1
|
Poodeh AM, Sarab GA, Ravari MP, Najafzadeh M, Safarpour H, Zarban A, Sayadi M, Sajjadi SM. Metformin and chloroquine enhanced the efficacy of cytarabine in acute lymphoblastic leukemia cell lines: a drug repositioning approach. Sci Rep 2025; 15:16510. [PMID: 40360710 PMCID: PMC12075817 DOI: 10.1038/s41598-025-01574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Despite advances in the treatment of ALL, high disease recurrence and the impact of chemical toxicity on patients' quality of life persist. Drug repositioning has been proven to have antitumor and anti-inflammatory properties in leukemia. This study investigated the effects of metformin and chloroquine on the efficacy of cytarabine in NALM-6 cells. The growth inhibitory effects of metformin (Met) and chloroquine (CQ) on the response of NALM-6 cells to cytarabine (AraC) were determined via the MTT assay. To test the regeneration potential, a colony formation assay was performed. Apoptosis and cell cycle analyses were executed via flow cytometry. Oxidative stress markers and antioxidant activity were measured. Gene expression analysis and protein measurement of apoptotic and signaling pathways were performed. The administration of metformin and chloroquine increased the efficacy of cytarabine in suppressing NALM-6 cells, leading to decreased colony formation, increased apoptosis, and G1 phase cell cycle arrest. These effects are mediated by the upregulation of TP53, CASP3 and CASP8 genes and the reduction in BCL-2, NRAS and KRAS genes. Our data suggest that the combination of AraC with Met and CQ may be an effective approach for the treatment of B-ALL.
Collapse
Affiliation(s)
- Ahmad Moradi Poodeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mahsa Najafzadeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Clinical Biochemistry Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Sayadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
2
|
Pangilinan C, Klionsky DJ, Liang C. Emerging dimensions of autophagy in melanoma. Autophagy 2024; 20:1700-1711. [PMID: 38497492 PMCID: PMC11262229 DOI: 10.1080/15548627.2024.2330261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
Macroautophagy/autophagy has previously been regarded as simply a way for cells to deal with nutrient emergency. But explosive work in the last 15 years has given increasingly new knowledge to our understanding of this process. Many of the functions of autophagy that are unveiled from recent studies, however, cannot be reconciled with this conventional view of cell survival but, instead, point to autophagy being integrally involved at a deeper level of cell biology, playing a critical role in maintaining homeostasis and promoting an integrated stress/immune response. The new appreciation of the role of autophagy in the evolutionary trajectory of cancer and cancer interaction with the immune system provides a mechanistic framework for understanding the clinical benefits of autophagy-based therapies. Here, we examine current knowledge of the mechanisms and functions of autophagy in highly plastic and aggressive melanoma as a model disease of human malignancy, while highlighting emerging dimensions indicating that autophagy is at play beyond its classical face.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; ATG: autophagy related; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CAFs: cancer-associated fibroblasts; CCL5: C-C motif chemokine ligand 5; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; CTLA4: cytotoxic T-lymphocyte associated protein 4; CTL: cytotoxic T lymphocyte; DAMPs: danger/damage-associated molecular patterns; EGFR: epidermal growth factor receptor; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FITM2: fat storage inducing transmembrane protein 2; HCQ: hydroxychloroquine; ICB: immune checkpoint blockade; ICD: immunogenic cell death; LDH: lactate dehydrogenase; MAPK: mitogen-activated protein kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NDP52: nuclear dot protein 52; NFKB/NF-κ B: nuclear factor kappa B; NBR1: the neighbor of BRCA1; NK: natural killer; NRF1: nuclear respiratory factor 1; NSCLC: non-small-cell lung cancer; OPTN: optineurin; PDAC: pancreatic ductal adenocarcinoma; PDCD1/PD-1: programmed cell death 1; PPT1: palmitoyl-protein thioesterase 1; PTEN: phosphatase and tensin homolog; PTK2/FAK1: protein tyrosine kinase 2; RAS: rat sarcoma; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGFB/TGF-β: transforming growth factor beta; TMB: tumor mutational burden; TME: tumor microenvironment; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
3
|
Agalakova NI. Chloroquine and Chemotherapeutic Compounds in Experimental Cancer Treatment. Int J Mol Sci 2024; 25:945. [PMID: 38256019 PMCID: PMC10815352 DOI: 10.3390/ijms25020945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Chloroquine (CQ) and its derivate hydroxychloroquine (HCQ), the compounds with recognized ability to suppress autophagy, have been tested in experimental works and in clinical trials as adjuvant therapy for the treatment of tumors of different origin to increase the efficacy of cytotoxic agents. Such a strategy can be effective in overcoming the resistance of cancer cells to standard chemotherapy or anti-angiogenic therapy. This review presents the results of the combined application of CQ/HCQ with conventional chemotherapy drugs (doxorubicin, paclitaxel, platinum-based compounds, gemcitabine, tyrosine kinases and PI3K/Akt/mTOR inhibitors, and other agents) for the treatment of different malignancies obtained in experiments on cultured cancer cells, animal xenografts models, and in a few clinical trials. The effects of such an approach on the viability of cancer cells or tumor growth, as well as autophagy-dependent and -independent molecular mechanisms underlying cellular responses of cancer cells to CQ/HCQ, are summarized. Although the majority of experimental in vitro and in vivo studies have shown that CQ/HCQ can effectively sensitize cancer cells to cytotoxic agents and increase the potential of chemotherapy, the results of clinical trials are often inconsistent. Nevertheless, the pharmacological suppression of autophagy remains a promising tool for increasing the efficacy of standard chemotherapy, and the development of more specific inhibitors is required.
Collapse
Affiliation(s)
- Natalia I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, Saint-Petersburg 194223, Russia
| |
Collapse
|
4
|
Sarkar S, Bisoi A, Singh PC. Antimalarial Drugs Induce the Selective Folding of Human Telomeric G-Quadruplex in a Cancer-Mimicking Microenvironment. J Phys Chem B 2023; 127:6648-6655. [PMID: 37467470 DOI: 10.1021/acs.jpcb.3c03042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Regulating the equilibrium between the duplex form of DNA and G-quadruplex (Gq) and stabilizing the folded Gq are the critical factors for any drug to be effective in cancer therapy due to the direct involvement of Gq in controlling the transcription process. Antimalarial drugs are in the trial stage for different types of cancer diseases; however, the plausible mechanism of action of these drug molecules is not well known. Hence, we investigate the plausible role of antimalarial drugs in the folding and stabilization of Gq-forming DNA sequences from the telomere and promoter gene regions by varying the salt (KCl) concentrations, mimicking the in vitro cancerous and normal cell microenvironments. The study reveals that antimalarial drugs fold and stabilize specifically to telomere Gq-forming sequences in the cancerous microenvironment than the DNA sequences located in the promoter region of the gene. Antimalarial drugs are not only able to fold Gq but also efficiently protect them from unfolding by their complementary strands, hence significantly biasing the equilibrium toward the Gq formation from the duplex. In contrast, in a normal cell microenvironment, K+ controls the folding of telomeres, and the role of antimalarial drugs is not prominent. This study suggests that the action of antimalarial drugs is sensitive to the cancer microenvironment as well as selective to the Gq-forming region.
Collapse
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Asim Bisoi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Anselmino LE, Baglioni MV, Reynoso G, Rozados VR, Scharovsky OG, Rico MJ, Menacho-Márquez M. Potential effect of chloroquine and propranolol combination to treat colorectal and triple-negative breast cancers. Sci Rep 2023; 13:7923. [PMID: 37193722 DOI: 10.1038/s41598-023-34793-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
Drug repositioning explores the reuse of non-cancer drugs to treat tumors. In this work, we evaluated the effect of the combination of chloroquine and propranolol on colorectal and triple-negative breast cancers. Using as in vitro models the colorectal cancer cell lines HCT116, HT29, and CT26, and as triple-negative breast cancer models the 4T1, M-406, and MDA-MB-231 cell lines, we evaluated the effect of the drugs combination on the viability, apoptosis, clonogenicity, and cellular migratory capacity. To explore the in vivo effects of the combination on tumor growth and metastasis development we employed graft models in BALB/c, nude, and CBi mice. In vitro studies showed that combined treatment decreased cell viability in a dose-dependent manner and increased apoptosis. Also, we demonstrated that these drugs act synergically and that it affects clonogenicity and migration. In vivo studies indicated that this drug combination was effective on colorectal models but only partially on breast cancer. These results contributed to the search for new and safe treatments for colorectal and triple-negative carcinomas.
Collapse
Affiliation(s)
- L E Anselmino
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), 3100, Rosario, Santa Fe, Argentina
- CONICET, Rosario, Argentina
| | - M V Baglioni
- CONICET, Rosario, Argentina
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, 3100, Rosario, Santa Fe, Argentina
| | - G Reynoso
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, 3100, Rosario, Santa Fe, Argentina
| | - V R Rozados
- CONICET, Rosario, Argentina
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, 3100, Rosario, Santa Fe, Argentina
| | - O G Scharovsky
- CONICET, Rosario, Argentina
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, 3100, Rosario, Santa Fe, Argentina
| | - M J Rico
- CONICET, Rosario, Argentina
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, 3100, Rosario, Santa Fe, Argentina
| | - M Menacho-Márquez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), 3100, Rosario, Santa Fe, Argentina.
- CONICET, Rosario, Argentina.
