1
|
Žuštra A, Leonard VR, Holland LA, Hu JC, Mu T, Holland SC, Wu LI, Begnel ER, Ojee E, Chohan BH, Richardson BA, Kinuthia J, Wamalwa D, Slyker J, Lehman DA, Gantt S, Lim ES. Longitudinal dynamics of the nasopharyngeal microbiome in response to SARS-CoV-2 Omicron variant and HIV infection in Kenyan women and their children. mSystems 2025; 10:e0156824. [PMID: 40261064 PMCID: PMC12090742 DOI: 10.1128/msystems.01568-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
The nasopharynx and its microbiota are implicated in respiratory health and disease. The interplay between viral infection and the nasopharyngeal microbiome is an area of increased interest. The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 pandemic, on the nasopharyngeal microbiome among individuals living with HIV is not fully characterized. Here, we describe the nasopharyngeal microbiome before, during, and after SARS-CoV-2 infection in a longitudinal cohort of Kenyan women (21 living with HIV and 14 HIV-uninfected) and their children (18 HIV-exposed, uninfected and 7 HIV-unexposed, uninfected) between September 2021 and March 2022. We show using genomic epidemiology that mother and child dyads were infected with the same strain of the SARS-CoV-2 Omicron variant that spread rapidly across Kenya. We used metagenomic sequencing to characterize the nasopharyngeal microbiome of 20 women and children infected with SARS-CoV-2, six children negative for SARS-CoV-2 but experiencing respiratory symptoms, and 34 timepoint-matched SARS-CoV-2-negative mothers and children. Since individuals were sampled longitudinally before and after SARS-CoV-2 infection, we could characterize the short- (within a week of infection) and longer- (average of 38 days post-infection) term impact of SARS-CoV-2 infection on the nasopharyngeal microbiome. We found that mothers and children had significantly different microbiome composition and bacterial load (P-values < 0.0001). In both mothers and children, the nasopharyngeal microbiome did not differ before and after SARS-CoV-2 infection, regardless of HIV exposure status. Our results indicate that the nasopharyngeal microbiome is resilient to SARS-CoV-2 infection and was not significantly modified by HIV. IMPORTANCE The nasopharyngeal microbiome plays an important role in human health. The degree of impact that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has on the nasopharyngeal microbiome varies among studies and may be influenced by diverse SARS-CoV-2 variants and variations in the microbiome between individuals. Our results show that the nasopharyngeal microbiome was not altered substantially by SARS-CoV-2 infection nor by HIV infection in mothers or HIV exposure in children. Our findings highlight the resilience of the nasopharyngeal microbiome after SARS-CoV-2 infection. These findings advance our understanding of the nasopharyngeal microbiome and its interactions with viral infections.
Collapse
Affiliation(s)
- Ayla Žuštra
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Victoria R. Leonard
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James C. Hu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Tianchen Mu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Steven C. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Lily I. Wu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Emily R. Begnel
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Ednah Ojee
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Bhavna H. Chohan
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Barbra A. Richardson
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - John Kinuthia
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton Wamalwa
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Dara A. Lehman
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Centre de Recherche du CHU St-Justine, Montréal, Québec, Canada
| | - Efrem S. Lim
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- National Centre for Infectious Diseases, Singapore, Singapore
| |
Collapse
|
2
|
Nikolai von Krusenstiern A, Cohen NA, Rhee RL. Upper Respiratory Microbiome in Vasculitis. Rheum Dis Clin North Am 2025; 51:189-200. [PMID: 40246437 DOI: 10.1016/j.rdc.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The pathogenesis of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), such as granulomatosis with polyangiitis, is not well understood. These diseases cause significant inflammation in the upper airway. The nares and upper airway are host to many commensal microbes as well as a frequent site of exposure to pathogenic microbes. This review explores the association between upper airway microbial dysregulation and AAV. The role of Staphylococcus aureus colonization as a possible driver of disease is discussed, as well as recent work exploring how fluctuations in the abundance and diversity of commensal microbes are related to vasculitis and risk of flare.
Collapse
Affiliation(s)
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, 5th Floor White Building, Philadelphia, PA 19104, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA; Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Rennie L Rhee
- Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Diesbourg EE, Kidd KA, Perrotta BG. Effects of municipal wastewater effluents on the invertebrate microbiomes of an aquatic-riparian food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125948. [PMID: 40023240 DOI: 10.1016/j.envpol.2025.125948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Municipal wastewater effluents (MWWEs) contain antimicrobials and other contaminants that can alter the microbiomes of exposed aquatic animals, potentially negatively impacting host health. Contaminants and nutrients from MWWEs may be transferred across the aquatic - riparian boundary by aquatic insects, potentially altering the microbiomes of both prey and consumers. We evaluated host microbiome compositions of several taxa of freshwater larval and adult insects, and riparian spiders at sites upstream and downstream of three wastewater treatment plants. Host microbiome compositions were analyzed by sequencing the 16S rRNA gene and MWWE exposure was assessed using stable carbon (δ13C) and nitrogen (δ15N) isotopes and effluent-associated bacteria. Most downstream insects and riparian spiders were enriched in δ13C and δ15N, indicating exposure to MWWEs and transfer of MWWE-derived nutrients to riparian consumers. Within sites, insect microbiomes varied after metamorphosis with a greater proportion of endosymbionts and effluent-associated bacteria and decreased alpha diversity in adults, and the microbiomes of Tetragnathidae spiders were dominated by endosymbionts (mainly Rickettsia and Wolbachia) compared to all other taxa. Downstream, larval caddisfly (Hydropsychidae) microbiomes had a significantly lower proportion of endosymbionts (Rickettsia) and higher diversity, and Araneidae spiders also had higher diversity. However, there were no significant downstream changes in endosymbiont proportions or alpha diversity of larval and adult chironomids, larval and adult mayflies, larval stoneflies, or Tetragnathidae spiders. Most downstream invertebrates (except larval Chironomidae, adult Diptera, and Tetragnathidae spiders) had altered beta diversity (community compositions); however, host taxonomy explained more of the variation in microbiome composition than site or the interaction between them did. Overall, MWWE bacteria and nutrients were incorporated into most insect larvae and retained throughout metamorphosis, however there were taxa-dependent alterations in downstream insect microbiomes and minimal microbiome alterations to their riparian spider predators.
Collapse
Affiliation(s)
- Emilie E Diesbourg
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada.
| | - Brittany G Perrotta
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| |
Collapse
|
4
|
Kamitaki N, Handsaker RE, Hujoel MLA, Mukamel RE, Usher CL, McCarroll SA, Loh PR. Human and bacterial genetic variation shape oral microbiomes and health. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25324952. [PMID: 40236410 PMCID: PMC11998847 DOI: 10.1101/2025.03.31.25324952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
It is largely unknown which human genetic variants shape a person's oral microbiome and potentially promote its dysbiosis. We characterized the oral microbiomes of 12,519 people by analyzing whole-genome sequencing reads from previously sequenced saliva-derived DNA. Human genetic variation at 11 loci (10 novel) associated with differences in oral microbiome composition. Nearly all of these associations implicated candidate genes with readily interpretable functions, several related to carbohydrate availability. The strongest association ( p =3.0x10 -188 ) involved the common FUT2 W154X loss-of-function variant, which associated with the abundances of 32 bacterial species. Human host genetics also appeared to powerfully shape within-species genetic variation in oral bacteria. Variation at the 11 human loci associated with variation in gene dosages in 68 regions of bacterial genomes. Several such associations implicated interactions of bacterial proteins with histo-blood group antigens presented on host mucosal cell surfaces and salivary proteins. Common, multi-allelic copy-number variation of AMY1 , which encodes salivary amylase, associated with oral microbiome composition ( p =1.5x10 -53 ) and with dentures use in UK Biobank ( p =5.9x10 -35 , n=418k), suggesting that amylase abundance impacts oral health by influencing the oral microbiome. Two other microbiome composition-associated loci, FUT2 and PITX1 , also significantly associated with dentures risk, collectively nominating numerous microbial taxa that might contribute to tooth decay.
Collapse
|
5
|
Yarlagadda T, Carey A, Bryan E, Huygens F, Yarlagadda P, Maresco-Pennisi D, Coleman A, Cervin A, Spann K. The response of nasal epithelial cells exposed to novel Lactobacillus and alpha-haemolytic Streptococcus isolated from the upper respiratory tract of children. J Appl Microbiol 2025; 136:lxaf071. [PMID: 40107866 DOI: 10.1093/jambio/lxaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/27/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
AIMS To investigate the response of primary nasal epithelial cells (NECs) to novel alpha haemolytic Streptococcus and lactobacilli strains, isolated from the upper respiratory tract of children. METHODS AND RESULTS Submerged cultures of NECs from healthy adult donors were exposed to either novel strains; Lactobacillus rhamnosus D3189, D3160, Streptococcus salivarius D3837; or commercially available probiotic strains L. rhamnosus LB21, S. salivarius K12; or a pathogenic strain (S. pneumoniae 49619). Cytotoxicity (measured through lactate dehydrogenase release) and cytokine release were quantified 24 hours post-exposure. Exposure to novel and commercially available strains did not induce the production of IFN-β, IFN-λ1/3, IL-1β, IL-6, IL-8, or TNF-α production or the release of LDH. Conversely, the pathogenic strain S. pneumoniae 49 619 significantly elevated the expression of IL-1β, IL-8, TNF-α, and LDH in NECs. CONCLUSIONS The findings within this study highlight the non-pathogenic nature of these novel strains and support further investigation of the potential to develop nasally administered probiotics.
Collapse
Affiliation(s)
- Tejasri Yarlagadda
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland 4000, Australia
| | - Alison Carey
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland 4000, Australia
| | - Emily Bryan
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland 4000, Australia
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Queensland 4000, Australia
| | - Flavia Huygens
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland 4000, Australia
| | - Prasad Yarlagadda
- School of Engineering, University of Southern Queensland, Queensland 4300, Australia
| | - Diane Maresco-Pennisi
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Queensland 4000, Australia
| | - Andrea Coleman
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Queensland 4000, Australia
| | - Anders Cervin
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Queensland 4000, Australia
| | - Kirsten Spann
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland 4000, Australia
| |
Collapse
|
6
|
Yousefi Y, Haider Z, Grondin JA, Wang H, Haq S, Banskota S, Seto T, Surette M, Khan WI. Gut microbiota regulates intestinal goblet cell response and mucin production by influencing the TLR2-SPDEF axis in an enteric parasitic infection. Mucosal Immunol 2025:S1933-0219(25)00033-9. [PMID: 40164286 DOI: 10.1016/j.mucimm.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Alterations in goblet cell biology constitute one of the most effective host responses against enteric parasites. In the gastrointestinal (GI) tract, millions of bacteria influence these goblet cell responses by binding to pattern recognition receptors such as toll-like receptors (TLRs). Studies suggest that the gut microbiota also interacts bidirectionally with enteric parasites, including Trichuris muris. Here, we study the roles of T. muris-altered microbiota and the TLR2-SPDEF axis in parasitic host defense. In acute T. muris infection, we observed altered gut microbiota composition, which, when transferred to germ-free mice, resulted in increased goblet cell numbers, Th2 cytokines and Muc2 expression, as well as increased Tlr2. Further, antibiotic (ABX)-treated TLR2-/- mice, despite having received the same T. muris-altered microbiota, displayed diminished Th2 response, Muc2 expression, and, intriguingly, diminished SPDEF expression compared to wildtype counterparts. When infected with T. muris, SPDEF-/- mice exhibited a reduced Th2 response and altered microbial composition compared to SPDEF+/+, particularly on day 14 post-infection, and this microbiota was sufficient to alter host goblet cell response when transferred to ABX-treated mice. Taken together, our findings suggest the TLR2-SPDEF axis, via T. muris-induced microbial changes, is an important regulator of goblet cell function and host's parasitic defense.
