1
|
Wang Z, Tian C, Zhu J, Wang S, Ao X, He Y, Chen H, Liao X, Kong D, Zhou Y, Tai W, Liao M, Fan H. Avian influenza mRNA vaccine encoding hemagglutinin provides complete protection against divergent H5N1 viruses in specific-pathogen-free chickens. J Nanobiotechnology 2025; 23:55. [PMID: 39881325 PMCID: PMC11776166 DOI: 10.1186/s12951-025-03156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND The rapid mutation of avian influenza virus (AIV) poses a significant threat to both the poultry industry and public health. Herein, we have successfully developed an mRNA-LNPs candidate vaccine for H5 subtype highly pathogenic avian influenza and evaluated its immunogenicity and protective efficacy. RESULTS In experiments on BALB/c mice, the vaccine candidate elicited strong humoral and a certain cellular immune responses and protected mice from the heterologous AIV challenge. Antibody and splenocyte passive transfer assays in mice suggested that antibodies played a crucial role in providing protection. Experiments involving SPF chickens have revealed that two doses of the 5 µg vaccine candidate in this study provided 100% complete protection against homologous strains, but only 50% complete protection against heterologous strains. Even immunization with two doses of the 15 µg vaccine candidate resulted in 90% complete protection against heterologous strains. To enhance the immune efficacy of the candidate vaccine, we designed 6 sequences with different secondary structures and screened out the candidate sequence with the highest expression (SY2-HA mRNA). Experiments on SPF chickens showed that two doses of 5 µg SY2-HA mRNA-LNP vaccine provided 100% complete protection against homologous and heterologous H5N1 AIV strains. Immunization tests with the SY2-HA mRNA-LNP vaccine were repeated in the SPF chicken model, inducing antibody production levels that are consistent with previous tests and providing 100% complete protection against both homologous and heterologous strains of the virus, indicating that the vaccine has a stable immune efficacy. CONCLUSIONS The vaccine developed in this study provides complete protection against divergent H5N1 AIV strains in chickens, offering a promising approach for the future development of mRNA vaccines against multivalent avian influenza subtypes.
Collapse
Affiliation(s)
- Zhaoyang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Chongyu Tian
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jiahang Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Shiqian Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Xiang Ao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Yanjuan He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Huixin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Xiuying Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Deming Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Yongfei Zhou
- Institute of Hemu Biotechnology, Beijing Hemu Biotechnology Co., Ltd, Beijing, 102206, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Neill B, Romero AR, Fenton OS. Advances in Nonviral mRNA Delivery Materials and Their Application as Vaccines for Melanoma Therapy. ACS APPLIED BIO MATERIALS 2024; 7:4894-4913. [PMID: 37930174 PMCID: PMC11220486 DOI: 10.1021/acsabm.3c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA) vaccines are promising platforms for cancer immunotherapy because of their potential to encode for a variety of tumor antigens, high tolerability, and capacity to induce strong antitumor immune responses. However, the clinical translation of mRNA cancer vaccines can be hindered by the inefficient delivery of mRNA in vivo. In this review, we provide an overview of mRNA cancer vaccines by discussing their utility in treating melanoma. Specifically, we begin our review by describing the barriers that can impede mRNA delivery to target cells. We then review native mRNA structure and discuss various modification methods shown to enhance mRNA stability and transfection. Next, we outline the advantages and challenges of three nonviral carrier platforms (lipid nanoparticles, polymeric nanoparticles, and lipopolyplexes) frequently used for mRNA delivery. Last, we summarize preclinical and clinical studies that have investigated nonviral mRNA vaccines for the treatment of melanoma. In writing this review, we aim to highlight innovative nonviral strategies designed to address mRNA delivery challenges while emphasizing the exciting potential of mRNA vaccines as next-generation therapies for the treatment of cancers.
Collapse
Affiliation(s)
- Bevin Neill
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adriana Retamales Romero
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Owen S. Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
3
|
Sauerer T, Albrecht L, Sievers NM, Gerer KF, Hoyer S, Dörrie J, Schaft N. Electroporation of mRNA as a Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins. Methods Mol Biol 2024; 2786:219-235. [PMID: 38814397 DOI: 10.1007/978-1-0716-3770-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than two decades to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs) and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers (i.e. caIKK), and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs and mRNA-electroporated T cells for therapeutic applications in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types; (2) scalability from 106 to approximately 108 cells per shot; (3) high transfection efficiency (80-99%); (4) homogenous protein expression; (5) GMP compliance if the EP is performed in a class A clean room; and (6) no transgene integration into the genome. The provided protocol involves: OptiMEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time has to be altered. Thus, we share an overview of proven electroporation settings (including recovery media), which we have established for various cell types. Next to the basic protocol, we also provide an extensive list of hints and tricks, which, in our opinion, are of great value for everyone who intends to use this transfection technique.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Leoni Albrecht
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Nico M Sievers
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Kerstin F Gerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Novartis Pharma GmbH, Nuremberg, Germany
| | - Stefanie Hoyer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Palliative Medicine, Universitätsklinikum Erlangen, Comprehensive Cancer Center CCC Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Niels Schaft
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
4
|
Lin F, Lin EZ, Anekoji M, Ichim TE, Hu J, Marincola FM, Jones LD, Kesari S, Ashili S. Advancing personalized medicine in brain cancer: exploring the role of mRNA vaccines. J Transl Med 2023; 21:830. [PMID: 37978542 PMCID: PMC10656921 DOI: 10.1186/s12967-023-04724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Advancing personalized medicine in brain cancer relies on innovative strategies, with mRNA vaccines emerging as a promising avenue. While the initial use of mRNA vaccines was in oncology, their stunning success in COVID-19 resulted in widespread attention, both positive and negative. Regardless of politically biased opinions, which relate more to the antigenic source than form of delivery, we feel it is important to objectively review this modality as relates to brain cancer. This class of vaccines trigger robust immune responses through MHC-I and MHC-II pathways, in both prophylactic and therapeutic settings. The mRNA platform offers advantages of rapid development, high potency, cost-effectiveness, and safety. This review provides an overview of mRNA vaccine delivery technologies, tumor antigen identification, combination therapies, and recent therapeutic outcomes, with a particular focus on brain cancer. Combinatorial approaches are vital to maximizing mRNA cancer vaccine efficacy, with ongoing clinical trials exploring combinations with adjuvants and checkpoint inhibitors and even adoptive cell therapy. Efficient delivery, neoantigen identification, preclinical studies, and clinical trial results are highlighted, underscoring mRNA vaccines' potential in advancing personalized medicine for brain cancer. Synergistic combinatorial therapies play a crucial role, emphasizing the need for continued research and collaboration in this area.
Collapse
Affiliation(s)
- Feng Lin
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA.
| | - Emma Z Lin
- University of California San Diego, La Jolla, CA, 92093, USA
| | - Misa Anekoji
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| | - Thomas E Ichim
- Therapeutic Solutions International, Oceanside, CA, 92056, USA
| | - Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA
| | | | - Lawrence D Jones
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| | - Santosh Kesari
- Saint John's Cancer Institute, Santa Monica, CA, 90404, USA
| | - Shashaanka Ashili
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| |
Collapse
|
5
|
Ankrah PK, Ilesanmi A, Akinyemi AO, Lasehinde V, Adurosakin OE, Ajayi OH. Clinical Analysis and Applications of mRNA Vaccines in Infectious Diseases and Cancer Treatment. Cureus 2023; 15:e46354. [PMID: 37920621 PMCID: PMC10619190 DOI: 10.7759/cureus.46354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2023] [Indexed: 11/04/2023] Open
Abstract
Vaccination, for centuries, has been a potent preventive technique to treat morbidities. The messenger RNA (mRNA) vaccine technology is an innovative biomedical approach utilized in developing antigen-specific vaccines that can generate adaptive immune responses, triggering both humoral and cellular immunity to enhance the body's defense against specific infections. This review provides a comprehensive, comparative analysis of mRNA vaccine technology and conventional vaccines by focusing on the structures, components, and classifications. An exploratory analysis of the similarities and differences between mRNA vaccine technology and live-attenuated vaccines highlights the mechanisms by which mRNA vaccines elicit immune responses. This review extensively discusses the production, stability, synthesis, and delivery processes associated with mRNA vaccines, showcasing the advancements and technological superiority of this approach over conventional vaccine technologies. Additionally, the potential of mRNA vaccine technology as a potent alternative for the development of vaccine candidates targeting HIV and cancer is examined.
Collapse
Affiliation(s)
| | - Ajibola Ilesanmi
- Center for Human Systems Immunology, Duke University, Durham, USA
| | - Amos O Akinyemi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | - Victor Lasehinde
- Department of Biology, Washington University in St. Louis, St. Louis, USA
| | | | - Oluwatobi H Ajayi
- Division of Infectious Diseases, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, USA
| |
Collapse
|
6
|
Mbatha LS, Akinyelu J, Maiyo F, Kudanga T. Future prospects in mRNA vaccine development. Biomed Mater 2023; 18:052006. [PMID: 37589309 DOI: 10.1088/1748-605x/aceceb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The recent advancements in messenger ribonucleic acid (mRNA) vaccine development have vastly enhanced their use as alternatives to conventional vaccines in the prevention of various infectious diseases and treatment of several types of cancers. This is mainly due to their remarkable ability to stimulate specific immune responses with minimal clinical side effects. This review gives a detailed overview of mRNA vaccines currently in use or at various stages of development, the recent advancements in mRNA vaccine development, and the challenges encountered in their development. Future perspectives on this technology are also discussed.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti state, Nigeria
| | - Fiona Maiyo
- Department of Medical Sciences, Kabarak University, Nairobi, Kenya
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| |
Collapse
|
7
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
8
|
Baker A, Lorch J, VanderWeele D, Zhang B. Smart Nanocarriers for the Targeted Delivery of Therapeutic Nucleic Acid for Cancer Immunotherapy. Pharmaceutics 2023; 15:1743. [PMID: 37376190 DOI: 10.3390/pharmaceutics15061743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
A wide variety of therapeutic approaches and technologies for delivering therapeutic agents have been investigated for treating cancer. Recently, immunotherapy has achieved success in cancer treatment. Successful clinical results of immunotherapeutic approaches for cancer treatment were led by antibodies targeting immune checkpoints, and many have advanced through clinical trials and obtained FDA approval. A major opportunity remains for the development of nucleic acid technology for cancer immunotherapy in the form of cancer vaccines, adoptive T-cell therapies, and gene regulation. However, these therapeutic approaches face many challenges related to their delivery to target cells, including their in vivo decay, the limited uptake by target cells, the requirements for nuclear penetration (in some cases), and the damage caused to healthy cells. These barriers can be avoided and resolved by utilizing advanced smart nanocarriers (e.g., lipids, polymers, spherical nucleic acids, metallic nanoparticles) that enable the efficient and selective delivery of nucleic acids to the target cells and/or tissues. Here, we review studies that have developed nanoparticle-mediated cancer immunotherapy as a technology for cancer patients. Moreover, we also investigate the crosstalk between the function of nucleic acid therapeutics in cancer immunotherapy, and we discuss how nanoparticles can be functionalized and designed to target the delivery and thus improve the efficacy, toxicity, and stability of these therapeutics.