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Suipacha, 660, Rosario, Argentina.
| |
Collapse
|
6
|
Pangilinan C, Xu X, Herlyn M, Liang C. Autophagy Paradox: Strategizing Treatment Modality in Melanoma. Curr Treat Options Oncol 2023; 24:130-145. [PMID: 36670319 PMCID: PMC9883356 DOI: 10.1007/s11864-023-01053-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/22/2023]
Abstract
OPINION STATEMENT The primordial autophagy process, originally identified as a starvation response in baker's yeast, has since been shown to have a wide spectrum of functions other than survival. In many cases, it is accepted that autophagy operates as a key tumor suppressor mechanism that protects cells from adverse environmental cues by enforcing homeostasis and maintaining the functional and structural integrity of organelles. Paradoxically, heightened states of autophagy are also seen in some cancers, leading to the prevailing view that the pro-survival aspect of autophagy might be hijacked by some tumors to promote their fitness and pathogenesis. Notably, recent studies have revealed a broad range of cell-autonomous autophagy in reshaping tumor microenvironment and maintaining lineage integrity and immune homeostasis, calling for a renewed understanding of autophagy beyond its classical roles in cell survival. Here, we evaluate the increasing body of literature that argues the "double-edged" consequences of autophagy manipulation in cancer therapy, with a particular focus on highly plastic and mutagenic melanoma. We also discuss the caveats that must be considered when evaluating whether autophagy blockade is the effector mechanism of some anti-cancer therapy particularly associated with lysosomotropic agents. If autophagy proteins are to be properly exploited as targets for anticancer drugs, their diverse and complex roles should also be considered.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Melanogenesis and the Targeted Therapy of Melanoma. Biomolecules 2022; 12:biom12121874. [PMID: 36551302 PMCID: PMC9775438 DOI: 10.3390/biom12121874] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Pigment production is a unique character of melanocytes. Numerous factors are linked with melanin production, including genetics, ultraviolet radiation (UVR) and inflammation. Understanding the mechanism of melanogenesis is crucial to identify new preventive and therapeutic strategies in the treatment of melanoma. Here, we reviewed the current available literatures on the mechanisms of melanogenesis, including the signaling pathways of UVR-induced pigment production, MC1R's central determinant roles and MITF as a master transcriptional regulator in melanogenesis. Moreover, we further highlighted the role of targeting BRAF, NRAS and MC1R in melanoma prevention and treatment. The combination therapeutics of immunotherapy and targeted kinase inhibitors are becoming the newest therapeutic option in advanced melanoma.
Collapse
|
8
|
Ali M, Wani SUD, Masoodi MH, Khan NA, Shivakumar HG, Osmani RMA, Khan KA. Global Effect of COVID-19 Pandemic on Cancer Patients and its Treatment: A Systematic Review. CLINICAL COMPLEMENTARY MEDICINE AND PHARMACOLOGY 2022; 2:100041. [PMID: 36377228 PMCID: PMC9035683 DOI: 10.1016/j.ccmp.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/11/2023]
Abstract
Background At a global level, the COVID-19 disease outbreak has had a major impact on health services and has induced disruption in routine care of health institutions, exposing cancer patients to severe risks. To provide uninterrupted tumor treatment throughout a pandemic lockdown is a major obstacle. Coronavirus disease (COVID-19) and its causative virus, SARS-CoV-2, stance considerable challenges for the management of oncology patients. COVID-19 presents particularly severe respiratory and systemic infection in aging and immunosuppressed individuals, including patients with cancer. Objective In the present review, we focused on emergent evidence from cancer sufferers that have been contaminated with COVID-19 and cancer patients who were at higher risk of severe COVID-19, and indicates that anticancer treatment may either rise COVID-19 susceptibility or have a duple therapeutic impact on cancer as well as COVID-19; moreover, how SARS-CoV-2 infection impacts cancer cells. Also, to assess the global effect of the COVID-19 disease outbreak on cancer and its treatment. Methods A literature survey was conducted using PubMed, Web of Science (WOS), Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), and VIral Protein domain DataBase (VIP DB) between Dec 1, 2019 and Sep 23, 2021, for studies on anticancer treatments in patients with COVID-19. The characteristics of the patients, treatment types, mortality, and other additional outcomes were extracted and pooled for synthesis. Results This disease has a huge effect on sufferers who have cancer(s). Sufferers of COVID-19 have a greater percentage of tumor diagnoses than the rest of the population. Likewise, cancer and highest proportion is lung cancer sufferers are more susceptible to COVID-19 constriction than the rest of the population. Conclusion Sufferers who have both COVID-19 and tumor have a considerably elevated death risk than single COVID-19 positive patients overall. During the COVID-19 pandemic, there was a reduction in the screening of cancer and detection, and also deferral of routine therapies, which may contribute to an increase in cancer mortality there in future.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560001, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Nisar Ahmad Khan
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | - H G Shivakumar
- College of Pharmacy, JSS Academy of Technical Education, Noida 201301, India
| | - Riyaz M Ali Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Khalid Ahmed Khan
- Assistant Drugs Controller, Drugs Control Department, Government of Karnataka, Bengaluru, Karnataka 560004, India
| |
Collapse
|
9
|
Kumbhar P, Kole K, Yadav T, Bhavar A, Waghmare P, Bhokare R, Manjappa A, Jha NK, Chellappan DK, Shinde S, Singh SK, Dua K, Salawi A, Disouza J, Patravale V. Drug repurposing: An emerging strategy in alleviating skin cancer. Eur J Pharmacol 2022; 926:175031. [PMID: 35580707 DOI: 10.1016/j.ejphar.2022.175031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Skin cancer is one of the most common forms of cancer. Several million people are estimated to have affected with this condition worldwide. Skin cancer generally includes melanoma and non-melanoma with the former being the most dangerous. Chemotherapy has been one of the key therapeutic strategies employed in the treatment of skin cancer, especially in advanced stages of the disease. It could be also used as an adjuvant with other treatment modalities depending on the type of skin cancer. However, there are several shortfalls associated with the use of chemotherapy such as non-selectivity, tumour resistance, life-threatening toxicities, and the exorbitant cost of medicines. Furthermore, new drug discovery is a lengthy and costly process with minimal likelihood of success. Thus, drug repurposing (DR) has emerged as a new avenue where the drug approved formerly for the treatment of one disease can be used for the treatment of another disease like cancer. This approach is greatly beneficial over the de novo approach in terms of time and cost. Moreover, there is minimal risk of failure of repurposed therapeutics in clinical trials. There are a considerable number of studies that have reported on drugs repurposed for the treatment of skin cancer. Thus, the present manuscript offers a comprehensive overview of drugs that have been investigated as repurposing candidates for the efficient treatment of skin cancers mainly melanoma and its oncogenic subtypes, and non-melanoma. The prospects of repurposing phytochemicals against skin cancer are also discussed. Furthermore, repurposed drug delivery via topical route and repurposed drugs in clinical trials are briefed. Based on the findings from the reported studies discussed in this manuscript, drug repurposing emerges to be a promising approach and thus is expected to offer efficient treatment at a reasonable cost in devitalizing skin cancer.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Tejashree Yadav
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Ashwini Bhavar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Pramod Waghmare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Rajdeep Bhokare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sunita Shinde
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
10
|
Degan S, May BL, Jin YJ, Hammouda MB, Sun H, Zhang G, Wang Y, Erdmann D, Warren W, Zhang JY. Co-Treatment of Chloroquine and Trametinib Inhibits Melanoma Cell Proliferation and Decreases Immune Cell Infiltration. Front Oncol 2022; 12:782877. [PMID: 35847840 PMCID: PMC9282877 DOI: 10.3389/fonc.2022.782877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Autophagy is characterized as a cytoprotective process and inhibition of autophagy with medicinally active agents, such as chloroquine (CQ) is proposed as a prospective adjuvant therapy for cancer. Here, we examined the preclinical effects of CQ combined with the MEK inhibitor trametinib (TRA) on melanoma. We found that cotreatment of CQ and TRA markedly slowed melanoma growth induced in Tyr-CreER.BrafCa.Ptenfl/fl mice. Immunostaining showed that trametinib decreased Ki-67+ proliferating cells, and increased TUNEL+ apoptotic cells. The combo treatment induced a further decrease of Ki-67+ proliferating cells. Consistent with the in vivo findings, CQ and TRA inhibited melanoma cell proliferation in vitro, which was correlated by decreased cyclin D1 expression. In addition, we found that tissues treated with CQ and TRA had significantly decreased numbers of CD4+ and CD8+ T-lymphocytes and F4/80+ macrophages. Together, these results indicate that cotreatment of CQ and TRA decreases cancer cell proliferation, but also dampens immune cell infiltration. Further study is warranted to understand whether CQ-induced immune suppression inadvertently affects therapeutic benefits.
Collapse
Affiliation(s)
- Simone Degan
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Brian L. May
- Department of Surgery, Duke University, Durham, NC, United States
| | - Yingai J. Jin
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Manel Ben Hammouda
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Huiying Sun
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Guoqiang Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Yan Wang
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Detlev Erdmann
- Division of Plastic, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, NC, United States
| | - Warren Warren
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Jennifer Y. Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
11
|
Jandova J, Park SL, Corenblum MJ, Madhavan L, Snell JA, Rounds L, Wondrak GT. Mefloquine induces ER stress and apoptosis in BRAFi-resistant A375-BRAF V600E /NRAS Q61K malignant melanoma cells targeting intracranial tumors in a bioluminescent murine model. Mol Carcinog 2022; 61:603-614. [PMID: 35417045 PMCID: PMC9133119 DOI: 10.1002/mc.23407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 02/03/2023]
Abstract
Molecularly targeted therapeutics have revolutionized the treatment of BRAFV600E -driven malignant melanoma, but the rapid development of resistance to BRAF kinase inhibitors (BRAFi) presents a significant obstacle. The use of clinical antimalarials for the investigational treatment of malignant melanoma has shown only moderate promise, attributed mostly to inhibition of lysosomal-autophagic adaptations of cancer cells, but identification of specific antimalarials displaying single-agent antimelanoma activity has remained elusive. Here, we have screened a focused library of clinically used artemisinin-combination therapeutic (ACT) antimalarials for the apoptotic elimination of cultured malignant melanoma cell lines, also examining feasibility of overcoming BRAFi-resistance comparing isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAFV600E /NRASQ61 vs. BRAFi-resistant A375-BRAFV600E /NRASQ61K ). Among ACT antimalarials tested, mefloquine (MQ) was the only apoptogenic agent causing melanoma cell death at low micromolar concentrations. Comparative gene expression-array analysis (A375-BRAFV600E /NRASQ61 vs. A375-BRAFV600E /NRASQ61K ) revealed that MQ is a dual inducer of endoplasmic reticulum (ER) and redox stress responses that precede MQ-induced loss of viability. ER-trackerTM DPX fluorescence imaging and electron microscopy indicated ER swelling, accompanied by rapid induction of ER stress signaling (phospho-eIF2α, XBP-1s, ATF4). Fluo-4 AM-fluorescence indicated the occurrence of cytosolic calcium overload observable within seconds of MQ exposure. In a bioluminescent murine model employing intracranial injection of A375-Luc2 (BRAFV600E /NRASQ61K ) cells, an oral MQ regimen efficiently antagonized brain tumor growth. Taken together, these data suggest that the clinical antimalarial MQ may be a valid candidate for drug repurposing aiming at chemotherapeutic elimination of malignant melanoma cells, even if metastasized to the brain and BRAFi-resistant.