Collapse
Affiliation(s)
- Yeganeh Yousefi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zarin Haider
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
7
|
Pirr S, Willers M, Viemann D. The neonate respiratory microbiome. Acta Physiol (Oxf) 2025; 241:e14266. [PMID: 39840649 PMCID: PMC11752418 DOI: 10.1111/apha.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/12/2024] [Accepted: 01/01/2025] [Indexed: 01/23/2025]
Abstract
Over the past two decades, it has become clear that against earlier assumptions, the respiratory tract is regularly populated by a variety of microbiota even down to the lowest parts of the lungs. New methods and technologies revealed distinct microbiome compositions and developmental trajectories in the differing parts of the respiratory tract of neonates and infants. In this review, we describe the current understanding of respiratory microbiota development in human neonates and highlight multiple factors that have been identified to impact human respiratory microbiome development including gestational age, mode of delivery, diet, antibiotic treatment, and early infections. Moreover, we discuss to date revealed respiratory microbiome-disease associations in infants and children that may indicate a potentially imprinting cross talk between microbial communities and the host immune system in the respiratory tract. It becomes obvious how insufficient our knowledge still is regarding the exact mechanisms underlying such cross talk in humans. Lastly, we highlight strong findings that emphasize the important role of the gut-lung axis in educating and driving pulmonary immunity. Further research is needed to better understand the host - respiratory microbiome interaction in order to enable the translation into microbiome-based strategies to protect and improve human respiratory health from early childhood.
Collapse
Affiliation(s)
- Sabine Pirr
- Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST 2155—Resolving Infection Susceptibility, Hannover Medical SchoolHannoverGermany
- University Hospital FreiburgPRIMAL (Priming Immunity at the Beginning of Life) ConsortiumFreiburgGermany
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST 2155—Resolving Infection Susceptibility, Hannover Medical SchoolHannoverGermany
- University Hospital FreiburgPRIMAL (Priming Immunity at the Beginning of Life) ConsortiumFreiburgGermany
- Translational Pediatrics, Department of PediatricsUniversity Hospital WürzburgWürzburgGermany
- Center for Infection ResearchUniversity WürzburgWürzburgGermany
| |
Collapse
|
8
|
Wang Q, Zhang Y, Cheng X, Guo Z, Liu Y, Xia LH, Liu Z, Zheng J, Zhang Z, Sun K, Shen G. Expert consensus on the use of oropharyngeal probiotic Bactoblis in respiratory tract infection and otitis media: available clinical evidence and recommendations for future research. Front Pediatr 2025; 12:1509902. [PMID: 39935974 PMCID: PMC11810568 DOI: 10.3389/fped.2024.1509902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 02/13/2025] Open
Affiliation(s)
- Qiang Wang
- Department of Immunology of College of Medicine, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yatong Zhang
- Department of Pharmacy, Beijing Hospital, Beijing, China
| | - Xiaoling Cheng
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Zhi Guo
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yang Liu
- Pediatric Department, Wuhan Asian General Hospital, Wuhan, China
| | - Li-hong Xia
- Pediatric Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhigang Liu
- Pediatric Department, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Junqing Zheng
- Pediatric Department, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Zihe Zhang
- Department of Otolaryngology Head and Neck Surgery, Shandong Maternity and Child Care Hospital, Jinan, China
| | - Kai Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
González-García S, Hamdan-Partida A, Pérez-Ramos J, Aguirre-Garrido JF, Bustos-Hamdan A, Bustos-Martínez J. Comparison of the bacterial microbiome in the pharynx and nasal cavity of persistent, intermittent carriers and non-carriers of Staphylococcus aureus. J Med Microbiol 2024; 73:001940. [PMID: 39629792 PMCID: PMC11616445 DOI: 10.1099/jmm.0.001940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/13/2024] [Indexed: 12/08/2024] Open
Abstract
Introduction. Staphylococcus aureus is a bacterium that colonizes various human sites. The pharynx has been considered as a site of little clinical relevance and little studied. Recently, it has been reported that S. aureus can colonize more the pharynx than the nose. In addition, S. aureus can persist in these sites for prolonged periods of time.Hypothesis. The composition of the pharyngeal and nasal microbiome will differ between persistent, intermittent carriers and non-carriers of S. aureus.Aim. Determine whether the pharyngeal and nasal microbiome is different between carriers and non-carriers of S. aureus.Methodology. S. aureus carriers were monitored by means of pharyngeal and nasal exudates of apparently healthy adult university students for 3 months. Samples from individuals of the same carrier type were pooled, and DNA was extracted and the 16S rRNA was sequenced. The sequences were analysed in MOTHUR v.1.48.0 software, by analysing the percentages of relative abundance in the STAMP 2.1.3 program, in addition to the predictive analysis of metabolic pathways in PICRUSt2.Results. A greater colonization of S. aureus was found in the pharynx than in the nose. The microbiomes of S. aureus carriers and non-carriers do not show significant differences. The main microbiome difference found was between pharyngeal and nasal microbiomes. No significant differences were found in the abundance of the genus Staphylococcus in pharyngeal and nasal S. aureus carriers and non-carriers. The nasal microbiome was found to have more variation compared to the pharyngeal microbiome, which appears to be more stable between individuals and pools. Predictive analysis of metabolic pathways showed a greater presence of Staphylococcus-associated pathways in the nose than in the pharynx.Conclusion. S. aureus can colonize and persist in the pharynx in equal or greater proportion than in the nose. No statistically significant differences were found in the microbiome of the pharyngeal and nasal carriers and non-carriers of S. aureus, but the pharyngeal and nasal microbiomes are different independent of the type of S. aureus carrier or non-carrier. Therefore, the microbiome apparently does not influence the persistence of S. aureus.
Collapse
Affiliation(s)
- Samuel González-García
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Aida Hamdan-Partida
- Departamento de Atención a la Salud, UAM Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Alcaldía Coyoacán, C.P. 04960, CDMX, Mexico
| | - Julia Pérez-Ramos
- Departamento de Sistemas Biológicos, UAM Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Alcaldía Coyoacán, C.P. 04960, CDMX, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, UAM Lerma, Av. de las Garzas 10E, l Panteón 52005, Municipio Lerma de Villada, Estado de México, Mexico
| | - Anaíd Bustos-Hamdan
- Departamento de Atención a la Salud, UAM Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Alcaldía Coyoacán, C.P. 04960, CDMX, Mexico
| | - Jaime Bustos-Martínez
- Departamento de Atención a la Salud, UAM Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Alcaldía Coyoacán, C.P. 04960, CDMX, Mexico
| |
Collapse
|
10
|
Khan IM, Nassar N, Chang H, Khan S, Cheng M, Wang Z, Xiang X. The microbiota: a key regulator of health, productivity, and reproductive success in mammals. Front Microbiol 2024; 15:1480811. [PMID: 39633815 PMCID: PMC11616035 DOI: 10.3389/fmicb.2024.1480811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
The microbiota, intensely intertwined with mammalian physiology, significantly impacts health, productivity, and reproductive functions. The normal microbiota interacts with the host through the following key mechanisms: acting as a protective barrier against pathogens, maintain mucosal barrier integrity, assisting in nutrient metabolism, and modulating of the immune response. Therefore, supporting growth and development of host, and providing protection against pathogens and toxic substances. The microbiota significantly influences brain development and behavior, as demonstrated by comprehensive findings from controlled laboratory experiments and human clinical studies. The prospects suggested that gut microbiome influence neurodevelopmental processes, modulate stress responses, and affect cognitive function through the gut-brain axis. Microbiota in the gastrointestinal tract of farm animals break down and ferment the ingested feed into nutrients, utilize to produce meat and milk. Among the beneficial by-products of gut microbiota, short-chain fatty acids (SCFAs) are particularly noteworthy for their substantial role in disease prevention and the promotion of various productive aspects in mammals. The microbiota plays a pivotal role in the reproductive hormonal systems of mammals, boosting reproductive performance in both sexes and fostering the maternal-infant connection, thereby becoming a crucial factor in sustaining mammalian existence. The microbiota is a critical factor influencing reproductive success and production traits in mammals. A well-balanced microbiome improves nutrient absorption and metabolic efficiency, leading to better growth rates, increased milk production, and enhanced overall health. Additionally, it regulates key reproductive hormones like estrogen and progesterone, which are essential for successful conception and pregnancy. Understanding the role of gut microbiota offers valuable insights for optimizing breeding and improving production outcomes, contributing to advancements in agriculture and veterinary medicine. This study emphasizes the critical ecological roles of mammalian microbiota, highlighting their essential contributions to health, productivity, and reproductive success. By integrating human and veterinary perspectives, it demonstrates how microbial communities enhance immune function, metabolic processes, and hormonal regulation across species, offering insights that benefit both clinical and agricultural advancements.
Collapse
Affiliation(s)
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Hua Chang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Maoji Cheng
- Fisugarpeptide Biology Engineering Co. Ltd., Lu’an, China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Xun Xiang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
11
|
Loperfido A, Rizzo D, Fionda B, Mureddu L, Tondo A, Tagliaferri L, Bellocchi G, Delogu G, Bussu F. The Potential Role of the Microbiome in the Pathogenesis of Nasal Tumors: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1808. [PMID: 39596994 PMCID: PMC11596812 DOI: 10.3390/medicina60111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Cancers of the nose, and especially the nose vestibule, represent a significant challenge for clinicians due to their rarity, the intricate nature of surrounding vital structures, the nonspecific early symptoms, and the etiological factors that are not completely understood. Emerging research suggests that alterations in the nasal microbiome, also known as microbial dysbiosis, may contribute to the pathogenesis of those malignancies through mechanisms involving chronic inflammation, immune modulation, and cellular changes. The aims of this paper are to review the current literature covering the nasal microbiome's role in carcinogenesis, particularly in the context of squamous cell carcinoma, and to explore how microbial dysbiosis might foster a pro-tumorigenic environment. It further discusses potential future directions for research and therapeutic approaches.
Collapse
Affiliation(s)
- Antonella Loperfido
- Otolaryngology Unit, San Camillo Forlanini Hospital, 00152 Rome, Italy; (A.L.)
| | - Davide Rizzo
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy
| | - Bruno Fionda
- UOC Degenze di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Mureddu
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy
| | - Andrea Tondo
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy
| | - Luca Tagliaferri
- UOC Degenze di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Bellocchi
- Otolaryngology Unit, San Camillo Forlanini Hospital, 00152 Rome, Italy; (A.L.)
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Mater Olbia Hospital, 07026 Olbia, Italy
| | - Francesco Bussu
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy
| |
Collapse
|
12
|
Liu J, He XY, Yang KL, Zhao Y, Dai EY, Chen WJ, Raj AK, Li D, Zhuang M, Yin XH, Ling H. Oropharyngeal microbiome profiling and its association with age and heart failure in the elderly population from the northernmost province of China. Microbiol Spectr 2024; 12:e0021624. [PMID: 39162522 PMCID: PMC11448084 DOI: 10.1128/spectrum.00216-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/07/2024] [Indexed: 08/21/2024] Open
Abstract
Respiratory tract infections are the most common triggers for heart failure in elderly people. The healthy respiratory commensal microbiota can prevent invasion by infectious pathogens and decrease the risk of respiratory tract infections. However, upper respiratory tract (URT) microbiome in the elderly is not well understood. To comprehend the profiles of URT microbiota in the elderly, and the link between the microbiome and heart failure, we investigated the oropharyngeal (OP) microbiome of these populations in Heilongjiang Province, located in the North-East of China, a high-latitude and cold area with a high prevalence of respiratory tract infection and heart failure. Taxonomy-based analysis showed that six dominant phyla were represented in the OP microbial profiles. Compared with young adults, the OP in the elderly exhibited a significantly different microbial community, mainly characterized by highly prevalent Streptococcus, unidentified_Saccharibacteria, Veillonella, unidentified_Pre votellaceae, and Neisseria. While unidentified_Prevotellaceae dominated in the young OP microbiome. There was competition for niche dominance between Streptococcus and member of Prevotellaceae in the OP. Correlation analysis revealed that the abundance of unidentified_Saccharibacteria was positive, while Streptococcus was negatively correlated to age among healthy elderly. The bacterial structure and abundance in the elderly with heart failure were much like healthy controls. Certain changes in microbial diversity indicated the potential OP microbial disorder in heart failure patients. These results presented here identify the respiratory tract core microbiota in high latitude and cold regions, and reveal the robustness of OP microbiome in the aged, supplying the basis for microbiome-targeted interventions.IMPORTANCETo date, we still lack available data on the oropharyngeal (OP) microbial communities in healthy populations, especially the elderly, in high latitude and cold regions. A better understanding of the significantly changed respiratory tract microbiota in aging can provide greater insight into characteristics of longevity and age-related diseases. In addition, determining the relationship between heart failure and OP microbiome may provide novel prevention and therapeutic strategies. Here, we compared OP microbiome in different age groups and elderly people with or without heart failure in northeastern China. We found that OP microbial communities are strongly linked to healthy aging. And the disease status of heart failure was not a powerful factor affecting OP microbiome. The findings may provide basic data to reveal respiratory bacterial signatures of individuals in a cold geographic region.
