1
|
Jani CT, Manoharan A, DeMaria PJ, Bilusic M. Harnessing live vectors for cancer vaccines: Advancing therapeutic immunotherapy. Hum Vaccin Immunother 2025; 21:2469416. [PMID: 40127471 PMCID: PMC11934169 DOI: 10.1080/21645515.2025.2469416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 03/26/2025] Open
Abstract
Cancer vaccines represent a promising approach within immunotherapies. These vaccines are tailored to target tumor-specific antigens, thereby offering a precision approach to cancer treatment. The key principles in developing therapeutic cancer vaccines include identifying appropriate vaccine targets and selecting effective vaccine delivery platforms. These delivery platforms are diverse and have evolved to enhance the immune response. This review explores live cancer vaccines and the biological entities involved. Live cancer vaccines leverage the use of various biological entities to stimulate an immune response. These biological entities including bacterial, yeast-based and viral vectors, have unique properties that can be harnessed to target and destroy cancer cells while eliciting a robust immune response. Clinical trials of cancer vaccines are investigating standalone and combination treatment strategies in the prophylactic, adjuvant, and palliative settings. This review offers insights into the current oncologic vaccine landscape and potential future development.
Collapse
Affiliation(s)
- Chinmay T. Jani
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Aysswarya Manoharan
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | | | - Marijo Bilusic
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Okita G, Suenaga K, Sakaguchi M, Murakami T. A novel oncolytic vaccinia virus with multiple gene modifications involved in viral replication and maturation increases safety for intravenous administration while maintaining proliferative potential in cancer cells. PLoS One 2025; 20:e0312205. [PMID: 40048445 PMCID: PMC11884718 DOI: 10.1371/journal.pone.0312205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/06/2024] [Indexed: 03/09/2025] Open
Abstract
To generate a novel oncolytic vaccinia virus with improved safety and productivity, the genome of smallpox vaccine strain LC16m8 was modified by a bacterial artificial chromosome system. By using LC16m8, a replicating virus homologous to the target virus, as a helper virus for the bacterial artificial chromosome system, we successfully recovered genome-edited infectious viruses. Oncolytic viruses with limited growth in normal cells were obtained by deleting the genes for vaccinia virus growth factor (VGF), extracellular signal-regulated kinase-activating protein (O1L), and ribonucleotide reductase (RNR) present in the viral genome. Furthermore, the amino acid residues of seven proteins involved in extracellular enveloped virus virion formation were replaced to the IHD-J strain sequence, which is known to highly express extracellular enveloped virus. In cultured cancer cells (HeLa), these modified viruses showed cytotoxicity and increased productivity, but it was confirmed that the cytotoxicity was suppressed in normal cells (normal human dermal fibroblasts). For in vivo safety evaluation, a modified virus (MD-RVV-ΔRR-EEV6) in which the VGF, O1L, and RNR genes of LC16m8 were deleted and the genes of six extracellular enveloped virus-associated proteins were replaced with sequences derived from IHD-J strain, and another modified virus (MD-RVV) lacking only the VGF and O1L were administered intravenously to severe combined immunodeficiency mice. In the MD-RVV administration, animals in all dose groups died by 40 days after virus administration. On the other hand, after MD-RVV-ΔRR-EEV6 administration, 3 out of 5 animals in the high and medium dose groups and all animals in the low dose group were still alive by day 71, the end of the observation period. These results demonstrate that genome editing of oncolytic vaccinia virus can delete genes involved in viral replication to improve safety in normal cells, while replacing genes involved in maturation improves proliferative potential in cancer cells.
Collapse
Affiliation(s)
- Go Okita
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| | - Kiyotaka Suenaga
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| | - Masashi Sakaguchi
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| | - Toshio Murakami
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| |
Collapse
|
3
|
Hsu CY, Pallathadka H, Jasim SA, Rizaev J, Olegovich Bokov D, Hjazi A, Mahajan S, Mustafa YF, Husseen B, Jawad MA. Innovations in cancer immunotherapy: A comprehensive overview of recent breakthroughs and future directions. Crit Rev Oncol Hematol 2025; 206:104588. [PMID: 39667718 DOI: 10.1016/j.critrevonc.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
A major advance in cancer treatment has been the development and refinement of cancer immunotherapy. The discovery of immunotherapies for a wide range of cancers has revolutionized cancer treatment paradigms. Despite relapse or refractory disease, immunotherapy approaches can prolong the life expectancy of metastatic cancer patients. Multiple therapeutic approaches and agents are currently being developed to manipulate various aspects of the immune system. Oncolytic viruses, cancer vaccines, adoptive cell therapies, monoclonal antibodies, cytokine therapies, and inhibitors of immune checkpoints have all proven successful in clinical trials. There are several types of immunotherapeutic approaches available for treating cancer, and others are being tested in preclinical and clinical settings. Immunotherapy has proven successful, and many agents and strategies have been developed to improve its effectiveness. The purpose of this article is to present a comprehensive overview of current immunotherapy approaches used to treat cancer. Cancer immunotherapy advancements, emerging patterns, constraints, and potential future breakthroughs are also discussed.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, Russia; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | |
Collapse
|
4
|
Peng Y, Bai J, Li W, Su Z, Cheng X. Advancements in p53-Based Anti-Tumor Gene Therapy Research. Molecules 2024; 29:5315. [PMID: 39598704 PMCID: PMC11596491 DOI: 10.3390/molecules29225315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The p53 gene is one of the genes most closely associated with human tumors and has become a popular target for tumor drug design. Currently, p53-based gene therapy techniques have been developed, but these therapies face challenges such as immaturity, high safety hazards, limited efficacy, and low patient acceptance. However, researchers are no less enthusiastic about the treatment because of its theoretical potential to treat cancer. In this paper, the advances in p53-based gene therapy and related nucleic acid delivery technologies were reviewed and prospected in order to support further development in this field.