Collapse
Affiliation(s)
- Jana Jandova
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Sophia L. Park
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Mandi J. Corenblum
- Department of Neurology, Evelyn F McKnight Brain Institute and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Lalitha Madhavan
- Department of Neurology, Evelyn F McKnight Brain Institute and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Jeremy A. Snell
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Liliana Rounds
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
12
|
Li J, Long J, Zhang J, Liu N, Yan B, Tang L, Chen X, Peng C. Novel chloroquine derivative suppresses melanoma cell growth by DNA damage through increasing ROS levels. J Cell Mol Med 2022; 26:2579-2593. [PMID: 35332658 PMCID: PMC9077290 DOI: 10.1111/jcmm.17260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is a fatal cancer with a significant feature of resistance to traditional chemotherapeutic drugs and radiotherapy. A mutation in the kinase BRAF is observed in more than 66% of metastatic melanoma cases. Therefore, there is an urgent need to develop new BRAF-mutant melanoma inhibitors. High-dose chloroquine has been reported to have antitumour effects, but it often induces dose-limiting toxicity. In this study, a series of chloroquine derivatives were synthesized, and lj-2-66 had the best activity and was selected for further investigation. Furthermore, the anti-BRAF-mutant melanoma effect and mechanism of this compound were explored. CCK-8 and colony formation assays indicated that lj-2-66 significantly inhibited the proliferation of BRAF-mutant melanoma cells. Flow cytometry revealed that lj-2-66 induced G2/M arrest in melanoma cells and promoted apoptosis. Furthermore, lj-2-66 increased the level of ROS in melanoma cells and induced DNA damage. Interestingly, lj-2-66 also played a similar role in BRAF inhibitor-resistant melanoma cells. In summary, we found a novel chloroquine derivative, lj-2-66, that increased the level of ROS in melanoma cells and induced DNA damage, thus leading to G2/M arrest and apoptosis. These findings indicated that lj-2-66 may become a potential therapeutic drug for melanoma harbouring BRAF mutations.
Collapse
Affiliation(s)
- Jiaoduan Li
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Jing Long
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Nian Liu
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Bei Yan
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Ling Tang
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Cong Peng
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya HospitalChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
13
|
Chou KY, Chen PC, Chang AC, Tsai TF, Chen HE, Ho CY, Hwang TIS. Attenuation of chloroquine and hydroxychloroquine on the invasive potential of bladder cancer through targeting matrix metalloproteinase 2 expression. ENVIRONMENTAL TOXICOLOGY 2021; 36:2138-2145. [PMID: 34278709 DOI: 10.1002/tox.23328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Bladder cancer (BC), one of the most common urological neoplastic disorders in men, has an extremely low survival rate because of its tendency to metastasize. The anticancer drugs chloroquine (CQ) and hydroxy CQ (HCQ) might inhibit tumor progression and invasiveness. However, the mechanism by which CQ and HCQ influence BC is undetermined. In this study, CQ and HCQ treatments inhibited the migration and invasion of two BC cell types (5637 and T24) through expression modulation of matrix metalloproteinase-2 (MMP-2), which belongs to the matrix MMP family and is a key mediator of cancer progression. Moreover, additional data revealed that the migrative and invasive effects of BC cells treated with CQ or HCQ were abolished after treatment with rapamycin, which induces autophagy, demonstrating that CQ and HCQ functions in BC are based on autophagy inhibition. In conclusion, our research demonstrated that CQ and HCQ regulated cell motility in BC through MMP-2 downregulation by targeting autophagy functions, providing a novel therapeutic strategy for BC treatment.
Collapse
Affiliation(s)
- Kuang-Yu Chou
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Po-Chun Chen
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - An-Chen Chang
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Te-Fu Tsai
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Hung-En Chen
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chao-Yen Ho
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Thomas I-Sheng Hwang
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
- Department of Urology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Ahmed F, Tseng HY, Ahn A, Gunatilake D, Alavi S, Eccles M, Rizos H, Gallagher SJ, Tiffen JC, Hersey P, Emran AA. Repurposing melanoma chemotherapy to activate inflammasomes in treatment of BRAF/MAPK inhibitor resistant melanoma. J Invest Dermatol 2021; 142:1444-1455.e10. [PMID: 34695412 DOI: 10.1016/j.jid.2021.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022]
Abstract
The development of resistance to treatments of melanoma is commonly associated with upregulation of the MAPK pathway and development of an undifferentiated state. Prior studies have suggested that melanoma with these resistance characteristics may be susceptible to innate death mechanisms such as pyroptosis triggered by activation of inflammasomes. In the present studies we have taken cell lines from patients before and after development of resistance to BRAF V600 inhibitors and exposed the resistant melanoma to temozolomide (a commonly used chemotherapy) with and without chloroquine to inhibit autophagy. It was found that melanoma with an inflammatory undifferentiated state appeared susceptible to this combination when tested in vitro and in vivo against xenografts in NSG mice. Translation of the latter results into patients would promise durable responses in patients treated by the combination. The inflammasome and death mechanism involved appeared to vary between melanoma and involved either AIM2 or NLRP3 inflammasomes and gasdermin D or E. These preliminary studies have raised questions as to the selectivity for different inflammasomes in different melanoma and their selective targeting by chemotherapy. They also question whether the inflammatory state of melanoma may be used as biomarkers to select patients for inflammasome targeted therapy.
Collapse
Affiliation(s)
- Farzana Ahmed
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia
| | - Hsin-Yi Tseng
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Antonio Ahn
- Peter MacCallum Cancer Centre, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Dilini Gunatilake
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia
| | - Sara Alavi
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Michael Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Helen Rizos
- Melanoma Institute Australia, Sydney, Australia; Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Stuart J Gallagher
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia.
| | - Abdullah Al Emran
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
15
|
Antitumor effects of chloroquine/hydroxychloroquine mediated by inhibition of the NF-κB signaling pathway through abrogation of autophagic p47 degradation in adult T-cell leukemia/lymphoma cells. PLoS One 2021; 16:e0256320. [PMID: 34407152 PMCID: PMC8372904 DOI: 10.1371/journal.pone.0256320] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 01/18/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) originates from human T-cell leukemia virus type 1 (HTLV-1) infection due to the activation of the nuclear factor-κB (NF-κB) signaling pathway to maintain proliferation and survival. An important mechanism of the activated NF-κB signaling pathway in ATLL is the activation of the macroautophagy (herafter referred to as autophagy in the remainder of this manuscript)-lysosomal degradation of p47 (NSFL1C), a negative regulator of the NF-κB pathway. Therefore, we considered the use of chloroquine (CQ) or hydroxychloroquine (HCQ) (CQ/HCQ) as an autophagy inhibitor to treat ATLL; these drugs were originally approved by the FDA as antimalarial drugs and have recently been used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE). In this paper, we determined the therapeutic efficacy of CQ/HCQ, as NF-κB inhibitors, in ATLL mediated by blockade of p47 degradation. Administration of CQ/HCQ to ATLL cell lines and primary ATLL cells induced cell growth inhibition in a dose-dependent manner, and the majority of cells underwent apoptosis after CQ administration. As to the molecular mechanism, autophagy was inhibited in CQ-treated ATLL cells, and activation of the NF-κB pathway was suppressed with the restoration of the p47 level. When the antitumor effect of CQ/HCQ was examined using immunodeficient mice transplanted with ATLL cell lines, CQ/HCQ significantly suppressed tumor growth and improved the survival rate in the ATLL xenograft mouse model. Importantly, HCQ selectively induced ATLL cell death in the ATLL xenograft mouse model at the dose used to treat SLE. Taken together, our results suggest that the inhibition of autophagy by CQ/HCQ may become a novel and effective strategy for the treatment of ATLL.