Collapse
Affiliation(s)
- Jian Liu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xiao-Yu He
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Ke-Laier Yang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, China
| | - Yue Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - En-Yu Dai
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wen-Jia Chen
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Aditya Kumar Raj
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Di Li
- Department of Microbiology, Harbin Medical University, Harbin, China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China
| | - Xin-Hua Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, China
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China
| |
Collapse
|
13
|
Li B, Wang D, Zhang C, Wang Y, Huang Z, Yang L, Yang H, Liang N, Li S, Liu Z. Role of respiratory system microbiota in development of lung cancer and clinical application. IMETA 2024; 3:e232. [PMID: 39429871 PMCID: PMC11488069 DOI: 10.1002/imt2.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 10/22/2024]
Abstract
Microbes play a significant role in human tumor development and profoundly impact treatment efficacy, particularly in immunotherapy. The respiratory tract extensively interacts with the external environment and possesses a mucosal immune system. This prompts consideration of the relationship between respiratory microbiota and lung cancer. Advancements in culture-independent techniques have revealed unique communities within the lower respiratory tract. Here, we provide an overview of the respiratory microbiota composition, dysbiosis characteristics in lung cancer patients, and microbiota profiles within lung cancer. We delve into how the lung microbiota contributes to lung cancer onset and progression through direct functions, sustained immune activation, and immunosuppressive mechanisms. Furthermore, we emphasize the clinical utility of respiratory microbiota in prognosis and treatment optimization for lung cancer.
Collapse
Affiliation(s)
- Bowen Li
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Daoyun Wang
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chengye Zhang
- Institute for Immunology, School of Basic Medical SciencesTsinghua UniversityBeijingChina
| | - Yadong Wang
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhicheng Huang
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Libing Yang
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huaxia Yang
- Department of Rheumatology and Clinical ImmunologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Naixin Liang
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shanqing Li
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhihua Liu
- Institute for Immunology, School of Basic Medical SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| |
Collapse
|
14
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
15
|
Odendaal ML, de Steenhuijsen Piters WAA, Franz E, Chu MLJN, Groot JA, van Logchem EM, Hasrat R, Kuiling S, Pijnacker R, Mariman R, Trzciński K, van der Klis FRM, Sanders EAM, Smit LAM, Bogaert D, Bosch T. Host and environmental factors shape upper airway microbiota and respiratory health across the human lifespan. Cell 2024; 187:4571-4585.e15. [PMID: 39094567 DOI: 10.1016/j.cell.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Our understanding of the normal variation in the upper respiratory tract (URT) microbiota across the human lifespan and how these relate to host, environment, and health is limited. We studied the microbiota of 3,104 saliva (<10 year-olds)/oropharynx (≥10 year-olds) and 2,485 nasopharynx samples of 3,160 Dutch individuals 0-87 years of age, participating in a cross-sectional population-wide study (PIENTER-3) using 16S-rRNA sequencing. The microbiota composition was strongly related to age, especially in the nasopharynx, with maturation occurring throughout childhood and adolescence. Clear niche- and age-specific associations were found between the microbiota composition and host/environmental factors and health outcomes. Among others, social interaction, sex, and season were associated with the nasopharyngeal microbial community. By contrast, the oral microbiota was more related to antibiotics, tobacco, and alcohol use. We present an atlas of the URT microbiota across the lifespan in association with environment and health, establishing a baseline for future research.
Collapse
Affiliation(s)
- Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mei Ling J N Chu
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - James A Groot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elske M van Logchem
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Raiza Hasrat
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Krzysztof Trzciński
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Debby Bogaert
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
16
|
Guitor AK, Katyukhina A, Mokomane M, Lechiile K, Goldfarb DM, Wright GD, McArthur AG, Pernica JM. Minimal Impact on the Resistome of Children in Botswana After Azithromycin Treatment for Acute Severe Diarrheal Disease. J Infect Dis 2024; 230:239-249. [PMID: 39052715 PMCID: PMC11272098 DOI: 10.1093/infdis/jiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Macrolide antibiotics, including azithromycin, can reduce under 5 years of age mortality rates and treat various infections in children in sub-Saharan Africa. These exposures, however, can select for antibiotic-resistant bacteria in the gut microbiota. METHODS Our previous randomized controlled trial (RCT) of a rapid-test-and-treat strategy for severe acute diarrheal disease in children in Botswana included an intervention (3-day azithromycin dose) group and a control group that received supportive treatment. In this prospective matched cohort study using stools collected at baseline and 60 days after treatment from RCT participants, the collection of antibiotic resistance genes or resistome was compared between groups. RESULTS Certain macrolide resistance genes increased in prevalence by 13%-55% at 60 days, without differences in gene presence between the intervention and control groups. These genes were linked to tetracycline resistance genes and mobile genetic elements. CONCLUSIONS Azithromycin treatment for bacterial diarrhea for young children in Botswana resulted in similar effects on the gut resistome as the supportive treatment and did not provide additional selective pressure for macrolide resistance gene maintenance. The gut microbiota of these children contains diverse macrolide resistance genes that may be transferred within the gut upon repeated exposures to azithromycin or coselected by other antibiotics. CLINICAL TRIALS REGISTRATION NCT02803827.
Collapse
Affiliation(s)
- Allison K Guitor
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Anna Katyukhina
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Mokomane
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana National Health Laboratory, Gaborone, Botswana
| | - Kwana Lechiile
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - David M Goldfarb
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Department of Pathology and Laboratory Medicine, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey M Pernica
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Allam VSRR, Patel VK, De Rubis G, Paudel KR, Gupta G, Chellappan DK, Singh SK, Hansbro PM, Oliver BGG, Dua K. Exploring the role of the ocular surface in the lung-eye axis: Insights into respiratory disease pathogenesis. Life Sci 2024; 349:122730. [PMID: 38768774 DOI: 10.1016/j.lfs.2024.122730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Chronic respiratory diseases (CRDs) represent a significant proportion of global health burden, with a wide spectrum of varying, heterogenic conditions largely affecting the pulmonary system. Recent advances in immunology and respiratory biology have highlighted the systemic impact of these diseases, notably through the elucidation of the lung-eye axis. The current review focusses on understanding the pivotal role of the lung-eye axis in the pathogenesis and progression of chronic respiratory infections and diseases. Existing literature published on the immunological crosstalk between the eye and the lung has been reviewed. The various roles of the ocular microbiome in lung health are also explored, examining the eye as a gateway for respiratory virus transmission, and assessing the impact of environmental irritants on both ocular and respiratory systems. This novel concept emphasizes a bidirectional relationship between respiratory and ocular health, suggesting that respiratory diseases may influence ocular conditions and vice versa, whereby this conception provides a comprehensive framework for understanding the intricate axis connecting both respiratory and ocular health. These aspects underscore the need for an integrative approach in the management of chronic respiratory diseases. Future research should further elucidate the in-depth molecular mechanisms affecting this axis which would pave the path for novel diagnostics and effective therapeutic strategies.
Collapse
Affiliation(s)
- Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia; School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
18
|
Quinn-Bohmann N, Freixas-Coutin JA, Seo J, Simmons R, Diener C, Gibbons SM. Meta-analysis of the human upper respiratory tract microbiome reveals robust taxonomic associations with health and disease. BMC Biol 2024; 22:93. [PMID: 38654335 PMCID: PMC11040984 DOI: 10.1186/s12915-024-01887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The human upper respiratory tract (URT) microbiome, like the gut microbiome, varies across individuals and between health and disease states. However, study-to-study heterogeneity in reported case-control results has made the identification of consistent and generalizable URT-disease associations difficult. RESULTS In order to address this issue, we assembled 26 independent 16S rRNA gene amplicon sequencing data sets from case-control URT studies, with approximately 2-3 studies per respiratory condition and ten distinct conditions covering common chronic and acute respiratory diseases. We leveraged the healthy control data across studies to investigate URT associations with age, sex, and geographic location, in order to isolate these associations from health and disease states. CONCLUSIONS We found several robust genus-level associations, across multiple independent studies, with either health or disease status. We identified disease associations specific to a particular respiratory condition and associations general to all conditions. Ultimately, we reveal robust associations between the URT microbiome, health, and disease, which hold across multiple studies and can help guide follow-up work on potential URT microbiome diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nick Quinn-Bohmann
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, 98195, USA.
| | | | - Jin Seo
- Reckitt Health US LLC, 1 Philips Pkwy, Montvale, NJ, 07645, USA
| | - Ruth Simmons
- Reckitt Benckiser Healthcare Ltd, 105 Bath Road, Slough, Berkshire, SL1 3UH, UK
| | | | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
- eScience Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
19
|
Žuštra A, Leonard VR, Holland LA, Hu JC, Mu T, Holland SC, Wu LI, Begnel ER, Ojee E, Chohan BH, Richardson BA, Kinuthia J, Wamalwa D, Slyker J, Lehman DA, Gantt S, Lim ES. Longitudinal dynamics of the nasopharyngal microbiome in response to SARS-CoV-2 Omicron variant and HIV infection in Kenyan women and their infants. RESEARCH SQUARE 2024:rs.3.rs-4257641. [PMID: 38699359 PMCID: PMC11065085 DOI: 10.21203/rs.3.rs-4257641/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The nasopharynx and its microbiota are implicated in respiratory health and disease. The interplay between viral infection and the nasopharyngeal microbiome is an area of increased interest and of clinical relevance. The impact of SARS-CoV-2, the etiological agent of the Coronavirus Disease 2019 (COVID-19) pandemic, on the nasopharyngeal microbiome, particularly among individuals living with HIV, is not fully characterized. Here we describe the nasopharyngeal microbiome before, during and after SARS-CoV-2 infection in a longitudinal cohort of Kenyan women (21 living with HIV and 14 HIV-uninfected) and their infants (18 HIV-exposed, uninfected and 18 HIV-unexposed, uninfected), followed between September 2021 through March 2022. We show using genomic epidemiology that mother and infant dyads were infected with the same strain of the SARS-CoV-2 Omicron variant that spread rapidly across Kenya. Additionally, we used metagenomic sequencing to characterize the nasopharyngeal microbiome of 20 women and infants infected with SARS-CoV-2, 6 infants negative for SARS-CoV-2 but experiencing respiratory symptoms, and 34 timepoint matched SARS-CoV-2 negative mothers and infants. Since individuals were sampled longitudinally before and after SARS-CoV-2 infection, we could characterize the short- and long-term impact of SARS-CoV-2 infection on the nasopharyngeal microbiome. We found that mothers and infants had significantly different microbiome composition and bacterial load (p-values <.0001). However, in both mothers and infants, the nasopharyngeal microbiome did not differ before and after SARS-CoV-2 infection, regardless of HIV-exposure status. Our results indicate that the nasopharyngeal microbiome is resilient to SARS-CoV-2 infection and was not significantly modified by HIV.
Collapse
|
20
|
Dijk S, Jarman M, Zhang Z, Lawley M, Ahmad M, Suarez R, Rossi L, Chen M, Wu J, Carroll MW, Otley A, Sherlock M, Mack DR, Jacobson K, deBruyn JC, El-Matary W, Deslandres C, Rashid M, Church PC, Walters TD, Huynh HQ, Surette MG, Griffiths AM, Wine E. Pre-Diagnosis Diet Predicts Response to Exclusive Enteral Nutrition and Correlates with Microbiome in Pediatric Crohn Disease. Nutrients 2024; 16:1033. [PMID: 38613066 PMCID: PMC11013084 DOI: 10.3390/nu16071033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Exclusive enteral nutrition (EEN) is effective in inducing remission in pediatric Crohn disease (CD). EEN alters the intestinal microbiome, but precise mechanisms are unknown. We hypothesized that pre-diagnosis diet establishes a baseline gut microbiome, which then mediates response to EEN. We analyzed prospectively recorded food frequency questionnaires (FFQs) for pre-diagnosis dietary patterns. Fecal microbiota were sequenced (16SrRNA) at baseline and through an 18-month follow-up period. Dietary patterns, Mediterranean diet adherence, and stool microbiota were associated with EEN treatment outcomes, disease flare, need for anti-tumor necrosis factor (TNF)-α therapy, and long-term clinical outcomes. Ninety-eight patients were included. Baseline disease severity and microbiota were associated with diet. Four dietary patterns were identified by FFQs; a "mature diet" high in fruits, vegetables, and fish was linked to increased baseline microbial diversity, which was associated with fewer disease flares (p < 0.05) and a trend towards a delayed need for anti-TNF therapy (p = 0.086). Baseline stool microbial taxa were increased (Blautia and Faecalibacterium) or decreased (Ruminococcus gnavus group) with the mature diet compared to other diets. Surprisingly, a "pre-packaged" dietary pattern (rich in processed foods) was associated with delayed flares in males (p < 0.05). Long-term pre-diagnosis diet was associated with outcomes of EEN therapy in pediatric CD; diet-microbiota and microbiota-outcome associations may mediate this relationship.