Collapse
Affiliation(s)
- Abu Baker
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jochen Lorch
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David VanderWeele
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bin Zhang
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Yang W, Cao J, Cheng H, Chen L, Yu M, Chen Y, Cui X. Nanoformulations targeting immune cells for cancer therapy: mRNA therapeutics. Bioact Mater 2023; 23:438-470. [PMCID: PMC9712057 DOI: 10.1016/j.bioactmat.2022.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
The approved worldwide use of two messenger RNA (mRNA) vaccines (BNT162b2 and mRNA-1273) in late 2020 has proven the remarkable success of mRNA therapeutics together with lipid nanoformulation technology in protecting people against coronaviruses during COVID-19 pandemic. This unprecedented and exciting dual strategy with nanoformulations and mRNA therapeutics in play is believed to be a promising paradigm in targeted cancer immunotherapy in future. Recent advances in nanoformulation technologies play a prominent role in adapting mRNA platform in cancer treatment. In this review, we introduce the biologic principles and advancements of mRNA technology, and chemistry fundamentals of intriguing mRNA delivery nanoformulations. We discuss the latest promising nano-mRNA therapeutics for enhanced cancer immunotherapy by modulation of targeted specific subtypes of immune cells, such as dendritic cells (DCs) at peripheral lymphoid organs for initiating mRNA cancer vaccine-mediated antigen specific immunotherapy, and DCs, natural killer (NK) cells, cytotoxic T cells, or multiple immunosuppressive immune cells at tumor microenvironment (TME) for reversing immune evasion. We highlight the clinical progress of advanced nano-mRNA therapeutics in targeted cancer therapy and provide our perspectives on future directions of this transformative integrated technology toward clinical implementation.
Collapse
Affiliation(s)
- Wei Yang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Jianwei Cao
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Hui Cheng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, PR China,Corresponding author
| |
Collapse
|
10
|
Sosa Cuevas E, Saas P, Aspord C. Dendritic Cell Subsets in Melanoma: Pathophysiology, Clinical Prognosis and Therapeutic Exploitation. Cancers (Basel) 2023; 15:cancers15082206. [PMID: 37190135 DOI: 10.3390/cancers15082206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Evasion from immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells shaping anti-tumor immune responses, but tumor cells exploit DC versatility to subvert their functions. Unveiling the puzzling role of DCs in the control of tumor development and mechanisms of tumor-induced DC hijacking is critical to optimize current therapies and to design future efficient immunotherapies for melanoma. Dendritic cells, crucially positioned at the center of anti-tumor immunity, represent attractive targets to develop new therapeutic approaches. Harnessing the potencies of each DC subset to trigger appropriate immune responses while avoiding their subversion is a challenging yet promising step to achieve tumor immune control. This review focuses on advances regarding the diversity of DC subsets, their pathophysiology and impact on clinical outcome in melanoma patients. We provide insights into the regulation mechanisms of DCs by the tumor, and overview DC-based therapeutic developments for melanoma. Further insights into DCs' diversity, features, networking, regulation and shaping by the tumor microenvironment will allow designing novel effective cancer therapies. The DCs deserve to be positioned in the current melanoma immunotherapeutic landscape. Recent discoveries strongly motivate exploitation of the exceptional potential of DCs to drive robust anti-tumor immunity, offering promising tracks for clinical successes.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- EFS AuRA, R&D Laboratory, 38000 Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Université Grenoble Alpes, 38000 Grenoble, France
| | - Philippe Saas
- EFS AuRA, R&D Laboratory, 38000 Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Université Grenoble Alpes, 38000 Grenoble, France
| | - Caroline Aspord
- EFS AuRA, R&D Laboratory, 38000 Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
11
|
Patrick B, Akhtar T, Kousar R, Huang CC, Li XG. Carbon Nanomaterials: Emerging Roles in Immuno-Oncology. Int J Mol Sci 2023; 24:ijms24076600. [PMID: 37047572 PMCID: PMC10095276 DOI: 10.3390/ijms24076600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer immunotherapy has made breakthrough progress in cancer treatment. However, only a subset of patients benefits from immunotherapy. Given their unique structure, composition, and interactions with the immune system, carbon nanomaterials have recently attracted tremendous interest in their roles as modulators of antitumor immunity. Here, we focused on the latest advances in the immunological effects of carbon nanomaterials. We also reviewed the current preclinical applications of these materials in cancer therapy. Finally, we discussed the challenges to be overcome before the full potential of carbon nanomaterials can be utilized in cancer therapies to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Bbumba Patrick
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Tahira Akhtar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 406040, Taiwan
| | - Rubina Kousar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
12
|
De Mey W, Esprit A, Thielemans K, Breckpot K, Franceschini L. RNA in Cancer Immunotherapy: Unlocking the Potential of the Immune System. Clin Cancer Res 2022; 28:3929-3939. [PMID: 35583609 PMCID: PMC9475240 DOI: 10.1158/1078-0432.ccr-21-3304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 01/07/2023]
Abstract
Recent advances in the manufacturing, modification, purification, and cellular delivery of ribonucleic acid (RNA) have enabled the development of RNA-based therapeutics for a broad array of applications. The approval of two SARS-CoV-2-targeting mRNA-based vaccines has highlighted the advances of this technology. Offering rapid and straightforward manufacturing, clinical safety, and versatility, this paves the way for RNA therapeutics to expand into cancer immunotherapy. Together with ongoing trials on RNA cancer vaccination and cellular therapy, RNA therapeutics could be introduced into clinical practice, possibly stewarding future personalized approaches. In the present review, we discuss recent advances in RNA-based immuno-oncology together with an update on ongoing clinical applications and their current challenges.
Collapse
Affiliation(s)
- Wout De Mey
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Arthur Esprit
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Corresponding Author: Karine Breckpot, Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium. Phone: 32-2-477-45-66; E-mail:
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
13
|
Zhang Z, Yao S, Hu Y, Zhao X, Lee RJ. Application of lipid-based nanoparticles in cancer immunotherapy. Front Immunol 2022; 13:967505. [PMID: 36003395 PMCID: PMC9393708 DOI: 10.3389/fimmu.2022.967505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy is revolutionizing the clinical management of patients with different cancer types by sensitizing autologous or allogenic immune cells to the tumor microenvironment which eventually leads to tumor cell lysis without rapidly killing normal cells. Although immunotherapy has been widely demonstrated to be superior to chemotherapies, only a few populations of patients with specific cancer types respond to such treatment due to the failure of systemic immune activation. In addition, severe immune-related adverse events are rapidly observed when patients with very few responses are given higher doses of such therapies. Recent advances of lipid-based nanoparticles (NPs) development have made it possible to deliver not only small molecules but also mRNAs to achieve systemic anticancer immunity through cytotoxic immune cell activation, checkpoint blockade, and chimeric antigen receptor cell therapies, etc. This review summarized recent development and applications of LNPs in anticancer immunotherapy. The diversity of lipid-based NPs would encapsulate payloads with different structures and molecular weights to achieve optimal antitumor immunity through multiple mechanisms of action. The discussion about the components of lipid-based NPs and their immunologic payloads in this review hopefully shed more light on the future direction of anticancer immunotherapy.
Collapse
Affiliation(s)
- Zhongkun Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Siyu Yao
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Yingwen Hu
- The Whiteoak Group, Inc., Rockville, MD, United States
| | - Xiaobin Zhao
- The Whiteoak Group, Inc., Rockville, MD, United States
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Yang L, Tang L, Zhang M, Liu C. Recent Advances in the Molecular Design and Delivery Technology of mRNA for Vaccination Against Infectious Diseases. Front Immunol 2022; 13:896958. [PMID: 35928814 PMCID: PMC9345514 DOI: 10.3389/fimmu.2022.896958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vaccines can prevent many millions of illnesses against infectious diseases and save numerous lives every year. However, traditional vaccines such as inactivated viral and live attenuated vaccines cannot adapt to emerging pandemics due to their time-consuming development. With the global outbreak of the COVID-19 epidemic, the virus continues to evolve and mutate, producing mutants with enhanced transmissibility and virulence; the rapid development of vaccines against such emerging global pandemics becomes more and more critical. In recent years, mRNA vaccines have been of significant interest in combating emerging infectious diseases due to their rapid development and large-scale production advantages. However, their development still suffers from many hurdles such as their safety, cellular delivery, uptake, and response to their manufacturing, logistics, and storage. More efforts are still required to optimize the molecular designs of mRNA molecules with increased protein expression and enhanced structural stability. In addition, a variety of delivery systems are also needed to achieve effective delivery of vaccines. In this review, we highlight the advances in mRNA vaccines against various infectious diseases and discuss the molecular design principles and delivery systems of associated mRNA vaccines. The current state of the clinical application of mRNA vaccine pipelines against various infectious diseases and the challenge, safety, and protective effect of associated vaccines are also discussed.
