiliation(s)
- Seokwon Shin
- Department of ICT Environmental Health System, Graduate School, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Jayeon Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Ye Eun Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Hanbin Ko
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Hyung-Sun Youn
- Department of ICT Environmental Health System, Graduate School, SoonChunHyang University, Asan-si, Chungnam, South Korea.,Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| |
Collapse
|
31
|
Osthole Inhibits Expression of Genes Associated with Toll-like Receptor 2 Signaling Pathway in an Organotypic 3D Skin Model of Human Epidermis with Atopic Dermatitis. Cells 2021; 11:cells11010088. [PMID: 35011650 PMCID: PMC8750192 DOI: 10.3390/cells11010088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
The Toll-like receptor (TLR) family signature has been linked to the etiopathology of atopic dermatitis (AD), a chronic inflammatory skin disease associated with skin barrier dysfunction and immune system imbalance. We aimed to investigate whether osthole (a plant-derived compound) can inhibit the genetic profile of key genes associated with TLR2 signaling (TIRAP, MyD88, IRAK1, TRAF6, IκBα, NFκB) after stimulation with LPS or histamine in a 3D in vitro model of AD. Overexpression of the aforementioned genes may directly increase the secretion of proinflammatory cytokines (CKs) and chemokines (ChKs), which may exacerbate the symptoms of AD. Relative gene expressions were quantified by qPCR and secretion of CKs and ChKs was evaluated by ELISA assay. LPS and histamine increased the relative expression of genes related to the TLR2 pathway, and osthole successfully reduced it. In summary, our results show that osthole inhibits the expression of genes associated with the TLR signaling pathway in a skin model of AD. Moreover, the secretion of CKs and ChKs after treatment of AD with osthole in a 3D skin model in vitro suggests the potential of osthole as a novel compound for the treatment of AD.
Collapse
|
32
|
Zamora V, Carlos Andreu-Ballester J, Rodero M, Cuéllar C. Anisakis simplex: Immunomodulatory effects of larval antigens on the activation of Toll like Receptors. Int Immunopharmacol 2021; 100:108120. [PMID: 34537480 DOI: 10.1016/j.intimp.2021.108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
AIMS The objective of this investigation is to evaluate the mechanisms Anisakis simplex employs to modify its host immune system, regarding the larval antigens interactions with Toll-Like-Receptors (TLRs). METHODS AND RESULTS In a previous study, we described that the stimulation of bone marrow derived dendritic cells (BMDCs) with A. simplex larval antigens drive an acute inflammatory response in BALB/c mice, but a more discrete and longer response in C57BL/6J. Moreover, when A. simplex larval antigens were combined with TLR agonists (TLR 1/2-9), they modified mainly TLR2, TLR4 and TLR9 agonists responses in both mice strains, and also TLR3, TLR5 and TLR7 in BALB/c. Antigen-presenting ability was analyzed by the detection of CD11c + cells expressing surface markers (CD80-86, MHC I-II), intracellular cytokines (IL-10, IL-12, TNF-α) and intracellular proteins (Myd88, NF-κβ) by Flow Cytometry. Secreted IL-10 was measured by ELISA. CONCLUSION Our findings confirm not only that the host genetic basis plays a role in the development of a Th2/Th1/Treg response, but also it states A. simplex larval antigens present specific mechanisms to modify the innate response of the host. As allergies share common pathways with the immune response against this particular helminth, our results provide a better understanding into the specific mechanisms of A. simplex allergy related diseases.
Collapse
Affiliation(s)
- Vega Zamora
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain.
