1
|
Mapindra MP, Castillo-Hernandez T, Clark H, Madsen J. Surfactant Protein-A and its immunomodulatory roles in infant respiratory syncytial virus infection: a potential for therapeutic intervention? Am J Physiol Lung Cell Mol Physiol 2025; 328:L179-L196. [PMID: 39662519 DOI: 10.1152/ajplung.00199.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
The vast majority of early-life hospital admissions globally highlight respiratory syncytial virus (RSV), the leading cause of neonatal lower respiratory tract infections, as the major culprit behind the poor neonatal outcomes following respiratory infections. Unlike those of older children and adults, the immune system of neonates looks rather unique, therefore mostly counting on the innate immune system and antibodies of maternal origins. The collaborations between cells and immune compartments during infancy inclines bias toward a T-helper 2 (Th2) immune profile and thereby away from a T-helper 1 (Th1) immune response. What makes it more problematic is that RSV infection also tends to elicit a stronger Th2-biased immune response and drive an aberrant allergy-like inflammation. It is thus evident how RSV infections potentially pave the way for wheezing recurrences and childhood asthma later in life. Surfactant, the essential lung substance for normal breathing processes in mammals, has immunomodulatory properties including lung collectins such as Surfactant Protein-A (SP-A), which is the most abundant protein component of surfactant, and also Surfactant Protein-D (SP-D). Deficiency of SP-A and SP-D has been found to be associated with impaired pathogen clearance and exacerbated immune responses during infections. We therefore conducted a review of the literature to describe pathomechanisms of RSV infections during blunted neonatal immunity potentially facilitating allergy-like inflammatory events within the developing lungs and highlight the potential protective role of the humoral collectin SP-A to mitigate these in the "early in life" pulmonary immune system.
Collapse
Affiliation(s)
- Muhammad Pradhika Mapindra
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Tania Castillo-Hernandez
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Howard Clark
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Jens Madsen
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Yuan L, Qin Q, Yao Y, Chen L, Liu H, Du X, Ji M, Wu X, Wang W, Qin Q, Xiang Y, Qing B, Qu X, Yang M, Qin X, Xia Z, Liu C. Increased expression of cathepsin C in airway epithelia exacerbates airway remodeling in asthma. JCI Insight 2024; 9:e181219. [PMID: 39436705 PMCID: PMC11601913 DOI: 10.1172/jci.insight.181219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Airway remodeling is a critical factor determining the pathogenesis and treatment sensitivity of severe asthma (SA) or uncontrolled asthma (UA). The activation of epithelial-mesenchymal trophic units (EMTUs) regulated by airway epithelial cells (AECs) has been proven to induce airway remodeling directly. However, the triggers for EMTU activation and the underlying mechanism of airway remodeling are not fully elucidated. Here, we screened the differentially expressed gene cathepsin C (CTSC; also known as dipeptidyl peptidase 1 [DPP-1]) in epithelia of patients with SA and UA using RNA-sequencing data and further verified the increased expression of CTSC in induced sputum of patients with asthma, which was positively correlated with severity and airway remodeling. Moreover, direct instillation of exogenous CTSC induced airway remodeling. Genetic inhibition of CTSC suppressed EMTU activation and airway remodeling in two asthma models with airway remodeling. Mechanistically, increased secretion of CTSC from AECs induced EMTU activation through the p38-mediated pathway, further inducing airway remodeling. Meanwhile, inhibition of CTSC also reduced the infiltration of inflammatory cells and the production of inflammatory factors in the lungs of asthmatic mice. Consequently, targeting CTSC with compound AZD7986 protected against airway inflammation, EMTU activation, and remodeling in the asthma model. Based on the dual effects of CTSC on airway inflammation and remodeling, CTSC is a potential biomarker and therapeutic target for SA or UA.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Qingwu Qin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ye Yao
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Long Chen
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
- Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Ming Ji
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Weijie Wang
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Qiuyan Qin
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Bei Qing
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Zhenkun Xia
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| |
Collapse
|
3
|
Qin L, Yao Y, Wang W, Qin Q, Liu J, Liu H, Yuan L, Yuan Y, Du X, Zhao B, Wu X, Qing B, Huang L, Wang G, Xiang Y, Qu X, Zhang X, Yang M, Xia Z, Liu C. Airway epithelial overexpressed cathepsin K induces airway remodelling through epithelial-mesenchymal trophic unit activation in asthma. Br J Pharmacol 2024; 181:3700-3716. [PMID: 38853468 DOI: 10.1111/bph.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Airway epithelial cells (AECs) regulate the activation of epithelial-mesenchymal trophic units (EMTUs) during airway remodelling through secretion of signalling mediators. However, the major trigger and the intrinsic pathogenesis of airway remodelling is still obscure. EXPERIMENTAL APPROACH The differing expressed genes in airway epithelia related to airway remodelling were screened and verified by RNA-sequencing and signalling pathway analysis. Then, the effects of increased cathepsin K (CTSK) in airway epithelia on airway remodelling and EMTU activation were identified both in vitro and in vivo, and the molecular mechanism was elucidated in the EMTU model. The potential of CTSK as an an effective biomarker of airway remodelling was analysed in an asthma cohort of differing severity. Finally, an inhibitor of CTSK was administered for potential therapeutic intervention for airway remodelling in asthma. KEY RESULTS The expression of CTSK in airway epithelia increased significantly along with the development of airway remodelling in a house dust mite (HDM)-stressed asthma model. Increased secretion of CTSK from airway epithelia induced the activation of EMTUs by activation of the PAR2-mediated pathway. Blockade of CTSK inhibited EMTU activation and alleviated airway remodelling as an effective intervention target of airway remodelling. CONCLUSION AND IMPLICATIONS Increased expression of CTSK in airway epithelia is involved in the development of airway remodelling in asthma through EMTU activation, mediated partly through the PAR2-mediated signalling pathway. CTSK is a potential biomarker for airway remodelling, and may also be a useful intervention target for airway remodelling in asthma patients.
Collapse
Affiliation(s)
- Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ye Yao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Qingwu Qin
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Bei Qing
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leng Huang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Wang
- Department of Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xuewei Zhang
- Department of Health Management, Xiangya Hospital, Cental South University, Changsha, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Zhenkun Xia
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Pal S, Slepenkin A, Felgner J, Huw Davies D, Felgner P, de la Maza LM. Evaluation of Four Adjuvant Combinations, IVAX-1, IVAX-2, CpG-1826+Montanide ISA 720 VG and CpG-1018+Montanide ISA 720 VG, for Safety and for Their Ability to Elicit Protective Immune Responses in Mice against a Respiratory Challenge with Chlamydia muridarum. Pathogens 2023; 12:863. [PMID: 37513710 PMCID: PMC10383793 DOI: 10.3390/pathogens12070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
There is an urgent need to produce a vaccine for Chlamydia trachomatis infections. Here, using the Chlamydia muridarum major outer membrane protein (MOMP) as an antigen, four adjuvant combinations IVAX-1 (MPLA+CpG-1018+AddaVax), IVAX-2 (MPLA+CpG-1018+AS03), CpG-1826+Montanide ISA 720 VG (CpG-1826+Mont) and CpG-1018+Montanide ISA 720 VG (CpG-1018+Mont), were tested for their local reactogenicity and ability to elicit protection in BALB/c mice against a respiratory challenge with C. muridarum. Immunization with IVAX-1 or IVAX-2 induced no significant local reactogenicity following intramuscular immunization. In contrast, vaccines containing Montanide resulted in the formation of a local granuloma. Based on the IgG2a/IgG1 ratio in serum, the four adjuvant combinations elicited Th1-biased responses. IVAX-1 induced the highest in vitro neutralization titers while CpG-1018+Mont stimulated the lowest. As determined by the levels of IFN-γ produced by T-cells, the most robust cellular immune responses were elicited in mice immunized with CpG-1018+Mont, while the weakest responses were mounted by mice receiving IVAX-1. Following the respiratory challenge, mice immunized with CpG-1018+Mont lost the least amount of body weight and had the lowest number of C. muridarum inclusion-forming units (IFUs) in the lungs, while those receiving IVAX-2 had lost the most weight and had the highest number of IFUs in their lungs. Animals vaccinated with CpG-1826+Mont had the lightest lungs while those immunized using IVAX-2 had the heaviest. To conclude, due to their safety and adjuvanticity, IVAX formulations should be considered for inclusion in human vaccines against Chlamydia.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - D Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol 2023; 151:431-446.e16. [PMID: 36243221 DOI: 10.1016/j.jaci.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Airway epithelial cells (AECs) with impaired barrier function contribute to airway remodeling through the activation of epithelial-mesenchymal trophic units (EMTUs). Although the decreased expression of ITGB4 in AECs is implicated in the pathogenesis of asthma, how ITGB4 deficiency impacts airway remodeling remains obscure. OBJECTIVE This study aims to determine the effect of epithelial ITGB4 deficiency on the barrier function of AECs, asthma susceptibility, airway remodeling, and EMTU activation. METHODS AEC-specific ITGB4 conditional knockout mice (ITGB4-/-) were generated and an asthma model was employed by the sensitization and challenge of house dust mite (HDM). EMTU activation-related growth factors were examined in ITGB4-silenced primary human bronchial epithelial cells of healthy subjects after HDM stimulation. Dexamethasone, the inhibitors of JNK phosphorylation or FGF2 were administered for the identification of the molecular mechanisms of airway remodeling in HDM-exposed ITGB4-/- mice. RESULTS ITGB4 deficiency in AECs enhanced asthma susceptibility and airway remodeling by disrupting airway epithelial barrier function. Aggravated airway remodeling in HDM-exposed ITGB4-/- mice was induced through the enhanced activation of EMTU mediated by Src homology domain 2-containing protein tyrosine phosphatase 2/c-Jun N-terminal kinase/Jun N-terminal kinase-dependent transcription factor/FGF2 (SHP2/JNK/c-Jun/FGF2) signaling pathway, which was partially independent of airway inflammation. Both JNK and FGF2 inhibitors significantly inhibited the aggravated airway remodeling and EMTU activation in HDM-exposed ITGB4-/- mice. CONCLUSIONS Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model of asthma through enhanced EMTU activation that is regulated by the SHP2/JNK/c-Jun/FGF2 pathway.
