1
|
Wang JL, Ji WW, Huang AL, Liu Z, Chen DF. CEBPA Restrains the Malignant Progression of Breast Cancer by Prompting the Transcription of SOCS2. Mol Biotechnol 2025; 67:2127-2137. [PMID: 38775935 DOI: 10.1007/s12033-024-01189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/23/2024] [Indexed: 04/10/2025]
Abstract
The suppressor of cytokine signaling 2 (SOCS2) has been identified to act as a tumor suppressor in breast cancer (BC) progression. However, the action of SOCS2 in macrophage polarization in BC cells has not been reported yet. The qRT-PCR and western blotting were adopted for detecting the levels of mRNAs and proteins. The macrophage M2 polarization was analyzed by flow cytometry. Analyses of cell oncogenic phenotypes and tumor growth were conducted using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, scratch, Transwell, tube formation assays in vitro, and tumor xenograft assay in vivo, respectively. The interaction between CEBPA (CCAAT Enhancer Binding Protein Alpha) and SOCS2 was confirmed using bioinformatics analysis and dual-luciferase reporter assay. SOCS2 was lowly expressed in BC tissues and cells. Functionally, overexpression of SOCS2 inhibited macrophage M2 polarization, and impaired BC cell proliferation, angiogenesis, and metastasis. Mechanistically, CEBPA bound to the promoter region of SOCS2, and promoted its transcription. A low CEBPA expression was observed in BC tissues and cells. Forced expression of CEBPA also suppressed macrophage M2 polarization, BC cell proliferation, angiogenesis, and metastasis. Moreover, the anticancer effects mediated by CEBPA were abolished by SOCS2 knockdown. In addition, CEBPA overexpression impeded BC growth in nude mice by regulating SOCS2. CEBPA suppressed macrophage M2 polarization, BC cell proliferation, angiogenesis, and metastasis by promoting SOCS2 transcription in a targeted manner.
Collapse
Affiliation(s)
- Jin-Li Wang
- Department of Galactophore, Jingzhou Central Hospital, The Second Clinical Medical College, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, Hubei, China
| | - Wei-Wei Ji
- Department of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Ao-Li Huang
- Department of Galactophore, Jingzhou Central Hospital, The Second Clinical Medical College, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, Hubei, China
| | - Zhen Liu
- Department of Galactophore, Jingzhou Central Hospital, The Second Clinical Medical College, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, Hubei, China
| | - Deng-Feng Chen
- Department of Galactophore, Jingzhou Central Hospital, The Second Clinical Medical College, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, Hubei, China.
| |
Collapse
|
2
|
Cadefau-Fabregat M, Martínez-Cebrián G, Lorenzi L, Weiss FD, Frank AK, Castelló-García JM, Julià-Vilella E, Gámez-García A, Yera L, de Castro CPM, Wang YF, Meissner F, Vaquero A, Merkenschlager M, Porse BT, Cuartero S. Mutant CEBPA promotes tolerance to inflammatory stress through deficient AP-1 activation. Nat Commun 2025; 16:3492. [PMID: 40221437 PMCID: PMC11993602 DOI: 10.1038/s41467-025-58712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
The CEBPA transcription factor is frequently mutated in acute myeloid leukemia (AML). Mutations in the CEBPA gene, which are typically biallelic, result in the production of a shorter isoform known as p30. Both the canonical 42-kDa isoform (p42) and the AML-associated p30 isoform bind chromatin and activate transcription, but the specific transcriptional programs controlled by each protein and how they are linked to a selective advantage in AML is not well understood. Here, we show that cells expressing the AML-associated p30 have reduced baseline inflammatory gene expression and display altered dynamics of transcriptional induction in response to LPS, consequently impacting cytokine secretion. This confers p30-expressing cells an increased resistance to the adverse effects of prolonged exposure to inflammatory signals. Mechanistically, we show that these differences primarily arise from the differential regulation of AP-1 family proteins. In addition, we find that the impaired function of the AP-1 member ATF4 in p30-expressing cells alters their response to ER stress. Collectively, these findings uncover a link between mutant CEBPA, inflammation and the stress response, potentially revealing a vulnerability in AML.
Collapse
Affiliation(s)
- Maria Cadefau-Fabregat
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Doctoral Program in Biomedicine, Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Lucía Lorenzi
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Felix D Weiss
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Anne-Katrine Frank
- The Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Eric Julià-Vilella
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Doctoral Program in Biomedicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Andrés Gámez-García
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Laura Yera
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Carini Picardi Morais de Castro
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Doctoral Program in Biomedicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Felix Meissner
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Matthias Merkenschlager
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Bo T Porse
- The Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| |
Collapse
|
3
|
Chatzikalil E, Arvanitakis K, Filippatos F, Diamantopoulos PT, Koufakis T, Solomou EE. Diagnostic and Therapeutic Implications of the SUMOylation Pathway in Acute Myeloid Leukemia. Cancers (Basel) 2025; 17:631. [PMID: 40002226 PMCID: PMC11853134 DOI: 10.3390/cancers17040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Epigenetics encompasses heritable and stable changes in gene expression caused by external chromosomal modifications, without altering the underlying DNA sequence. Epigenetic modifications, established during early development and maintained through successive cell divisions, play a critical role in regulating gene expression. Post-translational modifications (PTMs) are a key aspect of epigenetics and are essential for modulating protein functionality, as well as regulatory cellular processes, including proliferation, differentiation, metabolic pathways, and tumorigenic events. Among these, the small ubiquitin-related modifier (SUMOylation) system is a reversible PTM mechanism that alters target protein interaction surfaces through covalent binding to lysine residues, thereby influencing protein structure and function. Acute myeloid leukemia (AML) is a highly aggressive malignancy characterized by the clonal expansion of primitive hematopoietic stem cells of the myeloid lineage in the bone marrow. Despite recent advancements in therapeutic strategies and an improved understanding of leukemogenic pathways, patient outcomes remain poor, particularly in elderly populations. Consequently, efforts have focused on developing novel agents, including co-targeting specific mutations or integrating targeted therapies into combinatorial chemotherapeutic regimens. Emerging evidence suggests that SUMOylation plays a significant role in AML pathogenesis and treatment response, representing a promising therapeutic target for advanced disease cases. This review provides a brief analysis of the functional role of the SUMOylation system in AML and highlights its potential as a therapeutic target. We also discuss current knowledge gaps and propose directions for future research to advance precision medicine approaches for AML treatment.
Collapse
Affiliation(s)
- Elena Chatzikalil
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Filippos Filippatos
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece;
| |
Collapse
|
4
|
Akula S, Alvarado-Vazquez A, Haide Mendez Enriquez E, Bal G, Franke K, Wernersson S, Hallgren J, Pejler G, Babina M, Hellman L. Characterization of Freshly Isolated Human Peripheral Blood B Cells, Monocytes, CD4+ and CD8+ T Cells, and Skin Mast Cells by Quantitative Transcriptomics. Int J Mol Sci 2024; 25:13050. [PMID: 39684762 DOI: 10.3390/ijms252313050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Quantitative transcriptomics offers a new way to obtain a detailed picture of freshly isolated cells. By direct isolation, the cells are unaffected by in vitro culture, and the isolation at cold temperatures maintains the cells relatively unaltered in phenotype by avoiding activation through receptor cross-linking or plastic adherence. Simultaneous analysis of several cell types provides the opportunity to obtain detailed pictures of transcriptomic differences between them. Here, we present such an analysis focusing on four human blood cell populations and compare those to isolated human skin mast cells. Pure CD19+ peripheral blood B cells, CD14+ monocytes, and CD4+ and CD8+ T cells were obtained by fluorescence-activated cell sorting, and KIT+ human connective tissue mast cells (MCs) were purified by MACS sorting from healthy skin. Detailed information concerning expression levels of the different granule proteases, protease inhibitors, Fc receptors, other receptors, transcription factors, cell signaling components, cytoskeletal proteins, and many other protein families relevant to the functions of these cells were obtained and comprehensively discussed. The MC granule proteases were found exclusively in the MC samples, and the T-cell granzymes in the T cells, of which several were present in both CD4+ and CD8+ T cells. High levels of CD4 were also observed in MCs and monocytes. We found a large variation between the different cell populations in the expression of Fc receptors, as well as for lipid mediators, proteoglycan synthesis enzymes, cytokines, cytokine receptors, and transcription factors. This detailed quantitative comparative analysis of more than 780 proteins of importance for the function of these populations can now serve as a good reference material for research into how these entities shape the role of these cells in immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Abigail Alvarado-Vazquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Erika Haide Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sara Wernersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
5
|
Chen K, Wu J, Zhang Y, Liu W, Chen X, Zhang W, Huang Z. Cebpa is required for haematopoietic stem and progenitor cell generation and maintenance in zebrafish. Open Biol 2024; 14:240215. [PMID: 39500381 PMCID: PMC11537755 DOI: 10.1098/rsob.240215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 11/09/2024] Open
Abstract
The CCAAT enhancer binding protein alpha (CEBPA) is crucial for myeloid differentiation and the balance of haematopoietic stem and progenitor cell (HSPC) quiescence and self-renewal, and its dysfunction can drive leukemogenesis. However, its role in HSPC generation has not been fully elucidated. Here, we utilized various zebrafish cebpa mutants to investigate the function of Cebpa in the HSPC compartment. Co-localization analysis showed that cebpa expression is enriched in nascent HSPCs. Complete loss of Cebpa function resulted in a significant reduction in early HSPC generation and the overall HSPC pool during embryonic haematopoiesis. Interestingly, while myeloid differentiation was impaired in cebpa N-terminal mutants expressing the truncated zP30 protein, the number of HSPCs was not affected, indicating a redundant role of Cebpa P42 and P30 isoforms in HSPC development. Additionally, epistasis experiments confirmed that Cebpa functions downstream of Runx1 to regulate HSPC emergence. Our findings uncover a novel role of Cebpa isoforms in HSPC generation and maintenance, and provide new insights into HSPC development.