Collapse
Affiliation(s)
- Stephanie Dijk
- Department of Physiology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Megan Jarman
- Department of Agriculture, Life, & Environmental Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Zhengxiao Zhang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Morgan Lawley
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada (M.A.); (R.S.); (M.W.C.); (H.Q.H.)
| | - Muzammil Ahmad
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada (M.A.); (R.S.); (M.W.C.); (H.Q.H.)
| | - Ricardo Suarez
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada (M.A.); (R.S.); (M.W.C.); (H.Q.H.)
| | - Laura Rossi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.R.); (M.G.S.)
| | - Min Chen
- Nutrition Services (Child Health), Alberta Health Services, Edmonton, AB T5J 3E4, Canada; (M.C.); (J.W.)
| | - Jessica Wu
- Nutrition Services (Child Health), Alberta Health Services, Edmonton, AB T5J 3E4, Canada; (M.C.); (J.W.)
| | - Matthew W. Carroll
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada (M.A.); (R.S.); (M.W.C.); (H.Q.H.)
| | - Anthony Otley
- Division of Gastroenterology & Nutrition, Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.O.); (M.R.)
| | - Mary Sherlock
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - David R. Mack
- CHEO IBD Center, Department of Pediatrics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kevan Jacobson
- Division of Gastroenterology, Hepatology and Nutrition, B.C. Children’s Hospital, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada;
| | - Jennifer C. deBruyn
- Section of Pediatric Gastroenterology, Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Wael El-Matary
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Colette Deslandres
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, CHU Sainte-Justine Hospital, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Mohsin Rashid
- Division of Gastroenterology & Nutrition, Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.O.); (M.R.)
| | - Peter C. Church
- Division of Pediatric Gastroenterology, IBD Center, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1C6, Canada; (P.C.C.); (T.D.W.); (A.M.G.)
| | - Thomas D. Walters
- Division of Pediatric Gastroenterology, IBD Center, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1C6, Canada; (P.C.C.); (T.D.W.); (A.M.G.)
| | - Hien Q. Huynh
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada (M.A.); (R.S.); (M.W.C.); (H.Q.H.)
| | - Michael G. Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.R.); (M.G.S.)
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Anne M. Griffiths
- Division of Pediatric Gastroenterology, IBD Center, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1C6, Canada; (P.C.C.); (T.D.W.); (A.M.G.)
| | - Eytan Wine
- Department of Physiology, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada (M.A.); (R.S.); (M.W.C.); (H.Q.H.)
| |
Collapse
|
21
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Zhao C, Liu X, Tan H, Yin S, Su L, Du B, Khalid M, Sinkkonen A, Hui N. Neighborhood garden's age shapes phyllosphere microbiota associated with respiratory diseases in cold seasons. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100315. [PMID: 37886031 PMCID: PMC10598728 DOI: 10.1016/j.ese.2023.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
Neighborhood gardens serve as sensitive sites for human microbial encounters, with phyllosphere microbes directly impacting our respiratory health. Yet, our understanding remains limited on how factors like season, garden age, and land use shape the risk of respiratory diseases (RDs) tied to these garden microbes. Here we examined the microbial communities within the phyllosphere of 72 neighborhood gardens across Shanghai, spanning different seasons (warm and cold), garden ages (old and young), and locales (urban and rural). We found a reduced microbial diversity during the cold season, except for Gammaproteobacteria which exhibited an inverse trend. While land use influenced the microbial composition, urban and rural gardens had strikingly similar microbial profiles. Alarmingly, young gardens in the cold season hosted a substantial proportion of RDs-associated species, pointing towards increased respiratory inflammation risks. In essence, while newer gardens during colder periods show a decline in microbial diversity, they have an increased presence of RDs-associated microbes, potentially escalating respiratory disease prevalence. This underscores the pivotal role the garden age plays in enhancing both urban microbial diversity and respiratory health.
Collapse
Affiliation(s)
- Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Haoxin Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Lantian Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Baoming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Aki Sinkkonen
- Department of Garden Technologies, Horticulture Technologies, Natural Resources Institute Finland, Helsinki, Finland
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| |
Collapse
|
23
|
U-Din M, Ahmed BA, Syed SA, Ong FJ, Oreskovich SM, Gunn E, Surette MG, Punthakee Z, Steinberg GR, Morrison KM. Characteristics of Abdominal Visceral Adipose Tissue, Metabolic Health and the Gut Microbiome in Adults. J Clin Endocrinol Metab 2024; 109:680-690. [PMID: 37837606 DOI: 10.1210/clinem/dgad604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
CONTEXT Compared with the relatively benign effects of increased subcutaneous adipose tissue (SAT), increased visceral adipose tissue (VAT) volume is a causal risk factor for hypertension, hyperlipidemia, type 2 diabetes, and cardiovascular disease. In rodents, increased VAT volume and triglyceride density and ectopic lipid accumulation in kidneys and liver have been induced by alterations in the gut microbiome. However, few studies have characterized these relationships in humans. OBJECTIVE To evaluate the tissue triglyceride content of VAT and SAT, liver, kidneys, and pancreas in male and female adults and assess associations with markers of glucose tolerance, serum insulin, and lipids and characteristics of the gut microbiome. METHODS Cross-sectional observational study of healthy human adults (n = 60) at a clinical research center. Body mass index (BMI), body composition, and oral glucose tolerance were assessed. Microbiome analysis was conducted on stool samples using 16S rRNA v3 amplicon sequencing. The triglyceride content of VAT, SAT, liver, kidney and pancreas were determined by assessing proton density fat fraction (PDFF) with magnetic resonance imaging (MRI). RESULTS Higher VAT PDFF and the ratio of VAT to SAT PDFF were related to higher BMI, HbA1c, HOMA-IR, non-high-density lipoprotein cholesterol, plasma triglycerides, low-density lipoprotein (LDL) cholesterol, and lower high-density lipoprotein (HDL) cholesterol. A higher VAT PDFF and VAT to SAT PDFF ratio were associated with lower alpha diversity and altered beta diversity of the gut microbiome. Differences in VAT were associated with higher relative abundance of the phylum Firmicutes, lower relative abundance of the phylum Bacteroidetes, and enrichment of the bacterial genera Dorea, Streptococcus, and Solobacterium. CONCLUSION VAT PDFF measured with MRI is related to impaired glucose homeostasis, dyslipidemia, and differences in the gut microbiome, independently of the total body fat percentage.
Collapse
Affiliation(s)
- Mueez U-Din
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Turku PET Centre, Turku University Hospital, Turku 20520, Finland
| | - Basma A Ahmed
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Saad A Syed
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Frank J Ong
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Stephan M Oreskovich
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Elizabeth Gunn
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael G Surette
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zubin Punthakee
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Paediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
24
|
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Rehman A, Rashid A, Ekumah JN, Han X, Wang J, Ren X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024; 16:546. [PMID: 38398870 PMCID: PMC10893534 DOI: 10.3390/nu16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | | | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Mehak Gul
- Department of Internal Medicine, Sheikh Zayed Hospital, Lahore 54000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
25
|
Cuthbertson L, Löber U, Ish-Horowicz JS, McBrien CN, Churchward C, Parker JC, Olanipekun MT, Burke C, McGowan A, Davies GA, Lewis KE, Hopkin JM, Chung KF, O'Carroll O, Faul J, Creaser-Thomas J, Andrews M, Ghosal R, Piatek S, Willis-Owen SAG, Bartolomaeus TUP, Birkner T, Dwyer S, Kumar N, Turek EM, William Musk A, Hui J, Hunter M, James A, Dumas ME, Filippi S, Cox MJ, Lawley TD, Forslund SK, Moffatt MF, Cookson WOC. Genomic attributes of airway commensal bacteria and mucosa. Commun Biol 2024; 7:171. [PMID: 38347162 PMCID: PMC10861553 DOI: 10.1038/s42003-024-05840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Microbial communities at the airway mucosal barrier are conserved and highly ordered, in likelihood reflecting co-evolution with human host factors. Freed of selection to digest nutrients, the airway microbiome underpins cognate management of mucosal immunity and pathogen resistance. We show here the initial results of systematic culture and whole-genome sequencing of the thoracic airway bacteria, identifying 52 novel species amongst 126 organisms that constitute 75% of commensals typically present in heathy individuals. Clinically relevant genes encode antimicrobial synthesis, adhesion and biofilm formation, immune modulation, iron utilisation, nitrous oxide (NO) metabolism and sphingolipid signalling. Using whole-genome content we identify dysbiotic features that may influence asthma and chronic obstructive pulmonary disease. We match isolate gene content to transcripts and metabolites expressed late in airway epithelial differentiation, identifying pathways to sustain host interactions with microbiota. Our results provide a systematic basis for decrypting interactions between commensals, pathogens, and mucosa in lung diseases of global significance.
Collapse
Affiliation(s)
- Leah Cuthbertson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ulrike Löber
- Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Jonathan S Ish-Horowicz
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Mathematics, Imperial College London, London, UK
| | - Claire N McBrien
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Colin Churchward
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jeremy C Parker
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Conor Burke
- Department of Respiratory Medicine, Connolly Hospital, Dublin, Ireland
| | - Aisling McGowan
- Department of Respiratory Medicine, Connolly Hospital, Dublin, Ireland
| | - Gwyneth A Davies
- Population Data Science and Health Data Research UK BREATHE Hub, Swansea University Medical School, Swansea University, Swansea, UK
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Keir E Lewis
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
- Respiratory Medicine, Hywel Dda University Health Board, Llanelli, UK
| | - Julian M Hopkin
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Orla O'Carroll
- Department of Respiratory Medicine, Connolly Hospital, Dublin, Ireland
| | - John Faul
- Department of Respiratory Medicine, Connolly Hospital, Dublin, Ireland
| | - Joy Creaser-Thomas
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Mark Andrews
- Respiratory Medicine, Hywel Dda University Health Board, Llanelli, UK
| | - Robin Ghosal
- Respiratory Medicine, Hywel Dda University Health Board, Llanelli, UK
| | - Stefan Piatek
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Theda U P Bartolomaeus
- Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Till Birkner
- Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Sarah Dwyer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Nitin Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elena M Turek
- National Heart and Lung Institute, Imperial College London, London, UK
| | - A William Musk
- School of Population and Global Health, The University of Western Australia, Perth, WA, Australia
- Busselton Population Medical Research Institute, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Respiratory Medicine Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Jennie Hui
- School of Population and Global Health, The University of Western Australia, Perth, WA, Australia
- Busselton Population Medical Research Institute, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Michael Hunter
- School of Population and Global Health, The University of Western Australia, Perth, WA, Australia
- Busselton Population Medical Research Institute, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Alan James
- School of Population and Global Health, The University of Western Australia, Perth, WA, Australia
- Department of Respiratory Medicine Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Marc-Emmanuel Dumas
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- U1283 INSERM / UMR8199 CNRS, Institut Pasteur de Lille, Lille University Hospital, European Genomic Institute for Diabetes, University of Lille, Lille, France
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Sarah Filippi
- Department of Mathematics, Imperial College London, London, UK
| | - Michael J Cox
- University of Birmingham College of Medical and Dental Sciences, 150183, Institute of Microbiology and Infection, Birmingham, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sofia K Forslund
- Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany.
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany.