| | | | - Marta Rodero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| |
Collapse
|
33
|
Macrophages Impair TLR9 Agonist Antitumor Activity through Interacting with the Anti-PD-1 Antibody Fc Domain. Cancers (Basel) 2021; 13:cancers13164081. [PMID: 34439233 PMCID: PMC8391891 DOI: 10.3390/cancers13164081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary We evaluated the contribution of macrophages to the effect of combinatorial immunotherapeutic treatments based on TLR9 stimulation (with CpG-ODNs) and PD-1 blockade in an ovarian cancer preclinical model. We observed a strong reduction in the antitumor efficacy of a TLR9 agonist upon anti-PD-1 antibody administration. Specifically, we found that TLR9-stimulated macrophages, through interacting with the fragment crystallizable (Fc) domain of the anti-PD-1 antibody, acquire an immunoregulatory phenotype leading to dampening of CpG-ODN antitumor effect. Since the stimulation of macrophage TLRs can be achieved not only by synthetic agonists but also by molecules present in the tumor microenvironment, the data we are presenting may represent another possible mechanism of anti-PD-1 antibody therapy resistance. Indeed, it is possible that when delivered as a monotherapy, anti-PD-1 antibody Fc domain may interact with macrophages in which TLR signaling has already been triggered by endogenous ligands, mirroring the biological effects described in the present study. Abstract Background. A combination of TLR9 agonists and an anti-PD-1 antibody has been reported to be effective in immunocompetent mice but the role of innate immunity has not yet been completely elucidated. Therefore, we investigated the contribution of the innate immune system to this combinatorial immunotherapeutic regimens using an immunodeficient mouse model in which the effector functions of innate immunity can clearly emerge without any interference from T lymphocytes. Methods. Athymic mice xenografted with IGROV-1 human ovarian cells, reported to be sensitive to TLR9 agonist therapy, were treated with cytosine–guanine (CpG)-oligodeoxynucleotides (ODNs), an anti-PD-1 antibody or their combination. Results. We found that PD-1 blockade dampened CpG-ODN antitumor activity. In vitro studies indicated that the interaction between the anti-PD-1 antibody fragment crystallizable (Fc) domain and macrophage Fc receptors caused these immune cells to acquire an immunoregulatory phenotype, contributing to a decrease in the efficacy of CpG-ODNs. Accordingly, in vivo macrophage depletion abrogated the detrimental effect exerted by the anti-PD-1 antibody. Conclusion. Our data suggest that if TLR signaling is active in macrophages, coadministration of an anti-PD-1 antibody can reprogram these immune cells towards a polarization state able to negatively affect the immune response and eventually promote tumor growth.
Collapse
|
34
|
miRNomic Signature in Very Low Birth-Weight Neonates Discriminates Late-Onset Gram-Positive Sepsis from Controls. Diagnostics (Basel) 2021; 11:diagnostics11081389. [PMID: 34441323 PMCID: PMC8391178 DOI: 10.3390/diagnostics11081389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives. Neonatal sepsis is a serious condition with a high rate of mortality and morbidity. Currently, the gold standard for sepsis diagnosis is a positive blood culture, which takes 48–72 h to yield results. We hypothesized that identifying differentially expressed miRNA pattern in neonates with late-onset Gram-positive sepsis would help with an earlier diagnosis and therapy. Methods. This is a prospective observational study in newborn infants with late-onset Gram positive bacterial sepsis and non-septic controls. Complementary to blood culture, an aliquot of 0.5 mL of blood was used to determine small non-coding RNA expression profiling using the GeneChip miRNA 4.0 Array. Results. A total of 11 very low birth-weight neonates with late-onset Gram-positive sepsis and 16 controls were analyzed. Further, 217 differentially expressed miRNAs were obtained between both groups. Subsequently, a combined analysis was performed with these miRNAs and 4297 differentially expressed genes. We identified 33 miRNAs that regulate our mRNAs, and the most relevant biological processes are associated with the immune system and the inflammatory response. Conclusions. The miRNA profiling in very low birth-weight neonates distinguishes late-onset Gram-positive sepsis versus control neonates.
