1
|
Abdel-Rheem AA, Radwan AA, Mahrous GM, Shaaban DEZ, Alghaith AF, Al-Agamy MH, Hetta HF, Shazly GA, Bains A, Altamimi MA. Formulation of topical gel contains a novel benzoic acid derivative for skin infection treatment: in vitro and in vivo evaluations. Drug Dev Ind Pharm 2025; 51:262-272. [PMID: 39932314 DOI: 10.1080/03639045.2025.2464793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
OBJECTIVE The increasing prevalence of antimicrobial resistance and the adverse effects associated with systemic administration of antibiotics necessitate the development of alternative therapeutic strategies. The new benzoic acid derivative: (E)-2-(1-isobutyl-2-oxoindolin-3-ylideneamino)-4-chlorobenzoic acid (IOACA) was reported to have a potent activity against Gram-positive bacteria including S. aureus and B. subtilis. That significant activity of IOACA and its log P value of 1.66 prompted us to formulate IOACA as a topical gel for the treatment of skin infections. METHODS Formulation of a topical gel using Carbopol 934 as gelling agent; physicochemical characterization including drug content, viscosity, spreadability, pH determination, in vitro release study, and release kinetics; in vitro assessment of the antimicrobial efficacy of the gel against Staphylococcus aureus and Bacillus subtilis by agar diffusion method; in vivo evaluation of skin irritation effect and antimicrobial activity of the gel using male albino rat model. RESULTS The prepared gel showed homogeneity and consistency. The pH values range from 5.8 to 6.5, with good viscosity and spreadability. The drug content was in an acceptable range. The cumulative amount released of the drug ranged from (72.2 ± 1.3% to 107.6 ± 4.7%). F3 approaches zero-order kinetics. In vivo studies showed significant reduction in viable count and infection severity with complete curing of staphylococcal skin rat infection after eight days of treatment. CONCLUSION The novel benzoic acid derivative-based topical gel is a promising candidate for the treatment of skin infections, offering an effective alternative to systemic antibiotics and contributing to avoid the antimicrobial resistance.
Collapse
Affiliation(s)
- Amany A Abdel-Rheem
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Awwad A Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamal M Mahrous
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Diaa-Eldin Z Shaaban
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adel F Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed H Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Helal F Hetta
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, Division of Microbiology, Immunology and Biotechnology, University of Tabuk, Tabuk, Saudi Arabia
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aarti Bains
- Department of Microbiology School of Bioengineering and Bioscience, Lovely Professional University, Phagwara, India
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Rajesh A, Ju EDE, Oxford KA, Harman RM, Van de Walle GR. The mesenchymal stromal cell secretome promotes tissue regeneration and increases macrophage infiltration in acute and methicillin-resistant Staphylococcus aureus-infected skin wounds in vivo. Cytotherapy 2024; 26:1400-1410. [PMID: 38944795 DOI: 10.1016/j.jcyt.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AIMS The prevalence of chronic wounds continues to be a burden in human medicine. Methicillin-resistant Staphylococcus aureus (MRSA) is commonly isolated from infected wounds. MRSA infections primarily delay healing by impairing local immune cell functions. This study aimed to investigate the potential of mesenchymal stromal cell (MSC)-secreted bioactive factors, defined as the secretome, to improve innate immune responses in vivo. MSCs were isolated from the bone marrow of horses, which serve as valuable translational models for wound healing. The MSC secretome, collected as conditioned medium (CM), was evaluated in vivo using mouse models of acute and MRSA-infected skin wounds. METHODS Punch biopsies were used to create two full-thickness skin wounds on the back of each mouse. Acute wounds were treated daily with control medium or bone marrow-derived MSC (BM-MSC) CM. The antibiotic mupirocin was administered as a positive control for the MRSA-infected wound experiments. Wounds were photographed daily, and wound images were measured to determine the rate of closure. Trichrome staining was carried out to examine wound tissue histologically, and immunofluorescence antibody binding was used to assess immune cell infiltration. Wounds in the MRSA-infected model were swabbed for quantification of bacterial load. RESULTS Acute wounds treated with BM-MSC CM showed accelerated wound closure compared with controls, as illustrated by enhanced granulation tissue formation and resolution, increased vasculature and regeneration of hair follicles. This treatment also led to increased neutrophil and macrophage infiltration. Chronic MRSA-infected wounds treated with BM-MSC CM showed reduced bacterial load accompanied by better resolution of granulation tissue formation and increased infiltration of pro-healing M2 macrophages compared with control-treated infected wounds. CONCLUSIONS Collectively, our findings indicate that BM-MSC CM exerts pro-healing, immunomodulatory and anti-bacterial effects on wound healing in vivo, validating further exploration of the MSC secretome as a novel treatment option to improve healing of both acute and chronic wounds, especially those infected with antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Esther Da Eun Ju
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kelly A Oxford
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
3
|
Kinetic Characterization of the Immune Response to Methicillin-Resistant Staphylococcus aureus Subcutaneous Skin Infection. Infect Immun 2022; 90:e0006522. [PMID: 35647662 DOI: 10.1128/iai.00065-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTIs). Studies examining the immune response to S. aureus have been conducted, yet our understanding of the kinetic response to S. aureus subcutaneous skin infection remains incomplete. In this study, we used C57BL/6J mice and USA300 S. aureus to examine the host-pathogen interface from 8 h postinfection to 15 days postinfection (dpi), with the following outcomes measured: lesion size, bacterial titers, local cytokine and chemokine levels, phenotype of the responding leukocytes, and histopathology and Gram staining of skin tissue. Lesions were largest at 1 dpi, with peak necrotic tissue areas at 3 dpi, and were largely resolved by 15 dpi. During early infection, bacterial titers were high, neutrophils were the most abundant immune cell type, there was a decrease in most leukocyte populations found in uninfected skin, and many different cytokines were produced. Histopathological analysis demonstrated swift and extensive keratinocyte death and robust and persistent neutrophil infiltration. Gram staining revealed subdermal S. aureus colonization and, later, limited migration into upper skin layers. Interleukin-17A/F (IL-17A/F) was detected only starting at 5 dpi and coincided with an immediate decrease in bacterial numbers in the following days. After 9 days, neutrophils were no longer the most abundant immune cell type present as most other leukocyte subsets returned, and surface wounds resolved coincident with declining bacterial titers. Collectively, these data illustrate a dynamic immune response to S. aureus skin infection and suggest a key role for precisely timed IL-17 production for infection clearance and healthy tissue formation.
Collapse
|
4
|
Caldara M, Belgiovine C, Secchi E, Rusconi R. Environmental, Microbiological, and Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices. Clin Microbiol Rev 2022; 35:e0022120. [PMID: 35044203 PMCID: PMC8768833 DOI: 10.1128/cmr.00221-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.
Collapse
Affiliation(s)
- Marina Caldara
- Interdepartmental Center on Safety, Technologies, and Agri-food Innovation (SITEIA.PARMA), University of Parma, Parma, Italy
| | - Cristina Belgiovine
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
| | - Eleonora Secchi
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele–Milan, Italy
| |
Collapse
|
5
|
Barua N, Huang L, Li C, Yang Y, Luo M, Wei WI, Wong KT, Lo NWS, Kwok KO, Ip M. Comparative Study of Two-Dimensional (2D) vs. Three-Dimensional (3D) Organotypic Kertatinocyte-Fibroblast Skin Models for Staphylococcus aureus (MRSA) Infection. Int J Mol Sci 2021; 23:ijms23010299. [PMID: 35008727 PMCID: PMC8745520 DOI: 10.3390/ijms23010299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 01/03/2023] Open
Abstract
The invasion of skin tissue by Staphylococcus aureus is mediated by mechanisms that involve sequential breaching of the different stratified layers of the epidermis. Induction of cell death in keratinocytes is a measure of virulence and plays a crucial role in the infection progression. We established a 3D-organotypic keratinocyte-fibroblast co-culture model to evaluate whether a 3D-skin model is more effective in elucidating the differences in the induction of cell death by Methicillin-resistant Staphylococcus aureus (MRSA) than in comparison to 2D-HaCaT monolayers. We investigated the difference in adhesion, internalization, and the apoptotic index in HaCaT monolayers and our 3D-skin model using six strains of MRSA representing different clonal types, namely, ST8, ST30, ST59, ST22, ST45 and ST239. All the six strains exhibited internalization in HaCaT cells. Due to cell detachment, the invasion study was limited up to two and a half hours. TUNEL assay showed no significant difference in the cell death induced by the six MRSA strains in the HaCaT cells. Our 3D-skin model provided a better insight into the interactions between the MRSA strains and the human skin during the infection establishment as we could study the infection of MRSA in our skin model up to 48 h. Immunohistochemical staining together with TUNEL assay in the 3D-skin model showed co-localization of the bacteria with the apoptotic cells demonstrating the induction of apoptosis by the bacteria and revealed the variation in bacterial transmigration among the MRSA strains. The strain representing ST59 showed maximum internalization in HaCaT cells and the maximum cell death as measured by Apoptotic index in the 3D-skin model. Our results show that 3D-skin model might be more likely to imitate the physiological response of skin to MRSA infection than 2D-HaCaT monolayer keratinocyte cultures and will enhance our understanding of the difference in pathogenesis among different MRSA strains.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Lin Huang
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Carmen Li
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Ying Yang
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Mingjing Luo
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wan In Wei
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.I.W.); (K.O.K.)
