1
|
Zheng Y, Jiang Y, Niu J, Deng W, Ban S, Xu Y, Wu Q, Shi Y. Temperature and wind speed help fermentation-sourced microbiota reconstruct the airborne microbiota in the Chinese baijiu fermentation region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124769. [PMID: 40037255 DOI: 10.1016/j.jenvman.2025.124769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Microorganisms are vital components of airborne particles and are closely linked to human health and industrial processes. As industrialization advances, factories are exacerbating their impact on environmental microbial communities, an area where our understanding remains limited. In this study, we investigated air microorganisms surrounding Chinese baijiu fermentation facilities, aiming to explore the dispersal mechanisms of fermentation-sourced microbiota and their potential impacts on local airborne microbial communities. The results revealed a significant overlap between microbial communities from fermentation processes and the surrounding air, with 14 genera commonly found in both habitats, suggesting widespread and substantial dispersal of factory microorganisms. Due to this dispersal, fermentation-sourced Saccharopolyspora and Streptomyces have become central nodes in the airborne microbial network. Environmental factors played a pivotal role in the microbiota dispersal process. Higher temperatures may facilitate microbial proliferation and increase the dispersal of fermentation microorganisms (r = 0.30, P < 0.01), while higher wind speeds may lead to a dilution effect and limit the uniform dispersal of microorganisms (r = -0.22, P < 0.05). Furthermore, air-resident microorganisms restricted the proliferation of fermentation microorganisms (r = -0.60, P < 0.001). These results confirm the modifying effect of fermentation facilities on environmental microbial communities and establish a theoretical foundation for optimizing factory site selection.
Collapse
Affiliation(s)
- Yifu Zheng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Yingli Jiang
- Sichuan Langjiu Group Co., Ltd., 610213, Luzhou, China
| | - Jiao Niu
- Sichuan Langjiu Group Co., Ltd., 610213, Luzhou, China
| | - Wanyu Deng
- Sichuan Langjiu Group Co., Ltd., 610213, Luzhou, China
| | - Shibo Ban
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Qun Wu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004, Kaifeng, China.
| |
Collapse
|
2
|
Noble AS, Abbaszadeh J, Lee CK. Host selection is not a universal driver of phyllosphere community assembly among ecologically similar native New Zealand plant species. MICROBIOME 2025; 13:35. [PMID: 39891234 PMCID: PMC11786578 DOI: 10.1186/s40168-024-02000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/06/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND A growing body of evidence demonstrates that host-associated microbial communities of plant leaf surfaces (i.e. the phyllosphere) can influence host functional traits. However, it remains unclear whether host selection is a universal driver of phyllosphere community assembly. We targeted mānuka (Leptospermum scoparium) and three neighbouring non-mānuka plant species along an 1800-m transect in a New Zealand native bush to conduct a hypothesis-driven investigation of the relative influence of host species identity and stochastic dispersal on the composition of natural phyllosphere bacterial communities. RESULTS We detected significant correlations between host species identity and mānuka phyllosphere communities that are consistent with a dominant role of host selection in the assembly of the mānuka phyllosphere microbiome. In contrast, the phyllosphere community compositions of neighbouring, ecologically similar native plants were highly variable, suggesting that stochastic processes, such as dispersal, had a stronger influence on the phyllosphere microbiomes of those non-mānuka plants compared to the phyllosphere microbiome of mānuka. Furthermore, the distribution of phyllosphere taxa among plant species was congruent with a scenario in which microorganisms had dispersed from mānuka to non-mānuka phyllosphere microbiomes. CONCLUSIONS We conclude that host selection of phyllosphere communities is not and should not be presumed to be a universal trait across plant species. The specificity of the mānuka phyllosphere microbiome suggests the presence of functionally significant bacteria that are under direct, possibly chemically mediated, selection by the host. Furthermore, we propose that phyllosphere microbiomes under strong host selection, such as that of mānuka, may act as a source of microorganisms for the phyllosphere microbiomes of neighbouring plants. Video Abstract.
Collapse
Affiliation(s)
- Anya S Noble
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Charles K Lee
- School of Science, University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
3
|
Hu S, Huang X, Dong J, Che Y, Guo J. The role of skin microbiota in lichen planus from a Mendelian randomization perspective. Arch Dermatol Res 2025; 317:245. [PMID: 39812683 DOI: 10.1007/s00403-024-03677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Lichen planus is a chronic skin lesion characterized by pruritic violaceous papules, which has a high risk of morbidity. Skin microbiota plays an important role in the maintenance of cutaneous mucosal barrier and human health and immune homeostasis. Studies have shown that skin microbiota may play a role in the pathogenesis of lichen planus, but it is not yet clear. MR studies have been performed to determine causal associations. Lichen planus samples from Finn database were extracted from published GWAS data, including 6,411 cases and 405,770 controls; skin microbiota samples were gathered from a meta-analysis of German population-based GWAS, which included 1,656 skin samples from two cohorts: KORA FF4 (n = 353) and PopGen (n = 294), comprising 4,685,714 SNPs. The IVW method was used as the main statistical method, supplemented by three methods: MR-Egger, weighted median and weighted mode. FDR correction and MR Steiger test were used to reduce false positives. IVW method revealed a negative correlation between Burkholderia in the moist anterior elbow and lichen planus (OR: 0.934, 95% CI: 0.910-0.986, P = 0.017). These associations remained stable following false discovery rate correction (P < 1e-5). Our study highlights a possible causal role of Burkholderia in the development of lichen planus and suggests that Burkholderia may reduce the occurrence of lichen planus by affecting macrophages.
Collapse
Affiliation(s)
- Shucheng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaojiao Dong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Che
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Li J, Petticord DF, Jin M, Huang L, Hui D, Sardans J, Peñuelas J, Yang X, Zhu YG. From nature to urbanity: exploring phyllosphere microbiome and functional gene responses to the Anthropocene. THE NEW PHYTOLOGIST 2025; 245:591-606. [PMID: 39511922 DOI: 10.1111/nph.20255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The Anthropocene exerts various pressures and influences on the stability and function of the Earth's ecosystems. However, our understanding of how the microbiome responds in form and function to these disturbances is still limited, particularly when considering the phyllosphere, which represents one of the largest microbial reservoirs in the terrestrial ecosystem. In this study, we comprehensively characterized tree phyllosphere bacteria and associated nutrient-cycling genes in natural, rural, suburban, and urban habitats in China. Results revealed that phyllosphere bacterial community diversity, richness, stability, and composition heterogeneity were greatest at the most disturbed sites. Stochastic processes primarily governed the assembly of phyllosphere bacterial communities, although the role of deterministic processes (environmental selection) in shaping these communities gradually increased as we moved from rural to urban sites. Our findings also suggest that human disturbance is associated with the reduced influence of drift as increasingly layered environmental filters deterministically constrain phyllosphere bacterial communities. The intensification of human activity was mirrored in changes in functional gene expression within the phyllosphere microbiome, resulting in enhanced gene abundance, diversity, and compositional variation in highly human-driven disturbed environments. Furthermore, we found that while the relative proportion of core microbial taxa decreased in disturbed habitats, a core set of microbial taxa shaped the distributional characteristics of both microbiomes and functional genes at all levels of disturbance. In sum, this study offers valuable insights into how anthropogenic disturbance may influence phyllosphere microbial dynamics and improves our understanding of the intricate relationship between environmental stressors, microbial communities, and plant function within the Anthropocene.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Daniel F Petticord
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Mingkang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lijie Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
5
|
Maestre J, Jarma D, Williams E, Wylie D, Horner S, Kinney K. Microbial communities in rural and urban homes and their relationship to surrounding land use, household characteristics, and asthma status. BUILDING AND ENVIRONMENT 2024; 266:112014. [DOI: 10.1016/j.buildenv.2024.112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Deng A, Wang J, Li L, Shi R, Li X, Wen T. Synoptic Variation Drives Genetic Diversity and Transmission Mode of Airborne DNA Viruses in Urban Space. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404512. [PMID: 39435753 PMCID: PMC11633480 DOI: 10.1002/advs.202404512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Airborne viruses are ubiquitous and play critical roles in maintaining ecosystem balance, however, they remain unexplored. Here, it is aimed to demonstrate that highly diverse airborne viromes carry out specific metabolic functions and use different transmission modes under different air quality conditions. A total of 263.5-Gb data are collected from 13 air samples for viral metagenomic analysis. After assembly and curation, a total of 12 484 viral contigs (1.5-184.2 kb) are assigned to 221 genus-level clades belonging to 47 families, 19 orders, and 15 classes. The composition of viral communities is influenced by weather conditions, with the main biomarker being Caudoviricetes. The most dominant viruses in these air samples belong to the dsDNA Caudoviricetes (54.0%) and ssDNA Repensiviricetes (31.2%) classes. Twelve novel candidate viruses are identified at the order/family/genus levels by alignment of complete genomes and core genes. Notably, Caudoviricetes are highly prevalent in cloudy and smoggy air, whereas Repensiviricetes are highly dominant in sunny and rainy air. Diverse auxiliary metabolic genes of airborne viruses are mainly involved in deoxynucleotide synthesis, implying their unique roles in atmosphere ecosystem. These findings deepen the understanding of the meteorological impacts on viral composition, transmission mode, and ecological roles in the air that we breathe.
Collapse
Affiliation(s)
- Aihua Deng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry CentreChina Agricultural UniversityBeijing100193P. R. China
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
- Beijing Bio‐Feed Additives Key LaboratoryBeijing100193P. R. China
| | - Junyue Wang
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Lai Li
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Ruilin Shi
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Xuemin Li
- Department of OphthalmologyPeking University Third HospitalBeijing100191P. R. China
| | - Tingyi Wen
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101P. R. China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
7
|
Geng X, Nie C, Li D, Wang M, Wu Y, Sun X, An T, Yao M, Huang J, Chen J. A potential bioaerosol source from kitchen chimneys in restaurants. ENVIRONMENT INTERNATIONAL 2024; 193:109115. [PMID: 39500121 DOI: 10.1016/j.envint.2024.109115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024]
Abstract
Bioaerosols are ubiquitous and have a substantial impact on the atmosphere and human health. Despite the identification of numerous bioaerosol emission sources, the contribution of anthropogenic sources remains inadequately understood. In kitchens, oil stains accumulated at the vent may discharge microorganisms into the environment with airflow, potentially discharging bioaerosol pollution. This putative anthropogenic source of bioaerosols has been long ignored. To investigated whether kitchen chimneys can be a potential source for bioaerosols, air samples, oil stains from in/out chimneys, and surface sand samples were collected near several commercial restaurants. PCoA showed that sampling sites significantly impacted microbiomes, whereas SourceTracker analysis led to the finding that waste grease significantly contributed to bioaerosol composition. Both findings agree with the kitchen chimney as a source of microbes in bioaerosols in the surrounding environment. Furthermore, despite the low biodiversity, a high proportion of stress-tolerant and potential pathogenic bacteria and fungi were found in residual culinary grease, which may escape into the air causing potential risks to human beings. These results led to the proposal that airborne microbiota can originate from cooking waste grease. Immediate actions should be taken into account to enhance disinfection and sterilization aimed at fume vents.
Collapse
Affiliation(s)
- Xueyun Geng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Changliang Nie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China; School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Maosheng Yao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianping Huang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| |
Collapse
|
8
|
Johnson M, Barnes MA. Macrobial airborne environmental DNA analysis: A review of progress, challenges, and recommendations for an emerging application. Mol Ecol Resour 2024; 24:e13998. [PMID: 39113622 DOI: 10.1111/1755-0998.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/10/2024]
Abstract
In the context of looming global biodiversity loss, effective species detection represents a critical concern for ecological research and management. Environmental DNA (eDNA) analysis, which refers to the collection and taxonomic identification of genetic fragments that are shed from an organism into its surroundings, emerged approximately 15 years ago as a sensitive tool for species detection. Today, one of the frontiers of eDNA research concerns the collection and analysis of genetic material in dust and other airborne materials, termed airborne eDNA analysis. As the study of airborne eDNA matures, it is an appropriate time to review the foundational and emerging studies that make up the current literature, and use the reviewed literature to summarize, synthesize, and forecast the major challenges and opportunities for this advancing research front. Specifically, we use the "ecology of eDNA" framework to organize our findings across the origin, state, transport, and fate of airborne genetic materials in the environment, and summarize what is so far known of their interactions with surrounding abiotic and biotic factors, including population and community ecologies and ecosystem processes. Within this work we identify key challenges, opportunities, and future directions associated with the application of airborne eDNA development. Lastly, we discuss the development of applications, partnerships, and messaging that promote development and growth of the field. Together, the broad potential of eDNA analysis and the rate at which research is accelerating in this field suggest that the sky's the limit for airborne eDNA science.