Collapse
|
35
|
Jeon MT, Kim KS, Kim ES, Lee S, Kim J, Hoe HS, Kim DG. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 2021; 68:101333. [PMID: 33774194 DOI: 10.1016/j.arr.2021.101333] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
The responses of central nervous system (CNS) cells such as neurons and glia in neurodegenerative diseases (NDs) suggest that regulation of neuronal and glial functions could be a strategy for ND prevention and/or treatment. However, attempts to develop such therapeutics for NDs have been hindered by the challenge of blood-brain barrier (BBB) permeability and continued constitutive neuronal loss. These limitations indicate the need for additional perspectives for the prevention/treatment of NDs. In particular, the disruption of the blood-brain barrier (BBB) that accompanies NDs allows brain infiltration by peripheral factors, which may stimulate innate immune responses involved in the progression of neurodegeneration. The accumulation of blood factors like thrombin, fibrinogen, c-reactive protein (CRP) and complement components in the brain has been observed in NDs and may activate the innate immune system in the CNS. Thus, strengthening the integrity of the BBB may enhance its protective role to attenuate ND progression and functional loss. In this review, we describe the innate immune system in the CNS and the contribution of blood factors to the role of the CNS immune system in neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Min-Tae Jeon
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Kyu-Sung Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Eun Seon Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Suji Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Jieun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Do-Geun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|
36
|
AbdAllah NB, Toraih EA, Al Ageeli E, Elhagrasy H, Gouda NS, Fawzy MS, Helal GM. MYD88, NFKB1, and IL6 transcripts overexpression are associated with poor outcomes and short survival in neonatal sepsis. Sci Rep 2021; 11:13374. [PMID: 34183713 PMCID: PMC8238937 DOI: 10.1038/s41598-021-92912-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Toll-like receptor (TLR) family signature has been implicated in sepsis etiopathology. We aimed to evaluate the genetic profile of TLR pathway-related key genes; the myeloid differentiation protein 88 (MYD88), IL1 receptor-associated kinase 1 (IRAK1), the nuclear factor kappa-B1 (NFKB1), and interleukin 6 (IL6) in the blood of neonates with sepsis at the time of admission and post-treatment for the available paired-samples. This case-control study included 124 infants with sepsis admitted to the neonatal intensive care unit and 17 controls. The relative gene expressions were quantified by TaqMan Real-Time qPCR and correlated to the clinic-laboratory data. MYD88, NFKB1, and IL6 relative expressions were significantly higher in sepsis cases than controls. Higher levels of MYD88 and IL6 were found in male neonates and contributed to the sex-based separation of the cases by the principal component analysis. ROC analysis revealed MYD88 and NFKB1 transcripts to be good biomarkers for sepsis. Furthermore, patients with high circulatory MYD88 levels were associated with poor survival, as revealed by Kaplan-Meier curves analysis. MYD88, NFKB1, and IL6 transcripts showed association with different poor-outcome manifestations. Clustering analysis split the patient cohort into three distinct groups according to their transcriptomic signature and CRP levels. In conclusion, the study TLR pathway-related transcripts have a gender-specific signature, diagnostic, and prognostic clinical utility in neonatal sepsis.
Collapse
Affiliation(s)
- Nouran B AbdAllah
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Hala Elhagrasy
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nawal S Gouda
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Kingdom of Saudi Arabia.
| | - Ghada M Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
37
|
Lipoteichoic Acid from Staphylococcus aureus Activates the Complement System via C3 Induction and CD55 Inhibition. Microorganisms 2021; 9:microorganisms9061135. [PMID: 34074052 PMCID: PMC8225101 DOI: 10.3390/microorganisms9061135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus inhibits complement activity by secreting a variety of toxins. However, the underlying mechanism of complement component regulation by lipoteichoic acid (LTA), a cell wall component of S. aureus, has not been elucidated. In this study, we observed that aLTA (LTA of S. aureus) increased C3 expression in THP-1 cells. The mechanism of aLTA-mediated C3 induction includes an aLTA-toll-like receptor (TLR) 2 interaction, interleukin 1 receptor associated kinase (IRAK) 2 recruitment, and nuclear factor kappa B (NF-kB) activation. In HepG2 cells, C3 protein production begins to increase from 3 h and increases steadily until 48 h. On the other hand, CD55 levels increased up to 6 h after aLTA treatment and started to decrease after 24 h and levels were decreased at 48 h by more than 50% compared to untreated cells. The expression of CD55 in HepG2 cells was shown to be regulated by IRAK-M induced by aLTA. Serum C3 levels increased in mice injected with aLTA, which resulted in an increase in the amount and activity of the membrane attack complex (MAC). We also observed that CD55 mRNA was increased in the liver 24 h after aLTA injection, but was decreased 48 h after injection. These results suggest that aLTA increases complement levels via induction of C3 and inhibition of CD55, which may cause associated MAC-mediated liver damage.