| | - Kam Tak Wong
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Norman Wai Sing Lo
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
| | - Kin On Kwok
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.I.W.); (K.O.K.)
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.B.); (C.L.); (Y.Y.); (M.L.); (K.T.W.); (N.W.S.L.)
- Correspondence: ; Tel.: +852-35051265
| |
Collapse
|
6
|
Romp E, Arakandy V, Fischer J, Wolz C, Siegmund A, Löffler B, Tuchscherr L, Werz O, Garscha U. Exotoxins from Staphylococcus aureus activate 5-lipoxygenase and induce leukotriene biosynthesis. Cell Mol Life Sci 2020; 77:3841-3858. [PMID: 31807813 PMCID: PMC11105070 DOI: 10.1007/s00018-019-03393-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022]
Abstract
Massive neutrophil infiltration is an early key event in infectious inflammation, accompanied by chemotactic leukotriene (LT)B4 generation. LTB4 biosynthesis is mediated by 5-lipoxygenase (5-LOX), but which pathogenic factors cause 5-LOX activation during bacterial infections is elusive. Here, we reveal staphylococcal exotoxins as 5-LOX activators. Conditioned medium of wild-type Staphylococcus aureus but not of exotoxin-deficient strains induced 5-LOX activation in transfected HEK293 cells. Two different staphylococcal exotoxins mimicked the effects of S. aureus-conditioned medium: (1) the pore-forming toxin α-hemolysin and (2) amphipathic α-helical phenol-soluble modulin (PSM) peptides. Interestingly, in human neutrophils, 5-LOX activation was exclusively evoked by PSMs, which was prevented by the selective FPR2/ALX receptor antagonist WRW4. 5-LOX activation by PSMs was confirmed in vivo as LT formation in infected paws of mice was impaired in response to PSM-deficient S. aureus. Conclusively, exotoxins from S. aureus are potent pathogenic factors that activate 5-LOX and induce LT formation in neutrophils.
Collapse
Affiliation(s)
- Erik Romp
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Vandana Arakandy
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Jana Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, 72076, Tuebingen, Germany
| | - Anke Siegmund
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany.
| |
Collapse
|
7
|
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci 2020; 21:E7061. [PMID: 32992784 PMCID: PMC7582387 DOI: 10.3390/ijms21197061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathobiont of humans as well as a multitude of animal species. The high prevalence of multi-resistant and more virulent strains of S. aureus necessitates the development of new prevention and treatment strategies for S. aureus infection. Major advances towards understanding the pathogenesis of S. aureus diseases have been made using conventional mouse models, i.e., by infecting naïve laboratory mice with human-adapted S.aureus strains. However, the failure to transfer certain results obtained in these murine systems to humans highlights the limitations of such models. Indeed, numerous S. aureus vaccine candidates showed promising results in conventional mouse models but failed to offer protection in human clinical trials. These limitations arise not only from the widely discussed physiological differences between mice and humans, but also from the lack of attention that is paid to the specific interactions of S. aureus with its respective host. For instance, animal-derived S. aureus lineages show a high degree of host tropism and carry a repertoire of host-specific virulence and immune evasion factors. Mouse-adapted S.aureus strains, humanized mice, and microbiome-optimized mice are promising approaches to overcome these limitations and could improve transferability of animal experiments to human trials in the future.
Collapse
Affiliation(s)
- Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Liliane M. Fernandes de Oliveira
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Silva Holtfreter
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| |
Collapse
|
8
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
9
|
Research Techniques Made Simple: Mouse Bacterial Skin Infection Models for Immunity Research. J Invest Dermatol 2020; 140:1488-1497.e1. [PMID: 32407714 DOI: 10.1016/j.jid.2020.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/11/2023]
Abstract
Bacterial skin infections are a major societal health burden and are increasingly difficult to treat owing to the emergence of antibiotic-resistant strains such as community-acquired methicillin-resistant Staphylococcus aureus. Understanding the immunologic mechanisms that provide durable protection against skin infections has the potential to guide the development of immunotherapies and vaccines to engage the host immune response to combat these antibiotic-resistant strains. To this end, mouse skin infection models allow researchers to examine host immunity by investigating the timing, inoculum, route of infection and the causative bacterial species in different wild-type mouse backgrounds as well as in knockout, transgenic, and other types of genetically engineered mouse strains. To recapitulate the various types of human skin infections, many different mouse models have been developed. For example, four models frequently used in dermatological research are based on the route of infection, including (i) subcutaneous infection models, (ii) intradermal infection models, (iii) wound infection models, and (iv) epicutaneous infection models. In this article, we will describe these skin infection models in detail along with their advantages and limitations. In addition, we will discuss how humanized mouse models such as the human skin xenograft on immunocompromised mice might be used in bacterial skin infection research.
Collapse
|
10
|
Fischer-Riepe L, Daber N, Schulte-Schrepping J, Véras De Carvalho BC, Russo A, Pohlen M, Fischer J, Chasan AI, Wolf M, Ulas T, Glander S, Schulz C, Skryabin B, Wollbrink Dipl-Ing A, Steingraeber N, Stremmel C, Koehle M, Gärtner F, Vettorazzi S, Holzinger D, Gross J, Rosenbauer F, Stoll M, Niemann S, Tuckermann J, Schultze JL, Roth J, Barczyk-Kahlert K. CD163 expression defines specific, IRF8-dependent, immune-modulatory macrophages in the bone marrow. J Allergy Clin Immunol 2020; 146:1137-1151. [PMID: 32199911 DOI: 10.1016/j.jaci.2020.02.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Scavenger receptor CD163 is exclusively expressed on monocytes/macrophages and is widely used as a marker for alternatively activated macrophages. However, the role of CD163 is not yet clear. OBJECTIVES We sought to examine the function of CD163 in steady-state as well as in sterile and infectious inflammation. METHODS Expression of CD163 was analyzed under normal and inflammatory conditions in mice. Functional relevance of CD163 was investigated in models of inflammation in wild-type and CD163-/- mice. RESULTS We describe a subpopulation of bone marrow-resident macrophages (BMRMs) characterized by a high expression of CD163 and functionally distinct from classical bone marrow-derived macrophages. Development of CD163+ BMRMs is strictly dependent on IFN regulatory factor-8. CD163+ BMRMs show a specific transcriptome and cytokine secretion pattern demonstrating a specific immunomodulatory profile of these cells. Accordingly, CD163-/- mice show a stronger inflammation in allergic contact dermatitis, indicating a regulatory role of CD163. However, CD163-/- mice are highly susceptible to S aureus infections, demonstrating the relevance of CD163 for antimicrobial defense as well. CONCLUSIONS Our data indicate that anti-inflammatory and immunosuppressive mechanisms are not necessarily associated with a decreased antimicrobial activity. In contrast, our data define a novel macrophage population that controls overwhelming inflammation on one hand but is also necessary for an effective control of infections on the other hand.