Collapse
|
6
|
Pal S, Sheff S, Al-Kuhlani M, Ojcius DM, de la Maza LM. Role of TRAIL-R in Primary and Secondary Genital and Respiratory Chlamydia muridarum Infections in Mice. Microbiol Spectr 2022; 10:e0161722. [PMID: 35876584 PMCID: PMC9431660 DOI: 10.1128/spectrum.01617-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor (TRAIL-R) suppresses inflammation and could therefore affect the course of Chlamydia infections and their long-term sequelae. Wild-type (WT) and TRAIL-R-/- C57BL/6 mice were inoculated vaginally with Chlamydia muridarum; the course of the infection was followed with vaginal cultures and the presence of hydrosalpinx determined. To evaluate the role of TRAIL-R following a secondary infection, the mice were vaginally reinfected. WT and TRAIL-R-/- male mice were also infected and reinfected in the respiratory tract, and the course of the diseases and the infections were followed. Following the primary and secondary vaginal infection, no significant differences in vaginal shedding or hydrosalpinx formation were observed between the WT and TRAIL-R-/- mice. The WT and TRAIL-R-/- mice mounted antibody responses in serum and vaginal washes that were not significantly different. After the primary and secondary intranasal infections of the male mice, changes in body weight were determined, and no significant differences were observed between the WT and TRAIL-R-/- mice. Ten days after the primary and the secondary infections, the weight of the lungs and number of C. muridarum inclusion forming units (IFU) were determined. The lungs of the WT mice weighed less compared with the TRAIL-R-/- mice following a primary infection but not after a secondary infection. No differences in the number of C. muridarum IFU in the lungs were observed between the two groups of mice. In conclusion, despite playing a role in inflammation cell-signaling pathways in vitro, TRAIL-R does not appear to play a major role in the susceptibility, clinical outcomes, or long-term sequelae of C. muridarum infections in vivo. IMPORTANCE TNF-related apoptosis-inducing ligand receptor (TRAIL-R) is involved in suppressing inflammatory responses. Bacterial pathogens such as Chlamydia spp. elicit inflammatory responses in humans following genital, ocular, and respiratory infections. The inflammatory responses are important to control the spread of Chlamydia. However, in certain instances, these inflammatory responses can produce long-term sequelae, including fibrosis. Fibrosis, or scarring, in the genital tract, eye, and respiratory system results in functional deficiencies, including infertility, blindness, and chronic obstructive lung disease, respectively. The goal of this study was to determine if mice deficient in TRAIL-R infected in the genital and respiratory tracts with Chlamydia spp. suffer more or less severe infections, infertility, or lung diseases than wild-type mice. Our results show no differences between the immune responses, infection severity, and long-term sequelae between TRAIL-R knockout and wild-type animals following a genital or a respiratory infection with Chlamydia.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, California, USA
| | - Sydni Sheff
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, California, USA
| | - Mufadhal Al-Kuhlani
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
- Life Science Department, Fresno City College, Fresno, California, USA
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
7
|
Solis-Leal A, Siddiqui S, Wu F, Mohan M, Hu W, Doyle-Meyers LA, Dufour JP, Ling B. Neuroinflammatory Profiling in SIV-Infected Chinese-Origin Rhesus Macaques on Antiretroviral Therapy. Viruses 2022; 14:139. [PMID: 35062343 PMCID: PMC8781366 DOI: 10.3390/v14010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
The central nervous system (CNS) HIV reservoir is an obstacle to achieving an HIV cure. The basal ganglia harbor a higher frequency of SIV than other brain regions in the SIV-infected rhesus macaques of Chinese-origin (chRMs) even on suppressive combination antiretroviral therapy (ART). Since residual HIV/SIV reservoir is associated with inflammation, we characterized the neuroinflammation by gene expression and systemic levels of inflammatory molecules in healthy controls and SIV-infected chRMs with or without ART. CCL2, IL-6, and IFN-γ were significantly reduced in the cerebrospinal fluid (CSF) of animals receiving ART. Moreover, there was a correlation between levels of CCL2 in plasma and CSF, suggesting the potential use of plasma CCL2 as a neuroinflammation biomarker. With higher SIV frequency, the basal ganglia of untreated SIV-infected chRMs showed an upregulation of secreted phosphoprotein 1 (SPP1), which could be an indicator of ongoing neuroinflammation. While ART greatly reduced neuroinflammation in general, proinflammatory genes, such as IL-9, were still significantly upregulated. These results expand our understanding of neuroinflammation and signaling in SIV-infected chRMs on ART, an excellent model to study HIV/SIV persistence in the CNS.
Collapse
Affiliation(s)
- Antonio Solis-Leal
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX 78227, USA; (A.S.-L.); (F.W.); (M.M.)
| | - Summer Siddiqui
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (S.S.); (L.A.D.-M.); (J.P.D.)
| | - Fei Wu
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX 78227, USA; (A.S.-L.); (F.W.); (M.M.)
- Tulane Center for Aging, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Mahesh Mohan
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX 78227, USA; (A.S.-L.); (F.W.); (M.M.)
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19122, USA;
| | - Lara A. Doyle-Meyers
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (S.S.); (L.A.D.-M.); (J.P.D.)
| | - Jason P. Dufour
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (S.S.); (L.A.D.-M.); (J.P.D.)
| | - Binhua Ling
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX 78227, USA; (A.S.-L.); (F.W.); (M.M.)
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (S.S.); (L.A.D.-M.); (J.P.D.)
- Tulane Center for Aging, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Single-cell RNA transcriptomic analysis identifies Creb5 and CD11b-DCs as regulator of asthma exacerbations. Mucosal Immunol 2022; 15:1363-1374. [PMID: 36038770 PMCID: PMC9705253 DOI: 10.1038/s41385-022-00556-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
Immune responses that result in asthma exacerbation are associated with allergen or viral exposure. Identification of common immune factors will be beneficial for the development of uniformed targeted therapy. We employed a House Dust Mite (HDM) mouse model of asthma and challenged allergic HDM mice with allergens (HDM, cockroach extract (CRE)) or respiratory syncytial virus (RSV). Purified lung immune cells underwent high-dimensional single-cell RNA deep sequencing (scRNA-seq) to generate an RNA transcriptome. Gene silencing with siRNA was employed to confirm the efficacy of scRNA-seq analysis. scRNA-seq UMAP analysis portrayed an array of cell markers within individual immune clusters. SCENIC R analysis showed an increase in regulon number and activity in CD11b- DC cells. Analysis of conserved regulon factors further identified Creb5 as a shared regulon between the exacerbation groups. Creb5 siRNAs attenuated HDM, CRE or RSV-induced asthma exacerbation. scRNA-seq multidimensional analysis of immune clusters identified gene pathways that were conserved between the exacerbation groups. We propose that these analyses provide a strong framework that could be used to identify specific therapeutic targets in multifaceted pathologies.
Collapse
|
9
|
Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA, Thangavelu L, Singh SK, Rama Raju Allam VS, Jha NK, Chellappan DK, Dua K, Gupta G. Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact 2021; 345:109568. [PMID: 34181887 DOI: 10.1016/j.cbi.2021.109568] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/28/2022]
Abstract
Nuclear factor-kappa B, involved in inflammation, host immune response, cell adhesion, growth signals, cell proliferation, cell differentiation, and apoptosis defense, is a dimeric transcription factor. Inflammation is a key component of many common respiratory disorders, including asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, and acute respiratory distress syndrome. Many basic transcription factors are found in NF-κB signaling, which is a member of the Rel protein family. Five members of this family c-REL, NF-κB2 (p100/p52), RelA (p65), NF-κB1 (p105/p50), RelB, and RelA (p65) produce 5 transcriptionally active molecules. Proinflammatory cytokines, T lymphocyte, and B lymphocyte cell mitogens, lipopolysaccharides, bacteria, viral proteins, viruses, double-stranded RNA, oxidative stress, physical exertion, various chemotherapeutics are the stimulus responsible for NF-κB activation. NF-κB act as a principal component for several common respiratory illnesses, such as asthma, lung cancer, pulmonary fibrosis, COPD as well as infectious diseases like pneumonia, tuberculosis, COVID-19. Inflammatory lung disease, especially COVID-19, can make NF-κB a key target for drug production.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | | | - Sk Batin Rahman
- Bengal School of Technology, Churchura, Hooghly, West Bengal, India
| | - Waleed Hassan Al-Malki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha University, Chennai, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India.
| |
Collapse
|
10
|
Tu X, Donovan C, Kim RY, Wark PAB, Horvat JC, Hansbro PM. Asthma-COPD overlap: current understanding and the utility of experimental models. Eur Respir Rev 2021; 30:30/159/190185. [PMID: 33597123 PMCID: PMC9488725 DOI: 10.1183/16000617.0185-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Pathological features of both asthma and COPD coexist in some patients and this is termed asthma-COPD overlap (ACO). ACO is heterogeneous and patients exhibit various combinations of asthma and COPD features, making it difficult to characterise the underlying pathogenic mechanisms. There are no controlled studies that define effective therapies for ACO, which arises from the lack of international consensus on the definition and diagnostic criteria for ACO, as well as scant in vitro and in vivo data. There remain unmet needs for experimental models of ACO that accurately recapitulate the hallmark features of ACO in patients. The development and interrogation of such models will identify underlying disease-causing mechanisms, as well as enabling the identification of novel therapeutic targets and providing a platform for assessing new ACO therapies. Here, we review the current understanding of the clinical features of ACO and highlight the approaches that are best suited for developing representative experimental models of ACO. Understanding the pathogenesis of asthma-COPD overlap is critical for improving therapeutic approaches. We present current knowledge on asthma-COPD overlap and the requirements for developing an optimal animal model of disease.https://bit.ly/3lsjyvm
Collapse
Affiliation(s)
- Xiaofan Tu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Both authors contributed equally
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia.,Both authors contributed equally
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia .,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| |
Collapse
|
11
|
Airway epithelial integrin β4 suppresses allergic inflammation by decreasing CCL17 production. Clin Sci (Lond) 2021; 134:1735-1749. [PMID: 32608482 DOI: 10.1042/cs20191188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Airway epithelial cells (AECs) play a key role in asthma susceptibility and severity. Integrin β4 (ITGB4) is a structural adhesion molecule that is down-regulated in the airway epithelium of asthma patients. Although a few studies hint toward the role of ITGB4 in asthmatic inflammation pathogenesis, their specific resultant effects remain unexplored. In the present study, we determined the role of ITGB4 of AECs in the regulation of Th2 response and identified the underpinning molecular mechanisms. We found that ITGB4 deficiency led to exaggerated lung inflammation and AHR with higher production of CCL17 in house dust mite (HDM)-treated mice. ITGB4 regulated CCL17 production in AECs through EGFR, ERK and NF-κB pathways. EFGR-antagonist treatment or the neutralization of CCL17 both inhibited exaggerated pathological marks in HDM-challenged ITGB4-deficient mice. Together, these results demonstrated the involvement of ITGB4 deficiency in the development of Th2 responses of allergic asthma by down-regulation of EGFR and CCL17 pathway in AECs.