Collapse
|
38
|
Debuque RJ, Nowoshilow S, Chan KE, Rosenthal NA, Godwin JW. Distinct toll-like receptor signaling in the salamander response to tissue damage. Dev Dyn 2021; 251:988-1003. [PMID: 33797128 DOI: 10.1002/dvdy.340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Efficient wound healing or pathogen clearance both rely on balanced inflammatory responses. Inflammation is essential for effective innate immune-cell recruitment; however, excessive inflammation will result in local tissue destruction, pathogen egress, and ineffective pathogen clearance. Sterile and nonsterile inflammation operate with competing functional priorities but share common receptors and overlapping signal transduction pathways. In regenerative organisms such as the salamander, whole limbs can be replaced after amputation while exposed to a nonsterile environment. In mammals, exposure to sterile-injury Damage Associated Molecular Patterns (DAMPS) alters innate immune-cell responsiveness to secondary Pathogen Associated Molecular Pattern (PAMP) exposure. RESULTS Using new phospho-flow cytometry techniques to measure signaling in individual cell subsets we compared mouse to salamander inflammation. These studies demonstrated evolutionarily conserved responses to PAMP ligands through toll-like receptors (TLRs) but identified key differences in response to DAMP ligands. Co-exposure of macrophages to DAMPs/PAMPs suppressed MAPK signaling in mammals, but not salamanders, which activate sustained MAPK stimulation in the presence of endogenous DAMPS. CONCLUSIONS These results reveal an alternative signal transduction network compatible with regeneration that may ultimately lead to the promotion of enhanced tissue repair in mammals.
Collapse
Affiliation(s)
- Ryan J Debuque
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia
| | - Sergej Nowoshilow
- The Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | | | - James W Godwin
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia.,The Jackson Laboratory, Bar Harbour, Maine, USA.,The MDI Biological Laboratory (MDIBL), Salisbury Cove, Maine, USA
| |
Collapse
|
39
|
Huang X, Zhang X, Lu M. Recent trends in the development of Toll-like receptor 7/8-targeting therapeutics. Expert Opin Drug Discov 2021; 16:869-880. [PMID: 33678093 DOI: 10.1080/17460441.2021.1898369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Toll-like receptor (TLR) 7 and TLR8 are functionally localized to endosomes and recognize specific RNA sequences. They play crucial roles in initiating innate and adaptive immune responses. TLR7/8 activation protects the host against invading pathogens and enhances immune responses. In contrast, sustained TLR7/8 signaling leads to immune overreaction. Therefore, agonists or antagonists targeting TLR7/8 signaling are favorable drug candidates for the treatment of immune disorders.Areas covered: Basic knowledge about TLR7 and TLR8 and their signaling pathways are briefly reviewed. Various therapeutic agents have been designed to activate or antagonize TLR7/8 signaling pathways, and their safety and efficacy for the treatment of multiple diseases have been investigated in preclinical animal models and clinical trials. TLR7/8 agonists exhibit potent antiviral activity and regulate anti-tumor immune responses. TLR7 agonists have also been used as adjuvants to improve vaccine immunogenicity and generate greater seroprotection. TLR7/8 antagonists are promising candidates for the treatment of autoimmune and inflammatory diseases.Expert opinion: TLR7/8 pathways are favorable targets for immunological therapies. Future research should concentrate on the optimization of drug safety, efficiency, and specificity. Detailed mechanistic studies will contribute to the development of TLR7/8 immunomodulators and novel therapeutic strategies.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| |
Collapse
|
40
|