Collapse
Affiliation(s)
| | - Niklas Daber
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Jonas Schulte-Schrepping
- Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | | | - Antonella Russo
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Michele Pohlen
- Institute of Immunology, University of Muenster, Muenster, Germany; Department of Medicine A, Hematology and Oncology, University Hospital of Muenster, Muenster, Germany
| | - Josephine Fischer
- Institute of Molecular Tumor Biology, University of Muenster, Muenster, Germany
| | | | - Marc Wolf
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Thomas Ulas
- Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Shirin Glander
- Institute of Human Genetics, Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Boris Skryabin
- Department of Medicine, Transgenic Animal and Genetic Engineering Models, University of Muenster, Muenster, Germany
| | | | - Nadine Steingraeber
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Christopher Stremmel
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Megan Koehle
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Florian Gärtner
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Dirk Holzinger
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Muenster, Muenster, Germany
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Platform for Single Cell Genomics and Epigenomics (PRECISE) at the DZNE and the University of Bonn, Bonn, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Muenster, Germany; Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany
| | | |
Collapse
|
11
|
Bourgeois C, Gorwood J, Barrail-Tran A, Lagathu C, Capeau J, Desjardins D, Le Grand R, Damouche A, Béréziat V, Lambotte O. Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Front Microbiol 2019; 10:2837. [PMID: 31921023 PMCID: PMC6927940 DOI: 10.3389/fmicb.2019.02837] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Although white AT can contribute to anti-infectious immune responses, it can also be targeted and perturbed by pathogens. The AT's immune involvement is primarily due to strong pro-inflammatory responses (with both local and paracrine effects), and the large number of fat-resident macrophages. Adipocytes also exert direct antimicrobial responses. In recent years, it has been found that memory T cells accumulate in AT, where they provide efficient secondary responses against viral pathogens. These observations have prompted researchers to re-evaluate the links between obesity and susceptibility to infections. In contrast, AT serves as a reservoir for several persistence pathogens, such as human adenovirus Ad-36, Trypanosoma gondii, Mycobacterium tuberculosis, influenza A virus, and cytomegalovirus (CMV). The presence and persistence of bacterial DNA in AT has led to the concept of a tissue-specific microbiota. The unexpected coexistence of immune cells and pathogens within the specific AT environment is intriguing, and its impact on anti-infectious immune responses requires further evaluation. AT has been recently identified as a site of HIV persistence. In the context of HIV infection, AT is targeted by both the virus and the antiretroviral drugs. AT's intrinsic metabolic features, large overall mass, and wide distribution make it a major tissue reservoir, and one that may contribute to the pathophysiology of chronic HIV infections. Here, we review the immune, metabolic, viral, and pharmacological aspects that contribute to HIV persistence in AT. We also evaluate the respective impacts of both intrinsic and HIV-induced factors on AT's involvement as a viral reservoir. Lastly, we examine the potential consequences of HIV persistence on the metabolic and immune activities of AT.
Collapse
Affiliation(s)
- Christine Bourgeois
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Aurélie Barrail-Tran
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| | - Claire Lagathu
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Jacqueline Capeau
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Delphine Desjardins
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Abderaouf Damouche
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Véronique Béréziat
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Olivier Lambotte
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
12
|
Lan F, Zhang N, Holtappels G, De Ruyck N, Krysko O, Van Crombruggen K, Braun H, Johnston SL, Papadopoulos NG, Zhang L, Bachert C. Staphylococcus aureus Induces a Mucosal Type 2 Immune Response via Epithelial Cell-derived Cytokines. Am J Respir Crit Care Med 2019; 198:452-463. [PMID: 29768034 DOI: 10.1164/rccm.201710-2112oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RATIONALE Chronic rhinosinusitis with nasal polyps is characterized by a T-helper cell type 2-skewed upper airway inflammation. Mucosal Staphylococcus aureus colonization is found in the majority of patients with nasal polyps. S. aureus is known to induce type 2 cytokine release via enterotoxins. OBJECTIVES To investigate the impact of non-enterotoxin-producing S. aureus on type 2 cytokine release. METHODS TSLP (thymic stromal lymphopoietin), IL-33, and type 2 cytokines were assessed in a human mucosal tissue model upon S. aureus infection. MEASUREMENTS AND MAIN RESULTS S. aureus exposure increased the expression of IL-33, TSLP, IL-5, and IL-13 in nasal polyp tissue, accompanied by elevated expression levels of TSLP and IL-33 receptors, predominantly on CD3+ T cells. S. aureus infection led to the release of TSLP, but not IL-33, IL-5, or IL-13, from healthy inferior turbinate tissue. In contrast, S. epidermidis did not induce any epithelial cell-derived cytokines in nasal polyp or healthy tissue. S. aureus infection also increased the release of IL-33 and TSLP in BEAS-2B epithelial cells, accompanied by activation of NF-κB (nuclear factor κB) pathways. Incubation with CU-CPT22, a specific Toll-like receptor 2 antagonist, significantly reduced the S. aureus-induced release of TSLP and IL-33, and the activity of the NF-κB signal in BEAS-2B cells. CONCLUSIONS This study demonstrates for the first time that S. aureus can directly induce epithelial cell-derived cytokine release via binding to Toll-like receptor 2, and may thereby propagate type 2 cytokine expression in nasal polyp tissue.
Collapse
Affiliation(s)
- Feng Lan
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Institute of Otolaryngology, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Nan Zhang
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Gabriele Holtappels
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Natalie De Ruyck
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Olga Krysko
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Koen Van Crombruggen
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Harald Braun
- 3 VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - Sebastian L Johnston
- 4 Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nikos G Papadopoulos
- 5 Centre for Pediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, United Kingdom; and
| | - Luo Zhang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Institute of Otolaryngology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Claus Bachert
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium.,6 Division of ENT Diseases, Clintec, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Tuchscherr L, Korpos È, van de Vyver H, Findeisen C, Kherkheulidze S, Siegmund A, Deinhardt-Emmer S, Bach O, Rindert M, Mellmann A, Sunderkötter C, Peters G, Sorokin L, Löffler B. Staphylococcus aureus requires less virulence to establish an infection in diabetic hosts. Int J Med Microbiol 2018; 308:761-769. [PMID: 29843979 DOI: 10.1016/j.ijmm.2018.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/16/2018] [Accepted: 05/21/2018] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus is the most frequent pathogen causing diabetic foot infections. Here, we investigated the degree of bacterial virulence required to establish invasive tissue infections in diabetic organisms. Staphylococcal isolates from diabetic and non-diabetic foot ulcers were tested for their virulence in in vitro functional assays of host cell invasion and cytotoxicity. Isolates from diabetes mellitus type I/II patients exhibited less virulence than isolates from non-diabetic patients, but were nevertheless able to establish severe infections. In some cases, non-invasive isolates were detected deep within diabetic wounds, even though the strains were non-pathogenic in cell culture models. Testing of defined isolates in murine footpad injection models revealed that both low- and high-virulent bacterial strains persisted in higher numbers in diabetic compared to non-diabetic hosts, suggesting that hyperglycemia favors bacterial survival. Additionally, the bacterial load was higher in NOD mice, which have a compromised immune system, compared to C57Bl/6 mice. Our results reveal that high as well as low-virulent staphylococcal strains are able to cause soft tissue infections and to persist in diabetic humans and mice, suggesting a reason for the frequent and endangering infections in patients with diabetes.
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.
| | - Èva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hélène van de Vyver
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Clais Findeisen
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Salome Kherkheulidze
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Anke Siegmund
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | | | - Olaf Bach
- Surgery, Orthopedics and Traumatology, Special Trauma Surgery, Clinic of Weimar, Germany
| | - Martin Rindert
- Surgery, Orthopedics and Traumatology, Special Trauma Surgery, Clinic of Weimar, Germany
| | | | - Cord Sunderkötter
- Department of Translational Dermatoinfectiology, University of Muenster, Muenster and Department of Dermatology, University Hospital of Halle, Halle, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
14
|
González JF, Hahn MM, Gunn JS. Chronic biofilm-based infections: skewing of the immune response. Pathog Dis 2018; 76:4956043. [PMID: 29718176 PMCID: PMC6251518 DOI: 10.1093/femspd/fty023] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Many of the deadliest bacterial diseases that plague humanity in the modern age are caused by bacterial biofilms that produce chronic infections. However, most of our knowledge of the host immune response comes from the study of planktonic pathogens. While there are similarities in the host response to planktonic and biofilm bacteria, specific immune responses toward biofilms have not been well studied; the only apparent difference is the inability to clear the bacteria allowing the biofilm infection to become chronic. In some cases, the biofilms skew T-cell response toward a balance that allows a stalemate between the host and the pathogen, in which the infection can become persistent. In this minireview, we will summarize well-known examples of this phenomena as well as some emerging studies that may indicate that this situation is much more common than initially thought.