Collapse
|
12
|
Zaigham S, Dencker M, Karlsson MK, Thorsson O, Wollmer P. Lung function is associated with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) levels in school-aged children. Respir Med 2020; 176:106235. [PMID: 33249302 DOI: 10.1016/j.rmed.2020.106235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with inflammatory and apoptotic properties. A complex relationship exists between TRAIL and the lung where both elevated TRAIL and TRAIL deficiency are associated with lung impairment. In neonatal mice, TRAIL is thought to translate respiratory infections into chronic lung disease but the association between TRAIL and lung function in childhood has not been assessed. AIM To assess the cross-sectional relationship between TRAIL levels and lung function in school-aged children. METHODS The study cohort consisted of 170 school-aged children attending four schools in Malmö, Sweden. Lung volumes, impulse oscillometry (IOS) and serum TRAIL were measured for all children. Linear regression was used to assess changes in lung function per 1-SD increase in TRAIL. General linear models were used to assess mean lung function by tertiles (T) of TRAIL. RESULTS Mean age was 9.9 years (±0.6). A 1-SD increase in TRAIL was associated with lower values of FEV1 and FEV1/VC (change in FEV1 (L) and FEV1/VC ratio: -0.047, p-value 0.002, and -0.011, p-value 0.020, respectively) and higher values of lung resistance (change in R5 and R20 (kPa/(L/s)): 0.035, p-value <0.001 and 0.027, p-value 0.004, respectively). These associations remained significant after excluding children with pre-existing lung disease. Higher TRAIL levels were associated with more negative values for X5 in general linear models (Mean X5 (kPa/(L/s)) in T1 (low TRAIL): -0.193 vs T3 (high TRAIL): -0.216, p-value 0.026). CONCLUSIONS High TRAIL levels are significantly associated with markers of pulmonary airflow obstruction in school-aged children.
Collapse
Affiliation(s)
- Suneela Zaigham
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| | - Magnus Dencker
- Department of Translational Medicine, Clinical Physiology and Nuclear Medicine, Skåne University Hospital (SUS), Malmö, Sweden.
| | - Magnus K Karlsson
- Department of Orthopedics and Clinical Sciences Malmö, Lund University, Skåne University Hospital (SUS), Malmö, Sweden.
| | - Ola Thorsson
- Department of Translational Medicine, Clinical Physiology and Nuclear Medicine, Skåne University Hospital (SUS), Malmö, Sweden.
| | - Per Wollmer
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Department of Translational Medicine, Clinical Physiology and Nuclear Medicine, Skåne University Hospital (SUS), Malmö, Sweden.
| |
Collapse
|
13
|
Jones-Freeman B, Starkey MR. Bronchioalveolar stem cells in lung repair, regeneration and disease. J Pathol 2020; 252:219-226. [PMID: 32737996 DOI: 10.1002/path.5527] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
Abstract
Bronchioalveolar stem cells (BASCs) are a lung resident stem cell population located at bronchioalveolar duct junctions that contribute to the maintenance of bronchiolar club cells and alveolar epithelial cells of the distal lung. Their transformed counterparts are considered to be likely progenitors of lung adenocarcinomas, which has been a major area of research in relation to BASCs. A critical limitation in addressing the function of BASCs in vivo has been the lack of a unique BASC marker, which has prevented specific targeting of BASCs in animal models of respiratory conditions. Recently, there have been several studies describing genetically modified mice that allow in vivo quantification, tracing, and functional analysis of BASCs to address this long-standing issue. These cutting-edge experimental tools will likely have significant implications for future experimental studies involving BASCs and the elucidation of their role in various lung diseases. To date, this has been largely explored in models of lung injury including naphthalene-induced airway injury, bleomycin-induced alveolar injury, hyperoxia-induced models of bronchopulmonary dysplasia, and influenza virus infection. These novel experimental mouse tools will facilitate the assessment of the impact of BASC loss on additional respiratory conditions including infection-induced severe asthma and chronic obstructive pulmonary disease, as well as respiratory bacterial infections, both in early life and adulthood. These future studies may shed light on the potential broad applicability of targeting BASCs for a diverse range of respiratory conditions during lung development and in promoting effective regeneration and repair of the lung in respiratory diseases. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bernadette Jones-Freeman
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Galvão I, Kim RY, Shen S, Budden KF, Vieira AT, Hansbro PM. Emerging therapeutic targets and preclinical models for severe asthma. Expert Opin Ther Targets 2020; 24:845-857. [PMID: 32569487 DOI: 10.1080/14728222.2020.1786535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Asthma is a heterogeneous disease with complex multifactorial causes. It is possible to subclassify asthma into different phenotypes that have distinct immunological features. Eosinophilic asthma is a well-known phenotype of severe asthma; however, a large body of clinical and experimental evidence strongly associates persistent airway inflammation, including the accumulation of neutrophils in the bronchial mucosa, and resistance to corticosteroid therapy and non-Type-2 immune responses with severe asthma. Importantly, mainstay therapies are often ineffective in severe asthma and effective alternatives are urgently needed. AREAS COVERED Here, we discussed recently developed mouse models of severe asthma that recapitulates key features of the disease in humans. We also provide findings from clinically relevant experimental models that have identified potential therapeutic targets for severe asthma. The most relevant publications on the topic of interest were selected from PubMed. EXPERT COMMENTARY Increasing the understanding of disease-causing mechanisms in severe asthma may lead to the identification of novel therapeutic targets and the development of more effective therapies. Intense research interest into investigating the pathophysiological mechanisms of severe asthma has driven the development and interrogation of a myriad of mouse models that aim to replicate hallmark features of severe asthma in humans.
Collapse
Affiliation(s)
- Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney , Sydney, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney , Sydney, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle , Newcastle, Australia
| | - Sijie Shen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney , Sydney, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle , Newcastle, Australia
| | - Angélica T Vieira
- Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto De Ciências Biológicas, Federal University of Minas Gerais , Belo Horizonte, Brazil
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney , Sydney, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle , Newcastle, Australia
| |
Collapse
|
15
|
Wadhwa R, Dua K, Adcock IM, Horvat JC, Kim RY, Hansbro PM. Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev 2019; 28:28/153/190096. [PMID: 31636089 DOI: 10.1183/16000617.0096-2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/19/2019] [Indexed: 01/04/2023] Open
Abstract
Severe steroid-resistant asthma is clinically important, as patients with this form of the disease do not respond to mainstay corticosteroid therapies. The heterogeneity of this form of asthma and poor understanding of the pathological mechanisms involved hinder the identification of therapeutic targets and the development of more effective therapies. A major limiting factor in the understanding of severe steroid-resistant asthma is the existence of multiple endotypes represented by different immunological and inflammatory phenotypes, particularly in adults. Several clinical and experimental studies have revealed associations between specific respiratory infections and steroid-resistant asthma in adults. Here, we discuss recent findings from other authors as well as our own studies that have developed novel experimental models for interrogating the association between respiratory infections and severe steroid-resistant asthma. These models have enabled the identification of new therapies using macrolides, as well as several novel disease mechanisms, including the microRNA-21/phosphoinositide 3-kinase/histone deacetylase 2 axis and NLRP3 inflammasomes, and highlight the potential of these mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia.,Both authors contributed equally
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Both authors contributed equally
| | - Ian M Adcock
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Faculty of Science, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
16
|
Wang G, Pang Z, Chen-Yu Hsu A, Guan X, Ran N, Yuan Y, Wang Z, Guo Y, Zheng R, Wang F. Combined treatment with SB203580 and dexamethasone suppresses non-typeable Haemophilus influenzae-induced Th17 inflammation response in murine allergic asthma. Eur J Pharmacol 2019; 862:172623. [PMID: 31445014 DOI: 10.1016/j.ejphar.2019.172623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
Accumulating evidence suggests that non-typeable Haemophilus influenzae (NTHi) infection drives the development of steroid-resistant allergic airway disease (SRAAD), exacerbates clinical symptoms, worsens quality of life, and accounts for most of the related healthcare burden. The poor understanding of the pathogenesis of SRAAD deters the development of more effective therapeutic strategies. Here, we established a murine model of NTHi infection-induced exacerbation of allergic airway disease. We showed that NTHi infection drove Th 17-mediated pulmonary neutrophilic inflammation, aggravated airway hyper-responsiveness, and upset the balance of MUC5AC and MUC5B expression. Dexamethasone treatment effectively inhibited the features of allergic airway disease but failed to reduce NTHi-induced exacerbation, which was associated with the hyper-phosphorylation of p38 mitogen-activated protein kinase (MAPK). Interestingly, inhibition of p38 using a specific inhibitor (SB203580) only partly suppressed the airway hyper-responsiveness and mucus hyper-secretion but failed to abrogate the infection-induced neutrophilic inflammatory response in SRAAD. However, SB203580 and dexamethasone co-treatment substantially suppressed all the features of NTHi-induced SRAAD. Our findings highlight the importance of p38 MAPK in the pathogenesis of NTHi-induced steroid resistance, and this combined treatment approach may be a novel strategy against steroid-resistant asthma.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhiqiang Pang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and the University of Newcastle, NSW, 2305, Australia
| | - Xuewa Guan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Nan Ran
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yuze Yuan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Ziyan Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yingqiao Guo
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Ruipeng Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Invasive Technology, First Hospital of Jilin University, Changchun, 130021, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
17
|
Starkey MR, Plank MW, Casolari P, Papi A, Pavlidis S, Guo Y, Cameron GJM, Haw TJ, Tam A, Obiedat M, Donovan C, Hansbro NG, Nguyen DH, Nair PM, Kim RY, Horvat JC, Kaiko GE, Durum SK, Wark PA, Sin DD, Caramori G, Adcock IM, Foster PS, Hansbro PM. IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis. Eur Respir J 2019; 54:1800174. [PMID: 31196943 PMCID: PMC8132110 DOI: 10.1183/13993003.00174-2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/19/2019] [Indexed: 12/24/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death globally. The lack of effective treatments results from an incomplete understanding of the underlying mechanisms driving COPD pathogenesis.Interleukin (IL)-22 has been implicated in airway inflammation and is increased in COPD patients. However, its roles in the pathogenesis of COPD is poorly understood. Here, we investigated the role of IL-22 in human COPD and in cigarette smoke (CS)-induced experimental COPD.IL-22 and IL-22 receptor mRNA expression and protein levels were increased in COPD patients compared to healthy smoking or non-smoking controls. IL-22 and IL-22 receptor levels were increased in the lungs of mice with experimental COPD compared to controls and the cellular source of IL-22 included CD4+ T-helper cells, γδ T-cells, natural killer T-cells and group 3 innate lymphoid cells. CS-induced pulmonary neutrophils were reduced in IL-22-deficient (Il22 -/-) mice. CS-induced airway remodelling and emphysema-like alveolar enlargement did not occur in Il22 -/- mice. Il22 -/- mice had improved lung function in terms of airway resistance, total lung capacity, inspiratory capacity, forced vital capacity and compliance.These data highlight important roles for IL-22 and its receptors in human COPD and CS-induced experimental COPD.