Serum soluble Toll-like receptor 4 and the risk of hepatocellular carcinoma in hepatitis C virus patients. Contemp Oncol (Pozn) 2021; 24:216-220. [PMID: 33531868 PMCID: PMC7836282 DOI: 10.5114/wo.2020.102818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/13/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Soluble Toll-like receptor 4 (sTLR4) is a negative regulator of TLR4 signalling that has been reported in different diseases. In this study, we aimed to assess the serum levels of sTLR4 in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC) and to investigate the correlation of sTLR4 with clinicopathological and biochemical parameters among HCV-related HCC patients and hepatitis C without HCC patients. Material and methods Fifty patients with HCV-related HCC, 50 patients with hepatitis C without HCC and 50 healthy control volunteers were enrolled. Clinicopathological and biochemical parameters were examined in all patients. Serum levels of sTLR4 were measured using enzyme-linked immunosorbent assay. Results A significant increase in serum sTLR4 was detected in patients with HCV-related HCC (4436.1 ±7089.8) (pg/ml) ± compared to the level in patients with hepatitis C without HCC (1561.4 ±532.0) (pg/ml) (p = 0.002) and the level in the control group (1170.38 ±159.42) (pg/ml) (p < 0.001). Serum sTLR4 was positively correlated with serum AST activity, serum direct bilirubin levels, serum alpha fetoprotein levels, tumour stages of HCC according to the Barcelona Clinic Liver Cancer staging system (BCLC), and the severity of liver cirrhosis according to the Child-Pugh classification among the patients with HCV-related HCC. The combination of serum alpha fetoprotein and serum sTLR4 increased the sensitivity of HCC detection to 76% and the specificity to 94%. Conclusions Serum sTLR4 may be a marker for HCC susceptibility among HCV-infected patients.
Collapse
|
41
|
Dong Q, Li Y, Chen J, Wang N. Azilsartan Suppressed LPS-Induced Inflammation in U937 Macrophages through Suppressing Oxidative Stress and Inhibiting the TLR2/MyD88 Signal Pathway. ACS OMEGA 2021; 6:113-118. [PMID: 33458464 PMCID: PMC7807478 DOI: 10.1021/acsomega.0c03655] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND PURPOSE Lipopolysaccharide (LPS) is an important factor that induce severe inflammation, resulting in multiple types of diseases. It is reported that LPS-induced inflammation is related to the activation of the NF-κB signal pathway and reactive oxygen species (ROS)-induced oxidative stress. Azilsartan, an angiotensin II type 1 (AT1) receptor blocker, has been licensed as a new generation of Sartan antihypertensive drugs. However, the effects of azilsartan in LPS-induced inflammation have not been reported before. The present study aims to investigate the anti-inflammatory effects of azilsartan on LPS-stimulated macrophages and explore the underlying mechanism. METHODS The release of lactic dehydrogenase (LDH), secretion of HMGB-1, and concentrations of IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and PGE2 were evaluated using the enzyme-linked immunosorbent assay (ELISA). The gene expression levels of IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and COX-2 were determined by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Western blot analysis was used to detect the protein expression level of COX-2, Nrf2, TLR2, MyD-88, and NF-κB. The level of ROS was determined using the dihydroethidium (DHE) staining assay. The activity of NF-κB was evaluated using the luciferase activity assay. RESULTS The release of LDH, HMGB-1, IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and PGE2 was significantly promoted by LPS stimulation, whereas it was greatly suppressed by azilsartan. The upregulated COX-2, TLR2, MyD-88, and NF-κB in the LPS-treated macrophages were significantly downregulated by azilsartan. Interestingly, the expression level of Nrf2 was elevated by azilsartan. On the contrary, ROS levels were greatly increased by LPS but suppressed by azilsartan. Mechanistically, it was found that azilsartan suppressed LPS-induced activation of the TLR2/Myd-88/NF-κB signaling pathway. CONCLUSION Azilsartan might suppress LPS-induced inflammation in U937 macrophages through suppressing oxidative stress and inhibiting the TLR/MyD88 signal pathway.