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
26
|
Duff AF, Jurcisek JA, Kurbatfinski N, Chiang T, Goodman SD, Bakaletz LO, Bailey MT. Oral and middle ear delivery of otitis media standard of care antibiotics, but not biofilm-targeted antibodies, alter chinchilla nasopharyngeal and fecal microbiomes. NPJ Biofilms Microbiomes 2024; 10:10. [PMID: 38310144 PMCID: PMC10838340 DOI: 10.1038/s41522-024-00481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Otitis media (OM) is one of the most globally pervasive pediatric conditions. Translocation of nasopharynx-resident opportunistic pathogens like nontypeable Haemophilus influenzae (NTHi) assimilates into polymicrobial middle ear biofilms, which promote OM pathogenesis and substantially diminish antibiotic efficacy. Oral or tympanostomy tube (TT)-delivered antibiotics remain the standard of care (SOC) despite consequences including secondary infection, dysbiosis, and antimicrobial resistance. Monoclonal antibodies (mAb) against two biofilm-associated structural proteins, NTHi-specific type IV pilus PilA (anti-rsPilA) and protective tip-region epitopes of NTHi integration host factor (anti-tip-chimer), were previously shown to disrupt biofilms and restore antibiotic sensitivity in vitro. However, the additional criterion for clinical relevance includes the absence of consequential microbiome alterations. Here, nine chinchilla cohorts (n = 3/cohort) without disease were established to evaluate whether TT delivery of mAbs disrupted nasopharyngeal or fecal microbiomes relative to SOC-OM antibiotics. Cohort treatments included a 7d regimen of oral amoxicillin-clavulanate (AC) or 2d regimen of TT-delivered mAb, AC, Trimethoprim-sulfamethoxazole (TS), ofloxacin, or saline. Fecal and nasopharyngeal lavage (NPL) samples were collected before and several days post treatment (DPT) for 16S sequencing. While antibiotic-treated cohorts displayed beta-diversity shifts (PERMANOVA, P < 0.05) and reductions in alpha diversity (q < 0.20) relative to baseline, mAb antibodies failed to affect diversity, indicating maintenance of a eubiotic state. Taxonomic and longitudinal analyses showed blooms in opportunistic pathogens (ANCOM) and greater magnitudes of compositional change (P < 0.05) following broad-spectrum antibiotic but not mAb treatments. Collectively, results showed broad-spectrum antibiotics induced significant fecal and nasopharyngeal microbiome disruption regardless of delivery route. Excitingly, biofilm-targeting antibodies had little effect on fecal and nasopharyngeal microbiomes.
Collapse
Affiliation(s)
- Audrey F Duff
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Joseph A Jurcisek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Nikola Kurbatfinski
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tendy Chiang
- Department of Otolaryngology at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
- Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
- Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
27
|
Yarlagadda T, Zhu Y, Snape N, Carey A, Bryan E, Maresco-Pennisi D, Coleman A, Cervin A, Spann K. Lactobacillus rhamnosus dampens cytokine and chemokine secretion from primary human nasal epithelial cells infected with rhinovirus. J Appl Microbiol 2024; 135:lxae018. [PMID: 38268489 DOI: 10.1093/jambio/lxae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
AIMS To investigate the effect of Lactobacillus rhamnosus on viral replication and cellular response to human rhinovirus (HRV) infection, including the secretion of antiviral and inflammatory mediators from well-differentiated nasal epithelial cells (WD-NECs). METHODS AND RESULTS The WD-NECs from healthy adult donors (N = 6) were cultured in vitro, exposed to different strains of L. rhamnosus (D3189, D3160, or LB21), and infected with HRV (RV-A16) after 24 h. Survival and adherence capacity of L. rhamnosus in a NEC environment were confirmed using CFSE-labelled isolates, immunofluorescent staining, and confocal microscopy. Shed virus and viral replication were quantified using TCID50 assays and RT-qPCR, respectively. Cytotoxicity was measured by lactate dehydrogenase (LDH) activity. Pro-inflammatory mediators were measured by multiplex immunoassay, and interferon (IFN)-λ1/3 was measured using a standard ELISA kit. Lactobacillus rhamnosus was able to adhere to and colonize WD-NECs prior to the RV-A16 infection. Lactobacillus rhamnosus did not affect shed RV-A16, viral replication, RV-A16-induced IFN-λ1/3 production, or LDH release. Pre-exposure to L. rhamnosus, particularly D3189, reduced the secretion of RV-A16-induced pro-inflammatory mediators by WD-NECs. CONCLUSIONS These findings demonstrate that L. rhamnosus differentially modulates RV-A16-induced innate inflammatory immune responses in primary NECs from healthy adults.
Collapse
Affiliation(s)
- Tejasri Yarlagadda
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| | - Yanshan Zhu
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Australia
| | - Natale Snape
- University of Queensland Frazer Institute, Woolloongabba 4102, Australia
| | - Alison Carey
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| | - Emily Bryan
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston 4006, Australia
| | - Diane Maresco-Pennisi
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston 4006, Australia
| | - Andrea Coleman
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston 4006, Australia
| | - Anders Cervin
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston 4006, Australia
| | - Kirsten Spann
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
28
|
Cauwenberghs E, De Boeck I, Spacova I, Van Tente I, Bastiaenssen J, Lammertyn E, Verhulst S, Van Hoorenbeeck K, Lebeer S. Positioning the preventive potential of microbiome treatments for cystic fibrosis in the context of current therapies. Cell Rep Med 2024; 5:101371. [PMID: 38232705 PMCID: PMC10829789 DOI: 10.1016/j.xcrm.2023.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/24/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Antibiotics and cystic fibrosis transmembrane conductance regulator (CFTR) modulators play a pivotal role in cystic fibrosis (CF) treatment, but both have limitations. Antibiotics are linked to antibiotic resistance and disruption of the airway microbiome, while CFTR modulators are not widely accessible, and structural lung damage and pathogen overgrowth still occur. Complementary strategies that can beneficially modulate the airway microbiome in a preventive way are highly needed. This could be mediated via oral probiotics, which have shown some improvement of lung function and reduction of airway infections and exacerbations, as a cost-effective approach. However, recent data suggest that specific and locally administered probiotics in the respiratory tract might be a more targeted approach to prevent pathogen outgrowth in the lower airways. This review aims to summarize the current knowledge on the CF airway microbiome and possibilities of microbiome treatments to prevent bacterial and/or viral infections and position them in the context of current CF therapies.
Collapse
Affiliation(s)
- Eline Cauwenberghs
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ilke De Boeck
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Irina Spacova
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ilke Van Tente
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joke Bastiaenssen
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Elise Lammertyn
- Belgian CF Association, Driebruggenstraat 124, 1160 Brussels, Belgium; Cystic Fibrosis Europe, Driebruggenstraat 124, 1160 Brussels, Belgium
| | - Stijn Verhulst
- University of Antwerp, Laboratory of Experimental Medicine and Pediatrics, Universiteitsplein 1, 2610 Wilrijk, Belgium; Antwerp University Hospital, Department of Pediatric Pulmonology, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Kim Van Hoorenbeeck
- University of Antwerp, Laboratory of Experimental Medicine and Pediatrics, Universiteitsplein 1, 2610 Wilrijk, Belgium; Antwerp University Hospital, Department of Pediatric Pulmonology, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Sarah Lebeer
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
29
|
Miellet WR, Mariman R, van Veldhuizen J, Badoux P, Wijmenga-Monsuur AJ, Litt D, Bosch T, Miller E, Fry NK, van Houten MA, Rots NY, Sanders EAM, Trzciński K. Impact of age on pneumococcal colonization of the nasopharynx and oral cavity: an ecological perspective. ISME COMMUNICATIONS 2024; 4:ycae002. [PMID: 38390521 PMCID: PMC10881297 DOI: 10.1093/ismeco/ycae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Pneumococcal carriage studies have suggested that pneumococcal colonization in adults is largely limited to the oral cavity and oropharynx. In this study, we used total abundance-based β-diversity (dissimilarity) and β-diversity components to characterize age-related differences in pneumococcal serotype composition of respiratory samples. quantitative PCR (qPCR) was applied to detect pneumococcal serotypes in nasopharyngeal samples collected from 946 toddlers and 602 adults, saliva samples collected from a subset of 653 toddlers, and saliva and oropharyngeal samples collected from a subset of 318 adults. Bacterial culture rates from nasopharyngeal samples were used to characterize age-related differences in rates of colonizing bacteria. Dissimilarity in pneumococcal serotype composition was low among saliva and nasopharyngeal samples from children. In contrast, respiratory samples from adults exhibited high serotype dissimilarity, which predominantly consisted of abundance gradients and was associated with reduced nasopharyngeal colonization. Age-related serotype dissimilarity was high among nasopharyngeal samples and relatively low for saliva samples. Reduced nasopharyngeal colonization by pneumococcal serotypes coincided with significantly reduced Moraxella catarrhalis and Haemophilus influenzae and increased Staphylococcus aureus nasopharyngeal colonization rates among adults. Findings from this study suggest that within-host environmental conditions, utilized in the upper airways by pneumococcus and other bacteria, undergo age-related changes. It may result in a host-driven ecological succession of bacterial species colonizing the nasopharynx and lead to competitive exclusion of pneumococcus from the nasopharynx but not from the oral habitat. This explains the poor performance of nasopharyngeal samples for pneumococcal carriage among adults and indicates that in adults saliva more accurately represents the epidemiology of pneumococcal carriage than nasopharyngeal samples.
Collapse
Affiliation(s)
- Willem R Miellet
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Paul Badoux
- Regional Laboratory of Public Health (Streeklab) Haarlem, Haarlem, 2035 RC, The Netherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - David Litt
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU) and Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Thijs Bosch
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Elizabeth Miller
- School of Hygiene and Tropical Medicine, Department of Infectious Disease Epidemiology, London, WC1E 7HT, United Kingdom
| | - Norman K Fry
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU) and Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | | | - Nynke Y Rots
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Elisabeth A M Sanders
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
30
|
Loperfido A, Cavaliere C, Begvarfaj E, Ciofalo A, D’Erme G, De Vincentiis M, Greco A, Millarelli S, Bellocchi G, Masieri S. The Impact of Antibiotics and Steroids on the Nasal Microbiome in Patients with Chronic Rhinosinusitis: A Systematic Review According to PICO Criteria. J Pers Med 2023; 13:1583. [PMID: 38003898 PMCID: PMC10671981 DOI: 10.3390/jpm13111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The nasal microbiome represents the main environmental factor of the inflammatory process in chronic rhinosinusitis (CRS). Antibiotics and steroids constitute the mainstay of CRS therapies. However, their impact on microbial communities needs to be better understood. This systematic review summarizes the evidence about antibiotics' and steroids' impact on the nasal microbiota in patients with CRS. METHODS The search strategy was conducted in accordance with the PRISMA guidelines for systematic reviews. The authors searched all papers in the three major medical databases (PubMed, Scopus, and Cochrane Library) using the PICO tool (population, intervention, comparison, and outcomes). The search was carried out using a combination of the key terms "Microbiota" or "Microbiome" and "Chronic Rhinosinusitis". RESULTS Overall, 402 papers were identified, and after duplicate removal (127 papers), excluding papers off-topic (154) and for other structural reasons (110), papers were assessed for eligibility; finally, only 11 papers were included and summarized in the present systematic review. Some authors used only steroids, other researchers used only antibiotics, and others used both antibiotics and steroids. With regard to the use of steroids as exclusive medical treatment, topical mometasone and budesonide were investigated. With regard to the use of antibiotics as exclusive medical treatments, clarithromycin, doxycycline, roxithromycin, and amoxicillin clavulanate were investigated. Regarding the use of both antibiotics and steroids, two associations were investigated: systemic prednisone combined with amoxicillin clavulanate and topical budesonide combined with azithromycin. CONCLUSIONS The impact that therapies can have on the nasal microbiome of CRS patients is very varied. Further studies are needed to understand the role of the nasal microbiome, prevent CRS, and improve therapeutic tools for personalized medicine tailored to the individual patient.
Collapse
Affiliation(s)
| | - Carlo Cavaliere
- Department of Sense Organs, Sapienza University, 00185 Rome, Italy
| | - Elona Begvarfaj
- Department of Sense Organs, Sapienza University, 00185 Rome, Italy
| | - Andrea Ciofalo
- Department of Sense Organs, Sapienza University, 00185 Rome, Italy
| | - Giovanni D’Erme
- UOC Otorinolaringoiatria, Policlinico Umberto I, 00161 Rome, Italy
| | | | - Antonio Greco
- Department of Sense Organs, Sapienza University, 00185 Rome, Italy
| | | | | | - Simonetta Masieri
- Department of Oral and Maxillofacial Sciences, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
31
|
Lloyd CM, Saglani S. Early-life respiratory infections and developmental immunity determine lifelong lung health. Nat Immunol 2023; 24:1234-1243. [PMID: 37414905 DOI: 10.1038/s41590-023-01550-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Respiratory infections are common in infants and young children. However, the immune system develops and matures as the child grows, thus the effects of infection during this time of dynamic change may have long-term consequences. The infant immune system develops in conjunction with the seeding of the microbiome at the respiratory mucosal surface, at a time that the lungs themselves are maturing. We are now recognizing that any disturbance of this developmental trajectory can have implications for lifelong lung health. Here, we outline our current understanding of the molecular mechanisms underlying relationships between immune and structural cells in the lung with the local microorganisms. We highlight the importance of gaining greater clarity as to what constitutes a healthy respiratory ecosystem and how environmental exposures influencing this network will aid efforts to mitigate harmful effects and restore lung immune health.