Collapse
Affiliation(s)
- Yuanwan Peng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Jinping Bai
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Wang Li
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Zhengding Su
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xiyao Cheng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| |
Collapse
|
5
|
Kim HS, Youn YH, Kim HJ, Koo YH, Lee J, Kwon IK, Do SH. Enhanced Antitumor Efficacy of Oncolytic Vaccinia Virus Therapy Through Keratin-Mediated Delivery in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:11470. [PMID: 39519023 PMCID: PMC11546765 DOI: 10.3390/ijms252111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype characterized by high rates of recurrence and metastasis, necessitating the exploration of alternative treatment strategies. Oncolytic vaccinia virus (OVV) therapy has emerged as a promising approach, selectively infecting and destroying tumor cells. However, its efficacy is often hampered by inadequate viral distribution within the tumor microenvironment. Here, we investigate the potential of keratin (KTN) as a carrier for OVV delivery to enhance viral distribution and antitumor efficacy. In vitro assays revealed that KTN significantly improves OVV stability, leading to increased tumor cell apoptosis and necrosis. Furthermore, KTN effectively inhibits cancer cell migration by suppressing the epithelial-mesenchymal transition (EMT) process and downregulating metastasis-related proteins. These findings are corroborated in a syngeneic TNBC mouse model, where KTN-mediated OVV delivery enhances cytotoxic T cell-mediated antitumor immune responses without compromising the anti-angiogenic effects of the virus. Notably, KTN alone exhibits antitumor effects by suppressing tumor growth and metastasis, underscoring its potential as a standalone therapeutic agent. In conclusion, our study underscores the promise of KTN-mediated OVV delivery as a promising therapeutic strategy for TNBC. By improving viral distribution, suppressing EMT, and enhancing antitumor immunity, this approach holds significant potential for enhancing patient outcomes in TNBC treatment. Further investigation is warranted to explore the broader utility of KTN in various cancer therapy approaches.
Collapse
Affiliation(s)
- Hyo-Sung Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yun Hee Youn
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Han-Jun Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Young-Hyun Koo
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Junho Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, 23 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Huang S, Wu D, Liao G, Liang M, Zhang Y, Wu H, Tang D, Wen D, Jiang B, Yu S, Tai S. Identified a novel prognostic model of HCC basing on virus signature for guiding immunotherapy. Discov Oncol 2024; 15:551. [PMID: 39397204 PMCID: PMC11471745 DOI: 10.1007/s12672-024-01427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic viral immunotherapy is a cancer treatment that uses native or genetically modified viruses that selectively replicate and destroy tumor cells. In this study, we aimed to construct a virus-based prognostic model for risk assessment and prognosis prediction in patients with hepatocellular carcinoma (HCC) and determine the most appropriate virus as a candidate vector for oncolytic virus immunotherapy. Microbiome and RNA sequencing data and clinical information were obtained from The Cancer Genome Atlas, and viruses with prognostic value were identified (Deltabaculovirus, Sicinivirus, and Cytomegalovirus) to construct the prognostic model. Correlation analyses were performed to evaluate the predictive function of the viral signature. Bioinformatics analyses were conducted to explore the functional enrichment of viral expression in HCC. The risk score generated by this model could distinguish patients with different survival outcomes, have excellent reliability and accuracy, and could be used as an independent prognostic indicator. The high-risk score group showed significantly lower overall survival, and this trend was also observed in subgroups with different clinicopathological features. Furthermore, Deltabaculovirus positively correlated with amino acid metabolism, energy metabolism signaling pathways, peroxisomes, and complement coagulation cascades. In addition, Deltabaculovirus was significantly related to immune cell infiltration; therefore, patients with high Delta-baculovirus expression might respond better to HCC immunotherapy. Our study identified a promising predictive viral signature for assessing clinical prognosis and guiding immunotherapy in HCC. Deltabaculovirus might be a suitable viral vector for oncolytic virus immunotherapy.