Collapse
Affiliation(s)
- Mark Johnson
- Engineer Research and Development Center, Champaign, Illinois, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Matthew A Barnes
- Department of Natural Resources Management, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
9
|
Al-Shaarani AAQA, Pecoraro L. A review of pathogenic airborne fungi and bacteria: unveiling occurrence, sources, and profound human health implication. Front Microbiol 2024; 15:1428415. [PMID: 39364169 PMCID: PMC11446796 DOI: 10.3389/fmicb.2024.1428415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Airborne fungi and bacteria have been extensively studied by researchers due to their significant effects on human health. We provided an overview of the distribution and sources of airborne pathogenic microbes, and a detailed description of the detrimental effects that these microorganisms cause to human health in both outdoor and indoor environments. By analyzing the large body of literature published in this field, we offered valuable insights into how airborne microbes influence our well-being. The findings highlight the harmful consequences associated with the exposure to airborne fungi and bacteria in a variety of natural and human-mediated environments. Certain demographic groups, including children and the elderly, immunocompromised individuals, and various categories of workers are particularly exposed and vulnerable to the detrimental effect on health of air microbial pollution. A number of studies performed up to date consistently identified Alternaria, Cladosporium, Penicillium, Aspergillus, and Fusarium as the predominant fungal genera in various indoor and outdoor environments. Among bacteria, Bacillus, Streptococcus, Micrococcus, Enterococcus, and Pseudomonas emerged as the dominant genera in air samples collected from numerous environments. All these findings contributed to expanding our knowledge on airborne microbe distribution, emphasizing the crucial need for further research and increased public awareness. Collectively, these efforts may play a vital role in safeguarding human health in the face of risks posed by airborne microbial contaminants.
Collapse
Affiliation(s)
- Amran A. Q. A. Al-Shaarani
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
10
|
Matthews K, Cavagnaro T, Weinstein P, Stanhope J. Health by design; optimising our urban environmental microbiomes for human health. ENVIRONMENTAL RESEARCH 2024; 257:119226. [PMID: 38797467 DOI: 10.1016/j.envres.2024.119226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Humans have evolved in direct and intimate contact with their environment and the microbes that it contains, over a period of 2 million years. As a result, human physiology has become intrinsically linked to environmental microbiota. Urbanisation has reduced our exposure to harmful pathogens, however there is now increasing evidence that these same health-protective improvements in our environment may also be contributing to a hidden disease burden: immune dysregulation. Thoughtful and purposeful design has the potential to ameliorate these health concerns by providing sources of microbial diversity for human exposure. In this narrative review, we highlight the role of environmental microbiota in human health and provide insights into how we can optimise human health through well-designed cities, urban landscapes and buildings. The World Health Organization recommends there should be at least one public green space of least 0.5 ha in size within 300m of a place of residence. We argue that these larger green spaces are more likely to permit functioning ecosystems that deliver ecosystem services, including the provision of diverse aerobiomes. Urban planning must consider the conservation and addition of large public green spaces, while landscape design needs to consider how to maximise environmental, social and public health outcomes, which may include rewilding. Landscape designers need to consider how people use these spaces, and how to optimise utilisation, including for those who may experience challenges in access (e.g. those living with disabilities, people in residential care). There are also opportunities to improve health via building design that improves access to diverse environmental microbiota. Considerations include having windows that open, indoor plants, and the relationship between function, form and organization. We emphasise possibilities for re-introducing potentially health-giving microbial exposures into urban environments, particularly where the benefits of exposure to biodiverse environments may have been lost.
Collapse
Affiliation(s)
- Kate Matthews
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Timothy Cavagnaro
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia; Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Philip Weinstein
- Environment Institute, The University of Adelaide, Adelaide, SA, Australia; School of Public Health, The University of Adelaide, Adelaide, SA, Australia; South Australian Museum, Adelaide, SA, Australia
| | - Jessica Stanhope
- Environment Institute, The University of Adelaide, Adelaide, SA, Australia; School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
11
|
Wang F, Chen Y, Zhou S, Li H, Wan C, Yan K, Zhang H, Xu Z. Aerosol sources and transport paths co-control the atmospheric bacterial diversity over the coastal East China Sea. MARINE POLLUTION BULLETIN 2024; 205:116589. [PMID: 38875970 DOI: 10.1016/j.marpolbul.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Airborne bacteria along with chemical composition of aerosols were investigated during five sampling seasons at an offshore island of the East China Sea. Bacterial diversity was the lowest in spring, the highest in winter, and similar between the autumns of 2019 and 2020, suggesting remarkably seasonal variation but little interannual change. Geodermatophilus (Actinobacteria) was the indicator genus of mineral dust (MD) showed higher proportion in spring than in other seasons. Mastigocladopsis_PCC-10914 (Cyanobacteria) as the indicator of sea salt (SS) demonstrated the highest percentages in both autumns, when the air masses mainly passed over the ocean prior to the sampling site. The higher proportions of soil-derived genera Rubellimicrobium and Craurococcus (both Proteobacteria) and extremophile Chroococcidiopsis_SAG_2023 (Cyanobacteria) were found in summer and winter, respectively. Our study explores the linkage between aerosol source and transport path and bacterial composition, which has implication to understanding of land-sea transmission of bacterial taxa.
Collapse
Affiliation(s)
- Fanghui Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Ying Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Jinan, Shandong 250101, China; Institute of Eco-Chongming (IEC), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200062, China.
| | - Shengqian Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Haowen Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Chunli Wan
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Ke Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Hongliang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Jinan, Shandong 250101, China
| | - Zongjun Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| |
Collapse
|
12
|
Zuo Z, Pan Y, Huang X, Yuan T, Liu C, Cai X, Xu Z. Seasonal distribution of human-to-human pathogens in airborne PM 2.5 and their potential high-risk ARGs. Front Microbiol 2024; 15:1422637. [PMID: 39027113 PMCID: PMC11254772 DOI: 10.3389/fmicb.2024.1422637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Airborne microorganisms, an emerging global health threat, have attracted extensive studies. However, few attentions have been paid to the seasonal distribution of airborne pathogens, in particular their associations with antibiotic resistance genes (ARGs). To this end, two-week daily PM2.5 samples were consecutively collected from Nanchang in four seasons, and the human-to-human pathogens were screened based on high-throughput sequencing. The results showed that there were 20 pathogenic taxa in PM2.5 in Nanchang, and the highest relative abundance of pathogens was observed in winter (5.84%), followed by summer (3.51%), autumn (2.66%), and spring (1.80%). Although more than half of pathogenic taxa were shared by the four seasons, the analysis of similarities showed that pathogenic community was shaped by season (r = 0.16, p < 0.01). Co-occurrence network analysis disclosed significant interactions among pathogens in each season. Moreover, some dominant pathogens such as Plesiomonas shigelloides, Bacteroides fragilis, and Escherichia-Shigella were hub pathogens. In addition, PICRUSt2 predicted that there were 35 high-risk ARG subtypes in PM2.5, and the pathogens had strongly positive correlations with these ARGs. Even some pathogens like Plesiomonas shigelloides, Bacteroides fragilis, Aeromonas, Citrobacter, may be multi-drug resistant pathogens, including beta-lactam, aminoglycosides, chloramphenicol and multi-drug resistances, etc. Both air pollutants and meteorological conditions contributed to the seasonal variation of airborne pathogenic bacteria (r = 0.15, p < 0.01), especially CO, O3, PM2.5, temperature and relative humidity. This study furthers our understanding of airborne pathogens and highlights their associations with ARGs.
Collapse
Affiliation(s)
- Zhiwei Zuo
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Yuanyuan Pan
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Xueyun Huang
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Tao Yuan
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Cheng Liu
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Xihong Cai
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Zhongji Xu
- Jiangxi Center for Patriotic Health and Health Promotion, Nanchang, China
| |
Collapse
|
13
|
Lin TH, Chou YH, Hsu TY, Hung CH, Lai CY. Association among polydisperse aerodynamic size of bioaerosols, biodiversity and urbanization in kindergartens. CHEMOSPHERE 2024; 359:142333. [PMID: 38759806 DOI: 10.1016/j.chemosphere.2024.142333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/17/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The aerodynamic sizes of bioaerosols may significantly affect their behaviors, respiratory deposition and biodiversity. The respirable bacterial size, biodiversity, and human-associated bacteria (HAB) related bioaerosols were evaluated at three kindergartens in Taiwan. Kindergartens A, B, and C were in urban, semi-urban, and rural areas, respectively. A six-stage viable Andersen cascade impactor was used to collect bioaerosols and to determine their size distributions. The geometric mean diameter (GMD), geometric standard deviation (GSD), heat maps, and uniformity were used to evaluate the association of bacteria characteristics. A BD Phoenix-100 automated interpretation system was used to identify the airborne bacteria species. The results revealed that 1425 colonies of the sampled airborne bacteria contained 63 species in 29 genera, and overall, 63.0% were HABs. The most abundant phylum was Actinobacteria (56.6 ± 22.2%) and Firmicutes (31.6 ± 22.3%), and from the taxonomic analysis, both airborne Micrococcus and the Staphylococcus aureus are the dominant genus. All the bacteria aerodynamic particle size distributions were polydisperse distributions. The heat map and uniformity analysis had revealed most of the sampled bioaerosols distributed between 1.1-3.3 μm, and most of the polydisperse airborne Streptococcus spp. had a size in the respirable range, due to urbanization, they have potentially contributed to respiratory risk in the kindergartens. The Shannon diversity index (H) and inverse Simpson diversity index (D) of the bioaerosols in urban kindergarten were negatively correlated with GMD and GSD. The Pearson correlations revealed that the kindergarten in the rural area, with a higher temperature, a lower relative humidity, and a lower CO2 concentration than the others, tended to have the largest H and D values (P < 0.05). Multiple and stepwise regression revealed that bioaerosol aerodynamic size was statistically significantly correlated with H (P = 0.001) and D values (P = 0.002). This study sheds light on the characteristics of bioaerosols and their associations with microbiome.
Collapse
Affiliation(s)
- Tzu-Hsien Lin
- Department of Public Health, China Medical University, Taichung, Taiwan.
| | - Ying-Hsiang Chou
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Tzu-Yu Hsu
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan.
| | - Chun-Hui Hung
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan.
| | - Chane-Yu Lai
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
14
|
Brame JE, Liddicoat C, Abbott CA, Cando‐Dumancela C, Fickling NW, Robinson JM, Breed MF. Urban sports fields support higher levels of soil butyrate and butyrate-producing bacteria than urban nature parks. Ecol Evol 2024; 14:e70057. [PMID: 39041015 PMCID: PMC11262829 DOI: 10.1002/ece3.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Butyrate-producing bacteria colonise the gut of humans and non-human animals, where they produce butyrate, a short-chain fatty acid with known health benefits. Butyrate-producing bacteria also reside in soils and soil bacteria can drive the assembly of airborne bacterial communities (the aerobiome). Aerobiomes in urban greenspaces are important reservoirs of butyrate-producing bacteria as they supplement the human microbiome, but soil butyrate producer communities have rarely been examined in detail. Here, we studied soil metagenome taxonomic and functional profiles and soil physicochemical data from two urban greenspace types: sports fields (n = 11) and nature parks (n = 22). We also developed a novel method to quantify soil butyrate and characterised the in situ activity of butyrate-producing bacteria. We show that soil butyrate was higher in sports fields than nature parks and that sports fields also had significantly higher relative abundances of the terminal butyrate production genes buk and butCoAT than nature parks. Soil butyrate positively correlated with buk gene abundance (but not butCoAT). Soil moisture (r = .50), calcium (r = -.62), iron (ρ = .54), ammonium nitrogen (ρ = .58) and organic carbon (r = .45) had the strongest soil abiotic effects on soil butyrate concentrations and iron (ρ = .56) and calcium (ρ = -.57) had the strongest soil abiotic effects on buk read abundances. Overall, our findings contribute important new insights into the role of sports fields as key exposure reservoirs of butyrate producing bacteria, with important implications for the provision of microbiome-mediated human health benefits via butyrate.