Collapse
Affiliation(s)
- Clare M Lloyd
- National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK.
| | - Sejal Saglani
- National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
32
|
Hyblova M, Hadzega D, Babisova K, Krumpolec P, Gnip A, Sabaka P, Lassan S, Minarik G. Metatranscriptome Analysis of Nasopharyngeal Swabs across the Varying Severity of COVID-19 Disease Demonstrated Unprecedented Species Diversity. Microorganisms 2023; 11:1804. [PMID: 37512976 PMCID: PMC10384460 DOI: 10.3390/microorganisms11071804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The recent global emergence of the SARS-CoV-2 pandemic has accelerated research in several areas of science whose valuable outputs and findings can help to address future health challenges in the event of emerging infectious agents. We conducted a comprehensive shotgun analysis targeting multiple aspects to compare differences in bacterial spectrum and viral presence through culture-independent RNA sequencing. We conducted a comparative analysis of the microbiome between healthy individuals and those with varying degrees of COVID-19 severity, including a total of 151 participants. Our findings revealed a noteworthy increase in microbial species diversity among patients with COVID-19, irrespective of disease severity. Specifically, our analysis revealed a significant difference in the abundance of bacterial phyla between healthy individuals and those infected with COVID-19. We found that Actinobacteria, among other bacterial phyla, showed a notably higher abundance in healthy individuals compared to infected individuals. Conversely, Bacteroides showed a lower abundance in the latter group. Infected people, regardless of severity and symptoms, have the same proportional representation of Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteriales. In addition to SARS-CoV-2 and numerous phage groups, we identified sequences of clinically significant viruses such as Human Herpes Virus 1, Human Mastadenovirus D, and Rhinovirus A in several samples. Analyses were performed retrospectively, therefore, in the case of SARS-CoV-2 various WHO variants such as Alpha (B.1.1.7), Delta (B.1.617.2), Omicron (B.1.1.529), and 20C strains are represented. Additionally, the presence of specific virus strains has a certain effect on the distribution of individual microbial taxa.
Collapse
Affiliation(s)
| | | | | | | | - Andrej Gnip
- Medirex Group Academy, 949 05 Nitra, Slovakia
| | - Peter Sabaka
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia
| | - Stefan Lassan
- Department of Pneumology and Ftizeology I, University Hospital in Bratislava, 831 01 Bratislava, Slovakia
| | | |
Collapse
|
33
|
Bustos IG, Martín-Loeches I, Acosta-González A, Chotirmall SH, Dickson RP, Reyes LF. Exploring the complex relationship between the lung microbiome and ventilator-associated pneumonia. Expert Rev Respir Med 2023; 17:889-901. [PMID: 37872770 DOI: 10.1080/17476348.2023.2273424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Understanding the presence and function of a diverse lung microbiome in acute lung infections, particularly ventilator-associated pneumonia (VAP), is still limited, evidencing significant gaps in our knowledge. AREAS COVERED In this comprehensive narrative review, we aim to elucidate the contribution of the respiratory microbiome in the development of VAP by examining the current knowledge on the interactions among microorganisms. By exploring these intricate connections, we endeavor to enhance our understanding of the disease's pathophysiology and pave the way for novel ideas and interventions in studying the respiratory tract microbiome. EXPERT OPINION The conventional perception of lungs as sterile is deprecated since it is currently recognized the existence of a diverse microbial community within them. However, despite extensive research on the role of the respiratory microbiome in healthy lungs, respiratory chronic diseases and acute lung infections such as pneumonia are not fully understood. It is crucial to investigate further the relationship between the pathophysiology of VAP and the pulmonary microbiome, elucidating the mechanisms underlying the interactions between the microbiome, host immune response and mechanical ventilation for the development of VAP.
Collapse
Affiliation(s)
- Ingrid G Bustos
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Doctorado de Biociencias, Department of Engineering, Universidad de la Sabana, Chia, Colombia
| | - Ignacio Martín-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Dublin, Ireland
| | - Alejandro Acosta-González
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Bioprospection Research Group (GIBP), Department of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research & Innovation, Ann Arbor, MI, USA
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Critical Care Department, Clinica Universidad de La Sabana, Chia, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Hislop MS, Allicock OM, Thammavongsa DA, Mbodj S, Nelson A, Shaw AC, Weinberger DM, Wyllie AL. High Levels of Detection of Nonpneumococcal Species of Streptococcus in Saliva from Adults in the United States. Microbiol Spectr 2023; 11:e0520722. [PMID: 37067447 PMCID: PMC10269540 DOI: 10.1128/spectrum.05207-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
While the sensitivity of detection of pneumococcal carriage can be improved by testing respiratory tract samples with quantitative PCR (qPCR), concerns have been raised regarding the specificity of this approach. We therefore investigated the reliability of the widely used lytA qPCR assay when applied to saliva samples from older adults in relation to a more specific qPCR assay (piaB). During the autumn/winter seasons of 2018/2019 and 2019/2020, saliva was collected at multiple time points from 103 healthy adults aged 21 to 39 (n = 34) and >64 (n = 69) years (n = 344 total samples). Following culture enrichment, extracted DNA was tested using qPCR for piaB and lytA. By sequencing the variable region of rpsB (S2 typing), we identified the species of bacteria isolated from samples testing lytA-positive only. While 30 of 344 (8.7%) saliva samples (16.5% individuals) tested qPCR-positive for both piaB and lytA, 52 (15.1%) samples tested lytA-positive only. No samples tested piaB-positive only. Through extensive reculture attempts of the lytA-positive samples collected in 2018/2019, we isolated 23 strains (in 8 samples from 5 individuals) that were also qPCR-positive for only lytA. Sequencing determined that Streptococcus mitis and Streptococcus infantis were predominantly responsible for this lytA-positive qPCR signal. We identified a comparatively large proportion of samples generating positive signals with the widely used lytA qPCR and identified nonpneumococcal Streptococcus species responsible for this signal. This highlights the importance of testing for the presence of multiple gene targets in tandem for reliable and specific detection of pneumococcus in polymicrobial respiratory tract samples. IMPORTANCE Testing saliva samples with quantitative PCR (qPCR) improves the sensitivity of detection of pneumococcal carriage. The qPCR assay targeting lytA, the gene encoding the major pneumococcal autolysin, has become widely accepted for the identification of pneumococcus and is even considered the "gold standard" by many. However, when applying this approach to investigate the prevalence of pneumococcal carriage in adults in New Haven, CT, USA, we identified nonpneumococcal Streptococcus spp. that generate positive signals in this widely used assay. By testing also for piaB (encoding the iron acquisition ABC transporter lipoprotein, PiaB), our findings demonstrate the importance of testing for the presence of multiple gene targets in tandem for reliable molecular detection of pneumococcus in respiratory tract samples; targeting only lytA may lead to an overestimation of true carriage rates.
Collapse
Affiliation(s)
- Maikel S. Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Orchid M. Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Darani A. Thammavongsa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Sidiya Mbodj
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Allison Nelson
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Albert C. Shaw
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel M. Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
35
|
Gierse LC, Meene A, Skorka S, Cuypers F, Surabhi S, Ferrero-Bordera B, Kreikemeyer B, Becher D, Hammerschmidt S, Siemens N, Urich T, Riedel K. Impact of Pneumococcal and Viral Pneumonia on the Respiratory and Intestinal Tract Microbiomes of Mice. Microbiol Spectr 2023; 11:e0344722. [PMID: 36988458 PMCID: PMC10269894 DOI: 10.1128/spectrum.03447-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
With 2.56 million deaths worldwide annually, pneumonia is one of the leading causes of death. The most frequent causative pathogens are Streptococcus pneumoniae and influenza A virus. Lately, the interaction between the pathogens, the host, and its microbiome have gained more attention. The microbiome is known to promote the immune response toward pathogens; however, our knowledge on how infections affect the microbiome is still scarce. Here, the impact of colonization and infection with S. pneumoniae and influenza A virus on the structure and function of the respiratory and gastrointestinal microbiomes of mice was investigated. Using a meta-omics approach, we identified specific differences between the bacterial and viral infection. Pneumococcal colonization had minor effects on the taxonomic composition of the respiratory microbiome, while acute infections caused decreased microbial complexity. In contrast, richness was unaffected following H1N1 infection. Within the gastrointestinal microbiome, we found exclusive changes in structure and function, depending on the pathogen. While pneumococcal colonization had no effects on taxonomic composition of the gastrointestinal microbiome, increased abundance of Akkermansiaceae and Spirochaetaceae as well as decreased amounts of Clostridiaceae were exclusively found during invasive S. pneumoniae infection. The presence of Staphylococcaceae was specific for viral pneumonia. Investigation of the intestinal microbiomés functional composition revealed reduced expression of flagellin and rubrerythrin and increased levels of ATPase during pneumococcal infection, while increased amounts of acetyl coenzyme A (acetyl-CoA) acetyltransferase and enoyl-CoA transferase were unique after H1N1 infection. In conclusion, identification of specific taxonomic and functional profiles of the respiratory and gastrointestinal microbiome allowed the discrimination between bacterial and viral pneumonia. IMPORTANCE Pneumonia is one of the leading causes of death worldwide. Here, we compared the impact of bacterial- and viral-induced pneumonia on the respiratory and gastrointestinal microbiome. Using a meta-omics approach, we identified specific profiles that allow discrimination between bacterial and viral causative.
Collapse
Affiliation(s)
| | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sebastian Skorka
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Fabian Cuypers
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Surabhi Surabhi
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | | | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Rostock, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
36
|
Yousefi B, Melograna F, Galazzo G, van Best N, Mommers M, Penders J, Schwikowski B, Van Steen K. Capturing the dynamics of microbial interactions through individual-specific networks. Front Microbiol 2023; 14:1170391. [PMID: 37256048 PMCID: PMC10225591 DOI: 10.3389/fmicb.2023.1170391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023] Open
Abstract
Longitudinal analysis of multivariate individual-specific microbiome profiles over time or across conditions remains dauntin. Most statistical tools and methods that are available to study microbiomes are based on cross-sectional data. Over the past few years, several attempts have been made to model the dynamics of bacterial species over time or across conditions. However, the field needs novel views on handling microbial interactions in temporal analyses. This study proposes a novel data analysis framework, MNDA, that combines representation learning and individual-specific microbial co-occurrence networks to uncover taxon neighborhood dynamics. As a use case, we consider a cohort of newborns with microbiomes available at 6 and 9 months after birth, and extraneous data available on the mode of delivery and diet changes between the considered time points. Our results show that prediction models for these extraneous outcomes based on an MNDA measure of local neighborhood dynamics for each taxon outperform traditional prediction models solely based on individual-specific microbial abundances. Furthermore, our results show that unsupervised similarity analysis of newborns in the study, again using the notion of a taxon's dynamic neighborhood derived from time-matched individual-specific microbial networks, can reveal different subpopulations of individuals, compared to standard microbiome-based clustering, with potential relevance to clinical practice. This study highlights the complementarity of microbial interactions and abundances in downstream analyses and opens new avenues to personalized prediction or stratified medicine with temporal microbiome data.