Collapse
Affiliation(s)
- Kemin Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Jieyi Wu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Yuxian Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Xiaohui Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong518055, People’s Republic of China
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| |
Collapse
|
6
|
Du M, Wang M, Liu M, Fu S, Lin Y, Huo Y, Yu J, Yu X, Wang C, Xiao H, Wang L. C/EBPα-p30 confers AML cell susceptibility to the terminal unfolded protein response and resistance to Venetoclax by activating DDIT3 transcription. J Exp Clin Cancer Res 2024; 43:79. [PMID: 38475919 DOI: 10.1186/s13046-024-02975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) with biallelic (CEBPAbi) as well as single mutations located in the bZIP region is associated with a favorable prognosis, but the underlying mechanisms are still unclear. Here, we propose that two isoforms of C/EBPα regulate DNA damage-inducible transcript 3 (DDIT3) transcription in AML cells corporately, leading to altered susceptibility to endoplasmic reticulum (ER) stress and related drugs. METHODS Human AML cell lines and murine myeloid precursor cell line 32Dcl3 cells were infected with recombinant lentiviruses to knock down CEBPA expression or over-express the two isoforms of C/EBPα. Quantitative real-time PCR and western immunoblotting were employed to determine gene expression levels. Cell apoptosis rates were assessed by flow cytometry. CFU assays were utilized to evaluate the differentiation potential of 32Dcl3 cells. Luciferase reporter analysis, ChIP-seq and ChIP-qPCR were used to validate the transcriptional regulatory ability and affinity of each C/EBPα isoform to specific sites at DDIT3 promoter. Finally, an AML xenograft model was generated to evaluate the in vivo therapeutic effect of agents. RESULTS We found a negative correlation between CEBPA expression and DDIT3 levels in AML cells. After knockdown of CEBPA, DDIT3 expression was upregulated, resulting in increased apoptotic rate of AML cells induced by ER stress. Cebpa knockdown in mouse 32Dcl3 cells also led to impaired cell viability due to upregulation of Ddit3, thereby preventing leukemogenesis since their differentiation was blocked. Then we discovered that the two isoforms of C/EBPα regulate DDIT3 transcription in the opposite way. C/EBPα-p30 upregulated DDIT3 transcription when C/EBPα-p42 downregulated it instead. Both isoforms directly bound to the promoter region of DDIT3. However, C/EBPα-p30 has a unique binding site with stronger affinity than C/EBPα-p42. These findings indicated that balance of two isoforms of C/EBPα maintains protein homeostasis and surveil leukemia, and at least partially explained why AML cells with disrupted C/EBPα-p42 and/or overexpressed C/EBPα-p30 exhibit better response to chemotherapy stress. Additionally, we found that a low C/EBPα p42/p30 ratio induces resistance in AML cells to the BCL2 inhibitor venetoclax since BCL2 is a major target of DDIT3. This resistance can be overcome by combining ER stress inducers, such as tunicamycin and sorafenib in vitro and in vivo. CONCLUSION Our results indicate that AML patients with a low C/EBPα p42/p30 ratio (e.g., CEBPAbi) may not benefit from monotherapy with BCL2 inhibitors. However, this issue can be resolved by combining ER stress inducers.
Collapse
Affiliation(s)
- Mengbao Du
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Meng Liu
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Shan Fu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yankun Huo
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiaohong Yu
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Chong Wang
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China.
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Limengmeng Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
7
|
Martinez TC, McNerney ME. Haploinsufficient Transcription Factors in Myeloid Neoplasms. ANNUAL REVIEW OF PATHOLOGY 2024; 19:571-598. [PMID: 37906947 DOI: 10.1146/annurev-pathmechdis-051222-013421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many transcription factors (TFs) function as tumor suppressor genes with heterozygous phenotypes, yet haploinsufficiency generally has an underappreciated role in neoplasia. This is no less true in myeloid cells, which are normally regulated by a delicately balanced and interconnected transcriptional network. Detailed understanding of TF dose in this circuitry sheds light on the leukemic transcriptome. In this review, we discuss the emerging features of haploinsufficient transcription factors (HITFs). We posit that: (a) monoallelic and biallelic losses can have distinct cellular outcomes; (b) the activity of a TF exists in a greater range than the traditional Mendelian genetic doses; and (c) how a TF is deleted or mutated impacts the cellular phenotype. The net effect of a HITF is a myeloid differentiation block and increased intercellular heterogeneity in the course of myeloid neoplasia.
Collapse
Affiliation(s)
- Tanner C Martinez
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
- Medical Scientist Training Program, The University of Chicago, Chicago, Illinois, USA
| | - Megan E McNerney
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
8
|
Zhao D, Zhou Q, Zarif M, Eladl E, Wei C, Atenafu EG, Schuh A, Tierens A, Yeung YWT, Minden MD, Chang H. AML with CEBPA mutations: A comparison of ICC and WHO-HAEM5 criteria in patients with 20% or more blasts. Leuk Res 2023; 134:107376. [PMID: 37690321 DOI: 10.1016/j.leukres.2023.107376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
AML with CEBPA mutation and AML with in-frame bZIP CEBPA mutations define favorable-risk disease entities in the proposed 5th edition of the World Health Organization Classification (WHO-HAEM5) and the International Consensus Classification (ICC), respectively. However, the impact of these new classifications on clinical practice remains unclear. We sought to assess the differences between the ICC and WHO-HAEM5 for AML with CEBPA mutation. 741 AML patients were retrospectively analyzed. Cox proportional-hazard regression was used to identify factors predictive of outcome. A validation cohort from the UK-NCRI clinical trials was used to confirm our findings. 81 (11%) AML patients had CEBPA mutations. 39 (48%) patients met WHO-HAEM5 criteria for AML with CEBPA mutation, among which 30 (77%) had biallelic CEBPA mutations and 9 (23%) had a single bZIP mutation. Among the 39 patients who met WHO-HAEM5 criteria, 25 (64%) also met ICC criteria. Compared to patients only meeting WHO-HAEM5 criteria, patients with in-frame bZIP CEBPA mutations (ie. meeting both WHO-HAEM5 and ICC criteria) were younger, had higher bone marrow blast percentages and CEBPA mutation burden, infrequently harboured 2022 ELN high-risk genetic features and co-mutations in other genes, and had superior outcomes. The associations in clinicopathological features and outcomes between the CEBPA-mutated groups were validated in the UK-NCRI cohort. Our study indicates that in-frame bZIP CEBPA mutations are the critical molecular aberrations associated with favorable outcomes in AML patients treated with curative intent chemotherapy. Compared to WHO-HAEM5, the ICC identifies a more homogenous group of CEBPA-mutated AML patients with favorable outcomes.
Collapse
Affiliation(s)
- Davidson Zhao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Qianghua Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Mojgan Zarif
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Entsar Eladl
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Cuihong Wei
- Department of Clinical Laboratory Genetics, Genome Diagnostics & Cancer Cytogenetics, University Health Network, Toronto, ON, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, Toronto, ON, Canada
| | - Andre Schuh
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anne Tierens
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Yu Wing Tony Yeung
- Department of Laboratory Medicine, St. Michael's Hospital, Toronto, ON, Canada
| | - Mark D Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
9
|
Wang D, Sun T, Xia Y, Zhao Z, Sheng X, Li S, Ma Y, Li M, Su X, Zhang F, Li P, Ma D, Ye J, Lu F, Ji C. Homodimer-mediated phosphorylation of C/EBPα-p42 S16 modulates acute myeloid leukaemia differentiation through liquid-liquid phase separation. Nat Commun 2023; 14:6907. [PMID: 37903757 PMCID: PMC10616288 DOI: 10.1038/s41467-023-42650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/09/2023] [Indexed: 11/01/2023] Open
Abstract
CCAAT/enhancer binding protein α (C/EBPα) regulates myeloid differentiation, and its dysregulation contributes to acute myeloid leukaemia (AML) progress. Clarifying its functional implementation mechanism is of great significance for its further clinical application. Here, we show that C/EBPα regulates AML cell differentiation through liquid-liquid phase separation (LLPS), which can be disrupted by C/EBPα-p30. Considering that C/EBPα-p30 inhibits the functions of C/EBPα through the LZ region, a small peptide TAT-LZ that could instantaneously interfere with the homodimerization of C/EBPα-p42 was constructed, and dynamic inhibition of C/EBPα phase separation was observed, demonstrating the importance of C/EBPα-p42 homodimers for its LLPS. Mechanistically, homodimerization of C/EBPα-p42 mediated its phosphorylation at the novel phosphorylation site S16, which promoted LLPS and subsequent AML cell differentiation. Finally, decreasing the endogenous C/EBPα-p30/C/EBPα-p42 ratio rescued the phase separation of C/EBPα in AML cells, which provided a new insight for the treatment of the AML.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhe Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xue Sheng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuying Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuechan Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuhua Su
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Heyes E, Wilhelmson AS, Wenzel A, Manhart G, Eder T, Schuster MB, Rzepa E, Pundhir S, D'Altri T, Frank AK, Gentil C, Woessmann J, Schoof EM, Meggendorfer M, Schwaller J, Haferlach T, Grebien F, Porse BT. TET2 lesions enhance the aggressiveness of CEBPA-mutant acute myeloid leukemia by rebalancing GATA2 expression. Nat Commun 2023; 14:6185. [PMID: 37794021 PMCID: PMC10550934 DOI: 10.1038/s41467-023-41927-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
The myeloid transcription factor CEBPA is recurrently biallelically mutated (i.e., double mutated; CEBPADM) in acute myeloid leukemia (AML) with a combination of hypermorphic N-terminal mutations (CEBPANT), promoting expression of the leukemia-associated p30 isoform, and amorphic C-terminal mutations. The most frequently co-mutated genes in CEBPADM AML are GATA2 and TET2, however the molecular mechanisms underlying this co-mutational spectrum are incomplete. By combining transcriptomic and epigenomic analyses of CEBPA-TET2 co-mutated patients with models thereof, we identify GATA2 as a conserved target of the CEBPA-TET2 mutational axis, providing a rationale for the mutational spectra in CEBPADM AML. Elevated CEBPA levels, driven by CEBPANT, mediate recruitment of TET2 to the Gata2 distal hematopoietic enhancer thereby increasing Gata2 expression. Concurrent loss of TET2 in CEBPADM AML induces a competitive advantage by increasing Gata2 promoter methylation, thereby rebalancing GATA2 levels. Of clinical relevance, demethylating treatment of Cebpa-Tet2 co-mutated AML restores Gata2 levels and prolongs disease latency.
Collapse
Affiliation(s)
- Elizabeth Heyes
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Anna S Wilhelmson
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele Manhart
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Thomas Eder
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Mikkel B Schuster
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edwin Rzepa
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Sachin Pundhir
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Teresa D'Altri
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Katrine Frank
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Coline Gentil
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Woessmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Jürg Schwaller
- Department of Biomedicine, University Children's Hospital Basel, Basel, Switzerland
| | | | - Florian Grebien
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - Bo T Porse
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Garcia-Cuellar MP, Akan S, Slany RK. A C/ebpα isoform specific differentiation program in immortalized myelocytes. Leukemia 2023; 37:1850-1859. [PMID: 37532789 PMCID: PMC10457184 DOI: 10.1038/s41375-023-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The transcription factor CCAAT-enhancer binding factor alpha (C/ebpα) is a master controller of myeloid differentiation that is expressed as long (p42) and short (p30) isoform. Mutations within the CEBPA gene selectively deleting p42 are frequent in human acute myeloid leukemia. Here we investigated the individual genomics and transcriptomics of p42 and p30. Both proteins bound to identical sites across the genome. For most targets, they induced a highly similar transcriptional response with the exception of a few isoform specific genes. Amongst those we identified early growth response 1 (Egr1) and tribbles1 (Trib1) as key targets selectively induced by p42 that are also underrepresented in CEBPA-mutated AML. Egr1 executed a program of myeloid differentiation and growth arrest. Oppositely, Trib1 established a negative feedback loop through activation of Erk1/2 kinase thus placing differentiation under control of signaling. Unexpectedly, differentiation elicited either by removal of an oncogenic input or by G-CSF did not peruse C/ebpα as mediator but rather directly affected the cell cycle core by upregulation of p21/p27 inhibitors. This points to functions downstream of C/ebpα as intersection point where transforming and differentiation stimuli converge and this finding offers a new perspective for therapeutic intervention.