Collapse
Affiliation(s)
- Lu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| |
Collapse
|
15
|
Qureischi M, Mohr J, Arellano-Viera E, Knudsen SE, Vohidov F, Garitano-Trojaola A. mRNA-based therapies: Preclinical and clinical applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:1-54. [PMID: 36064262 DOI: 10.1016/bs.ircmb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
At the fundamental level, messenger RNA (mRNA)-based therapeutics involves the delivery of in vitro-transcribed (IVT) mRNA into the cytoplasm of a target cell, where it is translated into the desired protein. IVT mRNA presents various advantages compared to DNA and recombinant protein-based approaches that make it ideal for a broad range of therapeutic applications. IVT mRNA, which is translated in the cytoplasm after transfection into cells, can encode virtually any target protein. Notably, it does not enter the nucleus, which avoids its integration into the genome and the risk of insertional mutagenesis. The large-scale production of IVT mRNA is less complex than production of recombinant proteins, and Good Manufacturing Practice-compliant mRNA production is easily scalable, ideally poising mRNA for not only off-the-shelf, but more personalized treatment approaches. IVT mRNA's safety profile, pharmacokinetics, and pharmacodynamics, including its inherent immunostimulatory capacity, can be optimized for different therapeutic applications by harnessing a wide array of optimized sequence elements, chemical modifications, purification techniques, and delivery methods. The value of IVT mRNA was recently proved during the COVID-19 pandemic when mRNA-based vaccines outperformed the efficacy of established technologies, and millions of doses were rapidly deployed. In this review, we will discuss chemical modifications of IVT mRNA and highlight numerous preclinical and clinical applications including vaccines for cancer and infectious diseases, cancer immunotherapy, protein replacement, gene editing, and cell reprogramming.
Collapse
|
16
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 319] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Versteven M, Flumens D, Campillo-Davó D, De Reu H, Van Bruggen L, Peeters S, Van Tendeloo V, Berneman Z, Dolstra H, Anguille S, Hobo W, Smits E, Lion E. Anti-Tumor Potency of Short-Term Interleukin-15 Dendritic Cells Is Potentiated by In Situ Silencing of Programmed-Death Ligands. Front Immunol 2022; 13:734256. [PMID: 35250967 PMCID: PMC8891487 DOI: 10.3389/fimmu.2022.734256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Dendritic cell (DC) vaccines have proven to be a valuable tool in cancer immune therapy. With several DC vaccines being currently tested in clinical trials, knowledge about their therapeutic value has been significantly increased in the past decade. Despite their established safety, it has become clear that objective clinical responses are not yet robust enough, requiring further optimization. Improvements of this advanced therapy medicinal product encompass, among others, regulating their immune stimulating capacity by in situ gene engineering, in addition to their implementation in combination therapy regimens. Previously, we have reported on a superior monocyte-derived DC preparation, including interleukin-15, pro-inflammatory cytokines and immunological danger signals in the culture process. These so-called IL-15 DCs have already proven to exhibit several favorable properties as cancer vaccine. Evolving research into mechanisms that could further modulate the immune response towards cancer, points to programmed death-1 as an important player that dampens anti-tumor immunity. Aiming at leveraging the immunogenicity of DC vaccines, we hypothesized that additional implementation of the inhibitory immune checkpoint molecules programmed death-ligand (PD-L)1 and PD-L2 in IL-15 DC vaccines would exhibit superior stimulatory potential. In this paper, we successfully implemented PD-L silencing at the monocyte stage in the 3-day IL-15 DC culture protocol resulting in substantial downregulation of both PD-L1 and PD-L2 to levels below 30%. Additionally, we validated that these DCs retain their specific characteristics, both at the level of phenotype and interferon gamma secretion. Evaluating their functional characteristics, we demonstrate that PD-L silencing does not affect the capacity to induce allogeneic proliferation. Ultimately designed to induce a durable tumor antigen-specific immune response, PD-L silenced IL-15 DCs were capable of surpassing PD-1-mediated inhibition by antigen-specific T cells. Further corroborating the superior potency of short-term IL-15 DCs, the combination of immune stimulatory components during DC differentiation and maturation with in situ checkpoint inhibition supports further clinical translation.
Collapse
Affiliation(s)
- Maarten Versteven
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Donovan Flumens
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Diana Campillo-Davó
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Laura Van Bruggen
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Stefanie Peeters
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Harry Dolstra
- Department of Laboratory Medicine – Laboratory of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Willemijn Hobo
- Department of Laboratory Medicine – Laboratory of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Evelien Smits
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
- *Correspondence: Eva Lion,
| |
Collapse
|
18
|
Bidram M, Zhao Y, Shebardina NG, Baldin AV, Bazhin AV, Ganjalikhany MR, Zamyatnin AA, Ganjalikhani-hakemi M. mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines (Basel) 2021; 9:1060. [PMID: 34696168 PMCID: PMC8540049 DOI: 10.3390/vaccines9101060] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma is one of the most aggressive forms of cancer and the leading cause of death from skin tumors. Given the increased incidence of melanoma diagnoses in recent years, it is essential to develop effective treatments to control this disease. In this regard, the use of cancer vaccines to enhance cell-mediated immunity is considered to be one of the most modern immunotherapy options for cancer treatment. The most recent cancer vaccine options are mRNA vaccines, with a focus on their usage as modern treatments. Advantages of mRNA cancer vaccines include their rapid production and low manufacturing costs. mRNA-based vaccines are also able to induce both humoral and cellular immune responses. In addition to the many advantages of mRNA vaccines for the treatment of cancer, their use is associated with a number of challenges. For this reason, before mRNA vaccines can be used for the treatment of cancer, comprehensive information about them is required and a large number of trials need to be conducted. Here, we reviewed the general features of mRNA vaccines, including their basis, stabilization, and delivery methods. We also covered clinical trials involving the use of mRNA vaccines in melanoma cancer and the challenges involved with this type of treatment. This review also emphasized the combination of treatment with mRNA vaccines with the use of immune-checkpoint blockers to enhance cell-mediated immunity.
Collapse
Affiliation(s)
- Maryam Bidram
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran; (M.B.); (M.R.G.)
| | - Yue Zhao
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany; (Y.Z.); (A.V.B.)
| | - Natalia G. Shebardina
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Alexey V. Baldin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany; (Y.Z.); (A.V.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran; (M.B.); (M.R.G.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Mazdak Ganjalikhani-hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| |
Collapse
|
19
|
De Keersmaecker B, Claerhout S, Carrasco J, Bar I, Corthals J, Wilgenhof S, Neyns B, Thielemans K. TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: link between T-cell activation and clinical responses in advanced melanoma. J Immunother Cancer 2021; 8:jitc-2019-000329. [PMID: 32114500 PMCID: PMC7057443 DOI: 10.1136/jitc-2019-000329] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Background We previously reported that dendritic cell-based mRNA vaccination plus ipilimumab (TriMixDC-MEL IPI) results in an encouraging rate of tumor responses in patients with pretreated advanced melanoma. Here, we report the TriMixDC-MEL IPI-induced T-cell responses detected in the peripheral blood. Methods Monocyte-derived dendritic cells electroporated with mRNA encoding CD70, CD40 ligand, and constitutively active TLR4 (TriMix) as well as the tumor-associated antigens tyrosinase, gp100, MAGE-A3, or MAGE-C2 were administered together with IPI for four cycles. For 18/39 patients, an additional vaccine was administered before the first IPI administration. We evaluated tumor-associated antigen specific T-cell responses in previously collected peripheral blood mononuclear cells, available from 15 patients. Results Vaccine-induced enzyme-linked immunospot assay responses detected after in vitro T-cell stimulation were shown in 12/15 patients. Immune responses detected in patients with a complete or partial response were significantly stronger and broader, and exhibited a higher degree of multifunctionality compared with responses in patients with stable or progressive disease. CD8+ T-cell responses from patients with an ongoing clinical response, either elicited by TriMixDC-MEL IPI or on subsequent pembrolizumab treatment, exhibited the highest degree of multifunctionality. Conclusions TriMixDC-MEL IPI treatment results in robust CD8+ T-cell responses in a meaningful portion of stage III or IV melanoma patients, and obviously in patients with a clinical response. The levels of polyfunctional and multiantigen T-cell responses measured in patients with a complete response, particularly in patients evidently cured after 5+ years of follow-up, may provide a benchmark for the level of immune stimulation needed to achieve a durable clinical remission. Trial registration number NCT01302496.
Collapse
Affiliation(s)
| | | | - Javier Carrasco
- Laboratory of Translational Oncology, Institute of Pathology and Genetics, Grand Hopital de Charleroi, Charleroi, Hainaut, Belgium
| | - Isabelle Bar
- Laboratory of Translational Oncology, Institute of Pathology and Genetics, Grand Hopital de Charleroi, Charleroi, Hainaut, Belgium
| | - Jurgen Corthals
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Sofie Wilgenhof
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
20
|
Loo KY, Letchumanan V, Ser HL, Teoh SL, Law JWF, Tan LTH, Ab Mutalib NS, Chan KG, Lee LH. COVID-19: Insights into Potential Vaccines. Microorganisms 2021; 9:605. [PMID: 33804162 PMCID: PMC8001762 DOI: 10.3390/microorganisms9030605] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
People around the world ushered in the new year 2021 with a fear of COVID-19, as family members have lost their loved ones to the disease. Millions of people have been infected, and the livelihood of many has been jeopardized due to the pandemic. Pharmaceutical companies are racing against time to develop an effective vaccine to protect against COVID-19. Researchers have developed various types of candidate vaccines with the release of the genetic sequence of the SARS-CoV-2 virus in January. These include inactivated viral vaccines, protein subunit vaccines, mRNA vaccines, and recombinant viral vector vaccines. To date, several vaccines have been authorized for emergency use and they have been administered in countries across the globe. Meanwhile, there are also vaccine candidates in Phase III clinical trials awaiting results and approval from authorities. These candidates have shown positive results in the previous stages of the trials, whereby they could induce an immune response with minimal side effects in the participants. This review aims to discuss the different vaccine platforms and the clinical trials of the candidate vaccines.