Collapse
|
16
|
Chen C, Zhang H, Yu Y, Huang Q, Wang W, Niu J, Lou J, Ren T, Huang Y, Guo W. Chloroquine suppresses proliferation and invasion and induces apoptosis of osteosarcoma cells associated with inhibition of phosphorylation of STAT3. Aging (Albany NY) 2021; 13:17901-17913. [PMID: 34170850 PMCID: PMC8312460 DOI: 10.18632/aging.203196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is characterized by a high rate of metastasis. It has been found that tumor cells can bypass apoptosis which leads to an uncontrolled proliferation, but chloroquine (CQ) can have an effect on the tumors by inducing apoptosis. We aimed to explore the effects and the hypothetical mechanism of CQ effects on OS. METHODS We first estimated the CQ effects on proliferation, apoptosis, migration, invasion, and lamellipodia formation of OS cells. Mice bearing xenograft model were used to test the anti-tumor growth and lung metastasis effects of CQ in OS. Western blot and immunohistochemistry were used to explore the mechanism of CQ effects and the association between p-STAT3 expression and lung metastasis of OS patients. RESULTS CQ induces the apoptosis and suppressed the viability, proliferation, migration, invasion, and lamellipodia formation of OS cells in vitro. In vivo experiments demonstrated that CQ inhibited tumor growth and lung metastasis. CQ induced apoptosis was dependent on the lysosomal inhibition and inhibition of protein turnover. The lung metastasis was associated with the p-STAT3 expression in OS patients. CONCLUSION CQ inhibited progression of OS cells in vitro, and suppressed tumor growth and lung metastasis in vivo. p-STAT3 can be a predictive biomarker for lung metastasis in osteosarcoma patients.
Collapse
Affiliation(s)
- Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Qingshan Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| |
Collapse
|
17
|
NRAS mutant melanoma: Towards better therapies. Cancer Treat Rev 2021; 99:102238. [PMID: 34098219 DOI: 10.1016/j.ctrv.2021.102238] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Genetic alterations affecting RAS proteins are commonly found in human cancers. Roughly a fourth of melanoma patients carry activating NRAS mutations, rendering this malignancy particularly challenging to treat. Although the development of targeted as well as immunotherapies led to a substantial improvement in the overall survival of non-NRASmut melanoma patients (e.g. BRAFmut), patients with NRASmut melanomas have an overall poorer prognosis due to the high aggressiveness of RASmut tumors, lack of efficient targeted therapies or rapidly emerging resistance to existing treatments. Understanding how NRAS-driven melanomas develop therapy resistance by maintaining cell cycle progression and survival is crucial to develop more effective and specific treatments for this group of melanoma patients. In this review, we provide an updated summary of currently available therapeutic options for NRASmut melanoma patients with a focus on combined inhibition of MAPK signaling and CDK4/6-driven cell cycle progression and mechanisms of the inevitably developing resistance to these treatments. We conclude with an outlook on the most promising novel therapeutic approaches for melanoma patients with constitutively active NRAS. STATEMENT OF SIGNIFICANCE: An estimated 75000 patients are affected by NRASmut melanoma each year and these patients still have a shorter progression-free survival than BRAFmut melanomas. Both intrinsic and acquired resistance occur in NRAS-driven melanomas once treated with single or combined targeted therapies involving MAPK and CDK4/6 inhibitors and/or checkpoint inhibiting immunotherapy. Oncolytic viruses, mRNA-based vaccinations, as well as targeted triple-agent therapy are promising alternatives, which could soon contribute to improved progression-free survival of the NRASmut melanoma patient group.
Collapse
|
18
|
Inhibition Effect of Chloroquine and Integrin-Linked Kinase Knockdown on Translation in Melanoma Cells. Int J Mol Sci 2021; 22:ijms22073682. [PMID: 33916175 PMCID: PMC8037356 DOI: 10.3390/ijms22073682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
The twofold role of autophagy in cancer is often the therapeutic target. Numerous regulatory pathways are shared between autophagy and other molecular processes needed in tumorigenesis, such as translation or survival signaling. Thus, we have assumed that ILK knockdown should promote autophagy, and used together with chloroquine, an autophagy inhibitor, it could generate a better anticancer effect by dysregulation of common signaling pathways. Expression at the protein level was analyzed using Western Blot; siRNA transfection was done for ILK. Analysis of cell signaling pathways was monitored with phospho-specific antibodies. Melanoma cell proliferation was assessed with the crystal violet test, and migration was evaluated by scratch wound healing assays. Autophagy was monitored by the accumulation of its marker, LC3-II. Our data show that ILK knockdown by siRNA suppresses melanoma cell growth by inducing autophagy through AMPK activation, and simultaneously initiates apoptosis. We demonstrated that combinatorial treatment of melanoma cells with CQ and siILK has a stronger antitumor effect than monotherapy with either of these. It generates the synergistic antitumor effects by the decrease of translation of both global and oncogenic proteins synthesis. In our work, we point to the crosstalk between translation and autophagy regulation.
Collapse
|
19
|
The immuno-oncological challenge of COVID-19. ACTA ACUST UNITED AC 2020; 1:946-964. [DOI: 10.1038/s43018-020-00122-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
|
20
|
Eloranta K, Cairo S, Liljeström E, Soini T, Kyrönlahti A, Judde JG, Wilson DB, Heikinheimo M, Pihlajoki M. Chloroquine Triggers Cell Death and Inhibits PARPs in Cell Models of Aggressive Hepatoblastoma. Front Oncol 2020; 10:1138. [PMID: 32766148 PMCID: PMC7379510 DOI: 10.3389/fonc.2020.01138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Hepatoblastoma (HB) is the most common pediatric liver malignancy. Despite advances in chemotherapeutic regimens and surgical techniques, the survival of patients with advanced HB remains poor, underscoring the need for new therapeutic approaches. Chloroquine (CQ), a drug used to treat malaria and rheumatologic diseases, has been shown to inhibit the growth and survival of various cancer types. We examined the antineoplastic activity of CQ in cell models of aggressive HB. Methods: Seven human HB cell models, all derived from chemoresistant tumors, were cultured as spheroids in the presence of relevant concentrations of CQ. Morphology, viability, and induction of apoptosis were assessed after 48 and 96 h of CQ treatment. Metabolomic analysis and RT-qPCR based Death Pathway Finder array were used to elucidate the molecular mechanisms underlying the CQ effect in a 2-dimensional cell culture format. Quantitative western blotting was performed to validate findings at the protein level. Results: CQ had a significant dose and time dependent effect on HB cell viability both in spheroids and in 2-dimensional cell cultures. Following CQ treatment HB spheroids exhibited increased caspase 3/7 activity indicating the induction of apoptotic cell death. Metabolomic profiling demonstrated significant decreases in the concentrations of NAD+ and aspartate in CQ treated cells. In further investigations, oxidation of NAD+ decreased as consequence of CQ treatment and NAD+/NADH balance shifted toward NADH. Aspartate supplementation rescued cells from CQ induced cell death. Additionally, downregulated expression of PARP1 and PARP2 was observed. Conclusions: CQ treatment inhibits cell survival in cell models of aggressive HB, presumably by perturbing NAD+ levels, impairing aspartate bioavailability, and inhibiting PARP expression. CQ thus holds potential as a new agent in the management of HB.
Collapse
Affiliation(s)
- Katja Eloranta
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Emmi Liljeström
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tea Soini
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Antti Kyrönlahti
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, United States.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Markku Heikinheimo
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, United States
| | - Marjut Pihlajoki
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Santiago-O’Farrill JM, Weroha SJ, Hou X, Oberg AL, Heinzen EP, Maurer MJ, Pang L, Rask P, Amaravadi RK, Becker SE, Romero I, Rubió MJ, Matias-Guiu X, Santacana M, Llombart-Cussac A, Poveda A, Lu Z, Bast RC. Poly(adenosine diphosphate ribose) polymerase inhibitors induce autophagy-mediated drug resistance in ovarian cancer cells, xenografts, and patient-derived xenograft models. Cancer 2020; 126:894-907. [PMID: 31714594 PMCID: PMC6992526 DOI: 10.1002/cncr.32600] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/07/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors exhibit promising activity against ovarian cancers, but their efficacy can be limited by acquired drug resistance. This study explores the role of autophagy in regulating the sensitivity of ovarian cancer cells to PARP inhibitors. METHODS Induction of autophagy was detected by punctate LC3 fluorescence staining, LC3I to LC3II conversion on Western blot analysis, and electron microscopy. Enhanced growth inhibition and apoptosis were observed when PARP inhibitors were used with hydroxychloroquine, chloroquine (CQ), or LYS05 to block the hydrolysis of proteins and lipids in autophagosomes or with small interfering RNA against ATG5 or ATG7 to prevent the formation of autophagosomes. The preclinical efficacy of the combination of CQ and olaparib was evaluated with a patient-derived xenograft (PDX) and the OVCAR8 human ovarian cancer cell line. RESULTS Four PARP inhibitors (olaparib, niraparib, rucaparib, and talazoparib) induced autophagy in a panel of ovarian cancer cells. Inhibition of autophagy with CQ enhanced the sensitivity of ovarian cancer cells to PARP inhibitors. In vivo, olaparib and CQ produced additive growth inhibition in OVCAR8 xenografts and a PDX. Olaparib inhibited PARP activity, and this led to increased reactive oxygen species (ROS) and an accumulation of γ-H2AX. Inhibition of autophagy also increased ROS and γ-H2AX and enhanced the effect of olaparib on both entities. Treatment with olaparib increased phosphorylation of ATM and PTEN while decreasing the phosphorylation of AKT and mTOR and inducing autophagy. CONCLUSIONS PARP inhibitor-induced autophagy provides an adaptive mechanism of resistance to PARP inhibitors in cancer cells with wild-type BRCA, and a combination of PARP inhibitors with CQ or other autophagy inhibitors could improve outcomes for patients with ovarian cancer.