Collapse
Affiliation(s)
- Malcolm R Starkey
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Maximilian W Plank
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Paolo Casolari
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Alberto Papi
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Yike Guo
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Guy J M Cameron
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Tatt Jhong Haw
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Anthony Tam
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ma'en Obiedat
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chantal Donovan
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Nicole G Hansbro
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
- Centre for inflammation, Centenary Institute, Sydney, Australia
- School of Life Sciences, University of Technology, Ultimo, Australia
| | - Duc H Nguyen
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Prema Mono Nair
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Richard Y Kim
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Jay C Horvat
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Gerard E Kaiko
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Scott K Durum
- Laboratory of Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Peter A Wark
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Don D Sin
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gaetano Caramori
- UOC di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Paul S Foster
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Philip M Hansbro
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
- Centre for inflammation, Centenary Institute, Sydney, Australia
- School of Life Sciences, University of Technology, Ultimo, Australia
| |
Collapse
|
18
|
Collison AM, Li J, de Siqueira AP, Lv X, Toop HD, Morris JC, Starkey MR, Hansbro PM, Zhang J, Mattes J. TRAIL signals through the ubiquitin ligase MID1 to promote pulmonary fibrosis. BMC Pulm Med 2019; 19:31. [PMID: 30732588 PMCID: PMC6367767 DOI: 10.1186/s12890-019-0786-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has previously been demonstrated to play a pro-inflammatory role in allergic airways disease and COPD through the upregulation of the E3 ubiquitin ligase MID1 and the subsequent deactivation of protein phosphatase 2A (PP2A). METHODS Biopsies were taken from eight IPF patients presenting to the Second Affiliated Hospital of Jilin University, China between January 2013 and February 2014 with control samples obtained from resected lung cancers. Serum TRAIL, MID1 protein and PP2A activity in biopsies, and patients' lung function were measured. Wild type and TRAIL deficient Tnfsf10-/- BALB/c mice were administered bleomycin to induce fibrosis and some groups were treated with the FTY720 analogue AAL(s) to activate PP2A. Mouse fibroblasts were treated with recombinant TRAIL and fibrotic responses were assessed. RESULTS TRAIL in serum and MID1 protein levels in biopsies from IPF patients were increased compared to controls. MID1 levels were inversely associated while PP2A activity levels correlated with DLco. Tnfsf10-/- and mice treated with the PP2A activator AAL(s) were largely protected against bleomycin-induced reductions in lung function and fibrotic changes. Addition of recombinant TRAIL to mouse fibroblasts in-vitro increased collagen production which was reversed by PP2A activation with AAL(s). CONCLUSION TRAIL signalling through MID1 deactivates PP2A and promotes fibrosis with corresponding lung function decline. This may provide novel therapeutic targets for IPF.
Collapse
Affiliation(s)
- Adam M. Collison
- Experimental and Translational Respiratory Medicine Group, Level 2 East, Hunter Medical Research Institute, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, NSW 2308 Australia
- Priority Research Centre GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Junyao Li
- Experimental and Translational Respiratory Medicine Group, Level 2 East, Hunter Medical Research Institute, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, NSW 2308 Australia
- Priority Research Centre GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041 People’s Republic of China
| | - Ana Pereira de Siqueira
- Experimental and Translational Respiratory Medicine Group, Level 2 East, Hunter Medical Research Institute, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, NSW 2308 Australia
- Priority Research Centre GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041 People’s Republic of China
| | - Hamish D. Toop
- School of Chemistry, University of New South Wales, Sydney, New South Wales Australia
| | - Jonathan C. Morris
- School of Chemistry, University of New South Wales, Sydney, New South Wales Australia
| | - Malcolm R. Starkey
- Priority Research Centre GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041 People’s Republic of China
| | - Joerg Mattes
- Experimental and Translational Respiratory Medicine Group, Level 2 East, Hunter Medical Research Institute, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, NSW 2308 Australia
- Priority Research Centre GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Paediatric Respiratory & Sleep Medicine Department, Newcastle Children’s Hospital, Kaleidoscope, Newcastle, Australia
| |
Collapse
|
19
|
Loering S, Cameron GJM, Starkey MR, Hansbro PM. Lung development and emerging roles for type 2 immunity. J Pathol 2019; 247:686-696. [PMID: 30506724 DOI: 10.1002/path.5211] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Lung development is a complex process mediated through the interaction of multiple cell types, factors and mediators. In mice, it starts as early as embryonic day 9 and continues into early adulthood. The process can be separated into five different developmental stages: embryonic, pseudoglandular, canalicular, saccular, and alveolar. Whilst lung bud formation and branching morphogenesis have been studied extensively, the mechanisms of alveolarisation are incompletely understood. Aberrant lung development can lead to deleterious consequences for respiratory health such as bronchopulmonary dysplasia (BPD), a disease primarily affecting preterm neonates, which is characterised by increased pulmonary inflammation and disturbed alveolarisation. While the deleterious effects of type 1-mediated inflammatory responses on lung development have been well established, the role of type 2 responses in postnatal lung development remains poorly understood. Recent studies indicate that type 2-associated immune cells, such as group 2 innate lymphoid cells and alveolar macrophages, are increased in number during postnatal alveolarisation. Here, we present the current state of understanding of the postnatal stages of lung development and the key cell types and mediators known to be involved. We also provide an overview of how stem cells are involved in lung development and regeneration, and the negative influences of respiratory infections. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Svenja Loering
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Guy J M Cameron
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Center for Inflammation, Centenary Institute and The School of Life Sciences, University of Technology, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Abstract
Ricin toxin is a biothreat agent that is particularly damaging to lung tissue following inhalation. A hallmark of ricin exposure is widespread inflammation and concomitant destruction of the airway epithelium. In this study, we investigated the possible interaction between ricin and known proinflammatory cytokines associated with lung tissue. Using an established human airway epithelial cell line, we demonstrate that epithelial cell killing by ricin is significantly enhanced in the presence of the proinflammatory cytokine known as TRAIL (CD253). Moreover, epithelial cells that are simultaneously exposed to ricin and TRAIL produced large amounts of secondary proinflammatory signals, including IL-6, which in the context of the lung would be expected to exacerbate toxin-induced tissue damage. Our results suggest that therapies designed to neutralize proinflammatory cytokines such as TRAIL and IL-6 may limit the bystander damage associated with ricin exposure. Inhalation of ricin toxin is associated with the onset of acute respiratory distress syndrome (ARDS), characterized by hemorrhage, inflammatory exudates, and tissue edema, as well as the nearly complete destruction of the lung epithelium. Here we report that the Calu-3 human airway epithelial cell line is relatively impervious to the effects of ricin, with little evidence of cell death even upon exposure to microgram amounts of toxin. However, the addition of exogenous soluble tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL; CD253) dramatically sensitized Calu-3 cells to ricin-induced apoptosis. Calu-3 cell killing in response to ricin and TRAIL exposure was partially inhibited by caspase-8 and caspase-3/7 inhibitors, consistent with involvement of extrinsic apoptotic pathways in cell death. We employed nCounter Technology to define the transcriptional response of Calu-3 cells to ricin, TRAIL, and the combination of ricin plus TRAIL. An array of genes associated with inflammation and cell death were significantly upregulated upon treatment with ricin toxin and were further amplified upon addition of TRAIL. Of particular note was interleukin-6 (IL-6), whose expression in Calu-3 cells increased 300-fold upon ricin treatment and more than 750-fold upon ricin and TRAIL treatment. IL-6 secretion by Calu-3 cells was confirmed by cytometric bead array analysis. On the basis of these finding, we speculate that the severe airway epithelial cell damage observed in animal models following ricin exposure is a result of a positive-feedback loop driven by proinflammatory cytokines such as TRAIL and IL-6. IMPORTANCE Ricin toxin is a biothreat agent that is particularly damaging to lung tissue following inhalation. A hallmark of ricin exposure is widespread inflammation and concomitant destruction of the airway epithelium. In this study, we investigated the possible interaction between ricin and known proinflammatory cytokines associated with lung tissue. Using an established human airway epithelial cell line, we demonstrate that epithelial cell killing by ricin is significantly enhanced in the presence of the proinflammatory cytokine known as TRAIL (CD253). Moreover, epithelial cells that are simultaneously exposed to ricin and TRAIL produced large amounts of secondary proinflammatory signals, including IL-6, which in the context of the lung would be expected to exacerbate toxin-induced tissue damage. Our results suggest that therapies designed to neutralize proinflammatory cytokines such as TRAIL and IL-6 may limit the bystander damage associated with ricin exposure.
Collapse
|
21
|
Braithwaite AT, Marriott HM, Lawrie A. Divergent Roles for TRAIL in Lung Diseases. Front Med (Lausanne) 2018; 5:212. [PMID: 30101145 PMCID: PMC6072839 DOI: 10.3389/fmed.2018.00212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
The tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a widely expressed cytokine that can bind five different receptors. TRAIL has been of particular interest for its proposed ability to selectively induce apoptosis in tumour cells. However, it has also been found to regulate a wide variety of non-canonical cellular effects including survival, migration and proliferation via kinase signalling pathways. Lung diseases represent a wide range of conditions affecting multiple tissues. TRAIL has been implicated in several biological processes underlying lung diseases, including angiogenesis, inflammation, and immune regulation. For example, TRAIL is detrimental in pulmonary arterial hypertension—it is upregulated in patient serum and lungs, and drives the underlying proliferative pulmonary vascular remodelling in rodent models. However, TRAIL protects against pulmonary fibrosis in mice models—by inducing apoptosis of neutrophils—and reduced serum TRAIL is found in patients. Conversely, in the airways TRAIL positively regulates inflammation and immune response. In COPD patients and asthmatic patients challenged with antigen, TRAIL and its death receptors are upregulated in serum and airways. Furthermore, TRAIL-deleted mouse models have reduced airway inflammation and remodelling. In the context of respiratory infections, TRAIL assists in immune response, e.g., via T-cell toxicity in influenza infection, and neutrophil killing in S. pneumoniae infection. In this mini-review, we examine the functions of TRAIL and highlight the diverse roles TRAIL has in diseases affecting the lung. Disentangling the facets of TRAIL signalling in lung diseases could help in understanding their pathogenic processes and targeting novel treatments.