Collapse
Affiliation(s)
- Juan F González
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mark M Hahn
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - John S Gunn
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Axer A, Hermann S, Kehr G, Clases D, Karst U, Fischer-Riepe L, Roth J, Fobker M, Schäfers M, Gilmour R, Faust A. Harnessing the Maltodextrin Transport Mechanism for Targeted Bacterial Imaging: Structural Requirements for Improved in vivo Stability in Tracer Design. ChemMedChem 2018; 13:241-250. [DOI: 10.1002/cmdc.201700543] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Axer
- Institute for Organic Chemistry; WWU Münster; Corrensstrasse 40 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Sven Hermann
- European Institute for Molecular Imaging; WWU Münster; Waldeyerstrasse 15 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Gerald Kehr
- Institute for Organic Chemistry; WWU Münster; Corrensstrasse 40 48149 Münster Germany
| | - David Clases
- Institute for Inorganic and Analytical Chemistry; WWU Münster; Corrensstrasse 30 48149 Münster Germany
| | - Uwe Karst
- Institute for Inorganic and Analytical Chemistry; WWU Münster; Corrensstrasse 30 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Lena Fischer-Riepe
- Institute for Immunology; WWU Münster; Röntgenstrasse 21 48149 Münster Germany
| | - Johannes Roth
- Institute for Immunology; WWU Münster; Röntgenstrasse 21 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Manfred Fobker
- Center of Laboratory Medicine; WWU Münster; Albert Schweitzer Campus 1 48149 Münster Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging; WWU Münster; Waldeyerstrasse 15 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- Department of Nuclear Medicine; University Hospital Münster; Albert Schweitzer Campus 1 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry; WWU Münster; Corrensstrasse 40 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Andreas Faust
- European Institute for Molecular Imaging; WWU Münster; Waldeyerstrasse 15 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| |
Collapse
|
16
|
Dielectric imaging for differentiation between cancer and inflammation in vivo. Sci Rep 2017; 7:13137. [PMID: 29030581 PMCID: PMC5640678 DOI: 10.1038/s41598-017-13545-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
In this study, we develop an in vivo dielectric imaging technique that measures capacitance using pin-type electrode arrays. Compared to normal tissues, cancer tissues exhibit higher capacitance values, allowing us to image the cancer region and monitor the chemotherapeutic effects of cancer in real-time. A comparison with the histopathological results shows that the in vivo dielectric imaging technique is able to detect small tumors (<3 mm) and tumor-associated changes. In addition, we demonstrate that cancer and inflammation may be distinguished by measuring the capacitance images at different frequencies. In contrast, the positron emission tomography using 2-[18F]-fluoro-2-deoxy-D-glucose was not capable of discriminating between cancer and inflammation.
Collapse
|
17
|
Bischoff M, Wonnenberg B, Nippe N, Nyffenegger-Jann NJ, Voss M, Beisswenger C, Sunderkötter C, Molle V, Dinh QT, Lammert F, Bals R, Herrmann M, Somerville GA, Tschernig T, Gaupp R. CcpA Affects Infectivity of Staphylococcus aureus in a Hyperglycemic Environment. Front Cell Infect Microbiol 2017; 7:172. [PMID: 28536677 PMCID: PMC5422431 DOI: 10.3389/fcimb.2017.00172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022] Open
Abstract
Many bacteria regulate the expression of virulence factors via carbon catabolite responsive elements. In Gram-positive bacteria, the predominant mediator of carbon catabolite repression is the catabolite control protein A (CcpA). Hyperglycemia is a widespread disorder that predisposes individuals to an array of symptoms and an increased risk of infections. In hyperglycemic individuals, the bacterium Staphylococcus aureus causes serious, life-threatening infections. The importance of CcpA in regulating carbon catabolite repression in S. aureus suggests it may be important for infections in hyperglycemic individuals. To test this suggestion, hyperglycemic non-obese diabetic (NOD; blood glucose level ≥20 mM) mice were challenged with the mouse pathogenic S. aureus strain Newman and the isogenic ccpA deletion mutant (MST14), and the effects on infectivity were determined. Diabetic NOD mice challenged with the ccpA deletion mutant enhanced the symptoms of infection in an acute murine pneumonia model relative to the parental strain. Interestingly, when diabetic NOD mice were used in footpad or catheter infection models, infectivity of the ccpA mutant decreased relative to the parental strain. These differences greatly diminished when normoglycemic NOD mice (blood glucose level ≤ 10 mM) were used. These data suggest that CcpA is important for infectivity of S. aureus in hyperglycemic individuals.
Collapse
Affiliation(s)
- Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| | - Bodo Wonnenberg
- Institute of Anatomy and Cell Biology, Saarland UniversityHomburg, Germany
| | - Nadine Nippe
- Institute of Immunology, University of MunsterMunster, Germany
| | - Naja J Nyffenegger-Jann
- Division of Infection Biology, Department of Biomedicine, University Hospital BaselBasel, Switzerland
| | - Meike Voss
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | | | | | - Quoc Thai Dinh
- Department of Experimental Pneumology and Allergology, Saarland University HospitalHomburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University HospitalHomburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | - Mathias Herrmann
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| | - Greg A Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-LincolnLincoln, NE, USA
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland UniversityHomburg, Germany
| | - Rosmarie Gaupp
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| |
Collapse
|
18
|
Jørgensen NP, Alstrup AKO, Mortensen FV, Knudsen K, Jakobsen S, Madsen LB, Bender D, Breining P, Petersen MS, Schleimann MH, Dagnæs-Hansen F, Gormsen LC, Borghammer P. Cholinergic PET imaging in infections and inflammation using 11C-donepezil and 18F-FEOBV. Eur J Nucl Med Mol Imaging 2016; 44:449-458. [PMID: 27785538 DOI: 10.1007/s00259-016-3555-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/14/2016] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Immune cells utilize acetylcholine as a paracrine-signaling molecule. Many white blood cells express components of the cholinergic signaling pathway, and these are up-regulated when immune cells are activated. However, in vivo molecular imaging of cholinergic signaling in the context of inflammation has not previously been investigated. METHODS We performed positron emission tomography (PET) using the glucose analogue 18F-FDG, and 11C-donepezil and 18F-FEOBV, markers of acetylcholinesterase and the vesicular acetylcholine transporter, respectively. Mice were inoculated subcutaneously with Staphylococcus aureus, and PET scanned at 24, 72, 120, and 144 h post-inoculation. Four pigs with post-operative abscesses were also imaged. Finally, we present initial data from human patients with infections, inflammation, and renal and lung cancer. RESULTS In mice, the FDG uptake in abscesses peaked at 24 h and remained stable. The 11C-donepezil and 18F-FEOBV uptake displayed progressive increase, and at 120-144 h was nearly at the FDG level. Moderate 11C-donepezil and slightly lower 18F-FEOBV uptake were seen in pig abscesses. PCR analyses suggested that the 11C-donepezil signal in inflammatory cells is derived from both acetylcholinesterase and sigma-1 receptors. In humans, very high 11C-donepezil uptake was seen in a lobar pneumonia and in peri-tumoral inflammation surrounding a non-small cell lung carcinoma, markedly superseding the 18F-FDG uptake in the inflammation. In a renal clear cell carcinoma no 11C-donepezil uptake was seen. DISCUSSION The time course of cholinergic tracer accumulation in murine abscesses was considerably different from 18F-FDG, demonstrating in the 11C-donepezil and 18F-FEOBV image distinct aspects of immune modulation. Preliminary data in humans strongly suggest that 11C-donepezil can exhibit more intense accumulation than 18F-FDG at sites of chronic inflammation. Cholinergic PET imaging may therefore have potential applications for basic research into cholinergic mechanisms of immune modulation, but also clinical applications for diagnosing infections, inflammatory disorders, and cancer inflammation.