Collapse
Affiliation(s)
- Qinglian Dong
- Department
of Critical Medicine, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Yongxia Li
- Department
of Stomatology, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Juan Chen
- Department
of Critical Medicine, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Nan Wang
- Department
of Nephrology, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
- . Tel/Fax:+86-546-8331536
| |
Collapse
|
42
|
Bale S, Varga J, Bhattacharyya S. Role of RP105 and A20 in negative regulation of toll-like receptor activity in fibrosis: potential targets for therapeutic intervention. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Regulation of inflammatory response and oxidative stress by tocotrienol in a rat model of non-alcoholic fatty liver disease. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
44
|
Hegewald AB, Breitwieser K, Ottinger SM, Mobarrez F, Korotkova M, Rethi B, Jakobsson PJ, Catrina AI, Wähämaa H, Saul MJ. Extracellular miR-574-5p Induces Osteoclast Differentiation via TLR 7/8 in Rheumatoid Arthritis. Front Immunol 2020; 11:585282. [PMID: 33154755 PMCID: PMC7591713 DOI: 10.3389/fimmu.2020.585282] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and joint destruction. Cell-derived small extracellular vesicles (sEV) mediate cell-to-cell communication in the synovial microenvironment by carrying microRNAs (miRs), a class of small non-coding RNAs. Herein, we report that sEV from synovial fluid promote osteoclast differentiation which is attributed to high levels of extracellular miR-574-5p. Moreover, we demonstrate for the first time that enhanced osteoclast maturation is mediated by Toll-like receptor (TLR) 7/8 signaling which is activated by miR-574-5p binding. This is a novel mechanism by which sEV and miRs contribute to RA pathogenesis and indicate that pharmacological inhibition of extracellular miR-574-5p might offer new therapeutic strategies to protect osteoclast-mediated bone destruction in RA.
Collapse
Affiliation(s)
- Anett B Hegewald
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kai Breitwieser
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sarah M Ottinger
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Fariborz Mobarrez
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bence Rethi
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Heidi Wähämaa
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Meike J Saul
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Pharmaceutical Chemistry, Goethe Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
45
|
Gil TY, Jin BR, Hong CH, Park JH, An HJ. Astilbe Chinensis ethanol extract suppresses inflammation in macrophages via NF-κB pathway. BMC Complement Med Ther 2020; 20:302. [PMID: 33028307 PMCID: PMC7542915 DOI: 10.1186/s12906-020-03073-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022] Open
Abstract
Background Macrophages play a crucial role in inflammation. Astilbe chinensis is one of perennial herbs belonging to the genus Astilbe. Plants in the genus have been used for pain, headaches, arthralgia, and chronic bronchitis. However, the effect of A.chinensis on inflammation remains unclear. To study the anti-inflammatory action of A.chinensis ethanol extract (ACE), we investigated the effect of ACE on the production of pro-inflammatory mediators and cytokines in macrophages. Methods We evaluated the effectiveness of ACE in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and thioglycollate (TG)-elicited peritoneal macrophages from male C57BL/6 mice. We measured the levels of pro-inflammatory mediators and cytokines, and examined the anti-inflammatory actions of ACE on nuclear factor κB (NF-κB) pathway in the macrophages. Western blot analysis and immunofluorescence microscopy were used to determine protein level and translocation, respectively. Results ACE suppressed the output of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines in stimulated macrophages via inhibiting the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. ACE suppressed mRNA expression of pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α). We examined the efficacies of ACE on NF-κB activation by measuring the expressions including IκB kinase (IKK), inhibitor of κB (IκB), and nuclear p65 proteins. In addition, the inhibition of NF-κB p65’s translocation was determined with immunofluorescence assay. Conclusion Our findings manifested that ACE inhibited LPS or TG-induced inflammation by blocking the NF-κB signaling pathway in macrophages. It indicated that ACE is a potential therapeutic mean for inflammation and related diseases.