Collapse
Affiliation(s)
- Adam T Braithwaite
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| | - Helen M Marriott
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| |
Collapse
|
22
|
Nair PM, Starkey MR, Haw TJ, Ruscher R, Liu G, Maradana MR, Thomas R, O'Sullivan BJ, Hansbro PM. RelB-Deficient Dendritic Cells Promote the Development of Spontaneous Allergic Airway Inflammation. Am J Respir Cell Mol Biol 2018; 58:352-365. [PMID: 28960101 DOI: 10.1165/rcmb.2017-0242oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RelB is a member of the NF-κB family, which is essential for dendritic cell (DC) function and maturation. However, the contribution of RelB to the development of allergic airway inflammation (AAI) is unknown. Here, we identify a pivotal role for RelB in the development of spontaneous AAI that is independent of exogenous allergen exposure. We assessed AAI in two strains of RelB-deficient (RelB-/-) mice: one with a targeted deletion and one expressing a major histocompatibility complex transgene. To determine the importance of RelB in DCs, RelB-sufficient DCs (RelB+/+ or RelB-/-) were adoptively transferred into RelB-/- mice. Both strains had increased pulmonary inflammation compared with their respective wild-type (RelB+/+) and heterozygous (RelB+/-) controls. RelB-/- mice also had increased inflammatory cell influx into the airways, levels of chemokines (CCL2/3/4/5/11/17 and CXCL9/10/13) and T-helper cell type 2-associated cytokines (IL-4/5) in lung tissues, serum IgE, and airway remodeling (mucus-secreting cell numbers, collagen deposition, and epithelial thickening). Transfer of RelB+/- CD11c+ DCs into RelB-/- mice decreased pulmonary inflammation, with reductions in lung chemokines, T-helper cell type 2-associated cytokines (IL-4/5/13/25/33 and thymic stromal lymphopoietin), serum IgE, type 2 innate lymphoid cells, myeloid DCs, γδ T cells, lung Vβ13+ T cells, mucus-secreting cells, airway collagen deposition, and epithelial thickening. These data indicate that RelB deficiency may be a key pathway underlying AAI, and that DC-encoded RelB is sufficient to restore control of this inflammation.
Collapse
Affiliation(s)
- Prema M Nair
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Malcolm R Starkey
- 1 Priority Research Centre for Healthy Lungs and.,3 Priority Research Centre GrowUpWell, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tatt Jhong Haw
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Roland Ruscher
- 4 Department of Laboratory Medicine and Pathology, and.,5 Center for Immunology, University of Minnesota, Minneapolis, Minnesota; and.,6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Gang Liu
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Muralidhara R Maradana
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Ranjeny Thomas
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Brendan J O'Sullivan
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Philip M Hansbro
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
23
|
Hansbro PM, Kim RY, Starkey MR, Donovan C, Dua K, Mayall JR, Liu G, Hansbro NG, Simpson JL, Wood LG, Hirota JA, Knight DA, Foster PS, Horvat JC. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2018; 278:41-62. [PMID: 28658552 DOI: 10.1111/imr.12543] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe, steroid-resistant asthma is clinically and economically important since affected individuals do not respond to mainstay corticosteroid treatments for asthma. Patients with this disease experience more frequent exacerbations of asthma, are more likely to be hospitalized, and have a poorer quality of life. Effective therapies are urgently required, however, their development has been hampered by a lack of understanding of the pathological processes that underpin disease. A major obstacle to understanding the processes that drive severe, steroid-resistant asthma is that the several endotypes of the disease have been described that are characterized by different inflammatory and immunological phenotypes. This heterogeneity makes pinpointing processes that drive disease difficult in humans. Clinical studies strongly associate specific respiratory infections with severe, steroid-resistant asthma. In this review, we discuss key findings from our studies where we describe the development of representative experimental models to improve our understanding of the links between infection and severe, steroid-resistant forms of this disease. We also discuss their use in elucidating the mechanisms, and their potential for developing effective therapeutic strategies, for severe, steroid-resistant asthma. Finally, we highlight how the immune mechanisms and therapeutic targets we have identified may be applicable to obesity-or pollution-associated asthma.
Collapse
Affiliation(s)
- Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jeremy A Hirota
- James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
24
|
Foster PS, Maltby S, Rosenberg HF, Tay HL, Hogan SP, Collison AM, Yang M, Kaiko GE, Hansbro PM, Kumar RK, Mattes J. Modeling T H 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev 2018; 278:20-40. [PMID: 28658543 DOI: 10.1111/imr.12549] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4+ T-helper type-2 lymphocytes (TH 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical TH 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of TH 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote TH 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of TH 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam M Collison
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Gerard E Kaiko
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Rakesh K Kumar
- Pathology, UNSW Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Joerg Mattes
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| |
Collapse
|
25
|
Haw TJ, Starkey MR, Pavlidis S, Fricker M, Arthurs AL, Nair PM, Liu G, Hanish I, Kim RY, Foster PS, Horvat JC, Adcock IM, Hansbro PM. Toll-like receptor 2 and 4 have opposing roles in the pathogenesis of cigarette smoke-induced chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2018; 314:L298-L317. [PMID: 29025711 PMCID: PMC5866502 DOI: 10.1152/ajplung.00154.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/08/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death and imposes major socioeconomic burdens globally. It is a progressive and disabling condition that severely impairs breathing and lung function. There is a lack of effective treatments for COPD, which is a direct consequence of the poor understanding of the underlying mechanisms involved in driving the pathogenesis of the disease. Toll-like receptor (TLR)2 and TLR4 are implicated in chronic respiratory diseases, including COPD, asthma and pulmonary fibrosis. However, their roles in the pathogenesis of COPD are controversial and conflicting evidence exists. In the current study, we investigated the role of TLR2 and TLR4 using a model of cigarette smoke (CS)-induced experimental COPD that recapitulates the hallmark features of human disease. TLR2, TLR4, and associated coreceptor mRNA expression was increased in the airways in both experimental and human COPD. Compared with wild-type (WT) mice, CS-induced pulmonary inflammation was unaltered in TLR2-deficient ( Tlr2-/-) and TLR4-deficient ( Tlr4-/-) mice. CS-induced airway fibrosis, characterized by increased collagen deposition around small airways, was not altered in Tlr2-/- mice but was attenuated in Tlr4-/- mice compared with CS-exposed WT controls. However, Tlr2-/- mice had increased CS-induced emphysema-like alveolar enlargement, apoptosis, and impaired lung function, while these features were reduced in Tlr4-/- mice compared with CS-exposed WT controls. Taken together, these data highlight the complex roles of TLRs in the pathogenesis of COPD and suggest that activation of TLR2 and/or inhibition of TLR4 may be novel therapeutic strategies for the treatment of COPD.
Collapse
Affiliation(s)
- Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
- Priority Research Centre for Grow Up Well, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London , London , United Kingdom
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Anya L Arthurs
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Irwan Hanish
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor , Malaysia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Ian M Adcock
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London , London , United Kingdom
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| |
Collapse
|
26
|
Liu G, Cooley MA, Nair PM, Donovan C, Hsu AC, Jarnicki AG, Haw TJ, Hansbro NG, Ge Q, Brown AC, Tay H, Foster PS, Wark PA, Horvat JC, Bourke JE, Grainge CL, Argraves WS, Oliver BG, Knight DA, Burgess JK, Hansbro PM. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. J Pathol 2017; 243:510-523. [PMID: 28862768 DOI: 10.1002/path.4979] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/08/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c-/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c-/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Qi Ge
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Hock Tay
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Chris L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Janette K Burgess
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia.,University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen Research Institute of Asthma and COPD, Groningen, The Netherlands
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
27
|
Nair PM, Starkey MR, Haw TJ, Liu G, Horvat JC, Morris JC, Verrills NM, Clark AR, Ammit AJ, Hansbro PM. Targeting PP2A and proteasome activity ameliorates features of allergic airway disease in mice. Allergy 2017; 72:1891-1903. [PMID: 28543283 DOI: 10.1111/all.13212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma is an allergic airway disease (AAD) caused by aberrant immune responses to allergens. Protein phosphatase-2A (PP2A) is an abundant serine/threonine phosphatase with anti-inflammatory activity. The ubiquitin proteasome system (UPS) controls many cellular processes, including the initiation of inflammatory responses by protein degradation. We assessed whether enhancing PP2A activity with fingolimod (FTY720) or 2-amino-4-(4-(heptyloxy) phenyl)-2-methylbutan-1-ol (AAL(S) ), or inhibiting proteasome activity with bortezomib (BORT), could suppress experimental AAD. METHODS Acute AAD was induced in C57BL/6 mice by intraperitoneal sensitization with ovalbumin (OVA) in combination with intranasal (i.n) exposure to OVA. Chronic AAD was induced in mice with prolonged i.n exposure to crude house dust mite (HDM) extract. Mice were treated with vehicle, FTY720, AAL(S) , BORT or AAL(S) +BORT and hallmark features of AAD assessed. RESULTS AAL(S) reduced the severity of acute AAD by suppressing tissue eosinophils and inflammation, mucus-secreting cell (MSC) numbers, type 2-associated cytokines (interleukin (IL)-33, thymic stromal lymphopoietin, IL-5 and IL-13), serum immunoglobulin (Ig)E and airway hyper-responsiveness (AHR). FTY720 only suppressed tissue inflammation and IgE. BORT reduced bronchoalveolar lavage fluid (BALF) and tissue eosinophils and inflammation, IL-5, IL-13 and AHR. Combined treatment with AAL(S) +BORT had complementary effects and suppressed BALF and tissue eosinophils and inflammation, MSC numbers, reduced the production of type 2 cytokines and AHR. AAL(S) , BORT and AAL(S) +BORT also reduced airway remodelling in chronic AAD. CONCLUSION These findings highlight the potential of combination therapies that enhance PP2A and inhibit proteasome activity as novel therapeutic strategies for asthma.
Collapse
Affiliation(s)
- P. M. Nair
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - M. R. Starkey
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - T. J. Haw
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - G. Liu
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - J. C. Horvat
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - J. C. Morris
- School of Chemistry; University of New South Wales; Sydney NSW Australia
| | - N. M. Verrills
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - A. R. Clark
- Institute of Inflammation and Ageing; College of Medical and Dental Sciences; University of Birmingham; Birmingham UK
| | - A. J. Ammit
- Woolcock Emphysema Centre; Woolcock Institute of Medical Research; University of Sydney; Sydney NSW Australia
- Faculty of Science; School of Life Sciences; University of Technology Sydney; Sydney NSW Australia
| | - P. M. Hansbro
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| |
Collapse
|
28
|
Chotirmall SH, Gellatly SL, Budden KF, Mac Aogain M, Shukla SD, Wood DLA, Hugenholtz P, Pethe K, Hansbro PM. Microbiomes in respiratory health and disease: An Asia-Pacific perspective. Respirology 2017; 22:240-250. [PMID: 28102970 DOI: 10.1111/resp.12971] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/30/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023]
Abstract
There is currently enormous interest in studying the role of the microbiome in health and disease. Microbiome's role is increasingly being applied to respiratory diseases, in particular COPD, asthma, cystic fibrosis and bronchiectasis. The changes in respiratory microbiomes that occur in these diseases and how they are modified by environmental challenges such as cigarette smoke, air pollution and infection are being elucidated. There is also emerging evidence that gut microbiomes play a role in lung diseases through the modulation of systemic immune responses and can be modified by diet and antibiotic treatment. There are issues that are particular to the Asia-Pacific region involving diet and prevalence of specific respiratory diseases. Each of these issues is further complicated by the effects of ageing. The challenges now are to elucidate the cause and effect relationships between changes in microbiomes and respiratory diseases and how to translate these into new treatments and clinical care. Here we review the current understanding and progression in these areas.