Collapse
Affiliation(s)
- Joel E. Brame
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Catherine A. Abbott
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Christian Cando‐Dumancela
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Nicole W. Fickling
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research Hub (The AIR Hub), College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| |
Collapse
|
15
|
Yadav A, Yadav R, Khare P. Impact of cultivating different Ocimum species on bioaerosol bacterial communities and functional genome at an agricultural site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124289. [PMID: 38825219 DOI: 10.1016/j.envpol.2024.124289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The effects of the surrounding environment on the bacterial composition of bioaerosol were well documented for polluted and contaminated sites. However, there is limited data on the impact of plant species, especially those that produce aromas, on bioaerosol composition at agricultural sites. Hence, the aim of this study is to evaluate the variability in bacterial communities present in bioaerosol samples collected from agricultural sites with aroma-producing crops. For this, PM2.5, PM10, and bioaerosol samples were collected from agricultural fields growing Ocimum [two varieties of O. sanctum (CIM-Aayu and CIM-Angana)] and O. kilimandscharicum (Kapoor), nearby traffic junctions and suburban areas. PM2.5 and PM10 concentrations at the agricultural site were in between the other two polluted sites. However, bioaerosol concentration was lower at agricultural sites than at other sites. The culturable bacteria Bacillus subtilis, Bacillus tequilensis, and Staphylococcus saprophyticus were more prevalent in agricultural sites than in other areas. However, the composition of non-culturable bacteria varied between sites and differed in three fields where Ocimum was cultivated. The CIM-Aayu cultivated area showed a high bacterial richness, lower Simpson and Shannon indices, and a distinctive metabolic profile. The sites CIM-Angana and CIM-Kapoor had a higher abundance of Aeromonas, while Pantoea and Pseudomonas were present at CIM-Aayu. Acinetobacter, Staphylococcus, and Bacillus were the dominant genera at the other two sites. Metabolic profiling showed that the CIM-Aayu site had a higher prevalence of pathways related to amino acid and carbohydrate metabolism and environmental information processing compared to other sites. The composition of bioaerosol among the three different Ocimum sites could be due to variations in the plant volatile and cross-feeding nature of bacterial isolates, which further needs to be explored.
Collapse
Affiliation(s)
- Anisha Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
17
|
Huang Z, Yu X, Liu Q, Maki T, Alam K, Wang Y, Xue F, Tang S, Du P, Dong Q, Wang D, Huang J. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168818. [PMID: 38036132 DOI: 10.1016/j.scitotenv.2023.168818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
In the past few decades, especially since the outbreak of the coronavirus disease (COVID-19), the effects of atmospheric bioaerosols on human health, the environment, and climate have received great attention. To evaluate the impacts of bioaerosols quantitatively, it is crucial to determine the types of bioaerosols in the atmosphere and their spatial-temporal distribution. We provide a concise summary of the online and offline observation strategies employed by the global research community to sample and analyze atmospheric bioaerosols. In addition, the quantitative distribution of bioaerosols is described by considering the atmospheric bioaerosols concentrations at various time scales (daily and seasonal changes, for example), under various weather, and different underlying surfaces. Finally, a comprehensive summary of the reasons for the spatiotemporal distribution of bioaerosols is discussed, including differences in emission sources, the impact process of meteorological factors and environmental factors. This review of information on the latest research progress contributes to the emergence of further observation strategies that determine the quantitative dynamics of public health and ecological effects of bioaerosols.
Collapse
Affiliation(s)
- Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Xinrong Yu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiantao Liu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Teruya Maki
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan
| | - Yongkai Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fanli Xue
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shihan Tang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pengyue Du
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qing Dong
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Jianping Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
18
|
Rossi F, Duchaine C, Tignat-Perrier R, Joly M, Larose C, Dommergue A, Turgeon N, Veillette M, Sellegri K, Baray JL, Amato P. Temporal variations of antimicrobial resistance genes in aerosols: A one-year monitoring at the puy de Dôme summit (Central France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169567. [PMID: 38145686 DOI: 10.1016/j.scitotenv.2023.169567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The recent characterization of antibiotic resistance genes (ARGs) in clouds evidenced that the atmosphere actively partakes in the global spreading of antibiotic resistance worldwide. Indeed, the outdoor atmosphere continuously receives large quantities of particles of biological origins, emitted from both anthropogenic or natural sources at the near Earth's surface. Nonetheless, our understanding of the composition of the atmospheric resistome, especially at mid-altitude (i.e. above 1000 m a.s.l.), remains largely limited. The atmosphere is vast and highly dynamic, so that the diversity and abundance of ARGs are expected to fluctuate both spatially and temporally. In this work, the abundance and diversity of ARGs were assessed in atmospheric aerosol samples collected weekly between July 2016 and August 2017 at the mountain site of puy de Dôme (1465 m a.s.l., central France). Our results evidence the presence of 33 different subtypes of ARGs in atmospheric aerosols, out of 34 assessed, whose total concentration fluctuated seasonally from 59 to 1.1 × 105 copies m-3 of air. These were heavily dominated by genes from the quinolone resistance family, notably the qepA gene encoding efflux pump mechanisms, which represented >95 % of total ARGs concentration. Its abundance positively correlated with that of bacteria affiliated with the genera Kineococcus, Neorhizobium, Devosia or Massilia, ubiquitous in soils. This, along with the high abundance of Sphingomonas species, points toward a large contribution of natural sources to the airborne ARGs. Nonetheless, the increased contribution of macrolide resistance (notably the erm35 gene) during winter suggests a sporadic diffusion of ARGs from human activities. Our observations depict the atmosphere as an important vector of ARGs from terrestrial sources. Therefore, monitoring ARGs in airborne microorganisms appears necessary to fully understand the dynamics of antimicrobial resistances in the environment and mitigate the threats they may represent.
Collapse
Affiliation(s)
- Florent Rossi
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Caroline Duchaine
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada; Canada Research Chair on Bioaerosols, Canada.
| | - Romie Tignat-Perrier
- Laboratoire Ampère, École Centrale de Lyon, CNRS, Université de Lyon, Ecully, France; Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP, Grenoble, France
| | - Muriel Joly
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Catherine Larose
- Laboratoire Ampère, École Centrale de Lyon, CNRS, Université de Lyon, Ecully, France
| | - Aurélien Dommergue
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP, Grenoble, France
| | - Nathalie Turgeon
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Marc Veillette
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Karine Sellegri
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie physique, UMR 6016, Clermont-Ferrand, France
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Observatoire de physique du Globe de Clermont-Ferrand, UAR 833, Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire de Météorologie physique, UMR 6016, Clermont-Ferrand, France
| | - Pierre Amato
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
19
|
Shi JH, Olson NE, Birbeck JA, Pan J, Peraino NJ, Holen AL, Ledsky IR, Jacquemin SJ, Marr LC, Schmale DG, Westrick JA, Ault AP. Aerosolized Cyanobacterial Harmful Algal Bloom Toxins: Microcystin Congeners Quantified in the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21801-21814. [PMID: 38078756 PMCID: PMC11406202 DOI: 10.1021/acs.est.3c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Cyanobacterial harmful algal blooms (cHABs) have the potential to adversely affect public health through the production of toxins such as microcystins, which consist of numerous molecularly distinct congeners. Microcystins have been observed in the atmosphere after emission from freshwater lakes, but little is known about the health effects of inhaling microcystins and the factors contributing to microcystin aerosolization. This study quantified total microcystin concentrations in water and aerosol samples collected around Grand Lake St. Marys (GLSM), Ohio. Microcystin concentrations in water samples collected on the same day ranged from 13 to 23 μg/L, dominated by the d-Asp3-MC-RR congener. In particulate matter <2.5 μm (PM2.5), microcystin concentrations up to 156 pg/m3 were detected; the microcystins were composed primarily of d-Asp3-MC-RR, with additional congeners (d-Asp3-MC-HtyR and d-Asp3-MC-LR) observed in a sample collected prior to a storm event. The PM size fraction containing the highest aerosolized MC concentration ranged from 0.44 to 2.5 μm. Analysis of total bacteria by qPCR targeting 16S rDNA revealed concentrations up to 9.4 × 104 gc/m3 in aerosol samples (≤3 μm), while a marker specific to cyanobacteria was not detected in any aerosol samples. Concentrations of aerosolized microcystins varied even when concentrations in water were relatively constant, demonstrating the importance of meteorological conditions (wind speed and direction) and aerosol generation mechanism(s) (wave breaking, spillway, and aeration systems) when evaluating inhalation exposure to microcystins and subsequent impacts on human health.
Collapse
Affiliation(s)
- Jia H Shi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicole E Olson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Johnna A Birbeck
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jin Pan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas J Peraino
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Andrew L Holen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Isabel R Ledsky
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - Stephen J Jacquemin
- Department of Biological Sciences, Wright State University, Lake Campus, Celina, Ohio 45822, United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David G Schmale
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Zhang RM, Lian XL, Shi LW, Jiang L, Chen SS, Haung WQ, Wu JE, Wu FJ, Sun J, Liao XP, Chong YX, Liu YH, Jiang C. Dynamic human exposure to airborne bacteria-associated antibiotic resistomes revealed by longitudinal personal monitoring data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166799. [PMID: 37673270 DOI: 10.1016/j.scitotenv.2023.166799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Airborne antibiotic-resistant bacteria (ARB) can critically impact human health. We performed resistome profiling of 283 personal airborne exposure samples from 15 participants spanning 890 days and 66 locations. We found a greater diversity and abundance of airborne bacteria community and antibiotic resistomes in spring than in winter, and temperature contributed largely to the difference. A total of 1123 bacterial genera were detected, with 16 genera dominating. Of which, 7/16 were annotated as major antibiotic resistance gene (ARG) hosts. The participants were exposed to a highly dynamic collection of ARGs, including 322 subtypes conferring resistance to 18 antibiotic classes dominated by multidrug, macrolide-lincosamide-streptogramin, β-lactam, and fosfomycin. Unlike the overall community-level bacteria exposure, an extremely high abundance of specific ARG subtypes, including lunA and qacG, were found in some samples. Staphylococcus was the predominant genus in the bacterial community, serving as a primary bacterial host for the ARGs. The annotation of ARG-carrying contigs indicated that humans and companion animals were major reservoirs for ARG-carrying Staphylococcus. This study contextualized airborne antibiotic resistomes in the precision medicine framework through longitudinal personal monitoring, which can have broad implications for human health.
Collapse
Affiliation(s)
- Rong-Min Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xin-Lei Lian
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li-Wei Shi
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liuyiqi Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shan-Shan Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Qing Haung
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jia-En Wu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fei-Jing Wu
- School of Life Sciences, South China Normal University, Guangzhou 510642, China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yun-Xiao Chong
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Hanlon R, Jimenez-Sanchez C, Benson J, Aho K, Morris C, Seifried TM, Baloh P, Grothe H, Schmale D. Diversity and ice nucleation activity of Pseudomonas syringae in drone-based water samples from eight lakes in Austria. PeerJ 2023; 11:e16390. [PMID: 38047025 PMCID: PMC10691352 DOI: 10.7717/peerj.16390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023] Open
Abstract
Bacteria from the Pseudomonas syringae complex (comprised of at least 15 recognized species and more than 60 different pathovars of P. syringae sensu stricto) have been cultured from clouds, rain, snow, streams, rivers, and lakes. Some strains of P. syringae express an ice nucleation protein (hereafter referred to as ice+) that catalyzes the heterogeneous freezing of water. Though P. syringae has been sampled intensively from freshwater sources in the U.S. and France, little is known about the genetic diversity and ice nucleation activity of P. syringae in other parts of the world. We investigated the haplotype diversity and ice nucleation activity at -8 °C (ice+) of strains of P. syringae from water samples collected with drones in eight freshwater lakes in Austria. A phylogenetic analysis of citrate synthase (cts) sequences from 271 strains of bacteria isolated from a semi-selective medium for Pseudomonas revealed that 69% (188/271) belonged to the P. syringae complex and represented 32 haplotypes in phylogroups 1, 2, 7, 9, 10, 13, 14 and 15. Strains within the P. syringae complex were identified in all eight lakes, and seven lakes contained ice+ strains. Partial 16S rDNA sequences were analyzed from a total of 492 pure cultures of bacteria isolated from non-selective medium. Nearly half (43.5%; 214/492) were associated with the genus Pseudomonas. Five of the lakes (ALT, GRU, GOS, GOL, and WOR) were all distinguished by high levels of Pseudomanas (p ≤ 0.001). HIN, the highest elevation lake, had the highest percentage of ice+ strains. Our work highlights the potential for uncovering new haplotypes of P. syringae in aquatic habitats, and the use of robotic technologies to sample and characterize microbial life in remote settings.