Collapse
Affiliation(s)
- Ke-Yan Loo
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Siew Li Teoh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| |
Collapse
|
21
|
Kim J, Eygeris Y, Gupta M, Sahay G. Self-assembled mRNA vaccines. Adv Drug Deliv Rev 2021; 170:83-112. [PMID: 33400957 PMCID: PMC7837307 DOI: 10.1016/j.addr.2020.12.014] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023]
Abstract
mRNA vaccines have evolved from being a mere curiosity to emerging as COVID-19 vaccine front-runners. Recent advancements in the field of RNA technology, vaccinology, and nanotechnology have generated interest in delivering safe and effective mRNA therapeutics. In this review, we discuss design and self-assembly of mRNA vaccines. Self-assembly, a spontaneous organization of individual molecules, allows for design of nanoparticles with customizable properties. We highlight the materials commonly utilized to deliver mRNA, their physicochemical characteristics, and other relevant considerations, such as mRNA optimization, routes of administration, cellular fate, and immune activation, that are important for successful mRNA vaccination. We also examine the COVID-19 mRNA vaccines currently in clinical trials. mRNA vaccines are ready for the clinic, showing tremendous promise in the COVID-19 vaccine race, and have pushed the boundaries of gene therapy.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA; Department of Biomedical Engineering, Oregon Health & Science University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
22
|
Shadbad MA, Hajiasgharzadeh K, Derakhshani A, Silvestris N, Baghbanzadeh A, Racanelli V, Baradaran B. From Melanoma Development to RNA-Modified Dendritic Cell Vaccines: Highlighting the Lessons From the Past. Front Immunol 2021; 12:623639. [PMID: 33692796 PMCID: PMC7937699 DOI: 10.3389/fimmu.2021.623639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Although melanoma remains the deadliest skin cancer, the current treatment has not resulted in the desired outcomes. Unlike chemotherapy, immunotherapy has provided more tolerable approaches and revolutionized cancer therapy. Although dendritic cell-based vaccines have minor side effects, the undesirable response rates of traditional approaches have posed questions about their clinical translation. The immunosuppressive tumor microenvironment can be the underlying reason for their low response rates. Immune checkpoints and indoleamine 2,3-dioxygenase have been implicated in the induction of immunosuppressive tumor microenvironment. Growing evidence indicates that the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Protein kinase B (PKB) (PI3K/AKT) pathways, as the main oncogenic pathways of melanoma, can upregulate the tumoral immune checkpoints, like programmed death-ligand 1. This study briefly represents the main oncogenic pathways of melanoma and highlights the cross-talk between these oncogenic pathways with indoleamine 2,3-dioxygenase, tumoral immune checkpoints, and myeloid-derived suppressor cells. Moreover, this study sheds light on a novel tumor antigen on melanoma, which has substantial roles in tumoral immune checkpoints expression, indoleamine 2,3-dioxygenase secretion, and stimulating the oncogenic pathways. Finally, this review collects the lessons from the previous unsuccessful trials and integrates their lessons with new approaches in RNA-modified dendritic cell vaccines. Unlike traditional approaches, the advances in single-cell RNA-sequencing techniques and RNA-modified dendritic cell vaccines along with combined therapy of the immune checkpoint inhibitors, indoleamine 2,3-dioxygenase inhibitor, and RNA-modified dendritic cell-based vaccine can overcome these auto-inductive loops and pave the way for developing robust dendritic cell-based vaccines with the most favorable response rate and the least side effects.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/adverse effects
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/therapeutic use
- Cancer Vaccines/adverse effects
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Humans
- Immune Checkpoint Proteins/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/therapy
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- RNA, Small Interfering/adverse effects
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- RNA, Small Interfering/therapeutic use
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/therapy
- Tumor Escape
- Tumor Microenvironment
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/therapeutic use
- mRNA Vaccines
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Van Nuffel AMT, Wilgenhof S, Thielemans K, Bonehill A. Overcoming HLA restriction in clinical trials: Immune monitoring of mRNA-loaded DC therapy. Oncoimmunology 2021; 1:1392-1394. [PMID: 23243604 PMCID: PMC3518513 DOI: 10.4161/onci.20926] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A decade of collective work by tumor immunologists has led to improved large scale generation, maturation, antigen loading and administration of dendritic cells (DCs) to cancer patients, promoting enhanced antitumor activity. We alleviated the HLA-restriction in DC therapy and demonstrated that it is meaningful to treat patients with DCs irrespective of their HLA type.
Collapse
Affiliation(s)
- An M T Van Nuffel
- Laboratory of Molecular and Cellular Therapy; Department of Immunology-Physiology; Medical School of the Vrije Universiteit Brussel (VUB); Brussels, Belgium
| | | | | | | |
Collapse
|
24
|
Aldosari BN, Alfagih IM, Almurshedi AS. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021; 13:206. [PMID: 33540942 PMCID: PMC7913163 DOI: 10.3390/pharmaceutics13020206] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
There has been increased interest in the development of RNA-based vaccines for protection against various infectious diseases and also for cancer immunotherapies. Rapid and cost-effective manufacturing methods in addition to potent immune responses observed in preclinical and clinical studies have made mRNA-based vaccines promising alternatives to conventional vaccine technologies. However, efficient delivery of these vaccines requires that the mRNA be protected against extracellular degradation. Lipid nanoparticles (LNPs) have been extensively studied as non-viral vectors for the delivery of mRNA to target cells because of their relatively easy and scalable manufacturing processes. This review highlights key advances in the development of LNPs and reviews the application of mRNA-based vaccines formulated in LNPs for use against infectious diseases and cancer.
Collapse
Affiliation(s)
| | - Iman M. Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (B.N.A.); (A.S.A.)
| | | |
Collapse
|
25
|
Faghfuri E, Pourfarzi F, Faghfouri AH, Abdoli Shadbad M, Hajiasgharzadeh K, Baradaran B. Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opin Biol Ther 2021; 21:201-218. [PMID: 32842798 DOI: 10.1080/14712598.2020.1815704] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cancer immunotherapy is more dependent on monoclonal antibodies, proteins, and cells, as therapeutic agents, to attain prominent outcomes. However, cancer immunotherapy's clinical benefits need to be enhanced, as many patients still do not respond well to existing treatments, or their diseases may relapse after temporary control. RNA-based approaches have provided new options for advancing cancer immunotherapy. Moreover, considerable efforts have been made to utilize RNA for vaccine production. RNA vaccines, which encode tumor-associated or specific epitopes, stimulate adaptive immunity. This adaptive immune response is capable of elimination or reduction of tumor burden. It is crucial to develop effective RNA transfer technologies that penetrate the lipid bilayer to reach the cytoplasm for translation into functional proteins. Two important delivery methods include the loading of mRNA into dendritic cells ex vivo; and direct injection of naked RNA with or without a carrier. AREAS COVERED The latest results of pre-clinical and clinical studies with RNA vaccines in cancer immunotherapy are summarized in this review. EXPERT OPINION RNA vaccines are now in early clinical development with promising safety and efficacy outcomes. Also, the translation capacity and durability of these vaccines can be increased with chemical modifications and sequence engineering.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Amir Hossein Faghfouri
- Student's Research Committee, Department of Nutrition, Tabriz University of Medical Science , Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
26
|
Lu L, Jiang J, Zhan M, Zhang H, Wang QT, Sun SN, Guo XK, Yin H, Wei Y, Li SY, Liu JO, Li Y, He YW. Targeting Tumor-Associated Antigens in Hepatocellular Carcinoma for Immunotherapy: Past Pitfalls and Future Strategies. Hepatology 2021; 73:821-832. [PMID: 32767586 DOI: 10.1002/hep.31502] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/23/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ligong Lu
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - Jun Jiang
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Meixiao Zhan
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - Hui Zhang
- First Affiliated HospitalChina Medical UniversityShenyangChina
| | - Qian-Ting Wang
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Sheng-Nan Sun
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Xiao-Kai Guo
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Hua Yin
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - Yadong Wei
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD
| | - Shi-You Li
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Jun O Liu
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD
| | - Yong Li
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - You-Wen He
- Department of ImmunologyDuke University Medical University Medical CenterDurhamNC
| |
Collapse
|
27
|
Heller LC, Heller R. Gene Electrotransfer. ELECTROPORATION IN VETERINARY ONCOLOGY PRACTICE 2021:219-234. [DOI: 10.1007/978-3-030-80668-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Harizaj A, De Smedt SC, Lentacker I, Braeckmans K. Physical transfection technologies for macrophages and dendritic cells in immunotherapy. Expert Opin Drug Deliv 2020; 18:229-247. [PMID: 32985919 DOI: 10.1080/17425247.2021.1828340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Dendritic cells (DCs) and macrophages, two important antigen presenting cells (APCs) of the innate immune system, are being explored for the use in cell-based cancer immunotherapy. For this application, the therapeutic potential of patient-derived APCs is increased by delivering different types of functional macromolecules, such as mRNA and pDNA, into their cytosol. Compared to the use of viral and non-viral delivery vectors, physical intracellular delivery techniques are known to be more straightforward, more controllable, faster and generate high delivery efficiencies. AREAS COVERED This review starts with electroporation as the most traditional physical transfection method, before continuing with the more recent technologies such as sonoporation, nanowires and microfluidic cell squeezing. A description is provided of each of those intracellular delivery technologies with their strengths and weaknesses, especially paying attention to delivery efficiency and safety profile. EXPERT OPINION Given the common use of electroporation for the production of therapeutic APCs, it is recommended that more detailed studies are performed on the effect of electroporation on APC fitness, even down to the genetic level. Newer intracellular delivery technologies seem to have less impact on APC functionality but further work is needed to fully uncover their suitability to transfect APCs with different types of macromolecules.
Collapse
Affiliation(s)
- Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Jeon I, Lee JM, Shin KS, Kang T, Park MH, Seo H, Song B, Koh CH, Choi J, Shin YK, Kim BS, Kang CY. Enhanced Immunogenicity of Engineered HER2 Antigens Potentiates Antitumor Immune Responses. Vaccines (Basel) 2020; 8:vaccines8030403. [PMID: 32707803 PMCID: PMC7563373 DOI: 10.3390/vaccines8030403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/03/2023] Open
Abstract
For cancer vaccines, the selection of optimal tumor-associated antigens (TAAs) that can maximize the immunogenicity of the vaccine without causing unwanted adverse effects is challenging. In this study, we developed two engineered Human epidermal growth factor receptor 2 (HER2) antigens, K965 and K1117, and compared their immunogenicity to a previously reported truncated HER2 antigen, K684, within a B cell and monocyte-based vaccine (BVAC). We found that BVAC-K965 and BVAC-K1117 induced comparable antigen-specific antibody responses and antigen-specific T cell responses to BVAC-K684. Interestingly, BVAC-K1117 induced more potent antitumor activity than the other vaccines in murine CT26-HER2 tumor models. In addition, BVAC-K1117 showed enhanced antitumor effects against truncated p95HER2-expressing CT26 tumors compared to BVAC-K965 and BVAC-K684 based on the survival analysis by inducing T cell responses against intracellular domain (ICD) epitopes. The increased ICD epitope-specific T cell responses induced by BVAC-K1117 compared to BVAC-K965 and BVAC-K684 were recapitulated in human leukocyte antigen (HLA)-untyped human PBMCs and HLA-A*0201 PBMCs. Furthermore, we also observed synergistic antitumor effects between BVAC-K1117 and anti-PD-L1 antibody treatment against CT26-HER2 tumors. Collectively, our findings demonstrate that inclusion of a sufficient number of ICD epitopes of HER2 in cellular vaccines can improve the antitumor activity of the vaccine and provide a way to optimize the efficacy of anticancer cellular vaccines targeting HER2.