Collapse
Affiliation(s)
- Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Micheál Mac Aogain
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
29
|
Nguyen TH, Maltby S, Tay HL, Eyers F, Foster PS, Yang M. Identification of IFN-γ and IL-27 as Critical Regulators of Respiratory Syncytial Virus-Induced Exacerbation of Allergic Airways Disease in a Mouse Model. THE JOURNAL OF IMMUNOLOGY 2017; 200:237-247. [PMID: 29167232 DOI: 10.4049/jimmunol.1601950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 10/17/2017] [Indexed: 01/15/2023]
Abstract
Respiratory syncytial virus (RSV) infection induces asthma exacerbations, which leads to worsening of clinical symptoms and may result in a sustained decline in lung function. Exacerbations are the main cause of morbidity and mortality associated with asthma, and significantly contribute to asthma-associated healthcare costs. Although glucocorticoids are used to manage exacerbations, some patients respond to them poorly. The underlying mechanisms associated with steroid-resistant exacerbations remain largely unknown. We have previously established a mouse model of RSV-induced exacerbation of allergic airways disease, which mimics hallmark clinical features of asthma. In this study, we have identified key roles for macrophage IFN-γ and IL-27 in the regulation of RSV-induced exacerbation of allergic airways disease. Production of IFN-γ and IL-27 was steroid-resistant, and neutralization of IFN-γ or IL-27 significantly suppressed RSV-induced steroid-resistant airway hyperresponsiveness and airway inflammation. We have previously implicated activation of pulmonary macrophage by TNF-α and/or MCP-1 in the mechanisms of RSV-induced exacerbation. Stimulation of pulmonary macrophages with TNF-α and/or MCP-1 induced expression of both IFN-γ and IL-27. Our findings highlight critical roles for IFN-γ and IL-27, downstream of TNF-α and MCP-1, in the mechanism of RSV-induced exacerbation. Thus, targeting the pathways that these factors activate may be a potential therapeutic approach for virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Thi Hiep Nguyen
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Fiona Eyers
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and .,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and .,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| |
Collapse
|
30
|
Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ, Brown AC, Mayall JR, Ali MK, Starkey MR, Hansbro NG, Hirota JA, Wood LG, Simpson JL, Knight DA, Wark PA, Gibson PG, O'Neill LAJ, Cooper MA, Horvat JC, Hansbro PM. Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma. Am J Respir Crit Care Med 2017; 196:283-297. [PMID: 28252317 DOI: 10.1164/rccm.201609-1830oc] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RATIONALE Severe, steroid-resistant asthma is the major unmet need in asthma therapy. Disease heterogeneity and poor understanding of pathogenic mechanisms hampers the identification of therapeutic targets. Excessive nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome and concomitant IL-1β responses occur in chronic obstructive pulmonary disease, respiratory infections, and neutrophilic asthma. However, the direct contributions to pathogenesis, mechanisms involved, and potential for therapeutic targeting remain poorly understood, and are unknown in severe, steroid-resistant asthma. OBJECTIVES To investigate the roles and therapeutic targeting of the NLRP3 inflammasome and IL-1β in severe, steroid-resistant asthma. METHODS We developed mouse models of Chlamydia and Haemophilus respiratory infection-mediated, ovalbumin-induced severe, steroid-resistant allergic airway disease. These models share the hallmark features of human disease, including elevated airway neutrophils, and NLRP3 inflammasome and IL-1β responses. The roles and potential for targeting of NLRP3 inflammasome, caspase-1, and IL-1β responses in experimental severe, steroid-resistant asthma were examined using a highly selective NLRP3 inhibitor, MCC950; the specific caspase-1 inhibitor Ac-YVAD-cho; and neutralizing anti-IL-1β antibody. Roles for IL-1β-induced neutrophilic inflammation were examined using IL-1β and anti-Ly6G. MEASUREMENTS AND MAIN RESULTS Chlamydia and Haemophilus infections increase NLRP3, caspase-1, IL-1β responses that drive steroid-resistant neutrophilic inflammation and airway hyperresponsiveness. Neutrophilic airway inflammation, disease severity, and steroid resistance in human asthma correlate with NLRP3 and IL-1β expression. Treatment with anti-IL-1β, Ac-YVAD-cho, and MCC950 suppressed IL-1β responses and the important steroid-resistant features of disease in mice, whereas IL-1β administration recapitulated these features. Neutrophil depletion suppressed IL-1β-induced steroid-resistant airway hyperresponsiveness. CONCLUSIONS NLRP3 inflammasome responses drive experimental severe, steroid-resistant asthma and are potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Richard Y Kim
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - James W Pinkerton
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Ama T Essilfie
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Avril A B Robertson
- 2 Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Katherine J Baines
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Alexandra C Brown
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jemma R Mayall
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - M Khadem Ali
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jeremy A Hirota
- 3 James Hogg Research Centre, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Lisa G Wood
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jodie L Simpson
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Darryl A Knight
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter G Gibson
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Luke A J O'Neill
- 4 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Matthew A Cooper
- 2 Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jay C Horvat
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
31
|
Dua K, Hansbro NG, Hansbro PM. Steroid resistance and concomitant respiratory infections: A challenging battle in pulmonary clinic. EXCLI JOURNAL 2017; 16:981-985. [PMID: 28900378 PMCID: PMC5579404 DOI: 10.17179/excli2017-425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/17/2017] [Indexed: 12/02/2022]
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology,Sydney, Ultimo NSW 2007, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Nicole G. Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Philip M. Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| |
Collapse
|
32
|
Ali MK, Kim RY, Karim R, Mayall JR, Martin KL, Shahandeh A, Abbasian F, Starkey MR, Loustaud-Ratti V, Johnstone D, Milward EA, Hansbro PM, Horvat JC. Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol 2017; 88:181-195. [PMID: 28495571 DOI: 10.1016/j.biocel.2017.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Iron is essential for many biological processes, however, too much or too little iron can result in a wide variety of pathological consequences, depending on the organ system, tissue or cell type affected. In order to reduce pathogenesis, iron levels are tightly controlled in throughout the body by regulatory systems that control iron absorption, systemic transport and cellular uptake and storage. Altered iron levels and/or dysregulated homeostasis have been associated with several lung diseases, including chronic obstructive pulmonary disease, lung cancer, cystic fibrosis, idiopathic pulmonary fibrosis and asthma. However, the mechanisms that underpin these associations and whether iron plays a key role in the pathogenesis of lung disease are yet to be fully elucidated. Furthermore, in order to survive and replicate, pathogenic micro-organisms have evolved strategies to source host iron, including freeing iron from cells and proteins that store and transport iron. To counter these microbial strategies, mammals have evolved immune-mediated defence mechanisms that reduce iron availability to pathogens. This interplay between iron, infection and immunity has important ramifications for the pathogenesis and management of human respiratory infections and diseases. An increased understanding of the role that iron plays in the pathogenesis of lung disease and respiratory infections may help inform novel therapeutic strategies. Here we review the clinical and experimental evidence that highlights the potential importance of iron in respiratory diseases and infections.
Collapse
Affiliation(s)
- Md Khadem Ali
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Richard Y Kim
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Rafia Karim
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Jemma R Mayall
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Kristy L Martin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Ali Shahandeh
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Firouz Abbasian
- Global Centre for Environmental Remediation, Faculty of Science, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Malcolm R Starkey
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | | | - Daniel Johnstone
- Bosch Institute and Discipline of Physiology, The University of Sydney, Sydney NSW 2000, Australia
| | - Elizabeth A Milward
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia.
| |
Collapse
|
33
|
Hsu ACY, Dua K, Starkey MR, Haw TJ, Nair PM, Nichol K, Zammit N, Grey ST, Baines KJ, Foster PS, Hansbro PM, Wark PA. MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. JCI Insight 2017; 2:e90443. [PMID: 28405612 DOI: 10.1172/jci.insight.90443] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Influenza A virus (IAV) infections lead to severe inflammation in the airways. Patients with chronic obstructive pulmonary disease (COPD) characteristically have exaggerated airway inflammation and are more susceptible to infections with severe symptoms and increased mortality. The mechanisms that control inflammation during IAV infection and the mechanisms of immune dysregulation in COPD are unclear. We found that IAV infections lead to increased inflammatory and antiviral responses in primary bronchial epithelial cells (pBECs) from healthy nonsmoking and smoking subjects. In pBECs from COPD patients, infections resulted in exaggerated inflammatory but deficient antiviral responses. A20 is an important negative regulator of NF-κB-mediated inflammatory but not antiviral responses, and A20 expression was reduced in COPD. IAV infection increased the expression of miR-125a or -b, which directly reduced the expression of A20 and mitochondrial antiviral signaling (MAVS), and caused exaggerated inflammation and impaired antiviral responses. These events were replicated in vivo in a mouse model of experimental COPD. Thus, miR-125a or -b and A20 may be targeted therapeutically to inhibit excessive inflammatory responses and enhance antiviral immunity in IAV infections and in COPD.
Collapse
Affiliation(s)
- Alan C-Y Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Tatt-Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Kristy Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Nathan Zammit
- Transplantation Immunology Group, Immunology Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shane T Grey
- Transplantation Immunology Group, Immunology Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
34
|
Peteranderl C, Herold S. The Impact of the Interferon/TNF-Related Apoptosis-Inducing Ligand Signaling Axis on Disease Progression in Respiratory Viral Infection and Beyond. Front Immunol 2017; 8:313. [PMID: 28382038 PMCID: PMC5360710 DOI: 10.3389/fimmu.2017.00313] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/06/2017] [Indexed: 12/29/2022] Open
Abstract
Interferons (IFNs) are well described to be rapidly induced upon pathogen-associated pattern recognition. After binding to their respective IFN receptors and activation of the cellular JAK/signal transducer and activator of transcription signaling cascade, they stimulate the transcription of a plethora of IFN-stimulated genes (ISGs) in infected as well as bystander cells such as the non-infected epithelium and cells of the immune system. ISGs may directly act on the invading pathogen or can either positively or negatively regulate the innate and adaptive immune response. However, IFNs and ISGs do not only play a key role in the limitation of pathogen spread but have also been recently found to provoke an unbalanced, overshooting inflammatory response causing tissue injury and hampering repair processes. A prominent regulator of disease outcome, especially in-but not limited to-respiratory viral infection, is the IFN-dependent mediator TRAIL (TNF-related apoptosis-inducing ligand) produced by several cell types including immune cells such as macrophages or T cells. First described as an apoptosis-inducing agent in transformed cells, it is now also well established to rapidly evoke cellular stress pathways in epithelial cells, finally leading to caspase-dependent or -independent cell death. Hereby, pathogen spread is limited; however in some cases, also the surrounding tissue is severely harmed, thus augmenting disease severity. Interestingly, the lack of a strictly controlled and well balanced IFN/TRAIL signaling response has not only been implicated in viral infection but might furthermore be an important determinant of disease progression in bacterial superinfections and in chronic respiratory illness. Conclusively, the IFN/TRAIL signaling axis is subjected to a complex modulation and might be exploited for the evaluation of new therapeutic concepts aiming at attenuation of tissue injury.