Collapse
Affiliation(s)
- Regina Hanlon
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| | - Celia Jimenez-Sanchez
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| | - James Benson
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| | - Ken Aho
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States
| | - Cindy Morris
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Montfavet, France
| | - Teresa M. Seifried
- Faculty of Technical Chemistry, TU Wien, Institute of Materials Chemistry, Vienna, Austria
| | - Philipp Baloh
- Faculty of Technical Chemistry, TU Wien, Institute of Materials Chemistry, Vienna, Austria
| | - Hinrich Grothe
- Faculty of Technical Chemistry, TU Wien, Institute of Materials Chemistry, Vienna, Austria
| | - David Schmale
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| |
Collapse
|
22
|
Amin H, Šantl-Temkiv T, Cramer C, Finster K, Real FG, Gislason T, Holm M, Janson C, Jögi NO, Jogi R, Malinovschi A, Marshall IPG, Modig L, Norbäck D, Shigdel R, Sigsgaard T, Svanes C, Thorarinsdottir H, Wouters IM, Schlünssen V, Bertelsen RJ. Indoor Airborne Microbiome and Endotoxin: Meteorological Events and Occupant Characteristics Are Important Determinants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11750-11766. [PMID: 37523308 PMCID: PMC10433529 DOI: 10.1021/acs.est.3c01616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
Airborne bacteria and endotoxin may affect asthma and allergies. However, there is limited understanding of the environmental determinants that influence them. This study investigated the airborne microbiomes in the homes of 1038 participants from five cities in Northern Europe: Aarhus, Bergen, Reykjavik, Tartu, and Uppsala. Airborne dust particles were sampled with electrostatic dust fall collectors (EDCs) from the participants' bedrooms. The dust washed from the EDCs' clothes was used to extract DNA and endotoxin. The DNA extracts were used for quantitative polymerase chain (qPCR) measurement and 16S rRNA gene sequencing, while endotoxin was measured using the kinetic chromogenic limulus amoebocyte lysate (LAL) assay. The results showed that households in Tartu and Aarhus had a higher bacterial load and diversity than those in Bergen and Reykjavik, possibly due to elevated concentrations of outdoor bacterial taxa associated with low precipitation and high wind speeds. Bergen-Tartu had the highest difference (ANOSIM R = 0.203) in β diversity. Multivariate regression models showed that α diversity indices and bacterial and endotoxin loads were positively associated with the occupants' age, number of occupants, cleaning frequency, presence of dogs, and age of the house. Further studies are needed to understand how meteorological factors influence the indoor bacterial community in light of climate change.
Collapse
Affiliation(s)
- Hesham Amin
- Department
of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Tina Šantl-Temkiv
- Section
for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Christine Cramer
- Department
of Public Health, Environment, Work and Health, Danish Ramazzini Center, Aarhus University, 8000 Aarhus, Denmark
- Department
of Occupational Medicine, Danish Ramazzini Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Kai Finster
- Section
for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | | | | | - Mathias Holm
- Department
of Occupational and Environmental Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Christer Janson
- Department
of Medical Sciences: Respiratory, Allergy, Sleep Research, Uppsala University, 751 85 Uppsala, Sweden
- Department
of Medical Sciences: Clinical Physiology, Uppsala University, 751
85 Uppsala, Sweden
| | - Nils Oskar Jögi
- Department
of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Rain Jogi
- Tartu
University Hospital, Lung Clinic, 50406 Tartu, Estonia
| | - Andrei Malinovschi
- Department
of Medical Sciences: Clinical Physiology, Uppsala University, 751
85 Uppsala, Sweden
| | - Ian P. G. Marshall
- Section
for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Lars Modig
- Division
of Occupational and Environmental Medicine, Department of Public Health
and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Dan Norbäck
- Department of Medical
Sciences, Occupational and Environmental Medicine, Uppsala University, 751
85 Uppsala, Sweden
| | - Rajesh Shigdel
- Department
of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Torben Sigsgaard
- Department
of Public Health, Environment, Work and Health, Danish Ramazzini Center, Aarhus University, 8000 Aarhus, Denmark
| | - Cecilie Svanes
- Department of Occupational Medicine, Haukeland
University Hospital, 5053 Bergen, Norway
- Centre for International Health, University
of Bergen Department of Global Public Health and Primary Care, 5009 Bergen, Norway
| | - Hulda Thorarinsdottir
- Department of Anesthesia
and Intensive Care, Landspitali University
Hospital, 101 Reykjavik, Iceland
| | - Inge M. Wouters
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Vivi Schlünssen
- Department
of Public Health, Environment, Work and Health, Danish Ramazzini Center, Aarhus University, 8000 Aarhus, Denmark
| | - Randi J. Bertelsen
- Department
of Clinical Science, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
23
|
Konecna E, Videnska P, Buresova L, Urik M, Smetanova S, Smatana S, Prokes R, Lanickova B, Budinska E, Klanova J, Borilova Linhartova P. Enrichment of human nasopharyngeal bacteriome with bacteria from dust after short-term exposure to indoor environment: a pilot study. BMC Microbiol 2023; 23:202. [PMID: 37525095 PMCID: PMC10391871 DOI: 10.1186/s12866-023-02951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Indoor dust particles are an everyday source of human exposure to microorganisms and their inhalation may directly affect the microbiota of the respiratory tract. We aimed to characterize the changes in human nasopharyngeal bacteriome after short-term exposure to indoor (workplace) environments. METHODS In this pilot study, nasopharyngeal swabs were taken from 22 participants in the morning and after 8 h of their presence at the workplace. At the same time points, indoor dust samples were collected from the participants' households (16 from flats and 6 from houses) and workplaces (8 from a maternity hospital - NEO, 6 from a pediatric hospital - ENT, and 8 from a research center - RCX). 16S rRNA sequencing analysis was performed on these human and environmental matrices. RESULTS Staphylococcus and Corynebacterium were the most abundant genera in both indoor dust and nasopharyngeal samples. The analysis indicated lower bacterial diversity in indoor dust samples from flats compared to houses, NEO, ENT, and RCX (p < 0.05). Participants working in the NEO had the highest nasopharyngeal bacterial diversity of all groups (p < 0.05). After 8 h of exposure to the workplace environment, enrichment of the nasopharynx with several new bacterial genera present in the indoor dust was observed in 76% of study participants; however, no significant changes were observed at the level of the nasopharyngeal bacterial diversity (p > 0.05, Shannon index). These "enriching" bacterial genera overlapped between the hospital workplaces - NEO and ENT but differed from those in the research center - RCX. CONCLUSIONS The results suggest that although the composition of nasopharyngeal bacteriome is relatively stable during the day. Short-term exposure to the indoor environment can result in the enrichment of the nasopharynx with bacterial DNA from indoor dust; the bacterial composition, however, varies by the indoor workplace environment.
Collapse
Affiliation(s)
- Eva Konecna
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petra Videnska
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Lucie Buresova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Milan Urik
- Department of Pediatric Otorhinolaryngology, University Hospital Brno, Černopolní 9, 613 00 Brno, Czech Republic
- Department of Pediatric Otorhinolaryngology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Sona Smetanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Stanislav Smatana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Roman Prokes
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, Brno, Czech Republic
| | - Barbara Lanickova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Department of Gynaecology and Obstetrics, University Hospital Brno, Obilni Trh 526/11, 602 00 Brno, Czech Republic
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | | |
Collapse
|
24
|
Harnpicharnchai P, Pumkaeo P, Siriarchawatana P, Likhitrattanapisal S, Mayteeworakoon S, Ingsrisawang L, Boonsin W, Eurwilaichitr L, Ingsriswang S. AirDNA sampler: An efficient and simple device enabling high-yield, high-quality airborne environment DNA for metagenomic applications. PLoS One 2023; 18:e0287567. [PMID: 37384659 PMCID: PMC10309600 DOI: 10.1371/journal.pone.0287567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Analyzing temporal and spatial distributions of airborne particles of biological origins is vital for the assessment and monitoring of air quality, especially with regard to public health, environmental ecology, and atmospheric chemistry. However, the analysis is frequently impeded by the low levels of biomass in the air, especially with metagenomic DNA analysis to explore diversity and composition of living organisms and their components in the air. To obtain sufficient amounts of metagenomic DNA from bioaerosols, researchers usually need a long sampling time with an expensive high-volume air sampler. This work shows the utilization of an air sampling device containing an economical, high-volume portable ventilation fan in combination with customized multi-sheet filter holders to effectively obtain high yields of genomic DNA in a relatively short time. The device, named 'AirDNA' sampler, performed better than other commercial air samplers, including MD8 Airport and Coriolis compact air samplers. Using the AirDNA sampler, an average DNA yield of 40.49 ng (12.47-23.24 ng at 95% CI) was obtained in only 1 hour of air sampling with a 0.85 probability of obtaining ≥10 ng of genomic DNA. The genomic DNA obtained by the AirDNA system is of suitable quantity and quality to be further used for amplicon metabarcoding sequencing of 16S, 18S, and cytochrome c oxidase I (COI) regions, indicating that it can be used to detect various prokaryotes and eukaryotes. Our results showed the effectiveness of our AirDNA sampling apparatus with a simple setup and affordable devices to obtain metagenomic DNA for short-term or long-term spatiotemporal analysis. The technique is well suited for monitoring air in built environments, especially monitoring bioaerosols for health purposes and for fine-scale spatiotemporal environmental studies.
Collapse
Affiliation(s)
- Piyanun Harnpicharnchai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Panyapon Pumkaeo
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Paopit Siriarchawatana
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Somsak Likhitrattanapisal
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Sermsiri Mayteeworakoon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Lily Ingsrisawang
- Department of Statistics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Worawongsin Boonsin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Lily Eurwilaichitr
- National Energy Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
25
|
Hampton-Marcell JT, Ghosh A, Gukeh MJ, Megaridis CM. A new approach of microbiome monitoring in the built environment: feasibility analysis of condensation capture. MICROBIOME 2023; 11:129. [PMID: 37291673 PMCID: PMC10249190 DOI: 10.1186/s40168-023-01555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Humans emit approximately 30 million microbial cells per hour into their immediate vicinity. However, sampling of aerosolized microbial taxa (aerobiome) remains largely uncharacterized due to the complexity and limitations of sampling techniques, which are highly susceptible to low biomass and rapid sample degradation. Recently, there has been an interest in developing technology that collects naturally occurring water from the atmosphere, even within the built environment. Here, we analyze the feasibility of indoor aerosol condensation collection as a method to capture and analyze the aerobiome. METHODS Aerosols were collected via condensation or active impingement in a laboratory setting over the course of 8 h. Microbial DNA was extracted from collected samples and sequenced (16S rRNA) to analyze microbial diversity and community composition. Dimensional reduction and multivariate statistics were employed to identify significant (p < 0.05) differences in relative abundances of specific microbial taxa observed between the two sampling platforms. RESULTS Aerosol condensation capture is highly efficient with a yield greater than 95% when compared to expected values. Compared to air impingement, aerosol condensation showed no significant difference (ANOVA, p > 0.05) in microbial diversity. Among identified taxa, Streptophyta and Pseudomonadales comprised approximately 70% of the microbial community composition. CONCLUSION The results suggest that condensation of atmospheric humidity is a suitable method for the capture of airborne microbial taxa reflected by microbial community similarity between devices. Future investigation of aerosol condensation may provide insight into the efficacy and viability of this new tool to investigate airborne microorganisms. IMPORTANCE On average, humans shed approximately 30 million microbial cells each hour into their immediate environment making humans the primary contributor to shaping the microbiome found within the built environment. In addition, recent events have highlighted the importance of understanding how microorganisms within the built environment are aerosolized and dispersed, but more importantly, the lack in development of technology that is capable of actively sampling the ever-changing aerosolized microbiome, i.e., aerobiome. This research highlights the capability of sampling the aerobiome by taking advantage of naturally occurring atmospheric humidity. Our novel approach reproduces the biological content in the atmosphere and can provide insight into the environmental microbiology of indoor spaces. Video Abstract.