Collapse
Affiliation(s)
| | - Aage K O Alstrup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bygn. 10G, kaelderen, DK-8000, Aarhus C, Denmark
| | - Frank V Mortensen
- Department of Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bygn. 10G, kaelderen, DK-8000, Aarhus C, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bygn. 10G, kaelderen, DK-8000, Aarhus C, Denmark
| | - Line Bille Madsen
- Department of Histopathology, Aarhus University Hospital, Aarhus, Denmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bygn. 10G, kaelderen, DK-8000, Aarhus C, Denmark
| | - Peter Breining
- Department of Endocrinology and Metabolism, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | - Lars C Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bygn. 10G, kaelderen, DK-8000, Aarhus C, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bygn. 10G, kaelderen, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
19
|
Le Gars M, Haustant M, Klezovich-Bénard M, Paget C, Trottein F, Goossens PL, Tournier JN. Mechanisms of Invariant NKT Cell Activity in Restraining Bacillus anthracis Systemic Dissemination. THE JOURNAL OF IMMUNOLOGY 2016; 197:3225-3232. [PMID: 27605012 DOI: 10.4049/jimmunol.1600830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022]
Abstract
Exogenous activation of invariant NKT (iNKT) cells by the superagonist α-galactosylceramide (α-GalCer) can protect against cancer, autoimmune diseases, and infections. In the current study, we investigated the effect of α-GalCer against Bacillus anthracis infection, the agent of anthrax. Using an experimental model of s.c. B. anthracis infection (an encapsulated nontoxigenic strain), we show that concomitant administration of α-GalCer delayed B. anthracis systemic dissemination and prolonged mouse survival. Depletion of subcapsular sinus CD169-positive macrophages by clodronate-containing liposome was associated with a lack of iNKT cell activation in the draining lymph nodes (dLNs) and prevented the protective effect of α-GalCer on bacterial dissemination out of the dLNs. Production of IFN-γ triggered chemokine (C-C motif) ligand 3 synthesis and recruitment of neutrophils in the dLNs, leading to the restraint of B. anthracis dissemination. Our data highlight a novel immunological pathway leading to the control of B. anthracis infection, a finding that might lead to improved therapeutics based on iNKT cells.
Collapse
Affiliation(s)
- Mathieu Le Gars
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France;
| | - Michel Haustant
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France
| | - Maria Klezovich-Bénard
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France
| | - Christophe Paget
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Universitaire de Lille, Centre Hospitalier Régional Universitaire de Lille-Institut Pasteur de Lille, 59000 Lille, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Universitaire de Lille, Centre Hospitalier Régional Universitaire de Lille-Institut Pasteur de Lille, 59000 Lille, France
| | - Pierre L Goossens
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France
| | - Jean-Nicolas Tournier
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France.,Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées, 91223 Brétigny-sur-Orge, France; and.,Ecole du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
20
|
Per2 induction limits lymphoid-biased haematopoietic stem cells and lymphopoiesis in the context of DNA damage and ageing. Nat Cell Biol 2016; 18:480-90. [PMID: 27088856 DOI: 10.1038/ncb3342] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Ageing-associated impairments in haemato-lymphopoiesis are associated with DNA damage accumulation and reduced maintenance of lymphoid-biased (Ly-biased) compared with myeloid-biased (My-biased) haematopoietic stem cells (HSCs). Here, in vivo RNAi screening identifies period circadian clock 2 (Per2) as a critical factor limiting the maintenance of HSCs in response to DNA damage and ageing. Under these conditions, Per2 is activated predominantly in Ly-biased HSCs and stimulates DNA damage signalling and p53-dependent apoptosis in haematopoietic cells. Per2 deletion ameliorates replication stress and DNA damage responses in haematopoietic cells, thereby improving the maintenance of Ly-biased HSCs, lymphopoiesis, and immune function in ageing mice without increasing the accumulation of DNA damage. Per2-deficient mice retain Batf/p53-dependent induction of differentiation of HSCs in response to DNA damage and exhibit an elongated lifespan. Together, these results identify Per2 as a negative regulator of Ly-biased HSCs and immune functions in response to DNA damage and ageing.
Collapse
|
21
|
Bröker BM, Mrochen D, Péton V. The T Cell Response to Staphylococcus aureus. Pathogens 2016; 5:pathogens5010031. [PMID: 26999219 PMCID: PMC4810152 DOI: 10.3390/pathogens5010031] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a dangerous pathogen and a leading cause of both nosocomial and community acquired bacterial infection worldwide. However, on the other hand, we are all exposed to this bacterium, often within the first hours of life, and usually manage to establish equilibrium and coexist with it. What does the adaptive immune system contribute toward lifelong control of S. aureus? Will it become possible to raise or enhance protective immune memory by vaccination? While in the past the S. aureus-specific antibody response has dominated this discussion, the research community is now coming to appreciate the role that the cellular arm of adaptive immunity, the T cells, plays. There are numerous T cell subsets, each with differing functions, which together have the ability to orchestrate the immune response to S. aureus and hence to tip the balance between protection and pathology. This review summarizes the state of the art in this dynamic field of research.
Collapse
Affiliation(s)
- Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Sauerbruchstraße DZ7, 17475 Greifswald, Germany.
| | - Daniel Mrochen
- Department of Immunology, University Medicine Greifswald, Sauerbruchstraße DZ7, 17475 Greifswald, Germany.
| | - Vincent Péton
- Department of Immunology, University Medicine Greifswald, Sauerbruchstraße DZ7, 17475 Greifswald, Germany.
| |
Collapse
|
22
|
Karauzum H, Datta SK. Adaptive Immunity Against Staphylococcus aureus. Curr Top Microbiol Immunol 2016; 409:419-439. [PMID: 26919865 DOI: 10.1007/82_2016_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A complex interplay between host and bacterial factors allows Staphylococcus aureus to occupy its niche as a human commensal and a major human pathogen. The role of neutrophils as a critical component of the innate immune response against S. aureus, particularly for control of systemic infection, has been established in both animal models and in humans with acquired and congenital neutrophil dysfunction. The role of the adaptive immune system is less clear. Although deficiencies in adaptive immunity do not result in the marked susceptibility to S. aureus infection that neutrophil dysfunction imparts, emerging evidence suggests both T cell- and B cell-mediated adaptive immunity can influence host susceptibility and control of S. aureus. The contribution of adaptive immunity depends on the context and site of infection and can be either beneficial or detrimental to the host. Furthermore, S. aureus has evolved mechanisms to manipulate adaptive immune responses to its advantage. In this chapter, we will review the evidence for the role of adaptive immunity during S. aureus infections. Further elucidation of this role will be important to understand how it influences susceptibility to infection and to appropriately design vaccines that elicit adaptive immune responses to protect against subsequent infections.