Collapse
Affiliation(s)
| | | | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Ann L. Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ethan P. Heinzen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Matthew J. Maurer
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Lan Pang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip Rask
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ravi K. Amaravadi
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA
| | - Sarah E. Becker
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ignacio Romero
- Instituto Valenciano de Oncología, Valencia, Spain
- MedSIR, Barcelona, Spain
| | - M. Jesús Rubió
- Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain
- MedSIR, Barcelona, Spain
| | - X. Matias-Guiu
- Hospital U Arnau de Vilanova de Lleida, IRBLLEIDA, University of Lleida, CIBERONC
- MedSIR, Barcelona, Spain
| | - Maria Santacana
- Hospital U Arnau de Vilanova de Lleida, IRBLLEIDA, University of Lleida, CIBERONC
- MedSIR, Barcelona, Spain
| | | | - Andrés Poveda
- Instituto Valenciano de Oncología, Valencia, Spain
- MedSIR, Barcelona, Spain
| | - Zhen Lu
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert C. Bast
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
22
|
Stamenkovic M, Janjetovic K, Paunovic V, Ciric D, Kravic-Stevovic T, Trajkovic V. Comparative analysis of cell death mechanisms induced by lysosomal autophagy inhibitors. Eur J Pharmacol 2019; 859:172540. [DOI: 10.1016/j.ejphar.2019.172540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/18/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
|
23
|
Prunk Zdravković T, Zdravković B, Zdravković M, Dariš B, Lunder M, Ferk P. In-vitro study of the influence of octocrylene on a selected metastatic melanoma cell line. GIORN ITAL DERMAT V 2019; 154:197-204. [DOI: 10.23736/s0392-0488.17.05616-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Prunk Zdravković T, Zdravković B, Lunder M, Ferk P. The effect of micro-sized titanium dioxide on WM-266-4 metastatic melanoma cell line. Bosn J Basic Med Sci 2019; 19:60-66. [PMID: 30383985 PMCID: PMC6387668 DOI: 10.17305/bjbms.2018.3674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 01/30/2023] Open
Abstract
Titanium dioxide (TiO2) is widely used as an inorganic UV-filter in cosmetic products; however, it has been classified as possibly carcinogenic to humans. While numerous studies demonstrated cytotoxic and genotoxic effects of nano-sized TiO2 in different cell lines, including human skin cells, studies investigating the effects of micro-TiO2 on human keratinocytes and melanocytes, in healthy and cancer cells, are scarce. Adenosine triphosphate (ATP) binding cassette subfamily B member 5 (ABCB5) is a plasma membrane protein known for its role in the tumorigenicity, progression, and recurrence of melanoma. Here, we investigated the effect of micro-TiO2 (average particle size ≤5 µm) on the metabolic activity, cytotoxicity and ABCB5 mRNA expression in metastatic melanoma cells. Metastatic melanoma cell line WM-266-4 was treated with different concentrations of micro-TiO2 for different incubation times to obtain dose- and time-dependent responses. Untreated WM-266-4 cells, cultured under the same conditions, were used as control. The cell metabolic activity was determined by MTT assay. Cytotoxicity of micro-TiO2 was analyzed by lactate dehydrogenase (LDH) cytotoxicity assay. The ABCB5 mRNA expression in melanoma cells was analyzed using quantitative reverse transcription polymerase chain reaction (RT-qPCR). After 120 hours of exposure to micro-TiO2 the metabolic activity of melanoma cells decreased, especially at the two highest micro-TiO2 concentrations. Comparably, the cytotoxicity of micro-TiO2 on melanoma cells increased after 48 and 120 hours of exposure, in a time-dependent manner. The ABCB5 mRNA expression in micro-TiO2-treated melanoma cells also decreased significantly after 24 and 48 hours, in a time-dependent manner. Overall, our results suggest inhibitory effects of micro-TiO2 on the metabolic activity and ABCB5 mRNA expression in metastatic melanoma cells, indicating its potential use as an anticancer agent.
Collapse
Affiliation(s)
- Tanja Prunk Zdravković
- Dermatovenerology Department, Celje General and Teaching Hospital, Celje, Slovenia Institute of Anatomy, Histology and Embryology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | | | | | | |
Collapse
|
25
|
Cyclic AMP-Epac signaling pathway contributes to repression of PUMA transcription in melanoma cells. Melanoma Res 2018; 27:411-416. [PMID: 28489680 DOI: 10.1097/cmr.0000000000000363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The universal second messenger cAMP regulates numerous cellular processes. Although the cAMP-signaling pathway leads to induction of gene transcription, it remains unknown whether this pathway contributes toward suppression of transcription. Here, we show that blockade of cAMP signaling using MDL12330A led to an increase in PUMA transcript levels, but not p21 in melanoma cells. cAMP downstream component Epac activation was essential for suppression of PUMA transcription as an Epac agonist reversed the effects of MDL12330A. These results suggest that transcriptional repression is one of the functions of the cAMP-Epac signaling pathway.
Collapse
|
26
|
Cell death-based treatments of melanoma:conventional treatments and new therapeutic strategies. Cell Death Dis 2018; 9:112. [PMID: 29371600 PMCID: PMC5833861 DOI: 10.1038/s41419-017-0059-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
The incidence of malignant melanoma has continued to rise during the past decades. However, in the last few years, treatment protocols have significantly been improved thanks to a better understanding of the key oncogenes and signaling pathways involved in its pathogenesis and progression. Anticancer therapy would either kill tumor cells by triggering apoptosis or permanently arrest them in the G1 phase of the cell cycle. Unfortunately, melanoma is often refractory to commonly used anticancer drugs. More recently, however, some new anticancer strategies have been developed that are “external” to cancer cells, for example stimulating the immune system’s response or inhibiting angiogenesis. In fact, the increasing knowledge of melanoma pathogenetic mechanisms, in particular the discovery of genetic mutations activating specific oncogenes, stimulated the development of molecularly targeted therapies, a form of treatment in which a drug (chemical or biological) is developed with the goal of exclusively destroying cancer cells by interfering with specific molecules that drive growth and spreading of the tumor. Again, after the initial exciting results associated with targeted therapy, tumor resistance and/or relapse of the melanoma lesion have been observed. Hence, very recently, new therapeutic strategies based on the modulation of the immune system function have been developed. Since cancer cells are known to be capable of evading immune-mediated surveillance, i.e., to block the immune system cell activity, a series of molecular strategies, including monoclonal antibodies, have been developed in order to “release the brakes” on the immune system igniting immune reactivation and hindering metastatic melanoma cell growth. In this review we analyze the various biological strategies underlying conventional chemotherapy as well as the most recently developed targeted therapies and immunotherapies, pointing at the molecular mechanisms of cell injury and death engaged by the different classes of therapeutic agents.
Collapse
|
27
|
Cervia D, Assi E, De Palma C, Giovarelli M, Bizzozero L, Pambianco S, Di Renzo I, Zecchini S, Moscheni C, Vantaggiato C, Procacci P, Clementi E, Perrotta C. Essential role for acid sphingomyelinase-inhibited autophagy in melanoma response to cisplatin. Oncotarget 2018; 7:24995-5009. [PMID: 27107419 PMCID: PMC5041885 DOI: 10.18632/oncotarget.8735] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/28/2016] [Indexed: 01/03/2023] Open
Abstract
The sphingolipid metabolising enzyme Acid Sphingomyelinase (A-SMase) has been recently shown to inhibit melanoma progression and correlate inversely to tumour grade. In this study we have investigated the role of A-SMase in the chemo-resistance to anticancer treatmentusing mice with melanoma allografts and melanoma cells differing in terms of expression/activity of A-SMase. Since autophagy is emerging as a key mechanism in tumour growth and chemo-resistance, we have also investigated whether an action of A-SMase in autophagy can explain its role. Melanoma sensitivity to chemotherapeutic agent cisplatin in terms of cell viability/apoptosis, tumour growth, and animal survival depended directly on the A-SMase levels in tumoural cells. A-SMase action was due to inhibition of autophagy through activation of Akt/mammalian target of rapamycin (mTOR) pathway. Treatment of melanoma-bearing mice with the autophagy inhibitor chloroquine restored sensitivity to cisplatin of tumours expressing low levels of A-SMase while no additive effects were observed in tumours characterised by sustained A-SMase levels. The fact that A-SMase in melanomas affects mTOR-regulated autophagy and plays a central role in cisplatin efficacy encourages pre-clinical testing on the modulation of A-SMase levels/activity as possible novel anti-neoplastic strategy.
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milano, Italy
| | - Emma Assi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy.,Present address: Division of Experimental Oncology, San Raffaele Scientific Institute, Milano, Italy
| | - Clara De Palma
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milano, Italy.,Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, University Hospital "Luigi Sacco", Milano, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milano, Italy
| | - Laura Bizzozero
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy.,Present address: Department of Oncology, Università degli Studi di Torino and Laboratory of Neurovascular Biology, Candiolo Cancer Institute, Candiolo, Italy
| | - Sarah Pambianco
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milano, Italy
| | - Ilaria Di Renzo
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milano, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milano, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milano, Italy
| | | | - Patrizia Procacci
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Milano, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milano, Italy.,Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy.,Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, University Hospital "Luigi Sacco", Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
28
|
The Tumor Suppressor p53 in Mucosal Melanoma of the Head and Neck. Genes (Basel) 2017; 8:genes8120384. [PMID: 29236030 PMCID: PMC5748702 DOI: 10.3390/genes8120384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
Despite worldwide prevention programs, the incidence for cutaneous melanoma is continuously increasing. Mucosal melanoma (MM) represents a rare but highly aggressive phenotype of common melanoma with predilection in the sinonasal system. Far away from ultraviolet sun exposure, the molecular mechanisms underlying tumorigenesis and the highly aggressive clinical behavior are poorly understood. In many solid malignomas of the head and neck region, p53 tumor suppressor functions as oncogene due to p53 protein stabilizing mutation. Interestingly, the vast majority of MM demonstrates constitutively expressed p53 protein, with protein stabilizing mutations being rare. Abrogated activation of p53 target genes results in derogation of the apoptotic signal cascade and contributes to the strong resistance against chemotherapeutic agents activating p53 dependent apoptosis. The current review illustrates the role of p53 and its pathway in MM.