Collapse
Affiliation(s)
- Jarrad T Hampton-Marcell
- Biosciences Division, Argonne National Laboratory, Lemont, IL, USA.
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St, Chicago, IL, 60607, USA.
| | - Aritra Ghosh
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohamad Jafari Gukeh
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Constantine M Megaridis
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Bao Y, Chen Y, Wang F, Xu Z, Zhou S, Sun R, Wu X, Yan K. East Asian monsoon manipulates the richness and taxonomic composition of airborne bacteria over China coastal area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162581. [PMID: 36889406 DOI: 10.1016/j.scitotenv.2023.162581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Airborne bacteria may have significant impacts on aerosol properties, public health and ecosystem depending on their taxonomic composition and transport. This study investigated the seasonal and spatial variations of bacterial composition and richness over the east coast of China and the roles of East Asian monsoon played through synchronous sampling and 16S rRNA sequencing analysis of airborne bacteria at Huaniao island of the East China Sea (ECS) and the urban and rural sites of Shanghai. Airborne bacteria showed higher richness over the land sites than Huaniao island with the highest values found in the urban and rural springs associated with the growing plants. For the island, the maximal richness occurred in winter as the result of prevailing terrestrial winds controlled by East Asian winter monsoon. Proteobacteria, Actinobacteria and Cyanobacteria were found to be top three phyla, together accounting for 75 % of total airborne bacteria. Radiation-resistant Deinococcus, Methylobacterium belonging to Rhizobiales (related to vegetation) and Mastigocladopsis_PCC_10914 originating from marine ecosystem were indicator genera for urban, rural and island sites, respectively. The Bray-Curits dissimilarity of taxonomic composition between the island and two land sites was the lowest in winter with the representative genera over island also typically from the soil. Our results reveal that seasonal change of monsoon wind directions evidently affects the richness and taxonomic composition of airborne bacteria in China coastal area. Particularly, prevailing terrestrial winds lead to the dominance of land-derived bacteria over the coastal ECS which may have a potential impact on marine ecosystem.
Collapse
Affiliation(s)
- Yang Bao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Ying Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 202162, China.
| | - Fanghui Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Zongjun Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Shengqian Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Ruihua Sun
- Pudong New District Environmental Monitoring Station, Shanghai 200135, China
| | - Xiaowei Wu
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Ke Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
27
|
Amato P, Mathonat F, Nuñez Lopez L, Péguilhan R, Bourhane Z, Rossi F, Vyskocil J, Joly M, Ervens B. The aeromicrobiome: the selective and dynamic outer-layer of the Earth's microbiome. Front Microbiol 2023; 14:1186847. [PMID: 37260685 PMCID: PMC10227452 DOI: 10.3389/fmicb.2023.1186847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The atmosphere is an integral component of the Earth's microbiome. Abundance, viability, and diversity of microorganisms circulating in the air are determined by various factors including environmental physical variables and intrinsic and biological properties of microbes, all ranging over large scales. The aeromicrobiome is thus poorly understood and difficult to predict due to the high heterogeneity of the airborne microorganisms and their properties, spatially and temporally. The atmosphere acts as a highly selective dispersion means on large scales for microbial cells, exposing them to a multitude of physical and chemical atmospheric processes. We provide here a brief critical review of the current knowledge and propose future research directions aiming at improving our comprehension of the atmosphere as a biome.
Collapse
Affiliation(s)
- Pierre Amato
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fan C, Xie W, Hu W, Matsusaki H, Kojima T, Zhang D. Number size distribution of bacterial aerosols in terrestrial and marine airflows at a coastal site of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161238. [PMID: 36586682 DOI: 10.1016/j.scitotenv.2022.161238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Size-differentiated concentration of bacterial aerosols is essential for investigating their dissemination via the atmosphere. In this study, the number size distribution of bacterial aerosols was measured at a coastal site in southwestern Japan (32.324°N, 129.993°E) using a size-segregated eight-stage (>11, 7.0-11, 4.7-7.0, 3.3-4.7, 2.1-3.3, 1.1-2.1, 0.65-1.1, and 0.43-0.65μm) sampler. The results showed that the distribution differed according to the source areas: terrestrial air, oceanic air, or a combination of the two. The distribution in the long-distance transported terrestrial air from the Asian continent was monomodal, with a peak of 3.3-4.7 μm. The distribution in local land breeze air was bimodal, with the peaks at 0.43-1.1 and 3.3-4.7 μm. A similar bimodal distribution was encountered when the local island air and long-distance transported terrestrial air mixed. In contrast, the size distribution did not show clear peaks in the air from either nearby or remote marine areas. According to the air mass backward trajectories, the further the distance the air moved in the 72 h before arriving at the site, the lower the concentration of total bacterial aerosols. The estimation of dry deposition fluxes of bacterial cells showed that the deposition was dominated by cells larger than 1.1 μm with a relative contribution from 70.5 % to 93.7 %, except for the local land breeze cases, where the contributions in the size ranges larger and smaller than 1.1 μm were similar. These results show the distinctive number size distributions and removal processes of bacterial aerosols in different types of air. In addition, they indicate that size-dependent characteristics of airborne bacteria should be considered when studying their activities and roles in the atmospheric environment.
Collapse
Affiliation(s)
- Chunlan Fan
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Wenwen Xie
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hiromi Matsusaki
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Tomoko Kojima
- Department Earth and Environmental Science, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan.
| |
Collapse
|
29
|
Nie C, Geng X, Ouyang H, Wang L, Li Z, Wang M, Sun X, Wu Y, Qin Y, Xu Y, Tang X, Chen J. Abundant bacteria and fungi attached to airborne particulates in vegetable plastic greenhouses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159507. [PMID: 36257421 DOI: 10.1016/j.scitotenv.2022.159507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The proliferation of modern vegetable plastic greenhouses (VPGS) supplies more and more vegetables for food all over the world. The airborne bacteria and fungi induce more exposure opportunities for workers toiling in confined plastic greenhouses. Culture-independent approaches by qPCR and high-throughput sequencing technology were used to study the airborne particulates microbiota in typic VPGS in Shandong, a large base of vegetables in China. The result revealed the mean airborne bacteria concentrations reached 1.67 × 103 cells/m3 (PM2.5) and 2.38 × 103 cells/m3 (PM10), and the mean airborne fungal concentrations achieved 1.49 × 102 cells/m3 (PM2.5) and 3.19 × 102 cells/m3 (PM10) in VPGS. The predominant bacteria in VPGS included Ralstonia, Alcanivorax, Pseudomonas, Bacillus, and Acinetobacter. Botrytis, Alternaria, Fusarium, Sporobolomyces, and Cladosporium were frequently detected fungal genera in VPGS. A higher Chao1 of bacteria in PM10 was significantly different from PM2.5 in VPGS. The potential pathogens in VPGS include Raltonia picketti, Acinetobacter lwoffii, Bacillus anthracis, Botrytis cinerea, and Cladosporium sphaerospermum. The network analysis indicated that airborne microbiota was associated with soil microbiota which was affected by anthropologic activities. The predicted gene functions revealed that bacterial function mainly involved metabolism, neurodegenerative diseases, and fungal trophic mode dominated by Pathotroph-Saprotroph in VPGS. These findings unveiled airborne microbiomes in VPGS so that a strategy for improving air quality can be applied to safeguard health and vegetation.
Collapse
Affiliation(s)
- Changliang Nie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xueyun Geng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Huiling Ouyang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China
| | - Zongzhen Li
- Weifang University of Science and Technology, Weifang 262700, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yunhan Qin
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Youxin Xu
- Weifang University of Science and Technology, Weifang 262700, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xu Tang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| |
Collapse
|
30
|
Long T, Ye Z, Tang Y, Shi J, Wen J, Chen C, Huo Q. Comparison of bacterial community structure in PM 2.5 during hazy and non-hazy periods in Guilin, South China. AEROBIOLOGIA 2023; 39:87-103. [PMID: 36568442 PMCID: PMC9762634 DOI: 10.1007/s10453-022-09777-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/09/2022] [Indexed: 05/19/2023]
Abstract
UNLABELLED In recent years, significant efforts have been made to study changes in the levels of air pollutants at regional and urban scales, and changes in bioaerosols during air pollution events have attracted increasing attention. In this study, the bacterial structure of PM2.5 was analysed under different environmental conditions during hazy and non-hazy periods in Guilin. A total of 32 PM2.5 samples were collected in December 2020 and July 2021, and the microbial community structures were analysed using high-throughput sequencing methods. The results show that air pollution and climate change alter the species distribution and community diversity of bacteria in PM2.5, particularly Sphingomonas and Pseudomonas. The structure of the bacterial community composition is related to diurnal variation, vertical height, and urban area and their interactions with various environmental factors. This is a comprehensive study that characterises the variability of bacteria associated with PM2.5 in a variety of environments, highlighting the impacts of environmental effects on the atmospheric microbial community. The results will contribute to our understanding of haze trends in China, particularly the relationship between bioaerosol communities and the urban environment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-022-09777-0.
Collapse
Affiliation(s)
- Tengfa Long
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Ziwei Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Yanchun Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Jiaxin Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Jianhui Wen
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
- Guilin Ecological Environmental Monitoring Center, Guilin, 541004 China
| | - Chunqiang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Qiang Huo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| |
Collapse
|
31
|
Environmental DNA as an innovative technique to identify the origins of falsified antimalarial tablets-a pilot study of the pharmabiome. Sci Rep 2022; 12:21997. [PMID: 36539480 PMCID: PMC9764312 DOI: 10.1038/s41598-022-25196-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Falsified medicines are a major threat to global health. Antimalarial drugs have been particularly targeted by criminals. As DNA analysis has revolutionized forensic criminology, we hypothesized that these techniques could also be used to investigate the origins of falsified medicines. Medicines may contain diverse adventitious biological contamination, and the sealed nature of blister-packages may capture and preserve genetic signals from the manufacturing processes allowing identification of production source(s). We conducted a blinded pilot study to determine if such environmental DNA (eDNA) could be detected in eleven samples of falsified and genuine artesunate antimalarial tablets, collected in SE Asia, which could be indicative of origin. Massively Parallel Sequencing (MPS) was used to characterize microbial and eukaryote diversity. Two mitochondrial DNA analysis approaches were explored to detect the presence of human DNA. Trace eDNA from these low biomass samples demonstrated sample specific signals using two target markers. Significant differences in bacterial and eukaryote DNA community structures were observed between genuine and falsified tablets and between different packaging types of falsified artesunate. Human DNA, which was indicative of likely east Asian ancestry, was found in falsified tablets. This pilot study of the 'pharmabiome' shows the potential of environmental DNA as a powerful forensic tool to assist with the identification of the environments, and hence location and timing, of the source and manufacture of falsified medicines, establish links between seizures and complement existing tools to build a more complete picture of criminal trade routes. The finding of human DNA in tablets raises important ethical issues that need to be addressed.
Collapse
|
32
|
Xue F, Yang Y, Zou S, Zhang Y, Yue D, Zhao Y, Lai S. Characterization of airborne bacteria and fungi at a land-sea transition site in Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157786. [PMID: 35926597 DOI: 10.1016/j.scitotenv.2022.157786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Airborne microbe can have impact on regional to global climate as ice nuclei and cloud condensation nuclei. In coastal region, microbial aerosols are simultaneously contributed by terrestrial and marine sources under the influence of land-sea air exchange. We present a study on the characteristics of airborne bacteria and fungi, including their concentrations and communities, at a land-sea transition site in Southern China from December 2019 to December 2020. Seasonal variations of microbial communities were observed with evident profiles in summer, especially for fungal aerosols. The significant enhancement of Basidiomycota abundance in summer was contributed by local biogenic release under the influence of meteorological factors. Terrestrial sources are suggested as the dominant contributors to both bacterial and fungal aerosols rather than marine sources during the whole year period. Source-tracking analysis identified that marine contributions to airborne bacteria and fungi were 3.1-14.2 % and 4-24 %, respectively. It suggests that airborne fungi should be more suitable for long-range transport than airborne bacteria. This study improves the understanding of the conversional contribution of marine and terrestrial sources to airborne microbes in coastal region and the influencing environmental factors under land-sea exchange.