Collapse
Affiliation(s)
| | - Selin Akan
- Department of Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Robert K Slany
- Department of Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Santos EW, Dias CC, Fock RA, Paredes-Gamero EJ, Zheng YM, Wang YX, Borelli P. Protein restriction impairs the response activation/responsivity of MAPK signaling pathway of hematopoietic stem cells. Nutr Res 2023; 116:12-23. [PMID: 37320947 DOI: 10.1016/j.nutres.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Protein restriction (PR) leads to bone marrow hypoplasia with changes in stromal cellularity components of the extracellular matrix in hematopoietic stem cells (HSCs). However, the underlying signaling mechanisms are poorly understood. We hypothesize that PR impairs the HSC mitogen-activated protein kinase (MAPK) signaling pathway response activation. Our aim is to evaluate the activation of MAPK and interleukin-3 (IL-3) proteins in HSC to explain PR-induced bone marrow hypoplasia, which causes altered proliferation and differentiation. C57BL/6 male mice were subjected to a low-protein diet (2% protein) or normoproteic (12% protein). PKC, PLCγ2, CaMKII, AKT, STAT3/5, ERK1/2, JNK, and p38d phosphorylation were evaluated by flow cytometry, and GATA1/2, PU.1, C/EBPα, NF-E2, and Ikz-3 genes (mRNAs) assessed by quantitative real-time-polymerase chain reaction. Pathway proteins, such as PLCγ2, JAK2, STAT3/5, PKC, and RAS do not respond to the IL-3 stimulus in PR, leading to lower activation of ERK1/2 and Ca2+ signaling pathways, consequently lowering the production of hematopoietic transcription factors. Colony forming units granulocyte-macrophage and colony forming units macrophage formation are impaired in PR even after being stimulated with IL-3. Long-term hematopoietic stem cells, short-term hematopoietic stem cells, granulocyte myeloid progenitor, and megakaryocyte-erythroid progenitor cells were significantly reduced in PR animals. This study shows for the first time that activation of MAPK pathway key proteins in HSCs is impaired in cases of PR. Several pathway proteins, such as PLCγ2, JAK2, STAT3, PKC, and RAS do not respond to IL-3 stimulation, leading to lower activation of extracellular signal-regulated protein kinase 1/2 and consequently lower production of hematopoietic transcription factors GATA1/2, PU.1, C/EBPa, NF-E2, and Ikz3. These changes result in a reduction in colony-forming units, proliferation, and differentiation, leading to hypocellularity.
Collapse
Affiliation(s)
- Ed Wilson Santos
- Department of Molecular and Cellular Physiology, Albany Medical College, NY, USA; Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Carolina Carvalho Dias
- Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Ricardo Ambrósio Fock
- Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Edgar Julian Paredes-Gamero
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, NY, USA.
| | - Primavera Borelli
- Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Torcal Garcia G, Kowenz-Leutz E, Tian TV, Klonizakis A, Lerner J, De Andres-Aguayo L, Sapozhnikova V, Berenguer C, Carmona MP, Casadesus MV, Bulteau R, Francesconi M, Peiro S, Mertins P, Zaret K, Leutz A, Graf T. Carm1-arginine methylation of the transcription factor C/EBPα regulates transdifferentiation velocity. eLife 2023; 12:e83951. [PMID: 37365888 PMCID: PMC10299824 DOI: 10.7554/elife.83951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Here, we describe how the speed of C/EBPα-induced B cell to macrophage transdifferentiation (BMT) can be regulated, using both mouse and human models. The identification of a mutant of C/EBPα (C/EBPαR35A) that greatly accelerates BMT helped to illuminate the mechanism. Thus, incoming C/EBPα binds to PU.1, an obligate partner expressed in B cells, leading to the release of PU.1 from B cell enhancers, chromatin closing and silencing of the B cell program. Released PU.1 redistributes to macrophage enhancers newly occupied by C/EBPα, causing chromatin opening and activation of macrophage genes. All these steps are accelerated by C/EBPαR35A, initiated by its increased affinity for PU.1. Wild-type C/EBPα is methylated by Carm1 at arginine 35 and the enzyme's perturbations modulate BMT velocity as predicted from the observations with the mutant. Increasing the proportion of unmethylated C/EBPα in granulocyte/macrophage progenitors by inhibiting Carm1 biases the cell's differentiation toward macrophages, suggesting that cell fate decision velocity and lineage directionality are closely linked processes.
Collapse
Affiliation(s)
- Guillem Torcal Garcia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | | | - Tian V Tian
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Vall d’Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Antonis Klonizakis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Jonathan Lerner
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Luisa De Andres-Aguayo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Valeriia Sapozhnikova
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Clara Berenguer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Marcos Plana Carmona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Maria Vila Casadesus
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Vall d’Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Romain Bulteau
- Laboratorie de Biologie et Modélisation de la Cellule, Université de LyonLyonFrance
| | - Mirko Francesconi
- Laboratorie de Biologie et Modélisation de la Cellule, Université de LyonLyonFrance
| | - Sandra Peiro
- Vall d’Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kenneth Zaret
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| |
Collapse
|
14
|
Carnevale S, Di Ceglie I, Grieco G, Rigatelli A, Bonavita E, Jaillon S. Neutrophil diversity in inflammation and cancer. Front Immunol 2023; 14:1180810. [PMID: 37180120 PMCID: PMC10169606 DOI: 10.3389/fimmu.2023.1180810] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans and the first immune cells recruited at the site of inflammation. Classically perceived as short-lived effector cells with limited plasticity and diversity, neutrophils are now recognized as highly heterogenous immune cells, which can adapt to various environmental cues. In addition to playing a central role in the host defence, neutrophils are involved in pathological contexts such as inflammatory diseases and cancer. The prevalence of neutrophils in these conditions is usually associated with detrimental inflammatory responses and poor clinical outcomes. However, a beneficial role for neutrophils is emerging in several pathological contexts, including in cancer. Here we will review the current knowledge of neutrophil biology and heterogeneity in steady state and during inflammation, with a focus on the opposing roles of neutrophils in different pathological contexts.
Collapse
Affiliation(s)
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
15
|
Hartung EE, Singh K, Berg T. LSD1 inhibition modulates transcription factor networks in myeloid malignancies. Front Oncol 2023; 13:1149754. [PMID: 36969082 PMCID: PMC10036816 DOI: 10.3389/fonc.2023.1149754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a type of cancer of the blood system that is characterized by an accumulation of immature hematopoietic cells in the bone marrow and blood. Its pathogenesis is characterized by an increase in self-renewal and block in differentiation in hematopoietic stem and progenitor cells. Underlying its pathogenesis is the acquisition of mutations in these cells. As there are many different mutations found in AML that can occur in different combinations the disease is very heterogeneous. There has been some progress in the treatment of AML through the introduction of targeted therapies and a broader application of the stem cell transplantation in its treatment. However, many mutations found in AML are still lacking defined interventions. These are in particular mutations and dysregulation in important myeloid transcription factors and epigenetic regulators that also play a crucial role in normal hematopoietic differentiation. While a direct targeting of the partial loss-of-function or change in function observed in these factors is very difficult to imagine, recent data suggests that the inhibition of LSD1, an important epigenetic regulator, can modulate interactions in the network of myeloid transcription factors and restore differentiation in AML. Interestingly, the impact of LSD1 inhibition in this regard is quite different between normal and malignant hematopoiesis. The effect of LSD1 inhibition involves transcription factors that directly interact with LSD1 such as GFI1 and GFI1B, but also transcription factors that bind to enhancers that are modulated by LSD1 such as PU.1 and C/EBPα as well as transcription factors that are regulated downstream of LSD1 such as IRF8. In this review, we are summarizing the current literature on the impact of LSD1 modulation in normal and malignant hematopoietic cells and the current knowledge how the involved transcription factor networks are altered. We are also exploring how these modulation of transcription factors play into the rational selection of combination partners with LSD1 inhibitors, which is an intense area of clinical investigation.
Collapse
Affiliation(s)
- Emily E. Hartung
- Centre for Discovery in Cancer Research, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kanwaldeep Singh
- Centre for Discovery in Cancer Research, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Oncology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Tobias Berg
- Centre for Discovery in Cancer Research, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Oncology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Escarpment Cancer Research Institute, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
- *Correspondence: Tobias Berg,
| |
Collapse
|
16
|
The histone demethylase KDM5C functions as a tumor suppressor in AML by repression of bivalently marked immature genes. Leukemia 2023; 37:593-605. [PMID: 36631623 PMCID: PMC9991918 DOI: 10.1038/s41375-023-01810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Epigenetic regulators are frequently mutated in hematological malignancies including acute myeloid leukemia (AML). Thus, the identification and characterization of novel epigenetic drivers affecting AML biology holds potential to improve our basic understanding of AML and to uncover novel options for therapeutic intervention. To identify novel tumor suppressive epigenetic regulators in AML, we performed an in vivo short hairpin RNA (shRNA) screen in the context of CEBPA mutant AML. This identified the Histone 3 Lysine 4 (H3K4) demethylase KDM5C as a tumor suppressor, and we show that reduced Kdm5c/KDM5C expression results in accelerated growth both in human and murine AML cell lines, as well as in vivo in Cebpa mutant and inv(16) AML mouse models. Mechanistically, we show that KDM5C act as a transcriptional repressor through its demethylase activity at promoters. Specifically, KDM5C knockdown results in globally increased H3K4me3 levels associated with up-regulation of bivalently marked immature genes. This is accompanied by a de-differentiation phenotype that could be reversed by modulating levels of several direct and indirect downstream mediators. Finally, the association of KDM5C levels with long-term disease-free survival of female AML patients emphasizes the clinical relevance of our findings and identifies KDM5C as a novel female-biased tumor suppressor in AML.
Collapse
|
17
|
Bouligny IM, Maher KR, Grant S. Mechanisms of myeloid leukemogenesis: Current perspectives and therapeutic objectives. Blood Rev 2023; 57:100996. [PMID: 35989139 PMCID: PMC10693933 DOI: 10.1016/j.blre.2022.100996] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic neoplasm which results in clonal proliferation of abnormally differentiated hematopoietic cells. In this review, mechanisms contributing to myeloid leukemogenesis are summarized, highlighting aberrations of epigenetics, transcription factors, signal transduction, cell cycling, and the bone marrow microenvironment. The mechanisms contributing to AML are detailed to spotlight recent findings that convey clinical impact. The applications of current and prospective therapeutic targets are accentuated in addition to reviews of treatment paradigms stratified for each characteristic molecular lesion - with a focus on exploring novel treatment approaches and combinations to improve outcomes in AML.