Collapse
Affiliation(s)
- Behnam Yousefi
- Computational Systems Biomedicine Lab, Institut Pasteur, University Paris City, Paris, France
- École Doctorale Complexite du vivant, Sorbonne University, Paris, France
- BIO3—Laboratory for Systems Medicine, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Federico Melograna
- BIO3—Laboratory for Systems Medicine, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gianluca Galazzo
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Niels van Best
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
- Institute of Medical Microbiology, Rhine-Westphalia Technical University of Aachen, RWTH University, Aachen, Germany
| | - Monique Mommers
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Benno Schwikowski
- Computational Systems Biomedicine Lab, Institut Pasteur, University Paris City, Paris, France
| | - Kristel Van Steen
- BIO3—Laboratory for Systems Medicine, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- BIO3—Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Lièvzge, Liège, Belgium
| |
Collapse
|
37
|
Melograna F, Li Z, Galazzo G, van Best N, Mommers M, Penders J, Stella F, Van Steen K. Edge and modular significance assessment in individual-specific networks. Sci Rep 2023; 13:7868. [PMID: 37188794 PMCID: PMC10185658 DOI: 10.1038/s41598-023-34759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/07/2023] [Indexed: 05/17/2023] Open
Abstract
Individual-specific networks, defined as networks of nodes and connecting edges that are specific to an individual, are promising tools for precision medicine. When such networks are biological, interpretation of functional modules at an individual level becomes possible. An under-investigated problem is relevance or "significance" assessment of each individual-specific network. This paper proposes novel edge and module significance assessment procedures for weighted and unweighted individual-specific networks. Specifically, we propose a modular Cook's distance using a method that involves iterative modeling of one edge versus all the others within a module. Two procedures assessing changes between using all individuals and using all individuals but leaving one individual out (LOO) are proposed as well (LOO-ISN, MultiLOO-ISN), relying on empirically derived edges. We compare our proposals to competitors, including adaptions of OPTICS, kNN, and Spoutlier methods, by an extensive simulation study, templated on real-life scenarios for gene co-expression and microbial interaction networks. Results show the advantages of performing modular versus edge-wise significance assessments for individual-specific networks. Furthermore, modular Cook's distance is among the top performers across all considered simulation settings. Finally, the identification of outlying individuals regarding their individual-specific networks, is meaningful for precision medicine purposes, as confirmed by network analysis of microbiome abundance profiles.
Collapse
Affiliation(s)
- Federico Melograna
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | - Zuqi Li
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gianluca Galazzo
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Niels van Best
- Institute of Medical Microbiology, RWTH University Hospital Aachen, RWTH University, Aachen, Germany
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Monique Mommers
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - John Penders
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Fabio Stella
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, 20126, Milan, Italy
| | - Kristel Van Steen
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
- BIO3 - Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Liège, Liège, Belgium
| |
Collapse
|
38
|
Chin Fatt CR, Asbury S, Jha MK, Minhajuddin A, Sethuram S, Mayes T, Kennedy SH, Foster JA, Trivedi MH. Leveraging the microbiome to understand clinical heterogeneity in depression: findings from the T-RAD study. Transl Psychiatry 2023; 13:139. [PMID: 37117195 PMCID: PMC10147668 DOI: 10.1038/s41398-023-02416-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/30/2023] Open
Abstract
Alterations in the gut microbiome have been linked to a variety of mental illnesses including anxiety and depression. This study utilized advanced bioinformatics tools that integrated both the compositional and community nature of gut microbiota to investigate how gut microbiota influence clinical symptoms in a sample of participants with depression. Gut microbiota of 179 participants with major depressive disorder (MDD) in the Texas Resilience Against Depression (T-RAD) study were analyzed by 16S rRNA gene sequencing of stool samples. Severity of anxiety, depression, and anhedonia symptoms were assessed with General Anxiety Disorder - 7 item scale, Patient Health 9-item Questionnaire, and Dimensional Anhedonia Rating Scale, respectively. Using weighted correlation network analysis, a data-driven approach, three co-occurrence networks of bacterial taxa were identified. One of these co-occurrence networks was significantly associated with clinical features including depression and anxiety. The hub taxa associated with this co-occurrence module -one Ruminococcaceae family taxon, one Clostridiales vadinBB60 group family taxon, and one Christencenellaceae family taxon- were connected to several additional butyrate-producing bacteria suggesting that deficits in butyrate production may contribute to clinical symptoms. Therefore, by considering the community nature of the gut microbiome in a real world clinical sample, this study identified a gut microbial co-occurrence network that was significantly associated with clinical anxiety in a cohort of depressed individuals.
Collapse
Affiliation(s)
- Cherise R Chin Fatt
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Asbury
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Manish K Jha
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abu Minhajuddin
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sangita Sethuram
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taryn Mayes
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sidney H Kennedy
- Department of Psychiatry, University of Toronto and Centre for Depression and Suicide Studies, Unity Health, Toronto, ON, Canada
| | - Jane A Foster
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
39
|
Sarkar S, Routhray S, Ramadass B, Parida PK. A Review on the Nasal Microbiome and Various Disease Conditions for Newer Approaches to Treatments. Indian J Otolaryngol Head Neck Surg 2023; 75:755-763. [PMID: 37206729 PMCID: PMC10188862 DOI: 10.1007/s12070-022-03205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: Commensal bacteria have always played a significant role in the maintenance of health and disease but are being unravelled only recently. Studies suggest that the nasal microbiome has a significant role in the development of various disease conditions. Search engines were used for searching articles having a nasal microbiome and disease correlation. In olfactory dysfunction, dysbiosis of the microbiome may have a significant role to play in the pathogenesis. The nasal microbiome influences the phenotype of CRS and is also capable of modulating the immune response and plays a role in polyp formation. Microbiome dysbiosis has a pivotal role in the development of Allergic Rhinitis; but, yet known how is this role played. The nasal microbiome has a close association with the severity and phenotype of asthma. They contribute significantly to the onset, severity, and development of asthma. The nasal microbiome has a significant impact on the immunity and protection of its host. The nasal microbiome has been a stimulus in the development of Otitis Media and its manifestations. Studies suggest that the resident nasal microbiome is responsible for the initiation of neurodegenerative diseases like Parkinson's Disease.Materials and Methods: Literature search from PubMed, Medline, and Google with the Mesh terms: nasal microbiome AND diseases. Conclusion: With increasing evidence on the role of the nasal microbiome on various diseases, it would be interesting to see how this microbiome can be modulated by pro/pre/post biotics to prevent a disease or the severity of illness.
Collapse
Affiliation(s)
- Saurav Sarkar
- Department of Otorhinolaryngology and Head Neck Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Samapika Routhray
- Department of Dentistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Balamurugan Ramadass
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pradipta Kumar Parida
- Department of Otorhinolaryngology and Head Neck Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
40
|
Industrial and Ruminant Trans-Fatty Acids-Enriched Diets Differentially Modulate the Microbiome and Fecal Metabolites in C57BL/6 Mice. Nutrients 2023; 15:nu15061433. [PMID: 36986163 PMCID: PMC10052023 DOI: 10.3390/nu15061433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Industrially originated trans-fatty acids (I-tFAs), such as elaidic acid (EA), and ruminant trans-fatty acids (R-tFAs), such as trans-palmitoleic acid (TPA), may have opposite effects on metabolic health. The objective was to compare the effects of consuming 2–3% I-tFA or R-tFA on the gut microbiome and fecal metabolite profile in mice after 7 and 28 days. Forty C57BL/6 mice were assigned to one of the four prepared formulations: lecithin nanovesicles, lecithin nanovesicles with EA or TPA, or water. Fecal samples and animals’ weights were collected on days 0, 7, and 28. Fecal samples were used to determine gut microbiome profiles by 16S rRNA sequencing and metabolite concentrations by GC/MS. At 28 days, TPA intake decreased the abundance of Staphylococcus sp55 but increased Staphylococcus sp119. EA intake also increased the abundance of Staphylococcus sp119 but decreased Ruminococcaceae UCG-014, Lachnospiraceae, and Clostridium sensu stricto 1 at 28 days. Fecal short-chain fatty acids were increased after TPA while decreased after EA after 7 and 28 days. This study shows that TPA and EA modify the abundance of specific microbial taxa and fecal metabolite profiles in distinct ways.
Collapse
|
41
|
Abushawish A, Haro K, Hoshina T, Kitajima N, Kusuhara K. Environmental factors related to differences in the microbiota in the upper respiratory tract in young children: Focusing on the impact of early nursery attendance. Front Pediatr 2023; 11:1015872. [PMID: 36798144 PMCID: PMC9927022 DOI: 10.3389/fped.2023.1015872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Microbial colonization of the upper respiratory tract (URT) during the first years of life differs significantly according to environmental factors. We investigated the association between early nursery attendance, URT infection (URTI) and drugs used for its treatment and the differences in the URT microbiota. METHODS This prospective study included 33 young children (11 and 22 with and without nursery attendance during their infancy, respectively). URT secretions were collected from the nasopharynx of these children at 2, 4, 6, 12, 18 and 24 months old. Clinical information after the latest sampling, including histories of URTI and the uses of antibiotics or cold medicines, was collected from all children. URT bacteria were identified by a clone library analysis of the 16S rRNA gene. RESULTS In the diversity of URT microbiota using the Shannon index, we did not detect any associations between variations in the URT microbiota and environmental factors (nursery attendance, development of URTIs, or the uses of antibiotics or cold medicines). However, in a clustering analysis, the proportion of the samples classified as Corynebacterium propinquum-dominant cluster was significantly lower in children ≥6 months old with nursery attendance than in those without nursery attendance. In addition, the URT microbiota was significantly different between samples from children ≥6 months old with and without a history of ≥3 URTI episodes after the first sampling. Furthermore, the URT microbiota was also significantly different between samples from these children with and without antibiotic use between the previous and present samplings. CONCLUSION Early nursery attendance and its related factors, including the frequency of URTI and antibiotic treatment, may be associated with the differences in the URT flora in young children.
Collapse
Affiliation(s)
- Asmaa Abushawish
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kaoru Haro
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Pediatrics, Sato Children's Clinic, Kitakyushu, Japan
| | - Takayuki Hoshina
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naoko Kitajima
- Department of Pediatrics, Onga Nakama Medical Association, Onga Hospital, Onga, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
42
|
Zakia LS, Gomez DE, Caddey BB, Boerlin P, Surette MG, Arroyo LG. Direct and culture-enriched 16S rRNA sequencing of cecal content of healthy horses and horses with typhlocolitis. PLoS One 2023; 18:e0284193. [PMID: 37053174 PMCID: PMC10101396 DOI: 10.1371/journal.pone.0284193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Next generation sequencing has demonstrated that alpha diversity of the fecal microbiota is significantly altered in horses with typhlocolitis. The objective of this study was to evaluate the bacterial composition of the cecum content of horses with and without typhlocolitis through direct and culture-enriched 16S gene sequencing of six healthy horses and six horses with acute typhlocolitis; a case-control study design. Cecal content was collected after euthanasia. An aliquot was used for direct 16S gene sequencing. Another was serially diluted with brain heart infusion (BHI) and plated onto five different agar media. All culture medias, except for MacConkey, were incubated anaerobically. Bacterial colonies were harvested in bulk and used for DNA extraction, 16S PCR amplification, and sequenced using the Illumina MiSeq platform. Predominant phyla in healthy and diseased horses were Firmicutes, followed by Bacteroidetes in all cultured medias, except for MacConkey agar, in which Proteobacteria was the dominant phylum. Greater bacterial richness was identified in sequenced cecal contents as compared to cultured plates (P < 0.05). Culture-enriched molecular profiling combined with 16S rRNA gene sequencing offer an alternative method for the study of the gut microbiota of horses. For direct cecum content 16S gene amplification, the alpha diversity indices were lower in diarrheic horses compared to healthy horses (P < 0.05). A higher relative abundance of Fusobacteriota was found in 2/6 samples from diarrheic horses. The role of Fusobacteriota in equine colitis deserves investigation.
Collapse
Affiliation(s)
- Luiza S Zakia
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin B Caddey
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
43
|
Kwon YH, Banskota S, Wang H, Rossi L, Grondin JA, Syed SA, Yousefi Y, Schertzer JD, Morrison KM, Wade MG, Holloway AC, Surette MG, Steinberg GR, Khan WI. Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat Commun 2022; 13:7617. [PMID: 36539404 PMCID: PMC9768151 DOI: 10.1038/s41467-022-35309-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Chemicals in food are widely used leading to significant human exposure. Allura Red AC (AR) is a highly common synthetic colorant; however, little is known about its impact on colitis. Here, we show chronic exposure of AR at a dose found in commonly consumed dietary products exacerbates experimental models of colitis in mice. While intermittent exposure is more akin to a typical human exposure, intermittent exposure to AR in mice for 12 weeks, does not influence susceptibility to colitis. However, exposure to AR during early life primes mice to heightened susceptibility to colitis. In addition, chronic exposure to AR induces mild colitis, which is associated with elevated colonic serotonin (5-hydroxytryptamine; 5-HT) levels and impairment of the epithelial barrier function via myosin light chain kinase (MLCK). Importantly, chronic exposure to AR does not influence colitis susceptibility in mice lacking tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme for 5-HT biosynthesis. Cecal transfer of the perturbed gut microbiota by AR exposure worsens colitis severity in the recipient germ-free (GF) mice. Furthermore, chronic AR exposure elevates colonic 5-HT levels in naïve GF mice. Though it remains unknown whether AR has similar effects in humans, our study reveals that chronic long-term exposure to a common synthetic colorant promotes experimental colitis via colonic 5-HT in gut microbiota-dependent and -independent pathway in mice.