Collapse
Affiliation(s)
- Insu Jeon
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea; (I.J.); (K.-S.S.); (T.K.); (M.H.P.); (H.S.); (B.S.); (J.C.); (Y.K.S.)
| | - Jeong-Mi Lee
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy Seoul National University, Seoul 08826, Korea; (J.-M.L.); (C.-H.K.)
| | - Kwang-Soo Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea; (I.J.); (K.-S.S.); (T.K.); (M.H.P.); (H.S.); (B.S.); (J.C.); (Y.K.S.)
| | - Taeseung Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea; (I.J.); (K.-S.S.); (T.K.); (M.H.P.); (H.S.); (B.S.); (J.C.); (Y.K.S.)
| | - Myung Hwan Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea; (I.J.); (K.-S.S.); (T.K.); (M.H.P.); (H.S.); (B.S.); (J.C.); (Y.K.S.)
| | - Hyungseok Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea; (I.J.); (K.-S.S.); (T.K.); (M.H.P.); (H.S.); (B.S.); (J.C.); (Y.K.S.)
| | - Boyeong Song
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea; (I.J.); (K.-S.S.); (T.K.); (M.H.P.); (H.S.); (B.S.); (J.C.); (Y.K.S.)
| | - Choong-Hyun Koh
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy Seoul National University, Seoul 08826, Korea; (J.-M.L.); (C.-H.K.)
| | - Jeongwon Choi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea; (I.J.); (K.-S.S.); (T.K.); (M.H.P.); (H.S.); (B.S.); (J.C.); (Y.K.S.)
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea; (I.J.); (K.-S.S.); (T.K.); (M.H.P.); (H.S.); (B.S.); (J.C.); (Y.K.S.)
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea;
| | - Chang-Yuil Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea; (I.J.); (K.-S.S.); (T.K.); (M.H.P.); (H.S.); (B.S.); (J.C.); (Y.K.S.)
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy Seoul National University, Seoul 08826, Korea; (J.-M.L.); (C.-H.K.)
- Cellid, Inc., Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-7860
| |
Collapse
|
30
|
Jansen Y, Kruse V, Corthals J, Schats K, van Dam PJ, Seremet T, Heirman C, Brochez L, Kockx M, Thielemans K, Neyns B. A randomized controlled phase II clinical trial on mRNA electroporated autologous monocyte-derived dendritic cells (TriMixDC-MEL) as adjuvant treatment for stage III/IV melanoma patients who are disease-free following the resection of macrometastases. Cancer Immunol Immunother 2020; 69:2589-2598. [PMID: 32591862 DOI: 10.1007/s00262-020-02618-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/19/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Autologous monocyte-derived mRNA co-electroporated dendritic cells with mRNA encoding CD40 ligand (CD40L), CD70 and a constitutively activated TLR4 (caTLR4) (referred to as TriMixDC-MEL) have anti-tumor activity in advanced melanoma patients. We investigated the safety and activity of adjuvant TriMixDC-MEL in stage III/IV melanoma patients. MATERIALS AND METHODS Forty-one patients were randomly assigned to treatment with TriMixDC-MEL (n = 21) and standard follow-up (n = 20). "Cross-over" was allowed at the time of non-salvageable recurrence. The primary endpoint was the percentage of patients alive and disease-free at 1-year. For a subset of patients, (formalin-fixed paraffin-embedded), tumor tissue samples were available for mRNA expression profiling and PD-L1 immunohistochemical staining. RESULTS Baseline characteristics were well balanced. One-year after randomization, 71% of patients in the study arm were alive and free of disease compared to 35% in the control arm. After a median follow-up of 53 months (range 3-67), 23 patients experienced a non-salvageable melanoma recurrence (TriMixDC-Mel arm n = 9 and control arm n = 14).The median time to non-salvageable recurrence was superior in the TriMixDC-MEL arm (median 8 months (range 1-6) vs. not reached; log-rank p 0.044). TriMixDC-MEL-related adverse events (AE) consisted of transient local skin reactions, flu-like symptoms and post-infusion chills. No grade ≥ 3 AE's occurred. The mRNA expression profiling revealed four genes (STAT2, TPSAB1, CD9 and CSF2) as potential predictive biomarkers. CONCLUSION TriMixDC-MEL id/iv as adjuvant therapy is tolerable and may improve the 1-year disease-free survival rate. Combination of optimized autologous monocyte-derived DC-formulations warrants further investigation in combination with currently approved adjuvant therapy options.
Collapse
Affiliation(s)
- Yanina Jansen
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Vibeke Kruse
- Department of Medical Oncology, Universitair Ziekenhuis Gent (UZ Gent), Ghent, Belgium
| | - Jurgen Corthals
- Laboratory of Molecular and Cellular Therapy and Dendritic Cell-bank, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Teofila Seremet
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy and Dendritic Cell-bank, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lieve Brochez
- Department of Medical Oncology, Universitair Ziekenhuis Gent (UZ Gent), Ghent, Belgium
| | | | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy and Dendritic Cell-bank, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
31
|
Harisa GI, Sherif AY, Youssof AM, Alanazi FK, Salem-Bekhit MM. Bacteriosomes as a Promising Tool in Biomedical Applications: Immunotherapy and Drug Delivery. AAPS PharmSciTech 2020; 21:168. [PMID: 32514657 DOI: 10.1208/s12249-020-01716-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Bacteriosomes are a member of cell-derived vesicles that are proposed as promising tools in diagnosis, therapy, and drug delivery. These vesicles could be derived from a virus, bacterial cells, and animal cells. Biotechnology techniques were used in bioengineering of cell-derived vesicles in vitro, and in vivo. Bacterial vesicles such as bacterial cells, bacterial ghost, or bacteriosomes are vesicular structures derived from bacteria produced by manipulation of bacterial cells by chemical agents or gene-mediated lysis. Subsequently, bacterial vesicles (bacteriosomes) are non-living, non-denatured bacterial cell envelopes free of the cytoplasm and genetic materials. Gram-negative and Gram-positive bacteria are exploited in the production of bacteriosomes. Bacteriosomes have instinct organs, tissues, cells, as well as subcellular tropism. Moreover, bacteriosomes might be used as immunotherapy and/or drug delivery shuttles. They could act as cargoes for the delivery of small drugs, large therapeutics, and nanoparticles to the specific location. Furthermore, bacteriosomes have nature endosomal escaping ability, hence they could traffic different bio-membranes by endocytosis mechanisms. Therefore, bacterial-derived vesicles could be used in therapy and development of an innovative drug delivery systems. Consequently, utilizing bacteriosomes as drug cargoes enhances the delivery and efficacy of administered therapeutic agents. This review highlighted bacteriosomes in terms of source, engineering, characterization, applications, and limitations.
Collapse
|
32
|
Ahmed R, Sayegh N, Graciotti M, Kandalaft LE. Electroporation as a method of choice to generate genetically modified dendritic cell cancer vaccines. Curr Opin Biotechnol 2020; 65:142-155. [PMID: 32240923 DOI: 10.1016/j.copbio.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
In the last few decades, immunotherapy has emerged as an alternative therapeutic approach to treat cancer. Immunotherapy offers a plethora of different treatment possibilities. Among these, dendritic cell (DC)-based cancer vaccines constitute one of the most promising and valuable therapeutic options. DC-vaccines have been introduced into the clinics more than 15 years ago, and preclinical studies showed their general safety and low toxic effects on patients. However, their treatment efficacy is still rather limited, demanding for novel avenues to improve vaccine efficacy. One way to potentially achieve this is to focus on improving the DC-T cell interaction to further increase T cell priming and downstream activity. A successful DC-T cell interaction requires three different signals (Figure 1): (1) Major Histocompatibility Complex (MHC) and antigen complex interaction with T cell receptor (TCR) (2) interaction between co-stimulatory molecules and their cognate ligands at the cell surface and (3) secretion of cytokines to polarize the immune response toward a Type 1 helper (Th1) phenotype. In recent years, many studies attempted to improve the DC-T cell interaction and overall cancer vaccine therapeutic outcomes by increasing the expression of mediators of signal 1, 2 and/or 3, through genetic modifications of DCs. Transfection of genes of interest can be achieved through many different methods such as passive pulsing, lipofection, viral transfection, or electroporation (EP). However, EP is currently emerging as the method of choice thanks to its safety, versatility, and relatively easy clinical translation. In this review we will highlight the potential benefits of EP over other transfection methods as well as giving an overview of the available studies employing EP to gene-modify DCs in cancer vaccines. Crucial aspects such as safety, feasibility, and gene(s) of choice will be also discussed, together with future perspectives and opportunities for DC genetic engineering.