Collapse
Affiliation(s)
- Ian M Bouligny
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Keri R Maher
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
18
|
Tercan B, Aguilar B, Huang S, Dougherty ER, Shmulevich I. Probabilistic boolean networks predict transcription factor targets to induce transdifferentiation. iScience 2022; 25:104951. [PMID: 36093045 PMCID: PMC9460527 DOI: 10.1016/j.isci.2022.104951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 06/28/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
We developed a computational approach to find the best intervention to achieve transcription factor (TF) mediated transdifferentiation. We construct probabilistic Boolean networks (PBNs) from single-cell RNA sequencing data of two different cell states to model hematopoietic transcription factors cross-talk. This was achieved by a “sampled network” approach, which enabled us to construct large networks. The interventions to induce transdifferentiation consisted of permanently activating or deactivating each of the TFs and determining the probability mass transfer of steady-state probabilities from the departure to the destination cell type or state. Our findings support the common assumption that TFs that are differentially expressed between the two cell types are the best intervention points to achieve transdifferentiation. TFs whose interventions are found to transdifferentiate progenitor B cells into monocytes include EBF1 down-regulation, CEBPB up-regulation, TCF3 down-regulation, and STAT3 up-regulation. Differentially expressed transcription factors are the best for transdifferentiation Probabilistic Boolean networks (PBNs) are used to model transdifferentiation using the scRNAseq data at one time point A new approach works for a large number of network nodes
Collapse
Affiliation(s)
| | | | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Edward R. Dougherty
- Texas A&M University Department of Electrical & Computer Engineering, College Station, TX, USA
| | - Ilya Shmulevich
- Institute for Systems Biology, Seattle, WA, USA
- Corresponding author
| |
Collapse
|
19
|
Theilgaard-Mönch K, Pundhir S, Reckzeh K, Su J, Tapia M, Furtwängler B, Jendholm J, Jakobsen JS, Hasemann MS, Knudsen KJ, Cowland JB, Fossum A, Schoof E, Schuster MB, Porse BT. Transcription factor-driven coordination of cell cycle exit and lineage-specification in vivo during granulocytic differentiation : In memoriam Professor Niels Borregaard. Nat Commun 2022; 13:3595. [PMID: 35739121 PMCID: PMC9225994 DOI: 10.1038/s41467-022-31332-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Differentiation of multipotent stem cells into mature cells is fundamental for development and homeostasis of mammalian tissues, and requires the coordinated induction of lineage-specific transcriptional programs and cell cycle withdrawal. To understand the underlying regulatory mechanisms of this fundamental process, we investigated how the tissue-specific transcription factors, CEBPA and CEBPE, coordinate cell cycle exit and lineage-specification in vivo during granulocytic differentiation. We demonstrate that CEBPA promotes lineage-specification by launching an enhancer-primed differentiation program and direct activation of CEBPE expression. Subsequently, CEBPE confers promoter-driven cell cycle exit by sequential repression of MYC target gene expression at the G1/S transition and E2F-meditated G2/M gene expression, as well as by the up-regulation of Cdk1/2/4 inhibitors. Following cell cycle exit, CEBPE unleashes the CEBPA-primed differentiation program to generate mature granulocytes. These findings highlight how tissue-specific transcription factors coordinate cell cycle exit with differentiation through the use of distinct gene regulatory elements.
Collapse
Affiliation(s)
- Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark.
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Reckzeh
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jinyu Su
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Tapia
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin Furtwängler
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johan Jendholm
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janus Schou Jakobsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Sigurd Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Jermiin Knudsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jack Bernard Cowland
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Anna Fossum
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin Schoof
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Wang L, Piao Y, Zhang D, Feng W, Wang C, Cui X, Ren Q, Zhu X, Zheng G. Fbxw11 impairs the repopulation capacity of hematopoietic stem/progenitor cells. Stem Cell Res Ther 2022; 13:245. [PMID: 35690796 PMCID: PMC9188144 DOI: 10.1186/s13287-022-02926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ubiquitin-proteasome system plays important roles in maintaining the self-renewal and differentiation of stem and progenitor cells through highly ordered degradation of cellular proteins. Fbxw11, an E3 ligase, participates in many important biological processes by targeting a broad range of proteins. However, its roles in hematopoietic stem/progenitor cells (HSPCs) have not been established. METHODS In this study, the effects of Fbxw11 on HSPCs were studied in vitro and in vivo by an overexpression strategy. Real-time PCR was performed to detect the expression of Fbxw11 in hematopoietic subpopulations. Colony-forming assays were performed to evaluate the in vitro function of Fbxw11 on HSPCs. Hoechst 33342 and Ki67 staining was performed to determine the cell-cycle distribution of HSPCs. Competitive transplantation experiments were used to evaluate the effect of Fbxw11 on the reconstitution potential of HSPCs. Single-cell RNA sequencing (scRNA-seq) was employed to reveal the transcriptomic alterations in HSPCs. RESULTS The expression of Fbxw11 was higher in Lin-c-Kit+Sca-1+ (LSK) cells and myeloid progenitors than in lymphoid progenitors. Fbxw11 played negative roles in colony-forming and quiescence maintenance of HSPCs in vitro. Furthermore, serial competitive transplantation experiments revealed that Fbxw11 impaired the repopulation capacity of HSPCs. The proportion of granulocytes (Gr-1+CD11b+) in the differentiated mature cells was significantly higher than that in the control group, T cells and B cells were lower. Moreover, scRNA-seq revealed seven cell clusters in HSPCs. In addition, Fbxw11 downregulated the expression of Cebpa, Myc and Arid5b, which are significant regulators of HSPC activity, in most cell clusters. CONCLUSION Our data demonstrate that Fbxw11 plays a negative role in the maintenance of HSPCs in vitro and repopulation capacity in vivo. Our data also provide valuable transcriptome references for HSPCs in homeostasis.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| | - Yongjun Piao
- School of Medicine, Nankai University, Tianjin, China
| | - Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Wenli Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Chenchen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaoxi Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| |
Collapse
|
21
|
Jing J, Zhang L, Han L, Wang J, Zhang W, Liu Z, Gao A. Polystyrene micro-/nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota, metabolites, and cytokines. ENVIRONMENT INTERNATIONAL 2022; 161:107131. [PMID: 35149446 DOI: 10.1016/j.envint.2022.107131] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Micro-/nanoplastics (MNPLs), novel environmental pollutants, widely exist in the environment and life and bring health risks. Previous studies have shown that NMPLs can penetrate bone marrow, but whether they cause hematopoietic damage remains uncertain. In this study, C57BL/6J mice were treated with polystyrene MNPLs (PS-MNPLs, 10 μm, 5 μm and 80 nm) at 60 μg doses for 42 days by intragastric administration. We evaluated the hematopoietic toxicity induced by MNPLs and potential mechanisms via combining 16S rRNA, metabolomics, and cytokine chips. The results demonstrated that PS-MNPLs induced hematopoietic toxicity, which was manifested by the disorder of bone marrow cell arrangement, the reduction in colony-forming, self-renewal and differentiation capacity, and the increased proportion of lymphocytes. PS-MNPLs also disrupted the homeostasis of the gut microbiota, metabolism, and inflammation, all of which were correlated with hematotoxicity, suggesting that abnormal gut microbiota-metabolite-cytokine axes might be the crucial pathways in MNPLs-induced hematopoietic injury. In conclusion, our study systematically demonstrated that multi-scale PS-MNPLs induced hematopoietic toxicity via the crosstalk of gut microbiota, metabolites, and cytokines and provided valuable insights into MNPLs toxicity, which was conducive to health risk assessment and informed policy decisions regarding PS-MNPLs.
Collapse
Affiliation(s)
- Jiaru Jing
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 10069, PR China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
22
|
Meng J, Zhang G, Wang WX. Functional heterogeneity of immune defenses in molluscan oysters Crassostrea hongkongensis revealed by high-throughput single-cell transcriptome. FISH & SHELLFISH IMMUNOLOGY 2022; 120:202-213. [PMID: 34843943 DOI: 10.1016/j.fsi.2021.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Oyster is the worldwide aquaculture molluscan and evolves a complex immune defense system, with hemocytes as the major immune system for its host defense. However, the functional heterogeneity of hemocyte has not been characterized, which markedly hinders our understanding of its defense role. Here, we used the single-cell transcriptome profiling (scRNA-seq), which provides a high-resolution visual insight into its dynamics, to map the hemocyte and assess its heterogeneity in a molluscan oyster Crassostrea hongkongensis. By combining with the cell type specific RNA-seq, thirteen subpopulations belonging to granulocyte, semi-granulocyte, and hyalinocyte were revealed. The granulocytes mainly participated in immune response and autophagy process. Pseudo-temporal ordering of granulocytes identified two different cell-lineages. The hematopoietic transcription factors regulated networks controlling their differentiations were also identified. We further identified one subpopulation of granulocytes in immune activate states with the cell cycle and immune responsive genes expressions, which illustrated the functional heterogeneity of the same cell type. Collectively, our scRNA-seq analysis demonstrated the hemocytes diversity of molluscans. The results are important in our understanding of the immune defense evolution and functional differentiation of hemocytes in Phylum Mollusca.
Collapse
Affiliation(s)
- Jie Meng
- School of Energy and Environment and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Wen-Xiong Wang
- School of Energy and Environment and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
23
|
Tarlock K, Lamble AJ, Wang YC, Gerbing RB, Ries RE, Loken MR, Brodersen LE, Pardo L, Leonti A, Smith JL, Hylkema TA, Woods WG, Cooper TM, Kolb EA, Gamis AS, Aplenc R, Alonzo TA, Meshinchi S. CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children's Oncology Group. Blood 2021; 138:1137-1147. [PMID: 33951732 PMCID: PMC8570058 DOI: 10.1182/blood.2020009652] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/03/2021] [Indexed: 11/20/2022] Open
Abstract
Biallelic CEBPA mutations are associated with favorable outcomes in acute myeloid leukemia (AML). We evaluated the clinical and biologic implications of CEBPA-basic leucine zipper (CEBPA-bZip) mutations in children and young adults with newly diagnosed AML. CEBPA-bZip mutation status was determined in 2958 patients with AML enrolled on Children's Oncology Group trials (NCT00003790, NCT0007174, NCT00372593, NCT01379181). Next-generation sequencing (NGS) was performed in 1863 patients (107 with CEBPA mutations) to characterize the co-occurring mutations. CEBPA mutational status was correlated with disease characteristics and clinical outcomes. CEBPA-bZip mutations were identified in 160 (5.4%) of 2958 patients, with 132 (82.5%) harboring a second CEBPA mutation (CEBPA-double-mutated [CEBPA-dm]) and 28 (17.5%) had a single CEBPA-bZip only mutation. The clinical and laboratory features of the 2 CEBPA cohorts were very similar. Patients with CEBPA-dm and CEBPA-bZip experienced identical event-free survival (EFS) of 64% and similar overall survival (OS) of 81% and 89%, respectively (P = .259); this compared favorably to EFS of 46% and OS of 61% in patients with CEBPA-wild-type (CEBPA-WT) (both P < .001). Transcriptome analysis demonstrated similar expression profiles for patients with CEBPA-bZip and CEBPA-dm. Comprehensive NGS of patients with CEBPA mutations identified co-occurring CSF3R mutations in 13.1% of patients and GATA2 mutations in 21.5% of patients. Patients with dual CEBPA and CSF3R mutations had an EFS of 17% vs 63% for patients with CEBPA-mutant or CSF3R-WT (P < .001) with a corresponding relapse rate (RR) of 83% vs 22%, respectively (P < .001); GATA2 co-occurrence did not have an impact on outcome. CEBPA-bZip domain mutations are associated with favorable clinical outcomes, regardless of monoallelic or biallelic status. Co-occurring CSF3R and CEBPA mutations are associated with a high RR that nullifies the favorable prognostic impact of CEBPA mutations.