Collapse
Affiliation(s)
- Yun Han Kwon
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Suhrid Banskota
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Huaqing Wang
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Laura Rossi
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Jensine A. Grondin
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Saad A. Syed
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Yeganeh Yousefi
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Jonathan D. Schertzer
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Katherine M. Morrison
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Pediatrics, McMaster University, Hamilton, ON Canada
| | - Michael G. Wade
- grid.57544.370000 0001 2110 2143Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Alison C. Holloway
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON Canada
| | - Michael G. Surette
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Gregory R. Steinberg
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Waliul I. Khan
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| |
Collapse
|
44
|
Jeyanathan M, Vaseghi-Shanjani M, Afkhami S, Grondin JA, Kang A, D'Agostino MR, Yao Y, Jain S, Zganiacz A, Kroezen Z, Shanmuganathan M, Singh R, Dvorkin-Gheva A, Britz-McKibbin P, Khan WI, Xing Z. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. Nat Immunol 2022; 23:1687-1702. [PMID: 36456739 PMCID: PMC9747617 DOI: 10.1038/s41590-022-01354-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Abstract
Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette-Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maryam Vaseghi-Shanjani
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yushi Yao
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Immunology, Zhejiang University, Zhejiang, China
| | - Shreya Jain
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Kroezen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ramandeep Singh
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
45
|
Zeng Y, Liang JQ. Nasal Microbiome and Its Interaction with the Host in Childhood Asthma. Cells 2022; 11:cells11193155. [PMID: 36231116 PMCID: PMC9563732 DOI: 10.3390/cells11193155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood asthma is a major chronic non-communicable disease in infants and children, often triggered by respiratory tract infections. The nasal cavity is a reservoir for a broad variety of commensal microbes and potential pathogens associated with respiratory illnesses including asthma. A healthy nasal microenvironment has protective effects against respiratory tract infections. The first microbial colonisation in the nasal region is initiated immediately after birth. Subsequently, colonisation by nasal microbiota during infancy plays important roles in rapidly establishing immune homeostasis and the development and maturation of the immune system. Dysbiosis of microbiota residing in the mucosal surfaces, such as the nasopharynx and guts, triggers immune modulation, severe infection, and exacerbation events. Nasal microbiome dysbiosis is related to the onset of symptomatic infections. Dynamic interactions between viral infections and the nasal microbiota in early life affect the later development of respiratory infections. In this review, we summarise the existing findings related to nasal microbiota colonisation, dynamic variations, and host–microbiome interactions in childhood health and respiratory illness with a particular examination of asthma. We also discuss our current understanding of biases produced by environmental factors and technical concerns, the importance of standardised research methods, and microbiome modification for the prevention or treatment of childhood asthma. This review lays the groundwork for paying attention to an essential but less emphasized topic and improves the understanding of the overall composition, dynamic changes, and influence of the nasal microbiome associated with childhood asthma.
Collapse
Affiliation(s)
- Yao Zeng
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jessie Qiaoyi Liang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-37636124
| |
Collapse
|
46
|
Guitor AK, Yousuf EI, Raphenya AR, Hutton EK, Morrison KM, McArthur AG, Wright GD, Stearns JC. Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. MICROBIOME 2022; 10:136. [PMID: 36008821 PMCID: PMC9414150 DOI: 10.1186/s40168-022-01327-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Probiotic use in preterm infants can mitigate the impact of antibiotic exposure and reduce rates of certain illnesses; however, the benefit on the gut resistome, the collection of antibiotic resistance genes, requires further investigation. We hypothesized that probiotic supplementation of early preterm infants (born < 32-week gestation) while in hospital reduces the prevalence of antibiotic resistance genes associated with pathogenic bacteria in the gut. We used a targeted capture approach to compare the resistome from stool samples collected at the term corrected age of 40 weeks for two groups of preterm infants (those that routinely received a multi-strain probiotic during hospitalization and those that did not) with samples from full-term infants at 10 days of age to identify if preterm birth or probiotic supplementation impacted the resistome. We also compared the two groups of preterm infants up to 5 months of age to identify persistent antibiotic resistance genes. RESULTS At the term corrected age, or 10 days of age for the full-term infants, we found over 80 antibiotic resistance genes in the preterm infants that did not receive probiotics that were not identified in either the full-term or probiotic-supplemented preterm infants. More genes associated with antibiotic inactivation mechanisms were identified in preterm infants unexposed to probiotics at this collection time-point compared to the other infants. We further linked these genes to mobile genetic elements and Enterobacteriaceae, which were also abundant in their gut microbiomes. Various genes associated with aminoglycoside and beta-lactam resistance, commonly found in pathogenic bacteria, were retained for up to 5 months in the preterm infants that did not receive probiotics. CONCLUSIONS This pilot survey of preterm infants shows that probiotics administered after preterm birth during hospitalization reduced the diversity and prevented persistence of antibiotic resistance genes in the gut microbiome. The benefits of probiotic use on the microbiome and the resistome should be further explored in larger groups of infants. Due to its high sensitivity and lower sequencing cost, our targeted capture approach can facilitate these surveys to further address the implications of resistance genes persisting into infancy without the need for large-scale metagenomic sequencing. Video Abstract.
Collapse
Affiliation(s)
- Allison K Guitor
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Efrah I Yousuf
- Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Amogelang R Raphenya
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Eileen K Hutton
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Katherine M Morrison
- Department of Pediatrics, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Jennifer C Stearns
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada.
- Department of Medicine, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
| |
Collapse
|
47
|
Perrone MR, Romano S, De Maria G, Tundo P, Bruno AR, Tagliaferro L, Maffia M, Fragola M. Compositional Data Analysis of 16S rRNA Gene Sequencing Results from Hospital Airborne Microbiome Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10107. [PMID: 36011742 PMCID: PMC9408509 DOI: 10.3390/ijerph191610107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The compositional analysis of 16S rRNA gene sequencing datasets is applied to characterize the bacterial structure of airborne samples collected in different locations of a hospital infection disease department hosting COVID-19 patients, as well as to investigate the relationships among bacterial taxa at the genus and species level. The exploration of the centered log-ratio transformed data by the principal component analysis via the singular value decomposition has shown that the collected samples segregated with an observable separation depending on the monitoring location. More specifically, two main sample clusters were identified with regards to bacterial genera (species), consisting of samples mostly collected in rooms with and without COVID-19 patients, respectively. Human pathogenic genera (species) associated with nosocomial infections were mostly found in samples from areas hosting patients, while non-pathogenic genera (species) mainly isolated from soil were detected in the other samples. Propionibacterium acnes, Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and jeikeium were the main pathogenic species detected in COVID-19 patients' rooms. Samples from these locations were on average characterized by smaller richness/evenness and diversity than the other ones, both at the genus and species level. Finally, the ρ metrics revealed that pairwise positive associations occurred either between pathogenic or non-pathogenic taxa.
Collapse
Affiliation(s)
- Maria Rita Perrone
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Salvatore Romano
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Giuseppe De Maria
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Paolo Tundo
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Anna Rita Bruno
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Luigi Tagliaferro
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Mattia Fragola
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
48
|
Tran VTA, Lee LP, Cho H. Neuroinflammation in neurodegeneration via microbial infections. Front Immunol 2022; 13:907804. [PMID: 36052093 PMCID: PMC9425114 DOI: 10.3389/fimmu.2022.907804] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological studies show a noticeable correlation between chronic microbial infections and neurological disorders. However, the underlying mechanisms are still not clear due to the biological complexity of multicellular and multiorgan interactions upon microbial infections. In this review, we show the infection leading to neurodegeneration mediated by multiorgan interconnections and neuroinflammation. Firstly, we highlight three inter-organ communications as possible routes from infection sites to the brain: nose-brain axis, lung-brain axis, and gut-brain axis. Next, we described the biological crosstalk between microglia and astrocytes upon pathogenic infection. Finally, our study indicates how neuroinflammation is a critical player in pathogen-mediated neurodegeneration. Taken together, we envision that antibiotics targeting neuro-pathogens could be a potential therapeutic strategy for neurodegeneration.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, United States
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| |
Collapse
|
49
|
Kremer PHC, Ferwerda B, Bootsma HJ, Rots NY, Wijmenga-Monsuur AJ, Sanders EAM, Trzciński K, Wyllie AL, Turner P, van der Ende A, Brouwer MC, Bentley SD, van de Beek D, Lees JA. Pneumococcal genetic variability in age-dependent bacterial carriage. eLife 2022; 11:e69244. [PMID: 35881438 PMCID: PMC9395192 DOI: 10.7554/elife.69244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
The characteristics of pneumococcal carriage vary between infants and adults. Host immune factors have been shown to contribute to these age-specific differences, but the role of pathogen sequence variation is currently less well-known. Identification of age-associated pathogen genetic factors could leadto improved vaccine formulations. We therefore performed genome sequencing in a large carriage cohort of children and adults and combined this with data from an existing age-stratified carriage study. We compiled a dictionary of pathogen genetic variation, including serotype, strain, sequence elements, single-nucleotide polymorphisms (SNPs), and clusters of orthologous genes (COGs) for each cohort - all of which were used in a genome-wide association with host age. Age-dependent colonization showed weak evidence of being heritable in the first cohort (h2 = 0.10, 95% CI 0.00-0.69) and stronger evidence in the second cohort (h2 = 0.56, 95% CI 0.23-0.87). We found that serotypes and genetic background (strain) explained a proportion of the heritability in the first cohort (h2serotype = 0.07, 95% CI 0.04-0.14 and h2GPSC = 0.06, 95% CI 0.03-0.13) and the second cohort (h2serotype = 0.11, 95% CI 0.05-0.21 and h2GPSC = 0.20, 95% CI 0.12-0.31). In a meta-analysis of these cohorts, we found one candidate association (p=1.2 × 10-9) upstream of an accessory Sec-dependent serine-rich glycoprotein adhesin. Overall, while we did find a small effect of pathogen genome variation on pneumococcal carriage between child and adult hosts, this was variable between populations and does not appear to be caused by strong effects of individual genes. This supports proposals for adaptive future vaccination strategies that are primarily targeted at dominant circulating serotypes and tailored to the composition of the pathogen populations.
Collapse
Affiliation(s)
- Philip HC Kremer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Bart Ferwerda
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, University of AmsterdamAmsterdamNetherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Nienke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Elisabeth AM Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Anne L Wyllie
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
- Epidemiology of Microbial Diseases, Yale School of Public HealthNew HavenUnited States
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMCAmsterdamNetherlands
- The Netherlands Reference Laboratory for Bacterial MeningitisAmsterdamNetherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - John A Lees
- European Molecular Biology Laboratory–European Bioinformatics InstituteCambridgeUnited Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
50
|
Cai L, Xu H, Cui Z. Factors Limiting the Translatability of Rodent Model-Based Intranasal Vaccine Research to Humans. AAPS PharmSciTech 2022; 23:191. [PMID: 35819736 PMCID: PMC9274968 DOI: 10.1208/s12249-022-02330-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
The intranasal route of vaccination presents an attractive alternative to parenteral routes and offers numerous advantages, such as the induction of both mucosal and systemic immunity, needle-free delivery, and increased patient compliance. Despite demonstrating promising results in preclinical studies, however, few intranasal vaccine candidates progress beyond early clinical trials. This discrepancy likely stems in part from the limited predictive value of rodent models, which are used frequently in intranasal vaccine research. In this review, we explored the factors that limit the translatability of rodent-based intranasal vaccine research to humans, focusing on the differences in anatomy, immunology, and disease pathology between rodents and humans. We also discussed approaches that minimize these differences and examined alternative animal models that would produce more clinically relevant research.
Collapse
Affiliation(s)
- Lucy Cai
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, USA
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA.
| |
Collapse
|