Collapse
Affiliation(s)
- Hatice Karauzum
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Sandip K Datta
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther 2015; 13:1499-516. [PMID: 26646248 DOI: 10.1586/14787210.2015.1100533] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
S. aureus colonizes both artificial and tissue surfaces in humans causing chronic persistent infections that are difficult to cure. It is a notorious pathogen due to its antibiotic recalcitrance and phenotypic adaptability, both of which are facilitated by its ability to develop biofilms. S. aureus biofilms challenge conventional anti-infective approaches, most notably antibiotic therapy. Therefore there is an unmet need to develop and include parallel approaches that target S. aureus biofilm infections. This review discusses two broad anti-infective strategies: (1) preventative approaches (anti-biofilm surface coatings, the inclusion of biofilm-specific vaccine antigens); and (2) approaches aimed at eradicating established S. aureus biofilms, particularly those associated with implant infections. Advances in understanding the distinct nature of S. aureus biofilm development and pathogenesis have led to growing optimism in S. aureus biofilm targeted anti-infective strategies. Further research is needed however, to see the successful administration and validation of these approaches to the diverse types of infections caused by S. aureus biofilms from multiple clinical strains.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA
| | - Daniel J Wozniak
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA.,b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| | - Paul Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA.,d Department of Orthopedics , The Ohio State University College of Medicine , Columbus , OH , USA.,e Department of Engineering Sciences, National Centre for Advanced Tribology at Southampton (nCATS) , University of Southampton , Southampton , UK
| | - Luanne Hall-Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| |
Collapse
|
24
|
RNA-Seq Analysis of the Host Response to Staphylococcus aureus Skin and Soft Tissue Infection in a Mouse Model. PLoS One 2015; 10:e0124877. [PMID: 25901897 PMCID: PMC4406450 DOI: 10.1371/journal.pone.0124877] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTI), which are primarily self-limiting. We conducted a comprehensive analysis of the host transcriptome during a S. aureus SSTI to provide insight on the protective mechanisms that thwart these infections. We utilized a murine SSTI model in which one ear is epicutaneously challenged while the other is not. We then harvested these infected and uninfected ears, as well as ears from naïve mice, at one, four, and seven days post-challenge, and performed RNA sequencing (RNA-seq) using the Illumina platform. RNA-seq data demonstrated a robust response at the site of infection. Comparison of gene expression profiles between infected ears and the non-infected ears of challenged mice defined the local response to infection, while comparisons of expression profiles of non-infected ears from challenged mice to ears of naïve mice revealed changes in gene expression levels away from the site indicative of a systemic response. Over 1000 genes exhibited increased expression locally at all tested time points. The local response was more robust than the systemic response. Through evaluation of the RNA-seq data using the Upstream Regulator Analytic as part of the Ingenuity Pathway Analysis software package, we found that changes in the activation and inhibition of regulatory pathways happen first locally, and lag behind systemically. The activated pathways are highly similar at all three time points during SSTI, suggesting a stable global response over time. Transcript increases and pathway activation involve pro- and anti-inflammatory mediators, chemotaxis, cell signaling, keratins, and TH1/TH17 cytokines. Transcript decreases and pathway inhibition demonstrate that metabolic genes and anti-inflammatory pathways are repressed. These data provide insight on the host responses that may aid in resolution of this self-limited S. aureus infection, and may shed light on potential immune correlates of protection for staphylococcal SSTI.
Collapse
|
25
|
Rieck B, Bates D, Zhang K, Escott N, Mougenot C, Pichardo S, Curiel L. Focused ultrasound treatment of abscesses induced by methicillin resistant Staphylococcus aureus: feasibility study in a mouse model. Med Phys 2015; 41:063301. [PMID: 24877838 DOI: 10.1118/1.4875692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To study the therapeutic effect of focused ultrasound on abscesses induced by methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a major nosocomial pathogen where immunocompromised patients are prone to develop infections that are less and less responsive to regular treatments. Because of its capability to induce a rise of temperature at a very precise location, the use of focused ultrasound represents a considerable opportunity for therapy of localized MRSA-related infections. METHODS 50 μl of MRSA strain USA400 bacteria suspension at a concentration of 1.32 ± 0.5 × 10(5) colony forming units (cfu)/μl was injected subcutaneously in the left flank of BALB/c mice. An abscess of 6 ± 2 mm in diameter formed after 48 h. A transducer operating at 3 MHz with a focal length of 50 mm and diameter of 32 mm was used to treat the abscess. The focal point was positioned 2 mm under the skin at the abscess center. Forty-eight hours after injection four ultrasound exposures of 9 s each were applied to each abscess under magnetic resonance imaging guidance. Each exposure was followed by a 1 min pause. These parameters were based on preliminary experiments to ensure repetitive accurate heating of the abscess. Real-time estimation of change of temperature was done using water-proton resonance frequency and a communication toolbox (matMRI) developed inhouse. Three experimental groups of animals each were tested: control, moderate temperature (MT), and high temperature (HT). MT and HT groups reached, respectively, 52.3 ± 5.1 and 63.8 ± 7.5 °C at the end of exposure. Effectiveness of the treatment was assessed by evaluating the bacteria amount of the treated abscess 1 and 4 days after treatment. Myeloperoxidase (MPO) assay evaluating the neutrophil amount was performed to assess the local neutrophil recruitment and the white blood cell count was used to evaluate the systemic inflammatory response after focused ultrasound treatment. RESULTS Macroscopic evaluation of treated abscess indicated a diminution of external size of abscess 1 day after treatment. Treatment did not cause open wounds. The median (lower to upper quartile) bacterial count 1 day after treatment was 6.18 × 10(3) (0.76 × 10(3)-11.18 × 10(3)), 2.86 × 10(3) (1.22 × 10(3)-7.07 × 10(3)), and 3.52 × 10(3) (1.18 × 10(3)-6.72 × 10(3)) cfu/100 μl for control, MT and HT groups, respectively; for the 4-day end point, the count was 1.37 × 10(3) (0.67 × 10(3)-2.89 × 10(3)), 1.35 × 10(3) (0.09 × 10(3)-2.96 × 10(3)), and 0.07 × 10(3) (0.03 × 10(3)-0.36 × 10(3)) cfu/100 μl for control, MT and HT, showing a significant reduction (p = 0.002) on the bacterial load four days after focused ultrasound treatment when treating at high temperature (HT). The MPO amount remained unchanged between groups and days, indicating no change on local neutrophil recruitment in the abscess caused by the treatment. The white blood cell count remained unchanged between groups and days indicating that no systemic inflammatory response was caused by the treatment. CONCLUSIONS Focused ultrasound induces a therapeutic effect in abscesses induced by MRSA. This effect is observed as a reduction of the number bacteria without significantly altering the amount of MPO at the site of a MRSA-induced abscess. These initial results suggest that focused ultrasound is a viable option for the treatment of localized MRSA-related infections.
Collapse
Affiliation(s)
- Birgit Rieck
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario P7B6V4, Canada
| | - David Bates
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario P7B6V4, Canada and Lakehead University, Thunder Bay, Ontario P7B6V4, Canada
| | - Kunyan Zhang
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nicholas Escott
- Department of Pathology, Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario P7B 6V4, Canada
| | | | - Samuel Pichardo
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario P7B6V4, Canada and Lakehead University, Thunder Bay, Ontario P7B6V4, Canada
| | - Laura Curiel
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario P7B6V4, Canada and Lakehead University, Thunder Bay, Ontario P7B6V4, Canada
| |
Collapse
|
26
|
Loof TG, Goldmann O, Naudin C, Mörgelin M, Neumann Y, Pils MC, Foster SJ, Medina E, Herwald H. Staphylococcus aureus-induced clotting of plasma is an immune evasion mechanism for persistence within the fibrin network. MICROBIOLOGY-SGM 2014; 161:621-627. [PMID: 25533444 DOI: 10.1099/mic.0.000019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent work has shown that coagulation and innate immunity are tightly interwoven host responses that help eradicate an invading pathogen. Some bacterial species, including Staphylococcus aureus, secrete pro-coagulant factors that, in turn, can modulate these immune reactions. Such mechanisms may not only protect the micro-organism from a lethal attack, but also promote bacterial proliferation and the establishment of infection. Our data showed that coagulase-positive S. aureus bacteria promoted clotting of plasma which was not seen when a coagulase-deficient mutant strain was used. Furthermore, in vitro studies showed that this ability constituted a mechanism that supported the aggregation, survival and persistence of the micro-organism within the fibrin network. These findings were also confirmed when agglutination and persistence of coagulase-positive S. aureus bacteria at the local focus of infection were studied in a subcutaneous murine infection model. In contrast, the coagulase-deficient S. aureus strain which was not able to induce clotting failed to aggregate and to persist in vivo. In conclusion, our data suggested that coagulase-positive S. aureus have evolved mechanisms that prevent their elimination within a fibrin clot.