Collapse
Affiliation(s)
- Katherine Tarlock
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Adam J Lamble
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | | | | | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | - Amanda Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Tiffany A Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - William G Woods
- Aflac Cancer, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Todd M Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - E Anders Kolb
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Alan S Gamis
- Children's Mercy Hospital and Clinics, Kansas City, MO
| | - Richard Aplenc
- The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Todd A Alonzo
- Children's Oncology Group, Monrovia, CA
- University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
24
|
Xie J, Wang Z, Fan W, Liu Y, Liu F, Wan X, Liu M, Wang X, Zeng D, Wang Y, He B, Yan M, Zhang Z, Zhang M, Hou Z, Wang C, Kang Z, Fang W, Zhang L, Lam EWF, Guo X, Yan J, Zeng Y, Chen M, Liu Q. Targeting cancer cell plasticity by HDAC inhibition to reverse EBV-induced dedifferentiation in nasopharyngeal carcinoma. Signal Transduct Target Ther 2021; 6:333. [PMID: 34482361 PMCID: PMC8418605 DOI: 10.1038/s41392-021-00702-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Application of differentiation therapy targeting cellular plasticity for the treatment of solid malignancies has been lagging. Nasopharyngeal carcinoma (NPC) is a distinctive cancer with poor differentiation and high prevalence of Epstein-Barr virus (EBV) infection. Here, we show that the expression of EBV latent protein LMP1 induces dedifferentiated and stem-like status with high plasticity through the transcriptional inhibition of CEBPA. Mechanistically, LMP1 upregulates STAT5A and recruits HDAC1/2 to the CEBPA locus to reduce its histone acetylation. HDAC inhibition restored CEBPA expression, reversing cellular dedifferentiation and stem-like status in mouse xenograft models. These findings provide a novel mechanistic epigenetic-based insight into virus-induced cellular plasticity and propose a promising concept of differentiation therapy in solid tumor by using HDAC inhibitors to target cellular plasticity.
Collapse
Affiliation(s)
- Jiajun Xie
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
- Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, The Affiliated Second Hospital of Dalian Medical University, Dalian, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wenjun Fan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Youping Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Fang Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiangbo Wan
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meiling Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xuan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Deshun Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Min Yan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zijian Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Mengjuan Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Kang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wenfeng Fang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Li Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiang Guo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jinsong Yan
- Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, The Affiliated Second Hospital of Dalian Medical University, Dalian, China.
| | - Yixin Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Mingyuan Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Quentin Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
- Sun Yat-sen Institute of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
25
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
26
|
Gentle IE, Moelter I, Badr MT, Döhner K, Lübbert M, Häcker G. The AML-associated K313 mutation enhances C/EBPα activity by leading to C/EBPα overexpression. Cell Death Dis 2021; 12:675. [PMID: 34226527 PMCID: PMC8257693 DOI: 10.1038/s41419-021-03948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Mutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.
Collapse
Affiliation(s)
- Ian Edward Gentle
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany.
| | - Isabel Moelter
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany
| | - Mohamed Tarek Badr
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Faculty of Medicine, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
27
|
D'Altri T, Wilhelmson AS, Schuster MB, Wenzel A, Kalvisa A, Pundhir S, Meldgaard Hansen A, Porse BT. The ASXL1-G643W variant accelerates the development of CEBPA mutant acute myeloid leukemia. Haematologica 2021; 106:1000-1007. [PMID: 32381577 PMCID: PMC8017816 DOI: 10.3324/haematol.2019.235150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
ASXL1 is one of the most commonly mutated genes in myeloid malignancies, including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In order to further our understanding of the role of ASXL1 lesions in malignant hematopoiesis, we generated a novel knockin mouse model carrying the most frequent ASXL1 mutation identified in MDS patients, ASXL1 p.G643WfsX12. Mutant mice neither displayed any major hematopoietic defects nor developed any apparent hematological disease. In AML patients, ASXL1 mutations co-occur with mutations in CEBPA and we therefore generated compound Cebpa and Asxl1 mutated mice. Using a transplantation model, we found that the mutated Asxl1 allele significantly accelerated disease development in a CEBPA mutant context. Importantly, we demonstrated that, similar to the human setting, Asxl1 mutated mice responded poorly to chemotherapy. This model therefore constitutes an excellent experimental system for further studies into the clinically important question of chemotherapy resistance mediated by mutant ASXL1.
Collapse
Affiliation(s)
- Teresa D'Altri
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anna S Wilhelmson
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Mikkel B Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Adrija Kalvisa
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Anne Meldgaard Hansen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
28
|
E3 ligase SCF SKP2 ubiquitinates and degrades tumor suppressor C/EBPα in acute myeloid leukemia. Life Sci 2020; 257:118041. [PMID: 32622945 DOI: 10.1016/j.lfs.2020.118041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
AIM Transcription factor CCAAT/Enhancer binding protein alpha (C/EBPα) is a key regulator of myeloid differentiation, granulopoiesis in particular. Although CEBPA mutations are found in more than 10% in AML, functional inhibition of C/EBPα protein is also widely observed in AML. Here, we sought to examine if SKP2, an aberrantly enhanced E3 ubiquitin ligase in primary AMLs inhibits C/EBPα stability to induce differentiation block. MAIN METHODS Here we employed cell based assays such as transfections, immunoblotting, co-immunoprecipitation, luciferase and gel shift assays along with differentiation assays to investigate SKP2 regulated C/EBPα protein stability in acute myeloid leukemia. KEY FINDINGS Here we discovered that oncogenic E3 ubiquitin ligase SCFskp2 ubiquitinates and destabilizes C/EBPα in a proteasome-dependent manner. Our data demonstrates that SKP2 physically interacts with C-terminal of C/EBPα and promotes its K48-linked ubiquitination-mediated degradation leading to its reduced transactivation potential, DNA binding ability and cellular functions. We further show that while overexpression of SKP2 inhibits both ectopic as well as endogenous C/EBPα in heterologous (HEK293T) as well as myeloid leukemia cells respectively, SKP2 depletion restores endogenous C/EBPα leading to reduced colony formation and enhanced myeloid differentiation of myeloid leukemia cells. Using Estradiol-inducible K562-C/EBPα-ER cells as yet another model of granulocytic differentiation, we further confirmed that SKP2 overexpression indeed inhibits granulocytic differentiation by mitigating C/EBPα stability. SIGNIFICANCE Our findings identify SKP2 as a potential negative regulator of C/EBPα stability and function in AML which suggests that SKP2 can be potentially targeted in AML to restore C/EBPα and overcome differentiation block.
Collapse
|
29
|
Anirudh S, Rosenberger A, Schwarzenberger E, Schaefer C, Strobl H, Zebisch A, Sill H, Wölfler A. TNFα Rescues Dendritic Cell Development in Hematopoietic Stem and Progenitor Cells Lacking C/EBPα. Cells 2020; 9:1223. [PMID: 32429067 PMCID: PMC7291045 DOI: 10.3390/cells9051223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) are crucial effectors of the immune system, which are formed from hematopoietic stem and progenitor cells (HSPCs) by a multistep process regulated by cytokines and distinct transcriptional mechanisms. C/EBPα is an important myeloid transcription factor, but its role in DC formation is not well defined. Using a CebpaCre-EYFP reporter mouse model, we show that the majority of splenic conventional DCs are derived from Cebpa-expressing HSPCs. Furthermore, HSPCs isolated from Cebpa knockout (KO) mice exhibited a marked reduced ability to form mature DCs after in vitro culture with FLT3L. Differentiation analysis revealed that C/EBPα was needed for the formation of monocytic dendritic progenitors and their transition to common dendritic progenitors. Gene expression analysis and cytokine profiling of culture supernatants showed significant downregulation of inflammatory cytokines, including TNFα and IL-1β as well as distinct chemokines in KO HSPCs. In addition, TNFα-induced genes were among the most dysregulated genes in KO HSPCs. Intriguingly, supplementation of in vitro cultures with TNFα at least partially rescued DC formation of KO HSPCs, resulting in fully functional, mature DCs. In conclusion, these results reveal an important role of C/EBPα in early DC development, which in part can be substituted by the inflammatory cytokine TNFα.
Collapse
Affiliation(s)
- Subramanian Anirudh
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, A-8036 Graz, Austria; (S.A.); (A.R.); (C.S.); (A.Z.); (H.S.)
| | - Angelika Rosenberger
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, A-8036 Graz, Austria; (S.A.); (A.R.); (C.S.); (A.Z.); (H.S.)
| | - Elke Schwarzenberger
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Heinrichstraße 31, A-8010 Graz, Austria; (E.S.); (H.S.)
| | - Carolin Schaefer
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, A-8036 Graz, Austria; (S.A.); (A.R.); (C.S.); (A.Z.); (H.S.)
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Heinrichstraße 31, A-8010 Graz, Austria; (E.S.); (H.S.)
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, A-8036 Graz, Austria; (S.A.); (A.R.); (C.S.); (A.Z.); (H.S.)
- Division of Pharmacology, Otto-Loewi-Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, A-8036 Graz, Austria; (S.A.); (A.R.); (C.S.); (A.Z.); (H.S.)
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, A-8036 Graz, Austria; (S.A.); (A.R.); (C.S.); (A.Z.); (H.S.)
| |
Collapse
|
30
|
Ghayour-Mobarhan M, Zangouei AS, Hosseinirad SM, Mojarrad M, Moghbeli M. Genetics of blood malignancies among Iranian population: an overview. Diagn Pathol 2020; 15:44. [PMID: 32375828 PMCID: PMC7201799 DOI: 10.1186/s13000-020-00968-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/29/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Blood malignancies are among the leading causes of cancer related deaths in the world. Different environmental and genetic risk factors are involved in progression of blood malignancies. It has been shown that the lifestyle changes have affected the epidemiological patterns of these malignancies. Hematologic cancers are the 5th common cancer among Iranian population. It has been observed that there is a rising trend of blood malignancies incidences during the recent decades. Therefore, it is required to design novel diagnostic methods for the early detection of such malignancies in this population. MAIN BODY In present review we have summarized all of the significant genes which have been reported among Iranian patients with blood malignancies. The reported genes were categorized based on their cell and molecular functions to clarify the molecular biology and genetics of blood malignancies among Iranian patients. CONCLUSION It was observed that the epigenetic and immune response factors were the most frequent molecular processes associated with progression of blood malignancies among Iranian population. This review paves the way of introducing a population based panel of genetic markers for the early detection of blood malignancies in this population.
Collapse
Affiliation(s)
- Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
The complexity of neutrophils in health and disease: Focus on cancer. Semin Immunol 2020; 48:101409. [PMID: 32958359 PMCID: PMC7500440 DOI: 10.1016/j.smim.2020.101409] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Neutrophils are essential soldiers of the immune response and their role have long been restricted to their activities in defence against microbial infections and during the acute phase of the inflammatory response. However, increasing number of investigations showed that neutrophils are endowed with plasticity and can participate in the orchestration of both innate and adaptive immune responses. Neutrophils have an impact on a broad range of disorders, including infections, chronic inflammations, and cancer. Neutrophils are present in the tumour microenvironment and have been reported to mediate both pro-tumour and anti-tumour responses. Neutrophils can contribute to genetic instability, tumour cell proliferation, angiogenesis and suppression of the anti-tumour immune response. In contrast, neutrophils are reported to mediate anti-tumour resistance by direct killing of tumour cells or by engaging cooperative interactions with other immune cells. Here we discuss the current understandings of neutrophils biology and functions in health and diseases, with a specific focus on their role in cancer biology and their prognostic significance in human cancer.