Collapse
|
29
|
Verbaanderd C, Maes H, Schaaf MB, Sukhatme VP, Pantziarka P, Sukhatme V, Agostinis P, Bouche G. Repurposing Drugs in Oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience 2017; 11:781. [PMID: 29225688 PMCID: PMC5718030 DOI: 10.3332/ecancer.2017.781] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Indexed: 12/26/2022] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are well-known 4-aminoquinoline antimalarial agents. Scientific evidence also supports the use of CQ and HCQ in the treatment of cancer. Overall, preclinical studies support CQ and HCQ use in anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they are able to sensitise tumour cells to a variety of drugs, potentiating the therapeutic activity. Thus far, clinical results are mostly in favour of the repurposing of CQ. However, over 30 clinical studies are still evaluating the activity of both CQ and HCQ in different cancer types and in combination with various standard treatments. Interestingly, CQ and HCQ exert effects both on cancer cells and on the tumour microenvironment. In addition to inhibition of the autophagic flux, which is the most studied anti-cancer effect of CQ and HCQ, these drugs affect the Toll-like receptor 9, p53 and CXCR4-CXCL12 pathway in cancer cells. In the tumour stroma, CQ was shown to affect the tumour vasculature, cancer-associated fibroblasts and the immune system. The evidence reviewed in this paper indicates that both CQ and HCQ deserve further clinical investigations in several cancer types. Special attention about the drug (CQ versus HCQ), the dose and the schedule of administration should be taken in the design of new trials.
Collapse
Affiliation(s)
- Ciska Verbaanderd
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium.,Cell Death Research and Therapy Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.,Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Hannelore Maes
- Cell Death Research and Therapy Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Marco B Schaaf
- Cell Death Research and Therapy Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Vikas P Sukhatme
- GlobalCures, Inc, Newton, MA 02459, USA.,Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Current address: Emory School of Medicine, Atlanta, GA 30322, USA
| | - Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium.,The George Pantziarka TP53 Trust, London KT1 2JP, UK
| | | | - Patrizia Agostinis
- Cell Death Research and Therapy Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | | |
Collapse
|
30
|
Wang H, Li W, Xu J, Zhang T, Zuo D, Zhou Z, Lin B, Wang G, Wang Z, Sun W, Sun M, Chang S, Cai Z, Hua Y. NDRG1 inhibition sensitizes osteosarcoma cells to combretastatin A-4 through targeting autophagy. Cell Death Dis 2017; 8:e3048. [PMID: 28906492 PMCID: PMC5636982 DOI: 10.1038/cddis.2017.438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/23/2023]
Abstract
Combretastatin A-4 (CA-4), a tubulin-depolymerizing agent, shows promising antitumor efficacy and has been under several clinical trials in solid tumors for 10 years. Autophagy has an important pro-survival role in cancer therapy, thus targeting autophagy may improve the efficacy of antitumor agents. N-myc downstream-regulated gene 1 (NDRG1) is a significant stress regulatory gene, which mediates cell survival and chemoresistance. Here we reported that CA-4 could induce cell-protective autophagy, and combination treatment of CA-4 and autophagy inhibitor chloroquine (CQ) exerted synergistic cytotoxic effect on human osteosarcoma (OS) cells. Meanwhile, CA-4 or CQ could increase the expression of NDRG1 independently. We further performed mechanistic study to explore how CA-4 and CQ regulate the expression of NDRG1. Using luciferase reporter assay, we found that CA-4 transcriptionally upregulated NDRG1 expression, whereas CQ triggered colocalization of NDRG1 and lysosome, which subsequently prevented lysosome-dependent degradation of NDRG1. Further, we showed that knockdown of NDRG1 caused the defect of lysosomal function, which accumulated LC3-positive autophagosomes by decreasing their fusion with lysosomes. Moreover, NDRG1 inhibition increased apoptosis in response to combination treatment with CA-4 and CQ. Taken together, our study revealed abrogation of NDRG1 expression sensitizes OS cells to CA-4 by suppression of autophagosome–lysosome fusion. These results provide clues for developing more effective cancer therapeutic strategies by the concomitant treatment with CA-4 and clinical available autophagy inhibitors.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Orthopaedics, Yangpu Hospital, Tongji University, Shanghai, China.,Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Wen Li
- Department of Oncology, Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Xu
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zhang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Zifei Zhou
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Binhui Lin
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Mengxiong Sun
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Shimin Chang
- Department of Orthopaedics, Yangpu Hospital, Tongji University, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
31
|
Jia L, Wang J, Wu T, Wu J, Ling J, Cheng B. In vitro and in vivo antitumor effects of chloroquine on oral squamous cell carcinoma. Mol Med Rep 2017; 16:5779-5786. [PMID: 28849182 PMCID: PMC5865757 DOI: 10.3892/mmr.2017.7342] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022] Open
Abstract
Chloroquine, which is a widely used antimalarial drug, has been reported to exert anticancer activity in some tumor types; however, its potential effects on oral squamous cell carcinoma (OSCC) remain unclear. The present study aimed to explore the effects and possible underlying mechanisms of chloroquine against OSCC. MTT and clonogenic assays were conducted to evaluate the effects of chloroquine on the human OSCC cell lines SCC25 and CAL27. Cell cycle progression and apoptosis were detected using flow cytometry. Autophagy was monitored using microtubule-associated protein 1A/1B-light chain 3 as an autophagosomal marker. In order to determine the in vivo antitumor effects of chloroquine on OSCC, a CAL27 xenograft model was used. The results demonstrated that chloroquine markedly inhibited the proliferation and the colony-forming ability of both OSCC cell lines in a dose- and time-dependent manner in vitro. Chloroquine also disrupted the cell cycle, resulting in the cell cycle arrest of CAL27 and SCC25 cells at G0/G1 phase, via downregulation of cyclin D1. In addition, chloroquine inhibited autophagy, and induced autophagosome and autolysosome accumulation in the cytoplasm, thus interfering with degradation; however, OSCC apoptosis was barely affected by chloroquine. The results of the in vivo study demonstrated that chloroquine effectively inhibited OSCC tumor growth in the CAL27 xenograft model. In conclusion, the present study reported the in vitro and in vivo antitumor effects of chloroquine on OSCC, and the results indicated that chloroquine may be considered a potent therapeutic agent against human OSCC.
Collapse
Affiliation(s)
- Lihua Jia
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Juan Wang
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Tong Wu
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jinan Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Zhongshan Hospital, Sun Yat‑Sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Junqi Ling
- Department of Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Bin Cheng
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
32
|
Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells. Cell Death Dis 2017; 8:e2943. [PMID: 28726781 PMCID: PMC5550872 DOI: 10.1038/cddis.2017.327] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the most malignant gynecological tumors with a high mortality rate owing to tumor relapse after anticancer therapies. It is widely accepted that a rare tumor cell population, known as cancer stem cells (CSC), is responsible for tumor progression and relapse; intriguingly, these cells are able to survive nutrient starvation (such as in vitro culture in the absence of glucose) and chemotherapy treatment. Recent data also indicated that chemotherapy resistance is associated with autophagy activation. We thus decided to investigate both in vitro and in vivo the autophagic activity and the effects of the perturbation of this pathway in CSC isolated from EOC ascitic effusions. Ovarian CSC, identified according to their CD44/CD117 co-expression, presented a higher basal autophagy compared with the non-stem counterpart. Inhibition of this pathway, by in vitro chloroquine treatment or CRISPR/Cas9 ATG5 knockout, impaired canonical CSC properties, such as viability, the ability to form spheroidal structures in vitro, and in vivo tumorigenic potential. In addition, autophagy inhibition showed a synergistic effect with carboplatin administration on both in vitro CSC properties and in vivo tumorigenic activity. On the whole, these results indicate that the autophagy process has a key role in CSC maintenance; inhibition of this pathway in combination with other chemotherapeutic approaches could represent a novel effective strategy to overcome drug resistance and tumor recurrence.
Collapse
|
33
|
Lin YC, Lin JF, Wen SI, Yang SC, Tsai TF, Chen HE, Chou KY, Hwang TIS. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis. Kaohsiung J Med Sci 2017; 33:215-223. [PMID: 28433067 DOI: 10.1016/j.kjms.2017.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 12/19/2022] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ), two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24) in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24) compared to immortalized uroepithelial cells (SV-Huc-1) or other reference cancer cell lines (PC3 and MCF-7). We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose) polymerase (PARP), caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer.
Collapse
Affiliation(s)
- Yi-Chia Lin
- Department of Urology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Ji-Fan Lin
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| | - Sheng-I Wen
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shan-Che Yang
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Te-Fu Tsai
- Department of Urology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Hung-En Chen
- Department of Urology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kuang-Yu Chou
- Department of Urology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Thomas I-Sheng Hwang
- Department of Urology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
34
|
Makowska A, Eble M, Prescher K, Hoß M, Kontny U. Chloroquine Sensitizes Nasopharyngeal Carcinoma Cells but Not Nasoepithelial Cells to Irradiation by Blocking Autophagy. PLoS One 2016; 11:e0166766. [PMID: 27902742 PMCID: PMC5130215 DOI: 10.1371/journal.pone.0166766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/03/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Treatment of nasopharyngeal carcinoma requires the application of high dosages of radiation, leading to severe long-term complications in the majority of patients. Sensitizing tumor cells to radiation could be a means to increase the therapeutic window of radiation. Nasopharyngeal carcinoma cells display alterations in autophagy and blockade of autophagy has been shown to sensitize them against chemotherapy. METHODS We investigated the effect of chloroquine, a known inhibitor of autophagy, on sensitization against radiation-induced apoptosis in a panel of five nasopharyngeal carcinoma cell lines and a SV40-transformed nasoepithelial cell line. Autophagy was measured by immunoblot of autophagy-related proteins, immunofluorescence of autophagosomic microvesicles and electron microscopy. Autophagy was blocked by siRNA against autophagy-related proteins 3, 5, 6 and 7 (ATG3, ATG5, ATG6 and ATG7). RESULTS Chloroquine sensitized four out of five nasopharyngeal cancer cell lines towards radiation-induced apoptosis. The sensitizing effect was based on the blockade of autophagy as inhibition of ATG3, ATG5, ATG6 and ATG7 by specific siRNA could substitute for the effect of chloroquine. No sensitization was seen in nasoepithelial cells. CONCLUSION Chloroquine sensitizes nasopharyngeal carcinoma cells but not nasoepithelial cells towards radiation-induced apoptosis by blocking autophagy. Further studies in a mouse-xenograft model are warranted to substantiate this effect in vivo.