Collapse
Affiliation(s)
- Tae-Young Gil
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83, Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | - Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83, Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | - Chul-Hee Hong
- Department of Korean Medicine Ophthalmology & Otolaryngology & Dermatology, College of Korean Medicine, Sangji University, 83, Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | | | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83, Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
46
|
Vyas SP, Srivastava RN, Goswami R. Calcitriol attenuates TLR2/IL-33 signaling pathway to repress Th9 cell differentiation and potentially limits the pathophysiology of rheumatoid arthritis. Mol Cell Biochem 2020; 476:369-384. [PMID: 32965596 DOI: 10.1007/s11010-020-03914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/15/2020] [Indexed: 12/01/2022]
Abstract
There is limited information regarding the TLR2 signaling pathway involved in Th9 cell differentiation. The role of calcitriol in regulating TLR2-mediated Th9 cell development is unknown. Thus, we aimed to unravel the TLR2 signaling pathway in Th9 cells and its regulation by calcitriol. We have used n = 5-6 animals for each murine experiment. Human studies involved five healthy volunteers. Moreover, ten healthy individuals and ten RA patients were included in the study. Murine and human Th9 cells were treated with Calcitriol (100 nM) and Pam3CSK4 (2 µg/mL). The number of IL-9+ve cells was determined by flow cytometry. Real-time PCR was used to assess the gene expression. Serum 25(OH)D3 levels were determined by HPLC. We observed that TLR2 signals via IL-33/ST2 in Th9 cells. Increased TLR2 expression associated with increased IL9 expression and augmented disease severity in RA patients. Calcitriol attenuated TLR2 signaling in murine and human Th9 cells. Low serum vitamin D3 level negatively associated with increased IL-9 and TLR2 expression and disease severity in RA patients. Our data suggest a potential role of calcitriol to ameliorate the disease severity of RA patients.
Collapse
Affiliation(s)
| | - Rajeshwar Nath Srivastava
- Department of Orthopedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ritobrata Goswami
- School of Bioscience, IIT Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
47
|
Haque MA, Jantan I, Harikrishnan H, Ahmad W. Standardized ethanol extract of Tinospora crispa upregulates pro-inflammatory mediators release in LPS-primed U937 human macrophages through stimulation of MAPK, NF-κB and PI3K-Akt signaling networks. BMC Complement Med Ther 2020; 20:245. [PMID: 32762741 PMCID: PMC7409646 DOI: 10.1186/s12906-020-03039-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Immunomodulatory effects of Tinospora crispa have been investigated due to its traditional use to treat several inflammatory disorders associated to the immune system. The present study reports the underlying mechanisms involved in the stimulation of 80% ethanol extract of T. crispa stems on pro-inflammatory mediators release in lipopolysaccharide (LPS)-primed U937 human macrophages via MyD88-dependent pathways. METHODS Release of interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and production of prostaglandin E2 (PGE2) were determined by using enzyme-linked immunosorbent assay (ELISA). Immunoblot technique was executed to determine the activation of MAPKs molecules, NF-κB, PI3K-Akt and cyclooxygenase-2 (COX-2) protein. Determination of pro-inflammatory cytokines and COX-2 relative gene expression levels was by performing the real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). A reversed-phase HPLC method was developed and validated to standardize the T. crispa extract and chemical profiling of its secondary metabolites was performed by LC-MS/MS. RESULTS Qualitative and quantitative analyses of chromatographic data indicated that syringin and magnoflorine were found as the major components of the extract. T. crispa-treatment prompted activation of NF-κB by enhancing IKKα/β and NF-κB (p65) phosphorylation, and degradation of IκBα. The extract upregulated COX-2 protein expression, release of pro-inflammatory mediators and MAPKs (ERK, p38 and JNK) phosphorylation as well as Akt dose-dependently. T. crispa extract also upregulated the upstream signaling adaptor molecules, toll-like receptor 4 (TLR4) and MyD88. T. crispa-treatment also upregulated the pro-inflammatory markers mRNA expression. CONCLUSION The results suggested that T. crispa extract stimulated the MyD88-dependent signaling pathways by upregulating the various immune inflammatory related parameters.