Collapse
|
32
|
Wilhelmson AS, Porse BT. CCAAT enhancer binding protein alpha (CEBPA) biallelic acute myeloid leukaemia: cooperating lesions, molecular mechanisms and clinical relevance. Br J Haematol 2020; 190:495-507. [PMID: 32086816 PMCID: PMC7496298 DOI: 10.1111/bjh.16534] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent advances in sequencing technologies have allowed for the identification of recurrent mutations in acute myeloid leukaemia (AML). The transcription factor CCAAT enhancer binding protein alpha (CEBPA) is frequently mutated in AML, and biallelic CEBPA-mutant AML was recognised as a separate disease entity in the recent World Health Organization classification. However, CEBPA mutations are co-occurring with other aberrations in AML, and together these lesions form the clonal hierarchy that comprises the leukaemia in the patient. Here, we aim to review the current understanding of co-occurring mutations in CEBPA-mutated AML and their implications for disease biology and clinical outcome. We will put emphasis on patterns of cooperation, how these lesions cooperate with CEBPA mutations and the underlying potential molecular mechanisms. Finally, we will relate this to patient outcome and future options for personalised medicine.
Collapse
Affiliation(s)
- Anna S Wilhelmson
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Shokouhian M, Bagheri M, Poopak B, Chegeni R, Davari N, Saki N. Altering chromatin methylation patterns and the transcriptional network involved in regulation of hematopoietic stem cell fate. J Cell Physiol 2020; 235:6404-6423. [PMID: 32052445 DOI: 10.1002/jcp.29642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and potential multilineage development. Various molecular regulatory mechanisms such as epigenetic modifications and transcription factor (TF) networks play crucial roles in establishing a balance between self-renewal and differentiation of HSCs. Histone/DNA methylations are important epigenetic modifications involved in transcriptional regulation of specific lineage HSCs via controlling chromatin structure and accessibility of DNA. Also, TFs contribute to either facilitation or inhibition of gene expression through binding to enhancer or promoter regions of DNA. As a result, epigenetic factors and TFs regulate the activation or repression of HSCs genes, playing a central role in normal hematopoiesis. Given the importance of histone/DNA methylation and TFs in gene expression regulation, their aberrations, including changes in HSCs-related methylation of histone/DNA and TFs (e.g., CCAAT-enhancer-binding protein α, phosphatase and tensin homolog deleted on the chromosome 10, Runt-related transcription factor 1, signal transducers and activators of transcription, and RAS family proteins) could disrupt HSCs fate. Herewith, we summarize how dysregulations in the expression of genes related to self-renewal, proliferation, and differentiation of HSCs caused by changes in epigenetic modifications and transcriptional networks lead to clonal expansion and leukemic transformation.
Collapse
Affiliation(s)
- Mohammad Shokouhian
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
34
|
Pundhir S, Bratt Lauridsen FK, Schuster MB, Jakobsen JS, Ge Y, Schoof EM, Rapin N, Waage J, Hasemann MS, Porse BT. Enhancer and Transcription Factor Dynamics during Myeloid Differentiation Reveal an Early Differentiation Block in Cebpa null Progenitors. Cell Rep 2019; 23:2744-2757. [PMID: 29847803 DOI: 10.1016/j.celrep.2018.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
Transcription factors PU.1 and CEBPA are required for the proper coordination of enhancer activity during granulocytic-monocytic (GM) lineage differentiation to form myeloid cells. However, precisely how these factors control the chronology of enhancer establishment during differentiation is not known. Through integrated analyses of enhancer dynamics, transcription factor binding, and proximal gene expression during successive stages of murine GM-lineage differentiation, we unravel the distinct kinetics by which PU.1 and CEBPA coordinate GM enhancer activity. We find no evidence of a pioneering function of PU.1 during late GM-lineage differentiation. Instead, we delineate a set of enhancers that gain accessibility in a CEBPA-dependent manner, suggesting a pioneering function of CEBPA. Analyses of Cebpa null bone marrow demonstrate that CEBPA controls PU.1 levels and, unexpectedly, that the loss of CEBPA results in an early differentiation block. Taken together, our data provide insights into how PU.1 and CEBPA functionally interact to drive GM-lineage differentiation.
Collapse
Affiliation(s)
- Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felicia Kathrine Bratt Lauridsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janus Schou Jakobsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin Marten Schoof
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Waage
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Sigurd Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Torben Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
The SUMO Pathway in Hematomalignancies and Their Response to Therapies. Int J Mol Sci 2019; 20:ijms20163895. [PMID: 31405039 PMCID: PMC6721055 DOI: 10.3390/ijms20163895] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
SUMO (Small Ubiquitin-related MOdifier) is a post-translational modifier of the ubiquitin family controlling the function and fate of thousands of proteins. SUMOylation is deregulated in various hematological malignancies, where it participates in both tumorigenesis and cancer cell response to therapies. This is the case for Acute Promyelocytic Leukemias (APL) where SUMOylation, and subsequent destruction, of the PML-RARα fusion oncoprotein are triggered by arsenic trioxide, which is used as front-line therapy in combination with retinoic acid to cure APL patients. A similar arsenic-induced SUMO-dependent degradation was also documented for Tax, a human T-cell lymphotropic virus type I (HTLV1) viral protein implicated in Adult T-cell Leukemogenesis. SUMOylation also participates in Acute Myeloid Leukemia (AML) response to both chemo- and differentiation therapies, in particular through its ability to regulate gene expression. In Multiple Myeloma, many enzymes of the SUMO pathway are overexpressed and their high expression correlates with lower response to melphalan-based chemotherapies. B-cell lymphomas overexpressing the c-Myc oncogene also overexpress most components of the SUMO pathway and are highly sensitive to SUMOylation inhibition. Targeting the SUMO pathway with recently discovered pharmacological inhibitors, alone or in combination with current therapies, might therefore constitute a powerful strategy to improve the treatment of these cancers.
Collapse
|
36
|
Jakobsen JS, Laursen LG, Schuster MB, Pundhir S, Schoof E, Ge Y, d’Altri T, Vitting-Seerup K, Rapin N, Gentil C, Jendholm J, Theilgaard-Mönch K, Reckzeh K, Bullinger L, Döhner K, Hokland P, Fitzgibbon J, Porse BT. Mutant CEBPA directly drives the expression of the targetable tumor-promoting factor CD73 in AML. SCIENCE ADVANCES 2019; 5:eaaw4304. [PMID: 31309149 PMCID: PMC6620102 DOI: 10.1126/sciadv.aaw4304] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/31/2019] [Indexed: 05/04/2023]
Abstract
The key myeloid transcription factor (TF), CEBPA, is frequently mutated in acute myeloid leukemia (AML), but the direct molecular effects of this leukemic driver mutation remain elusive. To investigate CEBPA mutant AML, we performed microscale, in vivo chromatin immunoprecipitation sequencing and identified a set of aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. Comparing gene expression changes in human CEBPA mutant AML and the corresponding Cebpa Lp30 mouse model, we identified Nt5e, encoding CD73, as a cross-species AML gene with an upstream leukemic enhancer physically and functionally linked to the gene. Increased expression of CD73, mediated by the CEBPA-p30 isoform, sustained leukemic growth via the CD73/A2AR axis. Notably, targeting of this pathway enhanced survival of AML-transplanted mice. Our data thus indicate a first-in-class link between a cancer driver mutation in a TF and a druggable, direct transcriptional target.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- Animals
- Binding Sites
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Epigenesis, Genetic
- GPI-Linked Proteins/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mutation
- Nucleotide Motifs
- Prognosis
- Promoter Regions, Genetic
- Protein Binding
- Protein Isoforms/genetics
Collapse
Affiliation(s)
- Janus S. Jakobsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Linea G. Laursen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B. Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin Schoof
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Teresa d’Altri
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Coline Gentil
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johan Jendholm
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Rigshospitalet, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Reckzeh
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Peter Hokland
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Jude Fitzgibbon
- Centre for Haemato-Oncology, Queen Mary University of London, London, UK
| | - Bo T. Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Corresponding author.
| |
Collapse
|
37
|
Lange AP, Almeida LY, Araújo Silva CL, Scheucher PS, Chahud F, Krause A, Bohlander SK, Rego EM. CCAAT/enhancer-binding protein alpha (CEBPA) gene haploinsufficiency does not alter hematopoiesis or induce leukemia in Lck-CALM/AF10 transgenic mice. ACTA ACUST UNITED AC 2019; 52:e8424. [PMID: 31141090 PMCID: PMC6542091 DOI: 10.1590/1414-431x20198424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
Although rare, CALM/AF10 is a chromosomal rearrangement found in immature T-cell acute lymphoblastic leukemia (T-ALL), acute myeloid leukemia, and mixed phenotype acute leukemia of T/myeloid lineages with poor prognosis. Moreover, this translocation is detected in 50% of T-ALL patients with gamma/delta T cell receptor rearrangement, frequently associated with low expression of transcription factor CCAAT/enhancer-binding protein alpha (CEBPA). However, the relevance of CEBPA low expression for CALM/AF10 leukemogenesis has not yet been evaluated. We generated double mutant mice, which express the Lck-CALM/AF10 fusion gene and are haploinsufficient for the Cebpa gene. To characterize the hematopoiesis, we quantified hematopoietic stem cells, myeloid progenitor cells, megakaryocyte-erythrocyte progenitor cells, common myeloid progenitor cells, and granulocyte-macrophage progenitor cells. No significant difference was detected in any of the progenitor subsets. Finally, we tested if Cebpa haploinsufficiency would lead to the expansion of Mac-1+/B220+/c-Kit+ cells proposed as the CALM/AF10 leukemic progenitor. Less than 1% of bone marrow cells expressed Mac-1, B220, and c-Kit with no significant difference between groups. Our results showed that the reduction of Cebpa gene expression in Lck-CALM/AF10 mice did not affect their hematopoiesis or induce leukemia. Our data corroborated previous studies suggesting that the CALM/AF10 leukemia-initiating cells are early progenitors with lymphoid/myeloid differentiating potential.