Collapse
Affiliation(s)
- Christin Peteranderl
- Department of Internal Medicine II, German Center for Lung Research (DZL), University of Giessen, Marburg Lung Center (UGMLC), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, German Center for Lung Research (DZL), University of Giessen, Marburg Lung Center (UGMLC), Giessen, Germany
| |
Collapse
|
35
|
Shukla SD, Budden KF, Neal R, Hansbro PM. Microbiome effects on immunity, health and disease in the lung. Clin Transl Immunology 2017; 6:e133. [PMID: 28435675 PMCID: PMC5382435 DOI: 10.1038/cti.2017.6] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), are among the leading causes of mortality and morbidity worldwide. In the past decade, the interest in the role of microbiome in maintaining lung health and in respiratory diseases has grown exponentially. The advent of sophisticated multiomics techniques has enabled the identification and characterisation of microbiota and their roles in respiratory health and disease. Furthermore, associations between the microbiome of the lung and gut, as well as the immune cells and mediators that may link these two mucosal sites, appear to be important in the pathogenesis of lung conditions. Here we review the recent evidence of the role of normal gastrointestinal and respiratory microbiome in health and how dysbiosis affects chronic pulmonary diseases. The potential implications of host and environmental factors such as age, gender, diet and use of antibiotics on the composition and overall functionality of microbiome are also discussed. We summarise how microbiota may mediate the dynamic process of immune development and/or regulation focusing on recent data from both clinical human studies and translational animal studies. This furthers the understanding of the pathogenesis of chronic pulmonary diseases and may yield novel avenues for the utilisation of microbiota as potential therapeutic interventions.
Collapse
Affiliation(s)
- Shakti D Shukla
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Rachael Neal
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
36
|
Inflammasomes in the lung. Mol Immunol 2017; 86:44-55. [PMID: 28129896 DOI: 10.1016/j.molimm.2017.01.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
Innate immune responses act as first line defences upon exposure to potentially noxious stimuli. The innate immune system has evolved numerous intracellular and extracellular receptors that undertake surveillance for potentially damaging particulates. Inflammasomes are intracellular innate immune multiprotein complexes that form and are activated following interaction with these stimuli. Inflammasome activation leads to the cleavage of pro-IL-1β and release of the pro-inflammatory cytokine, IL-1β, which initiates acute phase pro-inflammatory responses, and other responses are also involved (IL-18, pyroptosis). However, excessive activation of inflammasomes can result in chronic inflammation, which has been implicated in a range of chronic inflammatory diseases. The airways are constantly exposed to a wide variety of stimuli. Inflammasome activation and downstream responses clears these stimuli. However, excessive activation may drive the pathogenesis of chronic respiratory diseases such as severe asthma and chronic obstructive pulmonary disease. Thus, there is currently intense interest in the role of inflammasomes in chronic inflammatory lung diseases and in their potential for therapeutic targeting. Here we review the known associations between inflammasome-mediated responses and the development and exacerbation of chronic lung diseases.
Collapse
|
37
|
Sokulsky LA, Collison AM, Nightingale S, Fevre AL, Percival E, Starkey MR, Hansbro PM, Foster PS, Mattes J. TRAIL deficiency and PP2A activation with salmeterol ameliorates egg allergen-driven eosinophilic esophagitis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G998-G1008. [PMID: 27742702 DOI: 10.1152/ajpgi.00151.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/05/2016] [Indexed: 01/31/2023]
Abstract
Food antigens are common inflammatory triggers in pediatric eosinophilic esophagitis (EoE). TNF-related apoptosis-inducing ligand (TRAIL) promotes eosinophilic inflammation through the upregulation of the E3 ubiquitin ligase Midline (MID)-1 and subsequent downregulation of protein phosphatase 2A (PP2A), but the role of this pathway in EoE that is experimentally induced by repeated food antigen challenges has not been investigated. Esophageal mucosal biopsies were collected from children with EoE and controls and assessed for TRAIL and MID-1 protein and mRNA transcript levels. Wild-type and TRAIL-deficient (Tnfsf10-/-) mice were administered subcutaneous ovalbumin (OVA) followed by oral OVA challenges. In separate experiments, OVA-challenged mice were intraperitoneally administered salmeterol or dexamethasone. Esophageal biopsies from children with EoE revealed increased levels of TRAIL and MID-1 and reduced PP2A activation compared with controls. Tnfsf10-/- mice were largely protected from esophageal fibrosis, eosinophilic inflammation, and the upregulation of TSLP, IL-5, IL-13, and CCL11 when compared with wild-type mice. Salmeterol administration to wild-type mice with experimental EoE restored PP2A activity and also prevented esophageal eosinophilia, inflammatory cytokine expression, and remodeling, which was comparable to the treatment effect of dexamethasone. TRAIL and PP2A regulate inflammation and fibrosis in experimental EoE, which can be therapeutically modulated by salmeterol.
Collapse
Affiliation(s)
- Leon A Sokulsky
- The Priority Research Centre GrowUpWell, Newcastle, Australia
| | - Adam M Collison
- The Priority Research Centre GrowUpWell, Newcastle, Australia;
| | | | - Anna Le Fevre
- The Priority Research Centre GrowUpWell, Newcastle, Australia
| | - Elizabeth Percival
- The Priority Research Centre GrowUpWell, Newcastle, Australia
- Department of Gastroenterology and the Department of Respiratory and Sleep Medicine, John Hunter Children's Hospital, Newcastle, Newcastle, Australia
| | | | - Philip M Hansbro
- Priority Research Centre for Lung Health, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; and
| | - Paul S Foster
- Priority Research Centre for Lung Health, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; and
| | - Joerg Mattes
- The Priority Research Centre GrowUpWell, Newcastle, Australia
- Department of Gastroenterology and the Department of Respiratory and Sleep Medicine, John Hunter Children's Hospital, Newcastle, Newcastle, Australia
| |
Collapse
|
38
|
Girkin JL, Hatchwell LM, Collison AM, Starkey MR, Hansbro PM, Yagita H, Foster PS, Mattes J. TRAIL signaling is proinflammatory and proviral in a murine model of rhinovirus 1B infection. Am J Physiol Lung Cell Mol Physiol 2016; 312:L89-L99. [PMID: 27836899 DOI: 10.1152/ajplung.00200.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
the aim of this study is to elucidate the role of TRAIL during rhinovirus (RV) infection in vivo. Naïve wild-type and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-deficient (Tnfsf10-/-) BALB/c mice were infected intranasally with RV1B. In separate experiments, Tnfsf10-/- mice were sensitized and challenged via the airway route with house dust mite (HDM) to induce allergic airways disease and then challenged with RVIB or UV-RVIB. Airway hyperreactivity (AHR) was invasively assessed as total airways resistance in response to increasing methacholine challenge and inflammation was assessed in bronchoalveolar lavage fluid at multiple time points postinfection. Chemokines were quantified by ELISA of whole lung lysates and viral load was determined by quantitative RT-PCR and tissue culture infective dose (TCID50). Human airway epithelial cells (BEAS2B) were infected with RV1B and stimulated with recombinant TRAIL or neutralizing anti-TRAIL antibodies and viral titer assessed by TCID50 HDM-challenged Tnfsf10-/- mice were protected against RV-induced AHR and had suppressed cellular infiltration in the airways upon RV infection. Chemokine C-X-C-motif ligand 2 (CXCL2) production was suppressed in naïve Tnfsf10-/- mice infected with RV1B, with less RV1B detected 24 h postinfection. This was associated with reduced apoptotic cell death and a reduction of interferon (IFN)-λ2/3 but not IFN-α or IFN-β. TRAIL stimulation increased, whereas anti-TRAIL antibodies reduced viral replication in RV1B-infected BEAS2B cells in vitro. In conclusion, TRAIL promotes RV-induced AHR, inflammation and RV1B replication, implicating this molecule and its downstream signaling pathways as a possible target for the amelioration of RV1B-induced allergic and nonallergic lung inflammation and AHR.
Collapse
Affiliation(s)
- Jason L Girkin
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Luke M Hatchwell
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre GrowUpWell, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Adam M Collison
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre GrowUpWell, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre GrowUpWell, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Microbiology, Asthma, and Airways Research Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Microbiology, Asthma, and Airways Research Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Hideo Yagita
- Department of Immunology, Juntendo University, School of Medicine, Tokyo, Japan; and
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Joerg Mattes
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; .,Priority Research Centre GrowUpWell, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Paediatric Respiratory and Sleep Medicine Unit, John Hunter Children's Hospital, Newcastle, Australia
| |
Collapse
|
39
|
Jarnicki AG, Schilter H, Liu G, Wheeldon K, Essilfie AT, Foot JS, Yow TT, Jarolimek W, Hansbro PM. The inhibitor of semicarbazide-sensitive amine oxidase, PXS-4728A, ameliorates key features of chronic obstructive pulmonary disease in a mouse model. Br J Pharmacol 2016; 173:3161-3175. [PMID: 27495192 PMCID: PMC5071557 DOI: 10.1111/bph.13573] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic obstructive pulmonary disease (COPD) is a major cause of illness and death, often induced by cigarette smoking (CS). It is characterized by pulmonary inflammation and fibrosis that impairs lung function. Existing treatments aim to control symptoms but have low efficacy, and there are no broadly effective treatments. A new potential target is the ectoenzyme, semicarbazide-sensitive mono-amine oxidase (SSAO; also known as vascular adhesion protein-1). SSAO is elevated in smokers' serum and is a pro-inflammatory enzyme facilitating adhesion and transmigration of leukocytes from the vasculature to sites of inflammation. EXPERIMENTAL APPROACH PXS-4728A was developed as a low MW inhibitor of SSAO. A model of COPD induced by CS in mice reproduces key aspects of human COPD, including chronic airway inflammation, fibrosis and impaired lung function. This model was used to assess suppression of SSAO activity and amelioration of inflammation and other characteristic features of COPD. KEY RESULTS Treatment with PXS-4728A completely inhibited lung and systemic SSAO activity induced by acute and chronic CS-exposure. Daily oral treatment inhibited airway inflammation (immune cell influx and inflammatory factors) induced by acute CS-exposure. Therapeutic treatment during chronic CS-exposure, when the key features of experimental COPD develop and progress, substantially suppressed inflammatory cell influx and fibrosis in the airways and improved lung function. CONCLUSIONS AND IMPLICATIONS Treatment with a low MW inhibitor of SSAO, PXS-4728A, suppressed airway inflammation and fibrosis and improved lung function in experimental COPD, demonstrating the therapeutic potential of PXS-4728A for this debilitating disease.