Collapse
Affiliation(s)
- Rita Ahmed
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Naya Sayegh
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Michele Graciotti
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Lana E Kandalaft
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| |
Collapse
|
33
|
Shen T, Zhang Y, Zhou S, Lin S, Zhang XB, Zhu G. Nucleic Acid Immunotherapeutics for Cancer. ACS APPLIED BIO MATERIALS 2020; 3:2838-2849. [PMID: 33681722 DOI: 10.1021/acsabm.0c00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The past decade has witnessed the blossom of two fields: nucleic acid therapeutics and cancer immunotherapy. Unlike traditional small molecule medicines or protein biologics, nucleic acid therapeutics have characteristic features such as storing genetic information, immunomodulation, and easy conformational recovery. Immunotherapy uses the patients' own immune system to treat cancer. A variety of strategies have been developed for cancer immunotherapy including immune checkpoint blockade, adoptive cell transfer therapy, therapeutic vaccines, and oncolytic virotherapy. Interestingly, nucleic acid therapeutics have emerged as a pivotal class of regimen for cancer immunotherapy. Examples of such nucleic acid immunotherapeutics include immunostimulatory DNA/RNA, mRNA/plasmids that can be translated into immunotherapeutic proteins/peptides, and genome-editing nucleic acids. Like many other therapeutic nucleic acids, nucleic acid immunotherapeutics often require chemical modifications to protect them from enzymatic degradation and need drug delivery systems for optimal delivery to target tissues and cells and subcellular locations. In this review, we attempted to summarize recent advancement in the interfacial field of nucleic acid immunotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Tingting Shen
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China; Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Yu Zhang
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States; Department of Rehabilitation Medicine, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shurong Zhou
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Shuibin Lin
- Department of Rehabilitation Medicine, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Bing Zhang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Guizhi Zhu
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences-School of Pharmacy; Massey Cancer Center; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
34
|
Weng Y, Li C, Yang T, Hu B, Zhang M, Guo S, Xiao H, Liang XJ, Huang Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv 2020; 40:107534. [PMID: 32088327 DOI: 10.1016/j.biotechadv.2020.107534] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
Messenger RNA (mRNA)-based therapeutics hold the potential to cause a major revolution in the pharmaceutical industry because they can be used for precise and individualized therapy, and enable patients to produce therapeutic proteins in their own bodies without struggling with the comprehensive manufacturing issues associated with recombinant proteins. Compared with the current therapeutics, the production of mRNA is much cost-effective, faster and more flexible because it can be easily produced by in vitro transcription, and the process is independent of mRNA sequence. Moreover, mRNA vaccines allow people to develop personalized medications based on sequencing results and/or personalized conditions rapidly. Along with the great potential from bench to bedside, technical obstacles facing mRNA pharmaceuticals are also obvious. The stability, immunogenicity, translation efficiency, and delivery are all pivotal issues need to be addressed. In the recently published research results, these issues are gradually being overcome by state-of-the-art development technologies. In this review, we describe the structural properties and modification technologies of mRNA, summarize the latest advances in developing mRNA delivery systems, review the preclinical and clinical applications, and put forward our views on the prospect and challenges of developing mRNA into a new class of drug.
Collapse
Affiliation(s)
- Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Tongren Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
35
|
Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. NANOMATERIALS 2020; 10:nano10020364. [PMID: 32093140 PMCID: PMC7075285 DOI: 10.3390/nano10020364] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
The use of messenger RNA (mRNA) in gene therapy is increasing in recent years, due to its unique features compared to plasmid DNA: Transient expression, no need to enter into the nucleus and no risk of insertional mutagenesis. Nevertheless, the clinical application of mRNA as a therapeutic tool is limited by its instability and ability to activate immune responses; hence, mRNA chemical modifications together with the design of suitable vehicles result essential. This manuscript includes a revision of the strategies employed to enhance in vitro transcribed (IVT) mRNA functionality and efficacy, including the optimization of its stability and translational efficiency, as well as the regulation of its immunostimulatory properties. An overview of the nanosystems designed to protect the mRNA and to overcome the intra and extracellular barriers for successful delivery is also included. Finally, the present and future applications of mRNA nanomedicines for immunization against infectious diseases and cancer, protein replacement, gene editing, and regenerative medicine are highlighted.
Collapse
|
36
|
Joshi A, Tandel N, Tyagi P, Dalai SK, Bisen PS, Tyagi RK. RNA-loaded dendritic cells: more than a tour de force in cancer therapeutics. Immunotherapy 2019; 11:1129-1147. [PMID: 31390917 DOI: 10.2217/imt-2019-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/14/2019] [Indexed: 02/07/2023] Open
Abstract
A wide array of therapeutic strategies has been implemented against cancers, yet their clinical benefit is limited. The lack of clinical efficacy of the conventional treatment options might be due to the inept immune competency of the patients. Dendritic cells (DCs) have a vital role in initiating and directing immune responses and have been frequently used as delivery vehicles in clinical research. The recent clinical data suggest the potential use of DCs pulsed with nucleic acid, especially with RNA holds a great potential as an immunotherapeutic measure with compare to other cancer therapeutics. This review mainly deals with the DCs and their role in transfection with RNA in cancer immunotherapy.
Collapse
Affiliation(s)
- Aishwarya Joshi
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| | - Priyanka Tyagi
- Department of Biological Sciences, School of Basic and Applied Sciences, GD Goenka University, Gurugram 122103, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| | - Prakash S Bisen
- School of Studies in Biotechnology, Jiwaji University, Gwalior 474001, India
| | - Rajeev K Tyagi
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| |
Collapse
|
37
|
Derdelinckx J, Mansilla MJ, De Laere M, Lee WP, Navarro-Barriuso J, Wens I, Nkansah I, Daans J, De Reu H, Jolanta Keliris A, Van Audekerke J, Vanreusel V, Pieters Z, Van der Linden A, Verhoye M, Molenberghs G, Hens N, Goossens H, Willekens B, Cras P, Ponsaerts P, Berneman ZN, Martínez-Cáceres EM, Cools N. Clinical and immunological control of experimental autoimmune encephalomyelitis by tolerogenic dendritic cells loaded with MOG-encoding mRNA. J Neuroinflammation 2019; 16:167. [PMID: 31416452 PMCID: PMC6696692 DOI: 10.1186/s12974-019-1541-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Background Although effective in reducing relapse rate and delaying progression, current therapies for multiple sclerosis (MS) do not completely halt disease progression. T cell autoimmunity to myelin antigens is considered one of the main mechanisms driving MS. It is characterized by autoreactivity to disease-initiating myelin antigen epitope(s), followed by a cascade of epitope spreading, which are both strongly patient-dependent. Targeting a variety of MS-associated antigens by myelin antigen-presenting tolerogenic dendritic cells (tolDC) is a promising treatment strategy to re-establish tolerance in MS. Electroporation with mRNA encoding myelin proteins is an innovative technique to load tolDC with the full spectrum of naturally processed myelin-derived epitopes. Methods In this study, we generated murine tolDC presenting myelin oligodendrocyte glycoprotein (MOG) using mRNA electroporation and we assessed the efficacy of MOG mRNA-electroporated tolDC to dampen pathogenic T cell responses in experimental autoimmune encephalomyelitis (EAE). For this, MOG35–55-immunized C57BL/6 mice were injected intravenously at days 13, 17, and 21 post-disease induction with 1α,25-dihydroxyvitamin D3-treated tolDC electroporated with MOG-encoding mRNA. Mice were scored daily for signs of paralysis. At day 25, myelin reactivity was evaluated following restimulation of splenocytes with myelin-derived epitopes. Ex vivo magnetic resonance imaging (MRI) was performed to assess spinal cord inflammatory lesion load. Results Treatment of MOG35–55-immunized C57BL/6 mice with MOG mRNA-electroporated or MOG35–55-pulsed tolDC led to a stabilization of the EAE clinical score from the first administration onwards, whereas it worsened in mice treated with non-antigen-loaded tolDC or with vehicle only. In addition, MOG35–55-specific pro-inflammatory pathogenic T cell responses and myelin antigen epitope spreading were inhibited in the peripheral immune system of tolDC-treated mice. Finally, magnetic resonance imaging analysis of hyperintense spots along the spinal cord was in line with the clinical score. Conclusions Electroporation with mRNA is an efficient and versatile tool to generate myelin-presenting tolDC that are capable to stabilize the clinical score in EAE. These results pave the way for further research into mRNA-electroporated tolDC treatment as a patient-tailored therapy for MS. Electronic supplementary material The online version of this article (10.1186/s12974-019-1541-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judith Derdelinckx
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium. .,Division of Neurology, Antwerp University Hospital, Edegem, Belgium.