Collapse
Affiliation(s)
- Torsten G Loof
- 1Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden.,2Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver Goldmann
- 2Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Clément Naudin
- 1Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Matthias Mörgelin
- 1Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Yvonne Neumann
- 3Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Germany.,4Systems-oriented Immunology and Inflammation Research Group, Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marina C Pils
- 5Mousepathology, Animal Experimental Unit, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Simon J Foster
- 6Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Eva Medina
- 2Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Heiko Herwald
- 1Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Harding MG, Zhang K, Conly J, Kubes P. Neutrophil crawling in capillaries; a novel immune response to Staphylococcus aureus. PLoS Pathog 2014; 10:e1004379. [PMID: 25299673 PMCID: PMC4192594 DOI: 10.1371/journal.ppat.1004379] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/17/2014] [Indexed: 12/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), particularly the USA300 strain, is a highly virulent pathogen responsible for an increasing number of skin and soft tissue infections globally. Furthermore, MRSA-induced soft tissue infections can rapidly progress into life-threatening conditions, such as sepsis and necrotizing fasciitis. The importance of neutrophils in these devastating soft tissue infections remains ambiguous, partly because of our incomplete understanding of their behaviour. Spinning disk confocal microscopy was used to visualize the behaviour of GR1-labelled neutrophils in subcutaneous tissue in response to GFP-expressing MRSA attached to a foreign particle (agarose bead). We observed significant directional neutrophil recruitment towards the S. aureus agarose bead but not a control agarose bead. A significant increase in neutrophil crawling within the capillaries surrounding the infectious nidus was noted, with impaired capillary perfusion in these vessels and increased parenchymal cell death. No neutrophils were able to emigrate from capillaries. The crawling within these capillaries was mediated by the β(2) and α(4) integrins and blocking these integrins 2 hours post infection eliminated neutrophil crawling, improved capillary perfusion, reduced cell death and reduced lesion size. Blocking prior to infection increased pathology. Neutrophil crawling within capillaries during MRSA soft tissue infections, while potentially contributing to walling off or preventing early dissemination of the pathogen, resulted in impaired perfusion and increased tissue injury with time.
Collapse
Affiliation(s)
- Mark Geoffrey Harding
- The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kunyan Zhang
- The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John Conly
- The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
28
|
Hartmann T, Baronian G, Nippe N, Voss M, Schulthess B, Wolz C, Eisenbeis J, Schmidt-Hohagen K, Gaupp R, Sunderkötter C, Beisswenger C, Bals R, Somerville GA, Herrmann M, Molle V, Bischoff M. The catabolite control protein E (CcpE) affects virulence determinant production and pathogenesis of Staphylococcus aureus. J Biol Chem 2014; 289:29701-11. [PMID: 25193664 DOI: 10.1074/jbc.m114.584979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbon metabolism and virulence determinant production are often linked in pathogenic bacteria, and several regulatory elements have been reported to mediate this linkage in Staphylococcus aureus. Previously, we described a novel protein, catabolite control protein E (CcpE) that functions as a regulator of the tricarboxylic acid cycle. Here we demonstrate that CcpE also regulates virulence determinant biosynthesis and pathogenesis. Specifically, deletion of ccpE in S. aureus strain Newman revealed that CcpE affects transcription of virulence factors such as capA, the first gene in the capsule biosynthetic operon; hla, encoding α-toxin; and psmα, encoding the phenol-soluble modulin cluster α. Electrophoretic mobility shift assays demonstrated that CcpE binds to the hla promoter. Mice challenged with S. aureus strain Newman or its isogenic ΔccpE derivative revealed increased disease severity in the ΔccpE mutant using two animal models; an acute lung infection model and a skin infection model. Complementation of the mutant with the ccpE wild-type allele restored all phenotypes, demonstrating that CcpE is negative regulator of virulence in S. aureus.
Collapse
Affiliation(s)
- Torsten Hartmann
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Grégory Baronian
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, 34090 Montpellier, France
| | - Nadine Nippe
- the Institute of Immunology, University of Münster, 48149 Münster, Germany
| | - Meike Voss
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Bettina Schulthess
- the Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Christiane Wolz
- the Institute of Medical Microbiology and Hygiene, University Hospital of Tübingen, 72076 Tübingen, Germany
| | - Janina Eisenbeis
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Kerstin Schmidt-Hohagen
- the Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Rosmarie Gaupp
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Cord Sunderkötter
- the Department of Dermatology, University of Münster, 48149 Münster, Germany, and
| | - Christoph Beisswenger
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Robert Bals
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Greg A Somerville
- the School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583-0903
| | - Mathias Herrmann
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Virginie Molle
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, 34090 Montpellier, France
| | - Markus Bischoff
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany,
| |
Collapse
|
29
|
Popov L, Kovalski J, Grandi G, Bagnoli F, Amieva MR. Three-Dimensional Human Skin Models to Understand Staphylococcus aureus Skin Colonization and Infection. Front Immunol 2014; 5:41. [PMID: 24567733 PMCID: PMC3915142 DOI: 10.3389/fimmu.2014.00041] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/23/2014] [Indexed: 01/23/2023] Open
Abstract
Staphylococcus aureus is both a major bacterial pathogen as well as a common member of the human skin microbiota. Due to its widespread prevalence as an asymptomatic skin colonizer and its importance as a source of skin and soft tissue infections, an improved understanding of how S. aureus attaches to, grows within, and breaches the stratified layers of the epidermis is of critical importance. Three-dimensional organotypic human skin culture models are informative and tractable experimental systems for future investigations of the interactions between S. aureus and the multi-faceted skin tissue. We propose that S. aureus virulence factors, primarily appreciated for their role in pathogenesis of invasive infections, play alternative roles in promoting asymptomatic bacterial growth within the skin. Experimental manipulations of these cultures will provide insight into the many poorly understood molecular interactions occurring at the interface between S. aureus and stratified human skin tissue.
Collapse
Affiliation(s)
- Lauren Popov
- Microbiology and Immunology, Stanford University School of Medicine , Stanford, CA , USA
| | - Joanna Kovalski
- Program in Epithelial Biology, Stanford University School of Medicine , Stanford, CA , USA
| | | | | | - Manuel R Amieva
- Microbiology and Immunology, Stanford University School of Medicine , Stanford, CA , USA ; Pediatrics, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
30
|
Chronisch rezidivierende Infektionen der Haut und Weichgewebe durch Staphylococcus aureus. Hautarzt 2014; 65:15-25. [DOI: 10.1007/s00105-013-2636-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Kneidl J, Mysore V, Geraci J, Tuchscherr L, Löffler B, Holzinger D, Roth J, Barczyk-Kahlert K. Soluble CD163 masks fibronectin-binding protein A-mediated inflammatory activation of Staphylococcus aureus infected monocytes. Cell Microbiol 2013; 16:364-77. [PMID: 24118665 DOI: 10.1111/cmi.12225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/30/2013] [Accepted: 09/19/2013] [Indexed: 11/28/2022]
Abstract
Binding to fibronectin (FN) is a crucial pathogenic factor of Staphylococcus aureus mediated by fibronectin-binding protein A (FnBP-A) and extracellular adherence protein (Eap). Recently, we have shown that binding of soluble CD163 (sCD163) to FN linked to these molecules exhibits anti-microbial effects by enhancing phagocytosis and killing activity of S. aureus-infected monocytes. However, it remained unclear whether sCD163 also influences the monocytic activation status. Using genetically modified staphylococcal strains we now identified FnBP-A, but not Eap, as activator of the inflammatory response of monocytes to infection. FnBP-A-mediated inflammatory activation was masked by sCD163 binding to S. aureus promoting efficient pathogen elimination. Thus, sCD163 protects monocytes from overwhelming activation upon staphylococcal infection by dampening the secretion of pro-inflammatory cytokines TNFα, IL-1β, IL-6 and IL-8 and DAMP molecule MRP8/14. Moreover, sCD163 limited expression of pro-apoptotic transcription factor NR4A1 induced during S. aureus infection and inhibited induction of chemokine CXCL2promoting survival of staphylococci in vivo. sCD163-mediated effects were not due to general immunosuppression since MAP kinase activation and ROS production were unaltered during infection of monocytes with sCD163-bound bacteria. Thus, sCD163 promotes a specific defence of the immune system against FnBP-A-mediated inflammatory activation enabling successful pathogen elimination, tissue recovery and resolution of inflammation.