Collapse
Affiliation(s)
- Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Eble
- Department of Radiation Oncology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kirsten Prescher
- Department of Radiation Oncology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mareike Hoß
- Electron Microscopic Facility, Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
35
|
Chatwichien J, Basu S, Budina-Kolomets A, Murphy ME, Winkler JD. PUMA-dependent apoptosis in NSCLC cancer cells by a dimeric β-carboline. Bioorg Med Chem Lett 2016; 26:4884-4887. [PMID: 27650927 PMCID: PMC5464723 DOI: 10.1016/j.bmcl.2016.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 12/27/2022]
Abstract
Dimeric β-carbolines are cytotoxic against multiple NSCLC cell lines, and we report herein our preliminary studies on the mechanism of action of these dimeric structures. Dimeric β-carboline 1, which is more potent than the corresponding monomer in NSCLC cell lines, is a lysosomotropic agent that inhibits autophagy and mediates cell death by apoptosis, upregulating the pro-apoptotic BH3-only protein PUMA (p53 upregulated modulator of apoptosis) in a dose dependent manner.
Collapse
Affiliation(s)
- Jaruwan Chatwichien
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Subhasree Basu
- The Wistar Institute, Philadelphia, PA 19104, United States
| | | | | | - Jeffrey D Winkler
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
36
|
Takeda T, Tsubaki M, Sakamoto K, Ichimura E, Enomoto A, Suzuki Y, Itoh T, Imano M, Tanabe G, Muraoka O, Matsuda H, Satou T, Nishida S. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model. Toxicol Appl Pharmacol 2016; 306:105-12. [PMID: 27417526 DOI: 10.1016/j.taap.2016.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/25/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022]
Abstract
Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Tomoya Takeda
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Kotaro Sakamoto
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Eri Ichimura
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Aya Enomoto
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Yuri Suzuki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Tatsuki Itoh
- Department of Food Science and Nutrition, Kinki University School of Agriculture, Nara, Nara, Japan
| | - Motohiro Imano
- Department of Surgery, Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Genzoh Tanabe
- Laboratory of Pharmaceutical Organic Chemistry, School of Pharmacy, Kinki University, Kowakae, Higashi-, Osaka, Japan
| | - Osamu Muraoka
- Laboratory of Pharmaceutical Organic Chemistry, School of Pharmacy, Kinki University, Kowakae, Higashi-, Osaka, Japan
| | - Hideaki Matsuda
- Department of Natural Drugs Resources, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan.
| |
Collapse
|
37
|
Chloroquine enhances TRAIL-mediated apoptosis through up-regulation of DR5 by stabilization of mRNA and protein in cancer cells. Sci Rep 2016; 6:22921. [PMID: 26964637 PMCID: PMC4786792 DOI: 10.1038/srep22921] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 01/02/2023] Open
Abstract
Chloroquine (CQ), an anti-malarial drug, has immune-modulating activity and lysosomotropic activity. In this study, we investigated CQ sensitizes TRAIL-mediated apoptosis in human renal cancer Caki cells. Combination of CQ and TRAIL significantly induces apoptosis in human renal cancer Caki cells and various human cancer cells, but not in normal mouse kidney cells (TMCK-1) and human mesangial cells (MC). CQ up-regulates DR5 mRNA and protein expression in a dose- and time- dependent manner. Interestingly, CQ regulates DR5 expression through the increased stability in the mRNA and protein of DR5, rather than through the increased transcriptional activity of DR5. Moreover, we found that CQ decreased the expression of Cbl, an E3 ligase of DR5, and knock-down of Cbl markedly enhanced DR5 up-regulation. Other lysosomal inhibitors, including monensin and nigericin, also up-regulated DR5 and sensitized TRAIL-mediated apoptosis. Therefore, this study demonstrates that lysosomal inhibition by CQ may sensitize TRAIL-mediated apoptosis in human renal cancer Caki cells via DR5 up-regulation.
Collapse
|
38
|
HU TAO, LI PEI, LUO ZHONGGUANG, CHEN XIAOYU, ZHANG JINGYANG, WANG CHUNYAO, CHEN PING, DONG ZIMING. Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo. Oncol Rep 2016; 35:43-9. [PMID: 26530158 PMCID: PMC4699623 DOI: 10.3892/or.2015.4380] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023] Open
Abstract
Recently, chloroquine (CQ) has been widely used to improve the efficacy of different chemotherapy drugs to treat tumors. However, the effects of single treatment of CQ on liver cancer have not been investigated. In the present study, we examined the effects of CQ on the growth and viability of liver cancer cells in vitro and in vivo, and revealed that CQ treatment triggered G0/G1 cell cycle arrest, induced DNA damage and apoptosis in a dose- and time-dependent manner in liver cancer cells. Moreover, administration of CQ to tumor-bearing mice suppressed the tumor growth in an orthotopic xenograft model of liver cancer. These findings extend our understanding and suggest that CQ could be repositioned as a treatment option for liver cancer as a single treatment or in combination.
Collapse
Affiliation(s)
- TAO HU
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
- Laboratory Animal Center, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - PEI LI
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| | - ZHONGGUANG LUO
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - XIAOYU CHEN
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| | - JINGYANG ZHANG
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
| | - CHUNYAO WANG
- Laboratory Animal Center, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - PING CHEN
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
- Correspondence to: Dr Ziming Dong or Dr Ping Chen, College of Basic Medical Sciences, Zhengzhou university; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China, E-mail: , E-mail:
| | - ZIMING DONG
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China
- Correspondence to: Dr Ziming Dong or Dr Ping Chen, College of Basic Medical Sciences, Zhengzhou university; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450001, P.R. China, E-mail: , E-mail:
| |
Collapse
|
39
|
Time to use a dose of Chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol 2015; 771:139-44. [PMID: 26687632 DOI: 10.1016/j.ejphar.2015.12.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/27/2015] [Accepted: 12/09/2015] [Indexed: 01/05/2023]
Abstract
Chloroquine, a drug used for over 80 years to treat and prevent malaria and, more recently, to treat autoimmune diseases, is very safe but has a plethora of dose-dependent effects. By increasing pH in acidic compartments it inhibits for example lysosomal enzymes. In the context of cancer, Chloroquine was found to have direct effects on different types of malignancies that could potentiate chemotherapies. For example, the anti-malaria drug may inhibit both the multidrug-resistance pump and autophagy (mechanisms that tumor cells may use to resist chemotherapies), intercalate in DNA and enhance the penetration of chemotherapeutic drugs in cells or solid cancer tissues. However, these activities were mostly demonstrated at high doses of Chloroquine (higher than 10mg/kg or 10mg/l i.e. ca. 31μM). Nevertheless, it was reported that daily uptake of clinically acceptable doses (less than 10mg/kg) of Chloroquine in addition to chemo-radio-therapy increases the survival of glioblastoma patients (Sotelo et al., 2006; Briceno et al., 2007). However, the optimal dose and schedule of this multi-active drug with respect to chemotherapy has never been experimentally determined. The present article reviews the several known direct and indirect effects of different doses of Chloroquine on cancer and how those effects may indicate that a fine tuning of the dose/schedule of Chloroquine administration versus chemotherapy may be critical to obtain an adjuvant effect of Chloroquine in anti-cancer treatments. We anticipate that the appropriate (time and dose) addition of Chloroquine to the standard of care may greatly and safely potentiate current anti-cancer treatments.
Collapse
|
40
|
Lakhter AJ, Lahm T, Broxmeyer HE, Naidu SR. Golgi Associated HIF1a Serves as a Reserve in Melanoma Cells. J Cell Biochem 2015; 117:853-9. [PMID: 26375488 DOI: 10.1002/jcb.25381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF1a) is a key transcriptional regulator that enables cellular metabolic adaptation to low levels of oxygen. Multiple mechanisms, including lysosomal degradation, control the levels of HIF1a protein. Here we show that HIF1a protein degradation is resistant to lysosomal inhibition and that HIF1a is associated with the Golgi compartment in melanoma cells. Although pharmacological inhibitors of prolyl hydroxylation, neddylation and the proteasome inhibited degradation of HIF1a, attenuation of lysosomal activity with chloroquine did not alter the levels of HIF1a or its association with Golgi. Pharmacological disruption of Golgi resulted in nuclear accumulation of HIF1a. However, blockade of ER-Golgi protein transport in hypoxia reduced the transcript levels of HIF1a target genes. These findings suggest a possible role for the oxygen-dependent protein folding process from the ER-Golgi compartment in fine-tuning HIF1a transcriptional output.