Collapse
Affiliation(s)
- Feihong Xue
- School of Marine Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Ying Yang
- School of Marine Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China.
| | - Yingyi Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Dingli Yue
- Ecological and Environmental Monitoring Center of Guangdong Province, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Yan Zhao
- Ecological and Environmental Monitoring Center of Western Zhuhai, Zhuhai 519000, China
| | - Senchao Lai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
33
|
Malard LA, Avila-Jimenez ML, Schmale J, Cuthbertson L, Cockerton L, Pearce DA. Aerobiology over the Southern Ocean - Implications for bacterial colonization of Antarctica. ENVIRONMENT INTERNATIONAL 2022; 169:107492. [PMID: 36174481 DOI: 10.1016/j.envint.2022.107492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Parts of the Antarctic are experiencing dramatic ecosystem change due to rapid and record warming, which may weaken biogeographic boundaries and modify dispersal barriers, increasing the risk of biological invasions. In this study, we collected air samples from 100 locations around the Southern Ocean to analyze bacterial biodiversity in the circumpolar air around the Antarctic continent, as understanding dispersal processes is paramount to assessing the risks of microbiological invasions. We also compared the Southern Ocean air bacterial biodiversity to non-polar ecosystems to identify the potential origin of these Southern Ocean air microorganisms. The bacterial diversity in the air had both local and global origins and presented low richness overall but high heterogeneity, compatible with a scenario whereby samples are composed of a suite of different species in very low relative abundances. Only 4% of Amplicon Sequence Variants (ASVs) were identified in both polar and non-polar air masses, suggesting that the polar air mass over the Southern Ocean can act as a selective dispersal filter. Furthermore, both microbial diversity and community structure both varied significantly with meteorological data, suggesting that regional bacterial biodiversity could be sensitive to changes in weather conditions, potentially altering the existing pattern of microbial deposition in the Antarctic.
Collapse
Affiliation(s)
- Lucie A Malard
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | - Julia Schmale
- Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Lewis Cuthbertson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NEwcastle-upon-Tyne NE1 8ST, United Kingdom
| | - Luke Cockerton
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NEwcastle-upon-Tyne NE1 8ST, United Kingdom
| | - David A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NEwcastle-upon-Tyne NE1 8ST, United Kingdom; British Antarctic Survey, Natural Environemnt Research Council, High Cross, Madingley Road, Cambridge BCB3 0ET, United Kingdom.
| |
Collapse
|
34
|
Ginn O, Lowry S, Brown J. A systematic review of enteric pathogens and antibiotic resistance genes in outdoor urban aerosols. ENVIRONMENTAL RESEARCH 2022; 212:113097. [PMID: 35339466 DOI: 10.1016/j.envres.2022.113097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/10/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Aerosol transport of enteric microbiota including fecal pathogens and antimicrobial resistance genes (ARGs) has been documented in a range of settings but remains poorly understood outside indoor environments. We conducted a systematic review of the peer-reviewed literature to summarize evidence on specific enteric microbiota including enteric pathogens and ARGs that have been measured in aerosol samples in urban settings where the risks of outdoor exposure and antibiotic resistance (AR) spread may be highest. Following PRISMA guidelines, we conducted a key word search for articles published within the years 1990-2020 using relevant data sources. Two authors independently conducted the keyword searches of databases and conducted primary and secondary screenings before merging results. To be included, studies contained extractable data on enteric microbes and AR in outdoor aerosols regardless of source confirmation and reported on qualitative, quantitative, or viability data on enteric microbes or AR. Qualitative analyses and metric summaries revealed that enteric microbes and AR have been consistently reported in outdoor aerosols, generally via relative abundance measures, though gaps remain preventing full understanding of the role of the aeromicrobiological pathway in the fate and transport of enteric associated outdoor aerosols. We identified remaining gaps in the evidence base including a need for broad characterization of enteric pathogens in bioaerosols beyond bacterial genera, a need for greater sampling in locations of high enteric disease risk, and a need for quantitative estimation of microbial and nucleic acid densities that may be applied to fate and transport models and in quantitative microbial risk assessment.
Collapse
Affiliation(s)
- Olivia Ginn
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Sarah Lowry
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Joe Brown
- Deparment of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
35
|
Jiang X, Wang C, Guo J, Hou J, Guo X, Zhang H, Tan J, Li M, Li X, Zhu H. Global Meta-analysis of Airborne Bacterial Communities and Associations with Anthropogenic Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9891-9902. [PMID: 35785964 PMCID: PMC9301914 DOI: 10.1021/acs.est.1c07923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Airborne microbiome alterations, an emerging global health concern, have been linked to anthropogenic activities in numerous studies. However, these studies have not reached a consensus. To reveal general trends, we conducted a meta-analysis using 3226 air samples from 42 studies, including 29 samples of our own. We found that samples in anthropogenic activity-related categories showed increased microbial diversity, increased relative abundance of pathogens, increased co-occurrence network complexity, and decreased positive edge proportions in the network compared with the natural environment category. Most of the above conclusions were confirmed using the samples we collected in a particular period with restricted anthropogenic activities. Additionally, unlike most previous studies, we used 15 human-production process factors to quantitatively describe anthropogenic activities. We found that microbial richness was positively correlated with fine particulate matter concentration, NH3 emissions, and agricultural land proportion and negatively correlated with the gross domestic product per capita. Airborne pathogens showed preferences for different factors, indicating potential health implications. SourceTracker analysis showed that the human body surface was a more likely source of airborne pathogens than other environments. Our results advance the understanding of relationships between anthropogenic activities and airborne bacteria and highlight the role of airborne pathogens in public health.
Collapse
Affiliation(s)
- Xiaoqing Jiang
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
| | - Chunhui Wang
- School
of Life Sciences, Peking University, Beijing 100871, China
| | - Jinyuan Guo
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jiaheng Hou
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
| | - Xiao Guo
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
| | - Haoyu Zhang
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
| | - Jie Tan
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
| | - Mo Li
- School
of Life Sciences, Peking University, Beijing 100871, China
| | - Xin Li
- School
of Life Sciences, Peking University, Beijing 100871, China
- Beijing
National Day School, Beijing 100039, China
| | - Huaiqiu Zhu
- State
Key Laboratory for Turbulence and Complex Systems, Department of Biomedical
Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Peking University, Beijing 100871, China
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30332, United States
- . Phone: 8610-6276-7261
| |
Collapse
|
36
|
Maltz MR, Carey CJ, Freund HL, Botthoff JK, Hart SC, Stajich JE, Aarons SM, Aciego SM, Blakowski M, Dove NC, Barnes ME, Pombubpa N, Aronson EL. Landscape Topography and Regional Drought Alters Dust Microbiomes in the Sierra Nevada of California. Front Microbiol 2022; 13:856454. [PMID: 35836417 PMCID: PMC9274194 DOI: 10.3389/fmicb.2022.856454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dust provides an ecologically significant input of nutrients, especially in slowly eroding ecosystems where chemical weathering intensity limits nutrient inputs from underlying bedrock. In addition to nutrient inputs, incoming dust is a vector for dispersing dust-associated microorganisms. While little is known about dust-microbial dispersal, dust deposits may have transformative effects on ecosystems far from where the dust was emitted. Using molecular analyses, we examined spatiotemporal variation in incoming dust microbiomes along an elevational gradient within the Sierra Nevada of California. We sampled throughout two dry seasons and found that dust microbiomes differed by elevation across two summer dry seasons (2014 and 2015), which corresponded to competing droughts in dust source areas. Dust microbial taxa richness decreased with elevation and was inversely proportional to dust heterogeneity. Likewise, dust phosphorus content increased with elevation. At lower elevations, early season dust microbiomes were more diverse than those found later in the year. The relative abundances of microbial groups shifted during the summer dry season. Furthermore, mutualistic fungal diversity increased with elevation, which may have corresponded with the biogeography of their plant hosts. Although dust fungal pathogen diversity was equivalent across elevations, elevation and sampling month interactions for the relative abundance, diversity, and richness of fungal pathogens suggest that these pathogens differed temporally across elevations, with potential implications for humans and wildlife. This study shows that landscape topography and droughts in source locations may alter the composition and diversity of ecologically relevant dust-associated microorganisms.
Collapse
Affiliation(s)
- Mia R. Maltz
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Center for Conservation Biology, University of California, Riverside, Riverside, CA, United States
- BREATHE Center, University of California, Riverside, Riverside, CA, United States
| | - Chelsea J. Carey
- Point Blue Conservation Sciences, Petaluma, CA, United States
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, Riverside, CA, United States
| | - Hannah L. Freund
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, Riverside, CA, United States
| | - Jon K. Botthoff
- Center for Conservation Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephen C. Hart
- Sierra Nevada Research Institute, University of California, Merced, Merced, CA, United States
- Department of Life and Environmental Sciences, University of California, Merced, Merced, CA, United States
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, Riverside, CA, United States
| | - Sarah M. Aarons
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Sarah M. Aciego
- Department of Geology and Geophysics, University of Wyoming, Laramie, WY, United States
- Noctilucent Aviation, Bridgeport, TX, United States
| | - Molly Blakowski
- Department of Watershed Science, Utah State University, Logan, UT, United States
| | - Nicholas C. Dove
- Sierra Nevada Research Institute, University of California, Merced, Merced, CA, United States
- Environmental Systems Graduate Group, University of California, Merced, Merced, CA, United States
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Morgan E. Barnes
- Sierra Nevada Research Institute, University of California, Merced, Merced, CA, United States
- Environmental Systems Graduate Group, University of California, Merced, Merced, CA, United States
- Pacific Northwest National Laboratory, Biological Sciences, Richland, WA, United States
| | - Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Emma L. Aronson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Center for Conservation Biology, University of California, Riverside, Riverside, CA, United States
- BREATHE Center, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
37
|
Gusareva ES, Gaultier NE, Uchida A, Premkrishnan BNV, Heinle CE, Phung WJ, Wong A, Lau KJX, Yap ZH, Koh Y, Ang PN, Putra A, Panicker D, Lee JGH, Neves LC, Drautz-Moses DI, Schuster SC. Short-range contributions of local sources to ambient air. PNAS NEXUS 2022; 1:pgac043. [PMID: 36713329 PMCID: PMC9802476 DOI: 10.1093/pnasnexus/pgac043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/07/2022] [Indexed: 06/18/2023]
Abstract
Recent developments in aerobiology have enabled the investigation of airborne biomass with high temporal and taxonomic resolution. In this study, we assess the contributions of local sources to ambient air within a 160,000 m2 tropical avian park (AP). We sequenced and analyzed 120 air samples from seven locations situated 160 to 400 m apart, representing distinct microhabitats. Each microhabitat contained a characteristic air microbiome, defined by the abundance and richness of its airborne microbial community members, supported by both, PCoA and Random Forest analysis. Each outdoor microhabitat contained 1% to 18.6% location-specific taxa, while a core microbiome of 27.1% of the total taxa was shared. To identify and assess local sources, we compared the AP dataset with a DVE reference dataset from a location 2 km away, collected during a year-round sampling campaign. Intersection of data from the two sites demonstrated 61.6% of airborne species originated from local sources of the AP, 34.5% from ambient air background, and only 3.9% of species were specific to the DVE reference site. In-depth taxonomic analysis demonstrated association of bacteria-dominated air microbiomes with indoor spaces, while fungi-dominated airborne microbial biomass was predominant in outdoor settings with ample vegetation. The approach presented here demonstrates an ability to identify local source contributions against an ambient air background, despite the prevailing mixing of air masses caused by atmospheric turbulences.