Collapse
Affiliation(s)
- Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Hemavathy Harikrishnan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
48
|
Anti-Inflammatory Effects of Lasia spinosa Leaf Extract in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Int J Mol Sci 2020; 21:ijms21103439. [PMID: 32414062 PMCID: PMC7279483 DOI: 10.3390/ijms21103439] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Lasia spinosa (L.) Thwaites was used as a traditional medicine to treat many inflammatory diseases for centuries. However, its effects on the inflammatory response are not yet characterized. In this study, we investigated the anti-inflammatory activities of L. spinosa leaf extract in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. We found that ethanol extracts of L. spinosa leaves showed anti-oxidant activity due to the presence of high levels of polyphenolic compounds. Treatment with the leaf extract significantly repressed the production of inflammatory mediators such as nitric oxide and reactive oxygen species and the expression of pro-inflammatory cytokines in the LPS-stimulated RAW 264.7 cells. Moreover, L. spinosa leaf extract treatment prevented activation of the nuclear factor-kappa B pathway by inhibiting nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) degradation. Furthermore, the mitogen-activated kinase and phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathways were suppressed upon treatment with the leaf extract. In addition to suppressing inflammatory factors, the extract also activated the nuclear factor erythroid 2-related factor 2/heme-oxygenase-1 pathway. We propose that L. spinosa leaf extract has the potential as an effective therapeutic agent for alleviating oxidative stress and excessive inflammation.
Collapse
|
49
|
Litak J, Grochowski C, Litak J, Osuchowska I, Gosik K, Radzikowska E, Kamieniak P, Rolinski J. TLR-4 Signaling vs. Immune Checkpoints, miRNAs Molecules, Cancer Stem Cells, and Wingless-Signaling Interplay in Glioblastoma Multiforme-Future Perspectives. Int J Mol Sci 2020; 21:ijms21093114. [PMID: 32354122 PMCID: PMC7247696 DOI: 10.3390/ijms21093114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like-receptor (TLR) family members were detected in the central nervous system (CNS). TLR occurrence was noticed and widely described in glioblastomamultiforme (GBM) cells. After ligand attachment, TLR-4 reorients domains and dimerizes, activates an intracellular cascade, and promotes further cytoplasmatic signaling. There is evidence pointing at a strong relation between TLR-4 signaling and micro ribonucleic acid (miRNA) expression. The TLR-4/miRNA interplay changes typical signaling and encourages them to be a target for modern immunotherapy. TLR-4 agonists initiate signaling and promote programmed death ligand-1 (PD-1L) expression. Most of those molecules are intensively expressed in the GBM microenvironment, resulting in the autocrine induction of regional immunosuppression. Another potential target for immunotreatment is connected with limited TLR-4 signaling that promotes Wnt/DKK-3/claudine-5 signaling, resulting in a limitation of GBM invasiveness. Interestingly, TLR-4 expression results in bordering proliferative trends in cancer stem cells (CSC) and GBM. All of these potential targets could bring new hope for patients suffering from this incurable disease. Clinical trials concerning TLR-4 signaling inhibition/promotion in many cancers are recruiting patients. There is still a lot to do in the field of GBM immunotherapy.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Laboratory of Virtual Man, Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Correspondence:
| | - Joanna Litak
- St. John‘s Cancer Center in Lublin, 20-090 Lublin, Poland
| | - Ida Osuchowska
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Krzysztof Gosik
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Piotr Kamieniak
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jacek Rolinski
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
50
|
COX-2 in liver fibrosis. Clin Chim Acta 2020; 506:196-203. [PMID: 32184095 DOI: 10.1016/j.cca.2020.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
As a vital inducible sensor, cyclooxygenase-2 (COX-2) plays an important role in the progress of hepatic fibrogenesis. Activation of hepatic stellate cells (HSCs) in the liver can significantly accelerate the onset and development of liver fibrosis. COX-2 overexpression triggers inflammation that is an important inducer in hepatic fibrosis. Increasing evidence indicates that COX-2 is involved in the main pathogenesis of liver fibrosis, such as inflammation, apoptosis, and cell senescence. Moreover, COX-2 expression is altered in patients and animal models with non-alcoholic fatty liver disease or cirrhosis. These findings suggest that COX-2 has a broad and critical role in the development of liver fibrosis. In this review, we summarize the latest advances in the regulation and signal transduction of COX-2 and its impact on liver fibrosis.
Collapse
|