Collapse
Affiliation(s)
- A G Jarnicki
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - H Schilter
- Drug Discovery Department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - G Liu
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - K Wheeldon
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - A-T Essilfie
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - J S Foot
- Drug Discovery Department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - T T Yow
- Drug Discovery Department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - W Jarolimek
- Drug Discovery Department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - P M Hansbro
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
40
|
Starkey MR, Nguyen DH, Brown AC, Essilfie AT, Kim RY, Yagita H, Horvat JC, Hansbro PM. Programmed Death Ligand 1 Promotes Early-Life Chlamydia Respiratory Infection-Induced Severe Allergic Airway Disease. Am J Respir Cell Mol Biol 2016; 54:493-503. [PMID: 26378990 DOI: 10.1165/rcmb.2015-0204oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chlamydia infections are frequent causes of respiratory illness, particularly pneumonia in infants, and are linked to permanent reductions in lung function and the induction of asthma. However, the immune responses that protect against early-life infection and the mechanisms that lead to chronic lung disease are incompletely understood. In the current study, we investigated the role of programmed death (PD)-1 and its ligands PD-L1 and PD-L2 in promoting early-life Chlamydia respiratory infection, and infection-induced airway hyperresponsiveness (AHR) and severe allergic airway disease in later life. Infection increased PD-1 and PD-L1, but not PD-L2, mRNA expression in the lung. Flow cytometric analysis of whole lung homogenates identified monocytes, dendritic cells, CD4(+), and CD8(+) T cells as major sources of PD-1 and PD-L1. Inhibition of PD-1 and PD-L1, but not PD-L2, during infection ablated infection-induced AHR in later life. Given that PD-L1 was the most highly up-regulated and its targeting prevented infection-induced AHR, subsequent analyses focused on this ligand. Inhibition of PD-L1 had no effect on Chlamydia load but suppressed infection-induced pulmonary inflammation. Infection decreased the levels of the IL-13 decoy receptor in the lung, which were restored to baseline levels by inhibition of PD-L1. Finally, inhibition of PD-L1 during infection prevented subsequent infection-induced severe allergic airways disease in later life by decreasing IL-13 levels, Gob-5 expression, mucus production, and AHR. Thus, early-life Chlamydia respiratory infection-induced PD-L1 promotes severe inflammation during infection, permanent reductions in lung function, and the development of more severe allergic airway disease in later life.
Collapse
Affiliation(s)
- Malcolm R Starkey
- 1 Center for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia; and
| | - Duc H Nguyen
- 1 Center for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia; and
| | - Alexandra C Brown
- 1 Center for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia; and
| | - Ama-Tawiah Essilfie
- 1 Center for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia; and
| | - Richard Y Kim
- 1 Center for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia; and
| | - Hideo Yagita
- 2 Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Jay C Horvat
- 1 Center for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia; and
| | - Philip M Hansbro
- 1 Center for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia; and
| |
Collapse
|
41
|
Kim RY, Rae B, Neal R, Donovan C, Pinkerton J, Balachandran L, Starkey MR, Knight DA, Horvat JC, Hansbro PM. Elucidating novel disease mechanisms in severe asthma. Clin Transl Immunology 2016; 5:e91. [PMID: 27525064 PMCID: PMC4973321 DOI: 10.1038/cti.2016.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Corticosteroids are broadly active and potent anti-inflammatory agents that, despite the introduction of biologics, remain as the mainstay therapy for many chronic inflammatory diseases, including inflammatory bowel diseases, nephrotic syndrome, rheumatoid arthritis, chronic obstructive pulmonary disease and asthma. Significantly, there are cohorts of these patients with poor sensitivity to steroid treatment even with high doses, which can lead to many iatrogenic side effects. The dose-limiting toxicity of corticosteroids, and the lack of effective therapeutic alternatives, leads to substantial excess morbidity and healthcare expenditure. We have developed novel murine models of respiratory infection-induced, severe, steroid-resistant asthma that recapitulate the hallmark features of the human disease. These models can be used to elucidate novel disease mechanisms and identify new therapeutic targets in severe asthma. Hypothesis-driven studies can elucidate the roles of specific factors and pathways. Alternatively, 'Omics approaches can be used to rapidly generate new targets. Similar approaches can be used in other diseases.
Collapse
Affiliation(s)
- Richard Y Kim
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Brittany Rae
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Rachel Neal
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - James Pinkerton
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Lohis Balachandran
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| |
Collapse
|
42
|
A pathogenic role for tumor necrosis factor-related apoptosis-inducing ligand in chronic obstructive pulmonary disease. Mucosal Immunol 2016; 9:859-72. [PMID: 26555706 DOI: 10.1038/mi.2015.111] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/18/2015] [Indexed: 02/04/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory respiratory disorder, often induced by cigarette smoke (CS) exposure. The development of effective therapies is impaired by a lack of understanding of the underlining mechanisms. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with inflammatory and apoptotic properties. We interrogated a mouse model of CS-induced experimental COPD and human tissues to identify a novel role for TRAIL in COPD pathogenesis. CS exposure of wild-type mice increased TRAIL and its receptor messenger RNA (mRNA) expression and protein levels, as well as the number of TRAIL(+)CD11b(+) monocytes in the lung. TRAIL and its receptor mRNA were also increased in human COPD. CS-exposed TRAIL-deficient mice had decreased pulmonary inflammation, pro-inflammatory mediators, emphysema-like alveolar enlargement, and improved lung function. TRAIL-deficient mice also developed spontaneous small airway changes with increased epithelial cell thickness and collagen deposition, independent of CS exposure. Importantly, therapeutic neutralization of TRAIL, after the establishment of early-stage experimental COPD, reduced pulmonary inflammation, emphysema-like alveolar enlargement, and small airway changes. These data provide further evidence for TRAIL being a pivotal inflammatory factor in respiratory diseases, and the first preclinical evidence to suggest that therapeutic agents that target TRAIL may be effective in COPD therapy.
Collapse
|
43
|
Kim RY, Horvat JC, Pinkerton JW, Starkey MR, Essilfie AT, Mayall JR, Nair PM, Hansbro NG, Jones B, Haw TJ, Sunkara KP, Nguyen TH, Jarnicki AG, Keely S, Mattes J, Adcock IM, Foster PS, Hansbro PM. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J Allergy Clin Immunol 2016; 139:519-532. [PMID: 27448447 DOI: 10.1016/j.jaci.2016.04.038] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 04/17/2016] [Accepted: 04/29/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Severe steroid-insensitive asthma is a substantial clinical problem. Effective treatments are urgently required, however, their development is hampered by a lack of understanding of the mechanisms of disease pathogenesis. Steroid-insensitive asthma is associated with respiratory tract infections and noneosinophilic endotypes, including neutrophilic forms of disease. However, steroid-insensitive patients with eosinophil-enriched inflammation have also been described. The mechanisms that underpin infection-induced, severe steroid-insensitive asthma can be elucidated by using mouse models of disease. OBJECTIVE We sought to develop representative mouse models of severe, steroid-insensitive asthma and to use them to identify pathogenic mechanisms and investigate new treatment approaches. METHODS Novel mouse models of Chlamydia, Haemophilus influenzae, influenza, and respiratory syncytial virus respiratory tract infections and ovalbumin-induced, severe, steroid-insensitive allergic airway disease (SSIAAD) in BALB/c mice were developed and interrogated. RESULTS Infection induced increases in the levels of microRNA (miRNA)-21 (miR-21) expression in the lung during SSIAAD, whereas expression of the miR-21 target phosphatase and tensin homolog was reduced. This was associated with an increase in levels of phosphorylated Akt, an indicator of phosphoinositide 3-kinase (PI3K) activity, and decreased nuclear histone deacetylase (HDAC)2 levels. Treatment with an miR-21-specific antagomir (Ant-21) increased phosphatase and tensin homolog levels. Treatment with Ant-21, or the pan-PI3K inhibitor LY294002, reduced PI3K activity and restored HDAC2 levels. This led to suppression of airway hyperresponsiveness and restored steroid sensitivity to allergic airway disease. These observations were replicated with SSIAAD associated with 4 different pathogens. CONCLUSION We identify a previously unrecognized role for an miR-21/PI3K/HDAC2 axis in SSIAAD. Our data highlight miR-21 as a novel therapeutic target for the treatment of this form of asthma.
Collapse
Affiliation(s)
- Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - James W Pinkerton
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Ama T Essilfie
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Krishna P Sunkara
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Thi Hiep Nguyen
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Simon Keely
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Joerg Mattes
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Ian M Adcock
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia.
| |
Collapse
|
44
|
Pulmonary immunity during respiratory infections in early life and the development of severe asthma. Ann Am Thorac Soc 2015; 11 Suppl 5:S297-302. [PMID: 25525736 DOI: 10.1513/annalsats.201402-086aw] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Asthma affects 10% of the population in Westernized countries, being most common in children. It is a heterogeneous condition characterized by chronic allergic airway inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR) to normally innocuous antigens. Combination therapies with inhaled corticosteroids and bronchodilators effectively manage mild to moderate asthma, but there are no cures, and patients with severe asthma do not respond to these treatments. The inception of asthma is linked to respiratory viral (respiratory syncytial virus, rhinovirus) and bacterial (Chlamydia, Mycoplasma) infections. The examination of mouse models of early-life infections and allergic airway disease (AAD) provides valuable insights into the mechanisms of disease inception that may lead to the development of more effective therapeutics. For example, early-life, but not adult, Chlamydia respiratory infections in mice permanently modify immunity and lung physiology. This increases the severity of AAD by promoting IL-13 expression, mucus hypersecretion, and AHR. We have identified novel roles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and IL-13 in promoting infection-induced pathology in early life and subsequent chronic lung disease. Genetic deletion of TRAIL or IL-13 variously protected against neonatal infection-induced inflammation, mucus hypersecretion, altered lung structure, AHR, and impaired lung function. Therapeutic neutralization of these factors prevented infection-induced severe AAD. Other novel mechanisms and avenues for intervention are also being explored. Such studies indicate the immunological mechanisms that may underpin the association between early-life respiratory infections and the development of more severe asthma and may facilitate the development of tailored preventions and treatments.
Collapse
|
45
|
Amarante-Mendes GP, Griffith TS. Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol Ther 2015; 155:117-31. [PMID: 26343199 DOI: 10.1016/j.pharmthera.2015.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings - ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future.
Collapse
Affiliation(s)
- Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil; Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia, Brazil.
| | - Thomas S Griffith
- Department of Urology, Masonic Cancer Center, Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA.
| |
Collapse
|