Collapse
Affiliation(s)
| | | | - Akira Uchida
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Balakrishnan N V Premkrishnan
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Cassie E Heinle
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Wen J Phung
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Anthony Wong
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kenny J X Lau
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Zhei H Yap
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yanqing Koh
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Poh N Ang
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Alexander Putra
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Deepa Panicker
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jessica G H Lee
- Mandai Nature, 80 Mandai Lake Rd, Singapore 729826, Singapore
| | - Luis C Neves
- Animal Care Department, Mandai Wildlife Group, 80 Mandai Lake Rd, Singapore 729826, Singapore
| | - Daniela I Drautz-Moses
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | |
Collapse
|
38
|
Xu N, Zhao Q, Zhang Z, Zhang Q, Wang Y, Qin G, Ke M, Qiu D, Peijnenburg WJGM, Lu T, Qian H. Phyllosphere Microorganisms: Sources, Drivers, and Their Interactions with Plant Hosts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4860-4870. [PMID: 35435673 DOI: 10.1021/acs.jafc.2c01113] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The leaves of plants are colonized by various microorganisms. In comparison to the rhizosphere, less is known about the characteristics and ecological functions of phyllosphere microorganisms. Phyllosphere microorganisms mainly originate from soil, air, and seeds. The composition of phyllosphere microorganisms is mainly affected by ecological and abiotic factors. Phyllosphere microorganisms execute multiple ecological functions by influencing leaf functions and longevity, seed mass, fruit development, and homeostasis of host growth. A plant can respond to phyllosphere microorganisms by secondary metabolite secretion and its immune system. Meanwhile, phyllosphere microorganisms play an important role in ecological stability and environmental safety assessment. However, as a result of the instability of the phyllosphere environment and the poor cultivability of phyllosphere microorganisms in the current research, there are still many limitations, such as the lack of insight into the mechanisms of plant-microorganism interactions, the roles of phyllosphere microorganisms in plant growth processes, the responses of phyllosphere microorganisms to plant metabolites, etc. This review summarizes the latest progress made in the research of the phyllosphere in recent years. This is beneficial for deepening our understanding of phyllosphere microorganisms and promoting the research of plant-atmosphere interactions, plant pathogens, and plant biological control.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Qianqiu Zhao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, Xinjiang 830011, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Guoyan Qin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Post Office Box 1, 3720 BA Bilthoven, Netherlands
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| |
Collapse
|
39
|
Grothjan JJ, Young EB. Bacterial Recruitment to Carnivorous Pitcher Plant Communities: Identifying Sources Influencing Plant Microbiome Composition and Function. Front Microbiol 2022; 13:791079. [PMID: 35359741 PMCID: PMC8964293 DOI: 10.3389/fmicb.2022.791079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Processes influencing recruitment of diverse bacteria to plant microbiomes remain poorly understood. In the carnivorous pitcher plant Sarracenia purpurea model system, individual pitchers open to collect rainwater, invertebrates and a diverse microbial community, and this detrital food web is sustained by captured insect prey. This study examined how potential sources of bacteria affect the development of the bacterial community within pitchers, how the host plant tissue affects community development and how established vs. assembling communities differ. In a controlled greenhouse experiment, seven replicate pitchers were allocated to five treatments to exclude specific bacterial sources or host tissue: milliQ water only, milliQ + insect prey, rainwater + prey, established communities + prey, artificial pitchers with milliQ + prey. Community composition and functions were examined over 8-40 weeks using bacterial gene sequencing and functional predictions, measurements of cell abundance, hydrolytic enzyme activity and nutrient transformations. Distinct community composition and functional differences between artificial and real pitchers confirm an important influence of host plant tissue on community development, but also suggest this could be partially related to host nutrient uptake. Significant recruitment of bacteria to pitchers from air was evident from many taxa common to all treatments, overlap in composition between milliQ, milliQ + prey, and rainwater + prey treatments, and few taxa unique to milliQ only pitchers. Community functions measured as hydrolytic enzyme (chitinase, protease) activity suggested a strong influence of insect prey additions and were linked to rapid transformation of insect nutrients into dissolved and inorganic sources. Bacterial taxa found in 6 of 7 replicate pitchers within treatments, the "core microbiome" showed tighter successional trajectories over 8 weeks than all taxa. Established pitcher community composition was more stable over 8 weeks, suggesting a diversity-stability relationship and effect of microinvertebrates on bacteria. This study broadly demonstrates that bacterial composition in host pitcher plants is related to both stochastic and specific bacterial recruitment and host plants influence microbial selection and support microbiomes through capture of insect prey.
Collapse
Affiliation(s)
- Jacob J. Grothjan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Erica B. Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
40
|
Liu H, Hu Z, Zhou M, Zhang H, Zhang X, Yue Y, Yao X, Wang J, Xi C, Zheng P, Xu X, Hu B. PM 2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118715. [PMID: 34933062 DOI: 10.1016/j.envpol.2021.118715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Airborne bacteria may absorb the substance from the atmospheric particles and play a role in biogeochemical cycling. However, these studies focused on a few culturable bacteria and the samples were usually collected from one site. The metabolic potential of a majority of airborne bacteria on a regional scale and their driving factors remain unknown. In this study, we collected particulates with aerodynamic diameter ≤2.5 μm (PM2.5) from 8 cities that represent different regions across China and analyzed the samples via high-throughput sequencing of 16S rRNA genes, quantitative polymerase chain reaction (qPCR) analysis, and functional database prediction. Based on the FAPROTAX database, 326 (80.69%), 191 (47.28%) and 45 (11.14%) bacterial genera are possible to conduct the pathways of carbon, nitrogen, and sulfur cycles, respectively. The pathway analysis indicated that airborne bacteria may lead to the decrease in organic carbon while the increase in ammonium and sulfate in PM2.5 samples, all of which are the important components of PM2.5. Among the 19 environmental factors studied including air pollutants, meteorological factors, and geographical conditions, PM2.5 concentration manifested the strongest correlations with the functional genes for the transformation of ammonium and sulfate. Moreover, the PM2.5 concentration rather than the sampling site will drive the distribution of functional genera. Thus, a bi-directional relationship between PM2.5 and bacterial metabolism is suggested. Our findings shed light on the potential bacterial pathway for the biogeochemical cycling in the atmosphere and the important role of PM2.5, offering a new perspective for atmospheric ecology and pollution control.
Collapse
Affiliation(s)
- Huan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; School of Civil Engineering, Chongqing University, Chongqing, 400044, China
| | - Zhichao Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaole Zhang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Yang Yue
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Ping Zheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Perreault R, Laforest-Lapointe I. Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene. THE ISME JOURNAL 2022; 16:339-345. [PMID: 34522008 PMCID: PMC8776876 DOI: 10.1038/s41396-021-01109-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Global change is a defining feature of the Anthropocene, the current human-dominated epoch, and poses imminent threats to ecosystem dynamics and services such as plant productivity, biodiversity, and environmental regulation. In this era, terrestrial ecosystems are experiencing perturbations linked to direct habitat modifications as well as indirect effects of global change on species distribution and extreme abiotic conditions. Microorganisms represent an important reservoir of biodiversity that can influence macro-organisms as they face habitat loss, rising atmospheric CO2 concentration, pollution, global warming, and increased frequency of drought. Plant-microbe interactions in the phyllosphere have been shown to support plant growth and increase host resistance to biotic and abiotic stresses. Here, we review how plant-microbe interactions in the phyllosphere can influence host survival and fitness in the context of global change. We highlight evidence that plant-microbe interactions (1) improve urban pollution remediation through the degradation of pollutants such as ultrafine particulate matter, black carbon, and atmospheric hydrocarbons, (2) have contrasting impacts on plant species range shifts through the loss of symbionts or pathogens, and (3) drive plant host adaptation to drought and warming. Finally, we discuss how key community ecology processes could drive plant-microbe interactions facing challenges of the Anthropocene.
Collapse
Affiliation(s)
- Rosaëlle Perreault
- grid.86715.3d0000 0000 9064 6198Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| | - Isabelle Laforest-Lapointe
- grid.86715.3d0000 0000 9064 6198Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada ,grid.86715.3d0000 0000 9064 6198Centre Sève, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| |
Collapse
|
42
|
Diversity and Source of Airborne Microbial Communities at Differential Polluted Sites of Rome. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biogenic fraction of airborne PM10 which includes bacteria, viruses, fungi and pollens, has been proposed as one of the potential causes of the PM10 toxicity. The present study aimed to provide a comprehensive understanding of the microbial community variations associated to PM10, and their main local sources in the surrounding environment in three urban sites of Rome, characterized by differential pollution rate: green area, residential area and polluted area close to the traffic roads. We combined high-throughput amplicon sequencing of the bacterial 16S rRNA gene and the fungal internal transcribed spacer (ITS) region, with detailed chemical analysis of particulate matter sampled from air, paved road surfaces and leaf surfaces of Quercus ilex. Our results demonstrated that bacterial and fungal airborne communities were characterized by the highest alpha-diversity and grouped separately from epiphytic and road dust communities. The reconstruction of source-sink relationships revealed that the resuspension/deposition of road dust from traffic might contribute to the maximum magnitude of microbial exchanges. The relative abundance of extremotolerant microbes was found to be enhanced in epiphytic communities and was associated to a progressively increase of pollution levels as well as opportunistic human pathogenicity in fungal communities.
Collapse
|
43
|
Comparison of Bacterial Community Structure in PM2.5 within Broiler Houses under Different Rearing Systems in China. SUSTAINABILITY 2022. [DOI: 10.3390/su14031357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: In intensive poultry farming, high concentrations of indoor particulate matter (PM) impact production performance and welfare. In this study, PM2.5 level and bacterial community diversity were investigated in a multilayer cage house rearing system (CH) and a net flooring house rearing system (FH) during different growth stages to clarify the effects of the rearing systems on the diversity of airborne bacteria and help improve health management. Methods: The IC and high-throughput sequencing were used for ion composition and bacterial diversity analysis of PM2.5 collected from CH and FH. Results: The concentrations of NH3, CO2 and PM2.5 in CH were significantly lower than FH (p < 0.001) in both middle and late rearing stages. PM concentrations gradually increased with broiler growth only in FH. The water-soluble ions of PM2.5 samples had no significant difference between the two systems (p > 0.05). Firmicutes, Actinobacteria and Proteobacteria were the most abundant phyla in both the atmosphere and the broiler houses, but the composition was significantly different. The bacterial community in the broiler houses had strong correlations with temperature, humidity and PM of extremely high concentrations. Ions had stronger correlations with microbial community structure. Conclusions: The superiority of CH in environmental control over FH indicates that improved techniques in environmental control and breeding management can greatly reduce farming air pollution and improve the health management of broiler houses.
Collapse
|
44
|
Yan D, Zhang T, Bai JL, Su J, Zhao LL, Wang H, Fang XM, Zhang YQ, Liu HY, Yu LY. Isolation, Characterization, and Antimicrobial Activity of Bacterial and Fungal Representatives Associated With Particulate Matter During Haze and Non-haze Days. Front Microbiol 2022; 12:793037. [PMID: 35087495 PMCID: PMC8787346 DOI: 10.3389/fmicb.2021.793037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/07/2022] Open
Abstract
Particulate matter (PM) has been a threat to the environment and public health in the metropolises of developing industrial countries such as Beijing. The microorganisms associated with PM have an impact on human health if they are exposed to the respiratory tract persistently. There are few reports on the microbial resources collected from PM and their antimicrobial activities. In this study, we greatly expanded the diversity of available commensal organisms by collecting 1,258 bacterial and 456 fungal isolates from 63 PM samples. A total of 77 bacterial genera and 35 fungal genera were included in our pure cultures, with Bacillus as the most prevalent cultured bacterial genus, Aspergillus, and Penicillium as the most prevalent fungal ones. During heavy-haze days, the numbers of colony-forming units (CFUs) and isolates of bacteria and fungi were decreased. Bacillus, Paenibacillus, and Chaetomium were found to be enriched during haze days, while Kocuria, Microbacterium, and Penicillium were found to be enriched during non-haze days. Antimicrobial activity against common pathogens have been found in 40 bacterial representatives and 1 fungal representative. The collection of airborne strains will provide a basis to greatly increase our understanding of the relationship between bacteria and fungi associated with PM and human health.