Collapse
Affiliation(s)
- Jessica Kneidl
- Institute of Immunology, University of Muenster, Muenster, Germany; Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hoerr V, Tuchscherr L, Hüve J, Nippe N, Loser K, Glyvuk N, Tsytsyura Y, Holtkamp M, Sunderkötter C, Karst U, Klingauf J, Peters G, Löffler B, Faber C. Bacteria tracking by in vivo magnetic resonance imaging. BMC Biol 2013; 11:63. [PMID: 23714179 PMCID: PMC3686665 DOI: 10.1186/1741-7007-11-63] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/22/2013] [Indexed: 02/03/2023] Open
Abstract
Background Different non-invasive real-time imaging techniques have been developed over the last decades to study bacterial pathogenic mechanisms in mouse models by following infections over a time course. In vivo investigations of bacterial infections previously relied mostly on bioluminescence imaging (BLI), which is able to localize metabolically active bacteria, but provides no data on the status of the involved organs in the infected host organism. In this study we established an in vivo imaging platform by magnetic resonance imaging (MRI) for tracking bacteria in mouse models of infection to study infection biology of clinically relevant bacteria. Results We have developed a method to label Gram-positive and Gram-negative bacteria with iron oxide nano particles and detected and pursued these with MRI. The key step for successful labeling was to manipulate the bacterial surface charge by producing electro-competent cells enabling charge interactions between the iron particles and the cell wall. Different particle sizes and coatings were tested for their ability to attach to the cell wall and possible labeling mechanisms were elaborated by comparing Gram-positive and -negative bacterial characteristics. With 5-nm citrate-coated particles an iron load of 0.015 ± 0.002 pg Fe/bacterial cell was achieved for Staphylococcus aureus. In both a subcutaneous and a systemic infection model induced by iron-labeled S. aureus bacteria, high resolution MR images allowed for bacterial tracking and provided information on the morphology of organs and the inflammatory response. Conclusion Labeled with iron oxide particles, in vivo detection of small S. aureus colonies in infection models is feasible by MRI and provides a versatile tool to follow bacterial infections in vivo. The established cell labeling strategy can easily be transferred to other bacterial species and thus provides a conceptual advance in the field of molecular MRI.
Collapse
Affiliation(s)
- Verena Hoerr
- Department of Clinical Radiology, University Hospital Münster, Münster 48149, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Increased resistance to Staphylococcus aureus endophthalmitis in BALB/c mice: Fas ligand is required for resolution of inflammation but not for bacterial clearance. Infect Immun 2013; 81:2217-25. [PMID: 23569113 DOI: 10.1128/iai.00405-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FasL was recently shown be required for bacterial clearance in C57BL/6 mice that express the FasL.1 allotype. The FasL.2 allotype is expressed in BALB/c mice and exhibits increased binding affinity to and increased cytotoxic activity against Fas(+) target cells. Therefore, we hypothesized that BALB/c mice would be more resistant to Staphylococcus aureus-induced endophthalmitis. To test this hypothesis, C57BL/6, BALB/c, and BALB(gld) mice received intravitreal injections of 2,500 CFU of S. aureus (RN6390). Clinical examinations, electroretinography (ERG), histology, and bacterial quantification were performed at 24, 48, 72, and 96 h postinjection. The myeloperoxidase (MPO) assay was used to quantitate neutrophil infiltration. At 96 h postinfection, 86% of C57BL/6 mice presented with complete destruction of the eye, compared to only 29% of BALB/c mice with complete destruction. To our surprise, in the absence of Fas ligand, BALB(gld) mice showed no difference in bacterial clearance compared to BALB/c mice. However, histology and ERG analysis revealed increased retinal damage and significant loss of retinal function. MPO analysis revealed equal numbers of neutrophils in BALB(gld) and BALB/c mice at 24 h postinfection. However, at 48 h, the neutrophil numbers remained significantly elevated in BALB(gld) mice, correlating with the increased retinal damage observed in BALB(gld) mice. We conclude that the increased resistance to S. aureus induced endophthalmitis in BALB/c mice is not dependent upon the FasL. However, in contrast to C57BL/6 mice, FasL is required for resolution of inflammation and protecting host tissue from nonspecific damage in BALB/c mice.
Collapse
|
34
|
Gnanasundaram S, Ranganathan M, Das BN, Mandal AB. Surface modified and medicated polyurethane materials capable of controlling microorganisms causing foot skin infection in athletes. Colloids Surf B Biointerfaces 2013; 102:139-45. [DOI: 10.1016/j.colsurfb.2012.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/17/2012] [Indexed: 11/27/2022]
|
35
|
Sander G, Börner T, Kriegeskorte A, von Eiff C, Becker K, Mahabir E. Catheter colonization and abscess formation due to Staphylococcus epidermidis with normal and small-colony-variant phenotype is mouse strain dependent. PLoS One 2012; 7:e36602. [PMID: 22586482 PMCID: PMC3346766 DOI: 10.1371/journal.pone.0036602] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/09/2012] [Indexed: 12/02/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) form a thick, multilayered biofilm on foreign bodies and are a major cause of nosocomial implant-associated infections. Although foreign body infection models are well-established, limited in vivo data are available for CoNS with small-colony-variant (SCV) phenotype described as causative agents in implant-associated infections. Therefore, we investigated the impact of the Staphylococcus epidermidis phenotype on colonization of implanted PVC catheters and abscess formation in three different mouse strains. Following introduction of a catheter subcutaneously in each flank of 8- to 12-week-old inbred C57BL/6JCrl (B6J), outbred Crl:CD1(ICR) (CD-1), and inbred BALB/cAnNCrl (BALB/c) male mice, doses of S. epidermidis O-47 wild type, its hemB mutant with stable SCV phenotype, or its complemented mutant at concentrations of 10(6) to 10(9) colony forming units (CFUs) were gently spread onto each catheter. On day 7, mice were sacrificed and the size of the abscesses as well as bacterial colonization was determined. A total of 11,500 CFUs of the complemented mutant adhered to the catheter in BALB/c followed by 9,960 CFUs and 9,900 CFUs from S. epidermidis wild type in BALB/c and CD-1, respectively. SCV colonization was highest in CD-1 with 9,500 CFUs, whereas SCVs were not detected in B6J. The minimum dose that led to colonization or abscess formation in all mouse strains was 10(7) or 10(8) CFUs of the normal phenotype, respectively. A minimum dose of 10(8) or 10(9) CFU of the hemB mutant with stable SCV phenotype led to colonization only or abscess formation, respectively. The largest abscesses were detected in BALB/c inoculated with wild type bacteria or SCV (64 mm(2) vs. 28 mm(2)). Our results indicate that colonization and abscess formation by different phenotypes of S. epidermidis in a foreign body infection model is most effective in inbred BALB/c followed by outbred CD-1 and inbred B6J mice.
Collapse
Affiliation(s)
- Gunnar Sander
- Comparative Medicine, Center for Molecular Medicine, University of Cologne, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect Immun 2011; 79:5010-8. [PMID: 21947772 DOI: 10.1128/iai.05571-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a common cause of prosthetic implant infections, which can become chronic due to the ability of S. aureus to grow as a biofilm. Little is known about adaptive immune responses to these infections in vivo. We hypothesized that S. aureus elicits inflammatory Th1/Th17 responses, associated with biofilm formation, instead of protective Th2/Treg responses. We used an adapted mouse model of biofilm-mediated prosthetic implant infection to determine chronic infection rates, Treg cell frequencies, and local cytokine levels in Th1-biased C57BL/6 and Th2-biased BALB/c mice. All C57BL/6 mice developed chronic S. aureus implant infection at all time points tested. However, over 75% of BALB/c mice spontaneously cleared the infection without adjunctive therapy and demonstrated higher levels of Th2 cytokines and anti-inflammatory Treg cells. When chronic infection rates in mice deficient in the Th2 cytokine interleukin-4 (IL-4) via STAT6 mutation in a BALB/c background were assessed, the mice were unable to clear the S. aureus implant infection. Additionally, BALB/c mice depleted of Treg cells via an anti-CD25 monoclonal antibody (MAb) were also unable to clear the infection. In contrast, the C57BL/6 mice that were susceptible to infection were able to eliminate S. aureus biofilm populations on infected intramedullary pins once the Th1 and Th17 responses were diminished by MAb treatment with anti-IL-12 p40. Together, these results indicate that Th2/Treg responses are mechanisms of protection against chronic S. aureus implant infection, as opposed to Th1/Th17 responses, which may play a role in the development of chronic infection.
Collapse
|