Collapse
Affiliation(s)
- A P Lange
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.,Centro de Terapia Celular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - L Y Almeida
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.,Centro de Terapia Celular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - C L Araújo Silva
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.,Centro de Terapia Celular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - P S Scheucher
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.,Centro de Terapia Celular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - F Chahud
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A Krause
- Laboratório de Análises Clínicas Veterinárias, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - S K Bohlander
- Leukaemia & Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - E M Rego
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.,Centro de Terapia Celular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.,Divisão de Hematologia, LIM31, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
38
|
Zhang Z, Wen H, Yang X, Zhang K, He B, Zhang X, Kong L. Stimuli and Relevant Signaling Cascades for NFATc1 in Bone Cell Homeostasis: Friend or Foe? Curr Stem Cell Res Ther 2019; 14:239-243. [PMID: 30516111 DOI: 10.2174/1574888x14666181205122729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/13/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
Abstract
Bone homeostasis is strictly regulated by balanced activity of bone-forming osteoblasts and bone-resorbing osteoclasts.Disruption of the balance of activity between osteoblasts and osteoclasts leads to various metabolic bone diseases. Osteoclasts are cells of hematopoietic origin that they are large, multinucleated cells formed by the fusion of precursor cells of monocyte/macrophage lineage, they are unique cells that degrade the bone matrix, activation of transcription factors nuclear factoractivated T cells c1 (NFATc1) is required for sufficient osteoclast differentiation and it plays the role of a master transcription regulator of osteoclast differentiation, meanwhile, NFATc1 could be employed to elicit anabolic effects on bone. In this review, we have summarized the various mechanisms that control NFATc1 regulation during osteoclast and osteoblast differentiation as well as a new strategy for promoting bone regeneration in osteopenic disease.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Hao Wen
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Xiaobin Yang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Ke Zhang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Xinliang Zhang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
39
|
Destabilization of AETFC through C/EBPα-mediated repression of LYL1 contributes to t(8;21) leukemic cell differentiation. Leukemia 2019; 33:1822-1827. [PMID: 30755707 DOI: 10.1038/s41375-019-0398-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/25/2018] [Accepted: 01/21/2019] [Indexed: 11/08/2022]
|
40
|
Ge Y, Schuster MB, Pundhir S, Rapin N, Bagger FO, Sidiropoulos N, Hashem N, Porse BT. The splicing factor RBM25 controls MYC activity in acute myeloid leukemia. Nat Commun 2019; 10:172. [PMID: 30635567 PMCID: PMC6329799 DOI: 10.1038/s41467-018-08076-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022] Open
Abstract
Cancer sequencing studies have implicated regulators of pre-mRNA splicing as important disease determinants in acute myeloid leukemia (AML), but the underlying mechanisms have remained elusive. We hypothesized that "non-mutated" splicing regulators may also play a role in AML biology and therefore conducted an in vivo shRNA screen in a mouse model of CEBPA mutant AML. This has led to the identification of the splicing regulator RBM25 as a novel tumor suppressor. In multiple human leukemic cell lines, knockdown of RBM25 promotes proliferation and decreases apoptosis. Mechanistically, we show that RBM25 controls the splicing of key genes, including those encoding the apoptotic regulator BCL-X and the MYC inhibitor BIN1. This mechanism is also operative in human AML patients where low RBM25 levels are associated with high MYC activity and poor outcome. Thus, we demonstrate that RBM25 acts as a regulator of MYC activity and sensitizes cells to increased MYC levels.
Collapse
Affiliation(s)
- Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Frederik Otzen Bagger
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Nikos Sidiropoulos
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Nadia Hashem
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Bo Torben Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark. .,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark. .,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
41
|
Mechanism of anti-remodelling action of treprostinil in human pulmonary arterial smooth muscle cells. PLoS One 2018; 13:e0205195. [PMID: 30383775 PMCID: PMC6211661 DOI: 10.1371/journal.pone.0205195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
Treprostinil is applied for pulmonary arterial hypertension (PAH) therapy. However, the mechanism by which the drug achieves its beneficial effects in PAH vessels is not fully understood. This study investigated the effects of treprostinil on PDGF-BB induced remodelling parameters in isolated human pulmonary arterial smooth muscle cells (PASMC) of four PAH patients. The production of TGF-β1, CTGF, collagen type-I and -IV, and of fibronectin were determined by ELISA and PCR. The role of cAMP was determined by ELISA and di-deoxyadenosine treatment. Proliferation was determined by direct cell count. Treprostinil increased cAMP levels dose and time dependently, which was not affected by PDGF-BB. Treprostinil significantly reduced PDGF-BB induced secretion of TGF-β1 and CTGF, both was counteracted when cAMP generation was blocked. Similarly, the PDGF-BB induced proliferation of PASMC was dose dependently reduced by treprostinil through signalling via cAMP—C/EBP-α p42 –p21(WAf1/Cip1). In regards to extracellular matrix remodelling, treprostinil significantly reduced PDGF-BB—TGF-β1—CTGF induced synthesis and deposition of collagen type I and fibronectin, in a cAMP sensitive manner. In contrast, the deposition of collagen IV was not affected. The data suggest that this action of treprostinil in vessel wall remodelling may benefit patients with PAH and may reduce arterial wall remodelling.
Collapse
|
42
|
Chlebowska-Tuz J, Sokolowska O, Gaj P, Lazniewski M, Firczuk M, Borowiec K, Sas-Nowosielska H, Bajor M, Malinowska A, Muchowicz A, Ramji K, Stawinski P, Sobczak M, Pilch Z, Rodziewicz-Lurzynska A, Zajac M, Giannopoulos K, Juszczynski P, Basak GW, Plewczynski D, Ploski R, Golab J, Nowis D. Inhibition of protein disulfide isomerase induces differentiation of acute myeloid leukemia cells. Haematologica 2018; 103:1843-1852. [PMID: 30002127 PMCID: PMC6278960 DOI: 10.3324/haematol.2018.190231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
A cute myeloid leukemia is a malignant disease of immature myeloid cells. Despite significant therapeutic effects of differentiation-inducing agents in some acute myeloid leukemia subtypes, the disease remains incurable in a large fraction of patients. Here we show that SK053, a thioredoxin inhibitor, induces differentiation and cell death of acute myeloid leukemia cells. Considering that thioredoxin knock-down with short hairpin RNA failed to exert antiproliferative effects in one of the acute myeloid leukemia cell lines, we used a biotin affinity probe-labeling approach to identify potential molecular targets for the effects of SK053. Mass spectrometry of proteins precipitated from acute myeloid leukemia cells incubated with biotinylated SK053 used as a bait revealed protein disulfide isomerase as a potential binding partner for the compound. Biochemical, enzymatic and functional assays using fluorescence lifetime imaging confirmed that SK053 binds to and inhibits the activity of protein disulfide isomerase. Protein disulfide isomerase knockdown with short hairpin RNA was associated with inhibition of cell growth, increased CCAAT enhancer-binding protein α levels, and induction of differentiation of HL-60 cells. Molecular dynamics simulation followed by the covalent docking indicated that SK053 binds to the fourth thioredoxin-like domain of protein disulfide isomerase. Differentiation of myeloid precursor cells requires the activity of CCAAT enhancer-binding protein α, the function of which is impaired in acute myeloid leukemia cells through various mechanisms, including translational block by protein disulfide isomerase. SK053 increased the levels of CCAAT enhancer-binding protein α and upregulated mRNA levels for differentiation-associated genes. Finally, SK053 decreased the survival of blasts and increased the percentage of cells expressing the maturation-associated CD11b marker in primary cells isolated from bone marrow or peripheral blood of patients with acute myeloid leukemia. Collectively, these results provide a proof-of-concept that protein disulfide isomerase inhibition has potential as a therapeutic strategy for the treatment of acute myeloid leukemia and for the development of small-molecule inhibitors of protein disulfide isomerase.
Collapse
Affiliation(s)
- Justyna Chlebowska-Tuz
- Department of Immunology, Medical University of Warsaw.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw
| | - Olga Sokolowska
- Department of Immunology, Medical University of Warsaw.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw.,Postgraduate School of Molecular Medicine, Medical University of Warsaw
| | - Pawel Gaj
- Department of Immunology, Medical University of Warsaw.,Laboratory of Human Cancer Genetics, Center of New Technologies, University of Warsaw
| | - Michal Lazniewski
- Laboratory of Functional and Structural Genomics, Center of New Technologies, University of Warsaw.,Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw
| | | | | | - Hanna Sas-Nowosielska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw
| | | | - Agata Malinowska
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | | - Kavita Ramji
- Department of Immunology, Medical University of Warsaw
| | - Piotr Stawinski
- Department of Medical Genetics, Center of Biostructure Research, Medical University of Warsaw
| | - Mateusz Sobczak
- Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw
| | - Zofia Pilch
- Department of Immunology, Medical University of Warsaw
| | | | - Malgorzata Zajac
- Department of Experimental Hematooncology, Medical University of Lublin
| | | | - Przemyslaw Juszczynski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw
| | - Grzegorz W Basak
- Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Center of New Technologies, University of Warsaw.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw
| | - Rafal Ploski
- Department of Medical Genetics, Center of Biostructure Research, Medical University of Warsaw
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw .,Center for Preclinical Research and Technology, Medical University of Warsaw
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw .,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw.,Genomic Medicine, Medical University of Warsaw, Poland
| |
Collapse
|
43
|
Chen W, Zhu G, Jules J, Nguyen D, Li YP. Monocyte-Specific Knockout of C/ebpα Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebpα in Osteoclast Differentiation and Function. J Bone Miner Res 2018; 33:691-703. [PMID: 29149533 PMCID: PMC6240465 DOI: 10.1002/jbmr.3342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 01/26/2023]
Abstract
CCAAT/enhancer-binding protein α (C/ebpα) is critical for osteoclastogenesis by regulating osteoclast (OC) lineage commitment and is also important for OC differentiation and function in vitro. However, the role of C/ebpα in postnatal skeletal development has not been reported owing to lethality in C/ebpα-/- mice from hypoglycemia within 8 hours after birth. Herein, we generated conditional knockout mice by deleting the C/ebpα gene in monocyte via LysM-Cre to examine its role in OC differentiation and function. C/ebpαf/f LysM-Cre mice exhibited postnatal osteopetrosis due to impaired osteoclastogenesis, OC lineage priming defects, as well as defective OC differentiation and activity. Furthermore, our ex vivo analysis demonstrated that C/ebpα conditional deletion significantly reduced OC differentiation, maturation, and activity while mildly repressing macrophage development. At the molecular level, C/ebpα deficiency significantly suppresses the expressions of OC genes associated with early stages of osteoclastogenesis as well as genes associated with OC differentiation and activity. We also identified numerous C/ebpα critical cis-regulatory elements on the Cathepsin K promoter that allow C/ebpα to significantly upregulate Cathepsin K expression during OC differentiation and activity. In pathologically induced mouse model of osteoporosis, C/ebpα deficiency can protect mice against ovariectomy-induced bone loss, uncovering a central role for C/ebpα in osteolytic diseases. Collectively, our findings have further established C/ebpα as a promising therapeutic target for bone loss by concurrently targeting OC lineage priming, differentiation, and activity. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Guochun Zhu
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Joel Jules
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Diep Nguyen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Yi-Ping Li
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
44
|
Chan SH, Liang PH, Guh JH. An integrated approach to elucidate signaling pathways of dioscin-induced apoptosis, energy metabolism and differentiation in acute myeloid leukemia. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:587-602. [PMID: 29594316 DOI: 10.1007/s00210-018-1484-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022]
Abstract
Although the therapeutics have improved the rates of remission and cure of acute myelogenous leukemia (AML) in recent decades, there is still an unmet medical need for AML therapies because disease relapses are a major obstacle in patients who become refractory to salvage therapy. The development of therapeutic agents promoting both cytotoxicity and cell differentiation may provide opportunities to improve the clinical outcome. Dioscin-induced apoptosis in leukemic cells was identified through death receptor-mediated extrinsic apoptosis pathway. The formation of Bak and tBid, and loss of mitochondrial membrane potential were induced by dioscin suggesting the activation of intrinsic apoptotsis pathway. A functional analysis of transcription factors using transcription factor-DNA interaction array and IPA analysis demonstrated that dioscin induced a profound increase of protein expression of CCAAT/enhancer-binding protein α (C/EBPα), a critical factor for myeloid differentiation. Two-dimensional gel electrophoresis assay confirmed the increase of C/EBPα expression. Dioscin-induced differentiation was substantiated by an increase of CD11b protein expression and the induction of differentiation toward myelomonocytic/granulocytic lineages using hematoxylin and eosin staining. Moreover, both glycolysis and gluconeogenesis pathways after two-dimensional gel electrophoresis assay and IPA network enrichment analysis were proposed to dioscin action. In conclusion, the data suggest that dioscin exerts its antileukemic effect through the upregulation of both death ligands and death receptors and a crosstalk activation of mitochondrial apoptosis pathway with the collaboration of tBid and Bak formation. In addition, proteomics approach reveals an altered metabolic signature of dioscin-treated cells and the induction of differentiation of promyelocytes to granulocytes and monocytes in which the C/EBPα plays a key role.