Collapse
Affiliation(s)
- Dong Yan
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Lin Bai
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Su
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Li Zhao
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Wang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Mei Fang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Qin Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Yu Liu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Yan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Šantl-Temkiv T, Amato P, Casamayor EO, Lee PKH, Pointing SB. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6524182. [PMID: 35137064 PMCID: PMC9249623 DOI: 10.1093/femsre/fuac009] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
The atmosphere connects habitats across multiple spatial scales via airborne dispersal of microbial cells, propagules and biomolecules. Atmospheric microorganisms have been implicated in a variety of biochemical and biophysical transformations. Here, we review ecological aspects of airborne microorganisms with respect to their dispersal, activity and contribution to climatic processes. Latest studies utilizing metagenomic approaches demonstrate that airborne microbial communities exhibit pronounced biogeography, driven by a combination of biotic and abiotic factors. We quantify distributions and fluxes of microbial cells between surface habitats and the atmosphere and place special emphasis on long-range pathogen dispersal. Recent advances have established that these processes may be relevant for macroecological outcomes in terrestrial and marine habitats. We evaluate the potential biological transformation of atmospheric volatile organic compounds and other substrates by airborne microorganisms and discuss clouds as hotspots of microbial metabolic activity in the atmosphere. Furthermore, we emphasize the role of microorganisms as ice nucleating particles and their relevance for the water cycle via formation of clouds and precipitation. Finally, potential impacts of anthropogenic forcing on the natural atmospheric microbiota via emission of particulate matter, greenhouse gases and microorganisms are discussed.
Collapse
Affiliation(s)
- Tina Šantl-Temkiv
- Department of Biology, Aarhus University, DK-8000 Aarhus, Denmark
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus, Denmark
| | - Pierre Amato
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont Auvergne, 63178, Clermont-Ferrand, France
| | - Emilio O Casamayor
- Centre for Advanced Studies of Blanes, Spanish Council for Research (CSIC), 17300, Blanes, Spain
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Stephen B Pointing
- Corresponding author: Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore 138527. Tel: +65 6601 1000; E-mail:
| |
Collapse
|
46
|
Nieto-Caballero M, Gomez OM, Shaughnessy R, Hernandez M. Aerosol fluorescence, airborne hexosaminidase, and quantitative genomics distinguish reductions in airborne fungal loads following major school renovations. INDOOR AIR 2022; 32:e12975. [PMID: 34897813 DOI: 10.1111/ina.12975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Fluorescent aerosol cytometry (FAC) was compared to concurrent recovery of airborne β-N-acetylhexosaminidase (NAHA) and quantitative polymerase chain reaction (qPCR) for the respective ability of these methods to detect significant changes in airborne fungal loads in response to building renovations. Composite, site-randomized indoor aerosol samples for airborne fungi measurements were acquired from more than 70 occupied classrooms in 26 different public schools in the Colorado Rocky Mountain Front Range region of the United States. As judged by ANOVA and Pearson's correlation test, statistically significant associations were observed between real-time FAC and airborne NAHA levels, which detected significant reductions in airborne fungal loads immediately following building rehabilitations. With lower confidence, a statistically significant association was also resolved between fluorescing aerosols, NAHA levels, and the recovery of fungal 18S rRNA gene copies by qPCR from simultaneous, collocated aerosol samples. Quantitative differences encountered between the recovery of common genomic markers for airborne fungi and that of optical and biochemical methods are attributed to the variance in 18S rRNA target gene copies that different fungal species can host.
Collapse
Affiliation(s)
- Marina Nieto-Caballero
- Civil, Environmental and Architectural Engineering Department, Environmental Engineering Program, University of Colorado, Boulder, Colorado, USA
| | - Odessa M Gomez
- Civil, Environmental and Architectural Engineering Department, Environmental Engineering Program, University of Colorado, Boulder, Colorado, USA
| | - Richard Shaughnessy
- Chemical Engineering Department, Indoor Air Program, University of Tulsa, Tulsa, Oklahoma, USA
| | - Mark Hernandez
- Civil, Environmental and Architectural Engineering Department, Environmental Engineering Program, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
47
|
Investigation of Sources, Diversity, and Variability of Bacterial Aerosols in Athens, Greece: A Pilot Study. ATMOSPHERE 2021. [DOI: 10.3390/atmos13010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We characterized the composition, diversity, and potential bacterial aerosol sources in Athens’ urban air by DNA barcoding (analysis of 16S rRNA genes) during three seasons in 2019. Air samples were collected using the recently developed Rutgers Electrostatic Passive Sampler (REPS). It is the first field application of REPS to study bacterial aerosol diversity. REPS samplers captured a sufficient amount of biological material to demonstrate the diversity of airborne bacteria and their variability over time. Overall, in the air of Athens, we detected 793 operational taxonomic units (OTUs), which were fully classified into the six distinct taxonomic categories (Phylum, Class, Order, etc.). These OTUs belonged to Phyla Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, Cyanobacteria, and Fusobacteria. We found a complex community of bacterial aerosols with several opportunistic or potential pathogens in Athens’ urban air. Referring to the available literature, we discuss the likely sources of observed airborne bacteria, including soil, plants, animals, and humans. Our results on bacterial diversity are comparable to earlier studies, even though the sampling sites are different or geographically distant. However, the exact functional and ecological role of bioaerosols and, even more importantly, their impact on public health and the ecosystem requires further air monitoring and analysis.
Collapse
|
48
|
Wang Q, Guo S, Hou Z, Lin H, Liang H, Wang L, Luo Y, Ren H. Rainfall facilitates the transmission and proliferation of antibiotic resistance genes from ambient air to soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149260. [PMID: 34352459 DOI: 10.1016/j.scitotenv.2021.149260] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is common in bacterial communities and appears to be correlated with human activities. However, the source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in remote regions remains unclear. In this study, we examined the abundance of ARGs in fine particulate matter (PM2.5) as a carrier throughout the rainfall process (4 mm rain/h) to observe the effects of rainfall on the transmission of ARGs. The results suggested that rainwater served as a reservoir that facilitated the spread of ARGs and that wind and particulate matter (PM) concentrations might be meteorological parameters that influence the distribution of ARGs in rainwater. In addition, soil microcosm experiments were performed to investigate the influence of rainfall on antibiotic resistance in soils with different environmental backgrounds. Rainwater facilitated the proliferation of ARGs and mobile genetic elements (MGEs) from ambient air to soil, and this influence was more obvious in heavy metal-contaminated soil. This is the first study to investigate the routes by which rainfall acts as a mobile reservoir to facilitate the transmission and proliferation of ARGs, and the results indicate the potential source of ARGs in remote regions where humans rarely interfere.
Collapse
Affiliation(s)
- Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shaoyue Guo
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Zelin Hou
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Haiyin Liang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Litao Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
49
|
Finn DR, Maldonado J, de Martini F, Yu J, Penton CR, Fontenele RS, Schmidlin K, Kraberger S, Varsani A, Gile GH, Barker B, Kollath DR, Muenich RL, Herckes P, Fraser M, Garcia-Pichel F. Agricultural practices drive biological loads, seasonal patterns and potential pathogens in the aerobiome of a mixed-land-use dryland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149239. [PMID: 34325138 DOI: 10.1016/j.scitotenv.2021.149239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Air carries a diverse load of particulate microscopic biological matter in suspension, either aerosolized or aggregated with dust particles, the aerobiome, which is dispersed by winds from sources to sinks. The aerobiome is known to contain microbes, including pathogens, as well as debris or small-sized propagules from plants and animals, but its variability and composition has not been studied comprehensibly. To gain a dynamic insight into the aerobiome existing over a mixed-use dryland setting, we conducted a biologically comprehensive, year-long survey of its composition and dynamics for particles less than 10 μm in diameter based on quantitative analyses of DNA content coupled to genomic sequencing. Airborne biological loads were more dependent on seasonal events than on meteorological conditions and only weakly correlated with dust loads. Core aerobiome species could be understood as a mixture of high elevation (e.g. Microbacteriaceae, Micrococcaceae, Deinococci), and local plant and soil sources (e.g. Sphingomonas, Streptomyces, Acinetobacter). Despite the mixed used of the land surrounding the sampling site, taxa that contributed to high load events were largely traceable to proximal agricultural practices like cotton and livestock farming. This included not only the predominance of specific crop plant signals over those of native vegetation, but also that of their pathogens (bacterial, viral and eukaryotic). Faecal bacterial loads were also seasonally important, possibly sourced in intensive animal husbandry or manure fertilization activity, and this microbial load was enriched in tetracycline resistance genes. The presence of the native opportunistic pathogen, Coccidioides spp., by contrast, was detected only with highly sensitive techniques, and only rarely. We conclude that agricultural activity exerts a much stronger influence that the native vegetation as a mass loss factor to the land system and as an input to dryland aerobiomes, including in the dispersal of plant, animal and human pathogens and their genetic resistance characteristics.
Collapse
Affiliation(s)
- Damien R Finn
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Braunschweig 38116, Germany; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA
| | - Juan Maldonado
- Knowledge Enterprise Genomics Core, Arizona State University, Tempe 85287-5001, AZ, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA
| | - Francesca de Martini
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Julian Yu
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - C Ryan Penton
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Kara Schmidlin
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Simona Kraberger
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Center for Evolution and Medicine, Arizona State University, Tempe 85287-5001, AZ, USA
| | - Gillian H Gile
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Bridget Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff 86011-4073, AZ, USA
| | - Daniel R Kollath
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff 86011-4073, AZ, USA
| | - Rebecca L Muenich
- School of Sustainable Engineering, Arizona State University, Tempe 85287-3005, AZ, USA
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe 85287-1604, AZ, USA
| | - Matthew Fraser
- School of Sustainable Engineering, Arizona State University, Tempe 85287-3005, AZ, USA
| | - Ferran Garcia-Pichel
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe 85287-5001, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| |
Collapse
|
50
|
Yin Y, Qi J, Gong J, Gao D. Distribution of bacterial concentration and viability in atmospheric aerosols under various weather conditions in the coastal region of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148713. [PMID: 34247090 DOI: 10.1016/j.scitotenv.2021.148713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 05/13/2023]
Abstract
Airborne bacteria have an important role in atmospheric processes and human health. However, there is still little information on the transmission and distribution of bacteria via the airborne route. To characterize the impact of foggy, haze, haze-fog (HF) and dust days on the concentration and viability of bacteria in atmospheric aerosols, size-segregated bioaerosol samples were collected in the Qingdao coastal region from March 2018 to February 2019. The total airborne microbes and viable/non-viable bacteria in the bioaerosol samples were measured using an epifluorescence microscope after staining with DAPI (4', 6-diamidino-2-phenylindole) and a LIVE/DEAD® BacLight Bacterial Viability Kit. The average concentrations of total airborne microbes on haze and dust days were 6.75 × 105 and 1.03 × 106 cells/m3, respectively, which increased by a factor of 1.3 and 2.5 (on average), respectively, relative to those on sunny days. The concentrations of non-viable bacteria on haze and dust days increased by a factor of 1.2 and 3.6 (on average), respectively, relative to those on sunny days. In contrast, the concentrations of viable bacteria on foggy and HF days were 7.13 × 103 and 5.74 × 103 cells/m3, decreases of 38% and 50%, respectively, compared with those on sunny days. Foggy, haze, dust and HF days had a significant effect on the trend of the seasonal variation in the total airborne microbes and non-viable bacteria. Bacterial viability was 20.8% on sunny days and significantly higher than the 14.1% on foggy days, 11.2% on haze days, 8.6% during the HF phenomenon and 6.1% on dust days, indicating that special weather is harmful to some bacterial species. Correlation analysis showed that the factors that influenced the bacterial concentration and viability depended on different weather conditions. The main influential factors were temperature, NO2 and SO2 concentrations on haze days, and temperature, particulate matter (PM2.5) and NO2 concentrations on foggy days. The median size of particles containing viable bacteria was 1.94 μm on sunny days and decreased to 1.88 μm and 1.74 μm on foggy and haze days, respectively, but increased to 2.18 μm and 2.37 μm on dust and HF days, respectively.
Collapse
Affiliation(s)
- Yidan Yin
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Jianhua Qi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Jing Gong
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Dongmei Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|