Collapse
Affiliation(s)
- Alexander J Lakhter
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Tim Lahm
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Hal E Broxmeyer
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Samisubbu R Naidu
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| |
Collapse
|
41
|
The anti-malarial chloroquine suppresses proliferation and overcomes cisplatin resistance of endometrial cancer cells via autophagy inhibition. Gynecol Oncol 2015; 137:538-45. [DOI: 10.1016/j.ygyno.2015.03.053] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
|
42
|
Fritsche MK, Metzler V, Becker K, Plettenberg C, Heiser C, Hofauer B, Knopf A. Cisplatin fails to induce puma mediated apoptosis in mucosal melanomas. Oncotarget 2015; 6:9887-96. [PMID: 25831048 PMCID: PMC4496404 DOI: 10.18632/oncotarget.3195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/23/2015] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES Mucosal melanomas (MM) are aggressive subtypes of common melanomas. It remains unclear whether limitations in their resectability or their distinctive molecular mechanisms are responsible for the aggressive phenotype. METHODS In total, 112 patients with cutaneous melanomas (CM) and 27 patients with MM were included. Clinical parameters were analysed using Chi square, Fisher exact and student's t-test. Survival rates were calculated by Kaplan-Meier. Analysis of p53, p21, Mdm2, Hipk2, Gadd45, Puma, Bax, Casp9 and Cdk1 via quantitative PCR and immunohistochemistry (IHC) was performed. TP53 induction after cisplatin treatment was analysed in 10 cell lines (melanocytes, four MM and five CM) using western blot (WB) and qPCR. RESULTS The overall/recurrence-free survival differed significantly between MM (40 months and 30 months) and CM (90 months and 107 months; p < 0.001). IHC and WB confirmed high p53 expression in all melanomas. Hipk2 and Gadd45 showed significantly higher expressions in CM (p < 0.005; p = 0.004). QPCR and WB of wild-type cell lines demonstrated no differences for p53, p21, Mdm2, Bax and Casp9. WB failed to detect Puma in MM, while Cdk1 regulation occurred exclusively in MM. CONCLUSIONS The aggressive phenotype of MM did not appear to be due to differential expressions of p53, p21, Mdm2, Bax or Casp9. A non-functional apoptosis in MM may have further clinical implications.
Collapse
Affiliation(s)
- Marie Kristin Fritsche
- Technische Universität München, Hals-Nasen-Ohrenklinik und Poliklinik, 81675 München, Germany
| | - Veronika Metzler
- Technische Universität München, Hals-Nasen-Ohrenklinik und Poliklinik, 81675 München, Germany
| | - Karen Becker
- Universität München, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675 München, Germany
| | - Christian Plettenberg
- Heinrich Heine Universität Düsseldorf, Hals-Nasen-Ohrenklinik, 40225 Düsseldorf, Germany
| | - Clemens Heiser
- Technische Universität München, Hals-Nasen-Ohrenklinik und Poliklinik, 81675 München, Germany
| | - Benedikt Hofauer
- Technische Universität München, Hals-Nasen-Ohrenklinik und Poliklinik, 81675 München, Germany
| | - Andreas Knopf
- Technische Universität München, Hals-Nasen-Ohrenklinik und Poliklinik, 81675 München, Germany
| |
Collapse
|
43
|
Foster SR, Blank K, Hoe LES, Behrens M, Meyerhof W, Peart JN, Thomas WG. Bitter taste receptor agonists elicit G‐protein‐dependent negative inotropy in the murine heart. FASEB J 2014; 28:4497-508. [DOI: 10.1096/fj.14-256305] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Simon R. Foster
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Kristina Blank
- Department of Molecular GeneticsGerman Institute of Human Nutrition (DIfE) Potsdam‐RehbrückeNuthetalGermany
| | - Louise E. See Hoe
- Griffith Health InstituteGriffith UniversityGold CoastQueenslandAustralia
| | - Maik Behrens
- Department of Molecular GeneticsGerman Institute of Human Nutrition (DIfE) Potsdam‐RehbrückeNuthetalGermany
| | - Wolfgang Meyerhof
- Department of Molecular GeneticsGerman Institute of Human Nutrition (DIfE) Potsdam‐RehbrückeNuthetalGermany
| | - Jason N. Peart
- Griffith Health InstituteGriffith UniversityGold CoastQueenslandAustralia
| | - Walter G. Thomas
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
44
|
A functional perspective of nitazoxanide as a potential anticancer drug. Mutat Res 2014; 768:16-21. [PMID: 25847384 DOI: 10.1016/j.mrfmmm.2014.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 01/08/2023]
Abstract
Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming "regression" of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish "neo-endo-parasites" that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of cancer cells and propose that this compound might be a potent addition to the current chemotherapeutic strategy against cancer.
Collapse
|
45
|
Calpain-dependent clearance of the autophagy protein p62/SQSTM1 is a contributor to ΔPK oncolytic activity in melanoma. Gene Ther 2014; 21:371-8. [PMID: 24553345 PMCID: PMC3975656 DOI: 10.1038/gt.2014.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/17/2013] [Accepted: 01/06/2014] [Indexed: 02/07/2023]
Abstract
Oncolytic virotherapy is a promising strategy to reduce tumor burden through selective virus replication in rapidly proliferating cells. However, the lysis of slowly replicating cancer stem cells (CSC), which maintain neoplastic clonality, is relatively modest and the potential contribution of programmed cell death (PCD) pathways to oncolytic activity is still poorly understood. We show that the oncolytic virus ΔPK lyses CSC-enriched breast cancer and melanoma 3D spheroid cultures at low titers (0.1pfu/cell) and without resistance development and it inhibits the 3D growth potential (spheroids and agarose colonies) of melanoma and breast cancer cells. ΔPK induces calpain activation in both melanoma and breast cancer 3D cultures as determined by the loss of the p28 regulatory subunit, and 3D growth is restored by treatment with the calpain inhibitor PD150606. In melanoma, ΔPK infection also induces LC3-II accumulation and p62/SQSTM1 clearance, both markers of autophagy, and 3D growth is restored by treatment with the autophagy inhibitor chloroquine (CQ). However, expression of the autophagy-required protein Atg5 is not altered and CQ does not restore p62/SQSTM1 expression, suggesting that the CQ effect may be autophagy-independent. PD150606 restores expression of p62/SQSTM1 in ΔPK infected melanoma cultures, suggesting that calpain activation induces anti-tumor activity through p62/SQSTM1 clearance.
Collapse
|
46
|
Carpenter RL, Han W, Paw I, Lo HW. HER2 phosphorylates and destabilizes pro-apoptotic PUMA, leading to antagonized apoptosis in cancer cells. PLoS One 2013; 8:e78836. [PMID: 24236056 PMCID: PMC3827261 DOI: 10.1371/journal.pone.0078836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/24/2013] [Indexed: 12/29/2022] Open
Abstract
HER2 is overexpressed in 15–20% of breast cancers. HER2 overexpression is known to reduce apoptosis but the underlying mechanisms for this association remain unclear. To elucidate the mechanisms for HER2-mediated survival, we investigated the relationship between HER2 and p53 upregulated modulator of apoptosis (PUMA), a potent apoptosis inducer. Our results showed that HER2 interacts with PUMA, which was independent of HER2 activation. In addition, we observed that HER2 interacted with PUMA in both mitochondrial and non-mitochondrial compartments. We next examined whether HER2 phosphorylates PUMA. Notably, PUMA tyrosine phosphorylation has never been reported. Using an intracellular assay, we found PUMA to be phosphorylated in breast cancer cells with activated HER2. Via cell-free HER2 kinase assay, we observed that PUMA was directly phosphorylated by HER2. Activation of HER2 decreased PUMA protein half-life. To identify which of the three tyrosines within PUMA are targeted by HER2, we generated three PUMA non-phosphorylation mutants each with a single Tyr→Phe substitution. Results indicated that each PUMA single mutant had lost some, but not all phosphorylation by HER2 indicating that HER2 targets all three tyrosines. Consequently, we created an additional PUMA mutant with all three tyrosines mutated (TM-PUMA) that could not be phosphorylated by HER2. Importantly, TM-PUMA was found to have a longer half-life than PUMA. An inverse association was observed between HER2 and PUMA in 93 invasive breast carcinoma samples. We further found that TM-PUMA suppressed growth of breast cancer cells to a greater degree than PUMA. Also, TM-PUMA had a stronger propensity to induce apoptosis than PUMA. Together, our results demonstrate, for the first time, that PUMA can be tyrosine phosphorylated and that HER2-mediated phosphorylation destabilizes PUMA protein. The HER2-PUMA interplay represents a novel mechanism by which PUMA is regulated and a new molecular basis for HER2-mediated growth and survival of cancer cells.
Collapse
Affiliation(s)
- Richard L. Carpenter
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Woody Han
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ivy Paw
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hui-Wen Lo
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for RNA Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
Chloroquine (CQ) can induce cell death in a subset of cancer cell lines, and some melanoma cell lines are quite susceptible. Although it is well known that CQ impairs lysosomal function and can serve as an autophagy inhibitor, the molecular target of CQ and the subsequent cascade of events that lead to cell death are not fully understood. Recent evidence indicates that in melanoma cell lines, CQ induces apoptosis by preventing degradation of the pro-apoptotic BH3-only protein p53-upregulated modulator of apoptosis. This finding adds to the unfolding story of CQ's mechanism of action as a cancer therapeutic agent.
Collapse
|
48
|
Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin Cancer Biol 2013; 23:352-60. [PMID: 23831275 DOI: 10.1016/j.semcancer.2013.06.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023]
Abstract
Melanoma, occurring as a rapidly progressive skin cancer, is resistant to current chemo- and radiotherapy, especially after metastases to distant organs has taken place. Most chemotherapeutic drugs exert their cytotoxic effect by inducing apoptosis, which, however, is often deficient in cancer cells. Thus, it is appropriate to attempt the targeting of alternative pathways, which regulate cellular viability. Recent studies of autophagy, a well-conserved cellular catabolic process, promise to improve the therapeutic outcome in melanoma patients. Although a dual role for autophagy in cancer therapy has been reported, both protecting against and promoting cell death, the potential for using autophagy in cancer therapy seems to be promising. Here, we review the recent literature on the role of autophagy in melanoma with respect to the expression of autophagic markers, the involvement of autophagy in chemo- and immunotherapy, as well as the role of autophagy in hypoxia and altered metabolic pathways employed for melanoma therapy.
Collapse
|