Collapse
Affiliation(s)
- She-Hung Chan
- Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist, Taichung, 43301, Taiwan.
| | - Pi-Hui Liang
- School of Pharmacy, National Taiwan University, No.33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No.33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan.
| |
Collapse
|
45
|
Chen W, Zhu G, Tang J, Zhou HD, Li YP. C/ebpα controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1. J Pathol 2018; 244:271-282. [PMID: 29083488 PMCID: PMC6240466 DOI: 10.1002/path.5001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
Osteoclast lineage commitment and differentiation have been studied extensively, although the mechanism by which transcription factor(s) control osteoclast terminal differentiation, activation, and function remains unclear. CCAAT/enhancer-binding protein α (C/ebpα) has been reported to be a key regulator of osteoclast cell lineage commitment, yet C/ebpα's roles in osteoclast terminal differentiation, activation and function, and bone homeostasis, under physiological or pathological conditions, have not been studied because newborn C/ebpα-null mice die within several hours after birth. Furthermore, the function of C/ebpα in osteoclast terminal differentiation, activation, and function is largely unknown. Herein, we generated and analyzed an osteoclast-specific C/ebpα conditional knockout (CKO) mouse model via Ctsk-Cre mice and found that C/ebpα-deficient mice exhibited a severe osteopetrosis phenotype due to impaired osteoclast terminal differentiation, activation, and function, including mildly reduced osteoclast number, impaired osteoclast polarization, actin formation, and bone resorption, which demonstrated the novel function of C/ebpα in cell function and terminal differentiation. Interestingly, C/ebpα deficiency did not affect bone formation or monocyte/macrophage development. Our results further demonstrated that C/ebpα deficiency suppressed the expression of osteoclast functional genes, e.g. encoding cathepsin K (Ctsk), Atp6i (Tcirg1), and osteoclast regulator genes, e.g. encoding c-fos (Fos), and nuclear factor of activated T-cells 1 (Nfatc1), while having no effect on Pu.1 (Spi1) expression. Promoter activity mapping and ChIP assay defined the critical cis-regulatory element (CCRE) in the promoter region of Nfatc1, and also showed that the CCREs were directly associated with C/ebpα, which enhanced the promoter's activity. The deficiency of C/ebpα in osteoclasts completely blocked ovariectomy-induced bone loss, indicating that C/ebpα is a promising new target for the treatment of osteolytic diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Jun Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| |
Collapse
|
46
|
Liu L, Wan X, Zhou P, Zhou X, Zhang W, Hui X, Yuan X, Ding X, Zhu R, Meng G, Xiao H, Ma F, Huang H, Song X, Zhou B, Xiong S, Zhang Y. The chromatin remodeling subunit Baf200 promotes normal hematopoiesis and inhibits leukemogenesis. J Hematol Oncol 2018; 11:27. [PMID: 29482581 PMCID: PMC5828314 DOI: 10.1186/s13045-018-0567-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 11/10/2022] Open
Abstract
Background Adenosine triphosphate (ATP)-dependent chromatin remodeling SWI/SNF-like BAF and PBAF complexes have been implicated in the regulation of stem cell function and cancers. Several subunits of BAF or PBAF, including BRG1, BAF53a, BAF45a, BAF180, and BAF250a, are known to be involved in hematopoiesis. Baf200, a subunit of PBAF complex, plays a pivotal role in heart morphogenesis and coronary artery angiogenesis. However, little is known on the importance of Baf200 in normal and malignant hematopoiesis. Methods Utilizing Tie2-Cre-, Vav-iCre-, and Mx1-Cre-mediated Baf200 gene deletion combined with fetal liver/bone marrow transplantation, we investigated the function of Baf200 in fetal and adult hematopoiesis. In addition, a mouse model of MLL-AF9-driven leukemogenesis was used to study the role of Baf200 in malignant hematopoiesis. We also explored the potential mechanism by using RNA-seq, RT-qPCR, cell cycle, and apoptosis assays. Results Tie2-Cre-mediated loss of Baf200 causes perinatal death due to defective erythropoiesis and impaired hematopoietic stem cell expansion in the fetal liver. Vav-iCre-mediated loss of Baf200 causes only mild anemia and enhanced extramedullary hematopoiesis. Fetal liver hematopoietic stem cells from Tie2-Cre+, Baf200f/f or Vav-iCre+, Baf200f/f embryos and bone marrow hematopoietic stem cells from Vav-iCre+, Baf200f/f mice exhibited impaired long-term reconstitution potential in vivo. A cell-autonomous requirement of Baf200 for hematopoietic stem cell function was confirmed utilizing the interferon-inducible Mx1-Cre mouse strain. Transcriptomes analysis revealed that expression of several erythropoiesis- and hematopoiesis-associated genes were regulated by Baf200. In addition, loss of Baf200 in a mouse model of MLL-AF9-driven leukemogenesis accelerates the tumor burden and shortens the host survival. Conclusion Our current studies uncover critical roles of Baf200 in both normal and malignant hematopoiesis and provide a potential therapeutic target for suppressing the progression of leukemia without interfering with normal hematopoiesis. Electronic supplementary material The online version of this article (10.1186/s13045-018-0567-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lulu Liu
- Institute of Biology and Medical Sciences, Soochow University, No. 199 Ren'ai Rd, Suzhou, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China
| | - Xiaoling Wan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peipei Zhou
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyuan Zhou
- University of Chinese Academy of Sciences, Beijing, China.,CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xinhui Hui
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiujie Yuan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodan Ding
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruihong Zhu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangxun Meng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Xiao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianmin Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Shanghai General Hospital, Shanghai, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.
| | - Sidong Xiong
- Institute of Biology and Medical Sciences, Soochow University, No. 199 Ren'ai Rd, Suzhou, China.
| | - Yan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
47
|
MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences. Leukemia 2018; 32:2152-2166. [PMID: 29467491 PMCID: PMC6170393 DOI: 10.1038/s41375-018-0033-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 01/05/2023]
Abstract
Double minutes (dmin), homogeneously staining regions, and ring chromosomes are vehicles of gene amplification in cancer. The underlying mechanism leading to their formation as well as their structure and function in acute myeloid leukemia (AML) remain mysterious. We combined a range of high-resolution genomic methods to investigate the architecture and expression pattern of amplicons involving chromosome band 8q24 in 23 cases of AML (AML-amp). This revealed that different MYC-dmin architectures can coexist within the same leukemic cell population, indicating a step-wise evolution rather than a single event origin, such as through chromothripsis. This was supported also by the analysis of the chromothripsis criteria, that poorly matched the model in our samples. Furthermore, we found that dmin could evolve toward ring chromosomes stabilized by neocentromeres. Surprisingly, amplified genes (mainly PVT1) frequently participated in fusion transcripts lacking a corresponding DNA template. We also detected a significant overexpression of the circular RNA of PVT1 (circPVT1) in AML-amp cases versus AML with a normal karyotype. Our results show that 8q24 amplicons in AML are surprisingly plastic DNA structures with an unexpected association to novel fusion transcripts and circular RNAs.
Collapse
|
48
|
The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 2018; 82:82/1/e00057-17. [PMID: 29436479 DOI: 10.1128/mmbr.00057-17] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.
Collapse
|
49
|
Wong ACH, Rasko JEJ, Wong JJL. We skip to work: alternative splicing in normal and malignant myelopoiesis. Leukemia 2018; 32:1081-1093. [PMID: 29467484 DOI: 10.1038/s41375-018-0021-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/14/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022]
|
50
|
El-Sharkawi D, Sproul D, Allen CG, Feber A, Wright M, Hills RK, Linch DC, Gale RE. Variable outcome and methylation status according to CEBPA mutant type in double-mutated acute myeloid leukemia patients and the possible implications for treatment. Haematologica 2018; 103:91-100. [PMID: 29025912 PMCID: PMC5777194 DOI: 10.3324/haematol.2017.173096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/10/2017] [Indexed: 11/16/2022] Open
Abstract
Although CEBPA double-mutated (CEBPADM) acute myeloid leukemia is considered to be a favorable-risk disease, relapse remains a major cause of treatment failure. Most CEBPADM patients have a classic biallelic mutant combination with an N-terminal mutation leading to production of p30 protein plus a C-terminal loss-of-function in-frame indel mutation (CEBPAClassic-DM), but approximately one-third of cases have one or more non-classic mutations, with diverse combinations reported, and there is little information on the consequences of such mutants. We evaluated outcome in a cohort of 104 CEBPADM patients, 79 CEBPAClassic-DM and 25 with non-classic mutants, and found that the latter may have poorer survival (5-year overall survival 64% vs. 46%; P=0.05), particularly post relapse (41% vs. 0%; P=0.02). However, for this analysis, all non-classic cases were grouped together, irrespective of mutant combination. As CEBPADM cases have been reported to be hypermethylated, we used methylation profiling to assess whether this could segregate the different mutants. We developed a CEBPAClassic-DM methylation signature from a preliminary cohort of 10 CEBPADM (including 8 CEBPAClassic-DM) and 30 CEBPA wild-type (CEBPAWT) samples, and independently validated the signature in 17 CEBPAClassic-DM cases. Assessment of the signature in 16 CEBPADM cases with different non-classic mutant combinations showed that only 31% had a methylation profile equivalent to CEBPAClassic-DM whereas for 69% the profile was either intermediate between CEBPAClassic-DM and CEBPAWT or equivalent to CEBPAWT These results suggest that CEBPADM cases with non-classic mutants may be functionally different from those with CEBPAClassic-DM mutants, and should not automatically be included in the same prognostic group. (AML12 is registered under ISRCTN17833622 and AML15 under ISRCTN17161961).
Collapse
Affiliation(s)
| | - Duncan Sproul
- MRC Human Genetics Unit and Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh
| | | | | | | | | | - David C Linch
- Department of Haematology, UCL Cancer Institute, London
| | | |
Collapse
|