| | - María José Mansilla
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Maxime De Laere
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Wai-Ping Lee
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Juan Navarro-Barriuso
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Inez Wens
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Irene Nkansah
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | | | | | | | - Zoë Pieters
- Center for Statistics, I-Biostat, Hasselt University, Diepenbeek, Belgium.,Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | | | | | - Geert Molenberghs
- Center for Statistics, I-Biostat, Hasselt University, Diepenbeek, Belgium.,L-BioStat, I-BioStat, KU Leuven, Leuven, Belgium
| | - Niel Hens
- Center for Statistics, I-Biostat, Hasselt University, Diepenbeek, Belgium.,Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp, Belgium
| | - Barbara Willekens
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium.,Division of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Patrick Cras
- Division of Neurology, Antwerp University Hospital, Edegem, Belgium.,Born Bunge Institute, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Eva María Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
38
|
Intranodal administration of mRNA encoding nucleoprotein provides cross-strain immunity against influenza in mice. J Transl Med 2019; 17:242. [PMID: 31345237 PMCID: PMC6659201 DOI: 10.1186/s12967-019-1991-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/17/2019] [Indexed: 01/25/2023] Open
Abstract
Background Current human influenza vaccines lack the adaptability to match the mutational rate of the virus and therefore require annual revisions. Because of extensive manufacturing times and the possibility that antigenic alterations occur during viral vaccine strain production, an inherent risk exists for antigenic mismatch between the new influenza vaccine and circulating viruses. Targeting more conserved antigens such as nucleoprotein (NP) could provide a more sustainable vaccination strategy by inducing long term and heterosubtypic protection against influenza. We previously demonstrated that intranodal mRNA injection can induce potent antigen-specific T-cell responses. In this study, we investigated whether intranodal administration of mRNA encoding NP can induce T-cell responses capable of protecting against a heterologous influenza virus challenge. Methods BALB/c mice were immunized in the inguinal lymph nodes with different vaccination regimens of mRNA encoding NP. Immune responses were compared with NP DNA vaccination via IFN-γ ELISPOT and in vivo cytotoxicity. For survival experiments, mice were prime-boost vaccinated with 17 µg NP mRNA and infected with 1LD50 of H1N1 influenza virus 8 weeks after boost. Weight was monitored and viral titers, cytokines and immune cell populations in the bronchoalveolar lavage, and IFN-γ responses in the spleen were analyzed. Results Our results demonstrate that NP mRNA induces superior systemic T-cell responses against NP compared to classical DNA vaccination. These responses were sustained for several weeks even at low vaccine doses. Upon challenge infection, vaccination with NP mRNA resulted in reduced lung viral titers and improved recovery from infection. Finally, we show that vaccination with NP mRNA affects the immune response in infected lungs by lowering immune cell infiltration while increasing the fraction of T cells, monocytes and MHC II+ alveolar macrophages within immune infiltrates. This change was associated with altered levels of both pro- and anti-inflammatory cytokines. Conclusions These findings suggest that intranodal vaccination with NP mRNA induces cross-strain immunity against influenza, but also highlight a paradox of influenza immunity, whereby robust immune responses can provide protection, but can also transiently exacerbate symptoms during infection. Electronic supplementary material The online version of this article (10.1186/s12967-019-1991-3) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Singh VK, Werner S, Schwalm S, Lennerz V, Ruf S, Stadler S, Hackstein H, Reiter A, Wölfel T, Damm-Welk C, Woessmann W. NPM-ALK-reactive T-cell responses in children and adolescents with NPM-ALK positive anaplastic large cell lymphoma. Oncoimmunology 2019; 8:e1625688. [PMID: 31428523 PMCID: PMC6685518 DOI: 10.1080/2162402x.2019.1625688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/11/2019] [Accepted: 05/26/2019] [Indexed: 12/15/2022] Open
Abstract
The oncoantigen nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) induces cellular and humoral immune responses in patients with NPM-ALK-positive anaplastic large cell lymphoma (ALCL). We characterize the NPM-ALK-specific T-cell responses in a cohort of pediatric and adolescent ALCL-patients in remission without Human Leucocyte Antigen (HLA)-preselection. First, we assessed NPM-ALK-reactive T-cell responses and their HLA-class I restriction in patients by using dendritic cells (DCs) transfected with in vitro transcribed (IVT) NPM-ALK-RNA for CD8 (n = 20) or CD3 (n = 9) T-cell stimulation. NPM-ALK-specific T-cells were detected in twelve of 29 patients (nine of 20 with CD8-selected and three of nine with CD3-selected cells). Recognition of NPM-ALK was restricted by HLA-C alleles in six of eight, and by HLA-B alleles in four of eight analyzed patients. No NPM-ALK-reactivity was detected in 20 healthy individuals. Second, in order to define possible immunogenic NPM-ALK-epitope regions, DCs pulsed with pools of overlapping long NPM-ALK-peptides were used to stimulate T-cells in further 22 patients and ten controls. Responsive T-cells were detected in 15 patients and in five controls. A peptide pool located in the middle of the kinase domain induced ALK-reactive T-cells in 14 of 15 responsive patients. We could narrow to single peptides between p327-p370 of NPM-ALK in four patients. In conclusion, using IVT-RNA, 40% of NPM-ALK-positive ALCL-patients in remission had detectable NPM-ALK-specific T-cell responses which were mainly restricted by HLA-B and -C alleles. Peptide stimulation of T-cells revealed responses in almost 70% of patients and allowed describing an immunogenic region located in the ALK-kinase domain.
Collapse
Affiliation(s)
- Vijay Kumar Singh
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Sebastian Werner
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Simone Schwalm
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Volker Lennerz
- Department of Internal Medicine III, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Stephanie Ruf
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Serena Stadler
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, University Hospital Erlangen, Erlangen, Germany
| | - Alfred Reiter
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Thomas Wölfel
- Department of Internal Medicine III, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Christine Damm-Welk
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Wilhelm Woessmann
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
40
|
Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3' UTRs Identified by Cellular Library Screening. Mol Ther 2018; 27:824-836. [PMID: 30638957 DOI: 10.1016/j.ymthe.2018.12.011] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023] Open
Abstract
Synthetic mRNA has emerged as a powerful tool for the transfer of genetic information, and it is being explored for a variety of therapeutic applications. Many of these applications require prolonged intracellular persistence of mRNA to improve bioavailability of the encoded protein. mRNA molecules are intrinsically unstable and their intracellular kinetics depend on the UTRs embracing the coding sequence, in particular the 3' UTR elements. We describe here a novel and generally applicable cell-based selection process for the identification of 3' UTRs that augment the expression of proteins encoded by synthetic mRNA. Moreover, we show, for two applications of mRNA therapeutics, namely, (1) the delivery of vaccine antigens in order to mount T cell immune responses and (2) the introduction of reprogramming factors into differentiated cells in order to induce pluripotency, that mRNAs tagged with the 3' UTR elements discovered in this study outperform those with commonly used 3' UTRs. This approach further leverages the utility of mRNA as a gene therapy drug format.
Collapse
|
41
|
Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Fromm PD, Hart DNJ. Dendritic cells as cancer therapeutics. Semin Cell Dev Biol 2018; 86:77-88. [PMID: 29454038 DOI: 10.1016/j.semcdb.2018.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
The ability of immune therapies to control cancer has recently generated intense interest. This therapeutic outcome is reliant on T cell recognition of tumour cells. The natural function of dendritic cells (DC) is to generate adaptive responses, by presenting antigen to T cells, hence they are a logical target to generate specific anti-tumour immunity. Our understanding of the biology of DC is expanding, and they are now known to be a family of related subsets with variable features and function. Most clinical experience to date with DC vaccination has been using monocyte-derived DC vaccines. There is now growing experience with alternative blood-derived DC derived vaccines, as well as with multiple forms of tumour antigen and its loading, a wide range of adjuvants and different modes of vaccine delivery. Key insights from pre-clinical studies, and lessons learned from early clinical testing drive progress towards improved vaccines. The potential to fortify responses with other modalities of immunotherapy makes clinically effective "second generation" DC vaccination strategies a priority for cancer immune therapists.
Collapse
Affiliation(s)
- Christian E Bryant
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia.
| | - Sarah Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Benjamin Kong
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Michael S Papadimitrious
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Phillip D Fromm
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Derek N J Hart
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia.
| |
Collapse
|
42
|
Verma V, Kim Y, Lee MC, Lee JT, Cho S, Park IK, Min JJ, Lee JJ, Lee SE, Rhee JH. Activated dendritic cells delivered in tissue compatible biomatrices induce in-situ anti-tumor CTL responses leading to tumor regression. Oncotarget 2018; 7:39894-39906. [PMID: 27223090 PMCID: PMC5129979 DOI: 10.18632/oncotarget.9529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/25/2016] [Indexed: 12/26/2022] Open
Abstract
Dendritic cell (DC) based anti-cancer immunotherapy is well tolerated in patients with advanced cancers. However, the clinical responses seen after adoptive DC therapy have been suboptimal. Several factors including scarce DC numbers in tumors and immunosuppressive tumor microenvironments contribute to the inefficacy of DCs as cellular vaccines. Hence DC based vaccines can benefit from novel methods of cell delivery that would prevent the direct exposure of immune cells to suppressive tumor microenvironments. Here we evaluated the ability of DCs harbored in biocompatible scaffolds (referred to as biomatrix entrapped DCs; beDCs) in activating specific anti-tumor immune responses against primary and post-surgery secondary tumors. Using a preclinical cervical cancer and a melanoma model in mice, we show that single treatment of primary and post-surgery secondary tumors using beDCs resulted in significant tumor growth retardation while multiple inoculations were required to achieve a significant anti-tumor effect when DCs were given in free form. Additionally, we found that, compared to the tumor specific E6/E7 peptide vaccine, total tumor lysate induced higher expression of CD80 and CD40 on DCs that induced increased levels of IFNγ production upon interaction with host lymphocytes. Remarkably, a strong immunocyte infiltration into the host-implanted DC-scaffold was observed. Importantly, the host-implanted beDCs induced the anti-tumor immune responses in the absence of any stromal cell support, and the biomatrix structure was eventually absorbed into the surrounding host tissue. Collectively, these data indicate that the scaffold-based DC delivery may provide an efficient and safe way of delivering cell-based vaccines for treatment of primary and post-surgery secondary tumors.
Collapse
Affiliation(s)
- Vivek Verma
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea.,Present address: GRU Cancer Center, GRU, Augusta, GA, USA
| | - Young Kim
- Department of Pathology, Chonnam National University Medical School, Gwangju, South Korea
| | - Min-Cheol Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, South Korea
| | - Jae-Tae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Sunghoon Cho
- School of Mechanical Systems Engineering, Chonnam National University, Gwangju, South Korea
| | - In-Kyu Park
- Department of Biomedical Science, Chonnam National University Medical School, Gwangju, South Korea
| | - Jung Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Je Jung Lee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Research Center for Cancer Immunotherapy, Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
43
|
Sohn HJ, Lee JY, Lee HJ, Sohn DH, Cho HI, Kim HJ, Kim TG. Simultaneous in vitro generation of CD8 and CD4 T cells specific to three universal tumor associated antigens of WT1, survivin and TERT and adoptive T cell transfer for the treatment of acute myeloid leukemia. Oncotarget 2017; 8:44059-44072. [PMID: 28477011 PMCID: PMC5546462 DOI: 10.18632/oncotarget.17212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/03/2017] [Indexed: 01/21/2023] Open
Abstract
Previously, we found that most patients with acute myeloid leukemia (AML) expressed at least one of the leukemic associated antigens (LAAs) WT1, survivin and TERT, and different combinations of the three LAAs predicted negative clinical outcomes. Multi-tumor antigen-specific T cells were generated to overcome antigenic variation and may be sufficient to maximize antitumoral effects. To generate triple antigen-specific (Tri)-T cells that recognize three LAAs, dendritic cells (DCs) were transfected with three tumor antigen-encoding RNAs. These DCs were used to stimulate both CD8 and CD4 T cells and to overcome the limitation of known human leukocyte antigen-restricted epitopes. The sum of the antigen-specific T cell frequencies was higher in the Tri-T cells than in the T cells that recognized a single antigen. Furthermore, the Tri-T cells were more effective against leukemic blasts that expressed all three LAAs compared with blasts that expressed one or two LAAs, suggesting a proportional correlation between IFN-γ secretion and LAA expression. Engrafted leukemic blasts in the bone marrow of mice significantly decreased in the presence of Tri-T cells. This technique represents an effective immunotherapeutic strategy in AML.
Collapse
Affiliation(s)
- Hyun-Jung Sohn
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- ViGenCell Inc., Seoul, Korea
| | - Ji Yoon Lee
- Leukemia Research Institute, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedical Laboratory Science, College of Health Sciences, Sangji University, Wonju, Korea
| | - Hyun-Joo Lee
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- ViGenCell Inc., Seoul, Korea
| | - Dae-Hee Sohn
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- ViGenCell Inc., Seoul, Korea
| | - Hyun-Il Cho
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee-Je Kim
- Leukemia Research Institute, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tai-Gyu Kim
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
44
|
Sennikov SV, Khantakova JN, Kulikova EV, Obleukhova IA, Shevchenko JA. Modern strategies and capabilities for activation of the immune response against tumor cells. Tumour Biol 2017; 39:1010428317698380. [PMID: 28513301 DOI: 10.1177/1010428317698380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells are professional antigen-presenting cells and the most potent stimulators of various immune responses, such as antitumor responses. Modern studies have not shown an effective antitumor immune response development in patients with malignant tumors. The major cause is the decrease in functional activity of dendritic cells in cancer patients through irregularities in the maturation process to a functionally active form and in the antigen presentation process to naive T lymphocytes. This review describes the main stages of cellular antitumor immune response induction in vitro, aimed at resolving the problems that are blocking the full functioning of dendritic cells, and additional stimulation of antitumor immune response.
Collapse
Affiliation(s)
- Sergey Vital'evich Sennikov
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Julia Nikolaevna Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Ekaterina Vladimirovna Kulikova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Irina Alexandrovna Obleukhova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Julia Alexandrovna Shevchenko
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| |
Collapse
|
45
|
Gerer KF, Hoyer S, Dörrie J, Schaft N. Electroporation of mRNA as Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins. Methods Mol Biol 2017; 1499:165-178. [PMID: 27987149 DOI: 10.1007/978-1-4939-6481-9_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers, and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs for therapeutic vaccination in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types, (2) scalability from 106 to approximately 108 cells per shot, (3) high transfection efficiency (80-99 %), (4) homogenous protein expression, (5) GMP compliance if the EP is performed in a class A clean room, and (6) no transgene integration into the genome. The provided protocol involves: Opti-MEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time is altered. Next to the basic protocol, we also provide an extensive list of hints and tricks, which in our opinion are of great value for everyone who intends to use this transfection technique.
Collapse
Affiliation(s)
- Kerstin F Gerer
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Stefanie Hoyer
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Research campus, Hartmannstraße 14, 91052, Erlangen, Germany.
| |
Collapse
|
46
|
Heller R, Teissie J, Rols MP, Gehl J, Sersa G, Mir LM, Neal RE, Bhonsle S, Davalos R, Beebe S, Hargrave B, Nuccitelli R, Jiang C, Cemazar M, Tamzali Y, Tozon N. Medical Applications. BIOELECTRICS 2017:275-388. [DOI: 10.1007/978-4-431-56095-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
47
|
Constantino J, Gomes C, Falcão A, Cruz MT, Neves BM. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl Res 2016; 168:74-95. [PMID: 26297944 DOI: 10.1016/j.trsl.2015.07.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are versatile elements of the immune system and are best known for their unparalleled ability to initiate and modulate adaptive immune responses. During the past few decades, DCs have been the subject of numerous studies seeking new immunotherapeutic strategies against cancer. Despite the initial enthusiasm, disappointing results from early studies raised some doubts regarding the true clinical value of these approaches. However, our expanding knowledge of DC immunobiology and the definition of the optimal characteristics for antitumor immune responses have allowed a more rational development of DC-based immunotherapies in recent years. Here, after a brief overview of DC immunobiology, we sought to systematize the knowledge provided by 20 years of clinical trials, with a special emphasis on the diversity of approaches used to manipulate DCs and their consequent impact on vaccine effectiveness. We also address how new therapeutic concepts, namely the combination of DC vaccines with other anticancer therapies, are being implemented and are leveraging clinical outcomes. Finally, optimization strategies, new insights, and future perspectives on the field are also highlighted.
Collapse
Affiliation(s)
- João Constantino
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Faculty of Medicine, Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI) and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Bruno M Neves
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; Department of Chemistry and QOPNA, Mass Spectrometry Centre, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
48
|
Fairchild PJ, Leishman A, Sachamitr P, Telfer C, Hackett S, Davies TJ. Dendritic cells and pluripotency: unlikely allies in the pursuit of immunotherapy. Regen Med 2016; 10:275-86. [PMID: 25933237 DOI: 10.2217/rme.15.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As the fulcrum on which the balance between the opposing forces of tolerance and immunity has been shown to pivot, dendritic cells (DC) hold significant promise for immune intervention in a variety of disease states. Here we discuss how the directed differentiation of human pluripotent stem cells may address many of the current obstacles to the use of monocyte-derived DC in immunotherapy, providing a novel source of previously inaccessible DC subsets and opportunities for their scale-up, quality control and genetic modification. Indeed, given that it is the immunological legacy DC leave behind that is of therapeutic value, rather than their persistence per se, we propose that immunotherapy should serve as an early target for the clinical application of pluripotent stem cells.
Collapse
Affiliation(s)
- Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
49
|
RNA-Based Vaccines in Cancer Immunotherapy. J Immunol Res 2015; 2015:794528. [PMID: 26665011 PMCID: PMC4668311 DOI: 10.1155/2015/794528] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 12/21/2022] Open
Abstract
RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s) of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.
Collapse
|
50
|
Bol KF, Figdor CG, Aarntzen EHJG, Welzen MEB, van Rossum MM, Blokx WAM, van de Rakt MWMM, Scharenborg NM, de Boer AJ, Pots JM, olde Nordkamp MAM, van Oorschot TGM, Mus RDM, Croockewit SAJ, Jacobs JFM, Schuler G, Neyns B, Austyn JM, Punt CJA, Schreibelt G, de Vries IJM. Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients. Oncoimmunology 2015; 4:e1019197. [PMID: 26405571 PMCID: PMC4570143 DOI: 10.1080/2162402x.2015.1019197] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 10/31/2022] Open
Abstract
Autologous dendritic cell (DC) therapy is an experimental cellular immunotherapy that is safe and immunogenic in patients with advanced melanoma. In an attempt to further improve the therapeutic responses, we treated 15 patients with melanoma, with autologous monocyte-derived immature DC electroporated with mRNA encoding CD40 ligand (CD40L), CD70 and a constitutively active TLR4 (caTLR4) together with mRNA encoding a tumor-associated antigen (TAA; respectively gp100 or tyrosinase). In addition, DC were pulsed with keyhole limpet hemocyanin (KLH) that served as a control antigen. Production of this DC vaccine with high cellular viability, high expression of co-stimulatory molecules and MHC class I and II and production of IL-12p70, was feasible in all patients. A vaccination cycle consisting of three vaccinations with up to 15×106 DC per vaccination at a biweekly interval, was repeated after 6 and 12 months in the absence of disease progression. mRNA-optimized DC were injected intranodally, because of low CCR7 expression on the DC, and induced de novo immune responses against control antigen. T cell responses against tyrosinase were detected in the skin-test infiltrating lymphocytes (SKIL) of two patients. One mixed tumor response and two durable tumor stabilizations were observed among 8 patients with evaluable disease at baseline. In conclusion, autologous mRNA-optimized DC can be safely administered intranodally to patients with metastatic melanoma but showed limited immunological responses against tyrosinase and gp100.
Collapse
Affiliation(s)
- Kalijn F Bol
- Department of Tumor Immunology (Radboud Institute for Molecular Life Sciences); Radboud university medical centre; Nijmegen, The Netherlands
- Medical Oncology; Radboud university medical centre; Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology (Radboud Institute for Molecular Life Sciences); Radboud university medical centre; Nijmegen, The Netherlands
| | - Erik HJG Aarntzen
- Department of Tumor Immunology (Radboud Institute for Molecular Life Sciences); Radboud university medical centre; Nijmegen, The Netherlands
- Radiology and Nuclear Medicine; Radboud university medical centre; Nijmegen, The Netherlands
| | - Marieke EB Welzen
- Pharmacy; Radboud university medical centre; Nijmegen, The Netherlands
| | | | - Willeke AM Blokx
- Pathology; Radboud university medical centre; Nijmegen, The Netherlands
| | - Mandy WMM van de Rakt
- Department of Tumor Immunology (Radboud Institute for Molecular Life Sciences); Radboud university medical centre; Nijmegen, The Netherlands
| | - Nicole M Scharenborg
- Department of Tumor Immunology (Radboud Institute for Molecular Life Sciences); Radboud university medical centre; Nijmegen, The Netherlands
| | - Annemiek J de Boer
- Department of Tumor Immunology (Radboud Institute for Molecular Life Sciences); Radboud university medical centre; Nijmegen, The Netherlands
| | - Jeanette M Pots
- Department of Tumor Immunology (Radboud Institute for Molecular Life Sciences); Radboud university medical centre; Nijmegen, The Netherlands
| | - Michel AM olde Nordkamp
- Department of Tumor Immunology (Radboud Institute for Molecular Life Sciences); Radboud university medical centre; Nijmegen, The Netherlands
| | - Tom GM van Oorschot
- Department of Tumor Immunology (Radboud Institute for Molecular Life Sciences); Radboud university medical centre; Nijmegen, The Netherlands
| | - Roel DM Mus
- Radiology and Nuclear Medicine; Radboud university medical centre; Nijmegen, The Netherlands
| | | | - Joannes FM Jacobs
- Laboratory Medicine; Radboud university medical centre; Nijmegen, The Netherlands
| | - Gerold Schuler
- Department of Dermatology; University Hospital Erlangen; Erlangen, Germany
| | - Bart Neyns
- Department of Medical Oncology; Vrije Universiteit Brussel; Brussels, Belgium
| | - Jonathan M Austyn
- Nuffield Department of Surgical Sciences; John Radcliffe Hospital; University of Oxford; Oxford, UK
| | - Cornelis JA Punt
- Department of Medical Oncology; Academic Medical Center; Amsterdam, The Netherlands
| | - Gerty Schreibelt
- Department of Tumor Immunology (Radboud Institute for Molecular Life Sciences); Radboud university medical centre; Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology (Radboud Institute for Molecular Life Sciences); Radboud university medical centre; Nijmegen, The Netherlands
- Medical Oncology; Radboud university medical centre; Nijmegen, The Netherlands
| |
Collapse
|