Collapse
Affiliation(s)
- Shizhuan Huang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dehai Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Guanqun Liao
- Department of Hepatobiliary Surgery, Foshan Hospital Affiliated to Southern Medical University, Foshan, China
| | - Ming Liang
- Department of Infectious Diseases, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yaohui Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Haotian Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Daowei Tang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dixiang Wen
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Bo Jiang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
7
|
Hua X, Xuan S, Tang Y, You S, Zhao S, Qiu Y, Li Y, Li Y, Su Y, Qu P. Progression of oncolytic virus in liver cancer treatment. Front Oncol 2024; 14:1446085. [PMID: 39391253 PMCID: PMC11464341 DOI: 10.3389/fonc.2024.1446085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
The liver plays a crucrial role in detoxification, metabolism, and nutrient storage. Because liver cancer ranks among the top three leading causes of death globally, there is an urgent need for developing treatment strategies for liver cancer. Although traditional approaches such as radiation, chemotherapy, surgical removal, and transplantation are widely practiced, the number of patients with liver cancer continues to increase rapidly each year. Some novel therapeutics for liver cancer have been studied for many years. In the past decade, oncolytic therapy has emerged, in which viruses selectively infect and destroy cancer cells while sparing normal cells. However, oncolytic virotherapy for liver cancer remains relatively obscure due to the aggressive nature of the disease and the limited effectiveness of treatment. To keep pace with the latest developments in oncolytic tumor therapy for liver cancer, this review summarizes basic science studies and clinical trials conducted within 5 years, focusing on the efficacy and safety profiles of the five most commonly used oncolytic viruses: herpes simplex virus, adenovirus, influenza virus, vaccinia virus, and coxsackievirus.
Collapse
Affiliation(s)
- Xuesi Hua
- School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Siyu Xuan
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yangyang Tang
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shilin You
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Shang Zhao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Yinqing Li
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peng Qu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
- Department of Pharmacy, Zhejiang University of Technology Fuyang Yinhu Institute of Innovation and Entrepreneurship, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Gao C, Ying Q, Qiu Y, Ren N, Chen K, Zhou Y, Ye T, Li G. Oncolytic vaccinia virus harboring CLEC2A gene enhances viral replication and antitumor efficacy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200823. [PMID: 39006946 PMCID: PMC11239687 DOI: 10.1016/j.omton.2024.200823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
In the field of innovative cancer treatment strategies, oncolytic vaccinia virus (VV)es have gained traction as promising vectors. In the current study, we inserted the human C-type lectin domain family 2 member A (CLEC2A) gene into VV, creating a replicating therapeutic, oncoVV-CLEC2A. The findings reveal that oncoVV-CLEC2A effectively suppresses colorectal proliferation of mouse xenografts and a range of human cancer cell lines by augmenting viral reproduction capabilities, including the lung cancer H460 cell line, colorectal cancer cell lines (HCT116 and SW620), and hepatocellular carcinoma HuH-7 cell line. Moreover, it is evident that oncoVV-CLEC2A can induce antitumor immunity by boosting cytokine production but not antivirus response, and enhancing calreticulin expression. Further investigation indicates that oncoVV-CLEC2A can enhance antitumor capabilities by activating natural killer cells to produce interferon-γ and induce M1-like macrophage polarization. These findings shed light on the antitumor mechanisms of oncoVV-CLEC2A, provide a theoretical basis for oncolytic therapies, and lay the groundwork for novel strategies for modifying VVs.
Collapse
Affiliation(s)
- Chunqing Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qi Ying
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yufeng Qiu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ningbo Ren
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
9
|
Haller SD, Essani K. Oncolytic Tanapoxvirus Variants Expressing mIL-2 and mCCL-2 Regress Human Pancreatic Cancer Xenografts in Nude Mice. Biomedicines 2024; 12:1834. [PMID: 39200298 PMCID: PMC11351728 DOI: 10.3390/biomedicines12081834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer-related death and presents the lowest 5-year survival rate of any form of cancer in the US. Only 20% of PDAC patients are suitable for surgical resection and adjuvant chemotherapy, which remains the only curative treatment. Chemotherapeutic and gene therapy treatments are associated with adverse effects and lack specificity/efficacy. In this study, we assess the oncolytic potential of immuno-oncolytic tanapoxvirus (TPV) recombinants expressing mouse monocyte chemoattractant protein (mMCP-1 or mCCL2) and mouse interleukin (mIL)-2 in human pancreatic BxPc-3 cells using immunocompromised and CD-3+ T-cell-reconstituted mice. Intratumoral treatment with TPV/∆66R/mCCL2 and TPV/∆66R/mIL-2 resulted in a regression in BxPc-3 xenograft volume compared to control in immunocompromised mice; mCCL-2 expressing TPV OV resulted in a significant difference from control at p < 0.05. Histological analysis of immunocompromised mice treated with TPV/∆66R/mCCL2 or TPV/∆66R/mIL-2 demonstrated multiple biomarkers indicative of increased severity of chronic, active inflammation compared to controls. In conclusion, TPV recombinants expressing mCCL2 and mIL-2 demonstrated a therapeutic effect via regression in BxPc-3 tumor xenografts. Considering the enhanced oncolytic potency of TPV recombinants demonstrated against PDAC in this study, further investigation as an alternative or combination treatment option for human PDAC may be warranted.
Collapse
Affiliation(s)
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA;
| |
Collapse
|
10
|
Rojas JJ, Van Hoecke L, Conesa M, Bueno-Merino C, Del Canizo A, Riederer S, Barcia M, Brosinski K, Lehmann MH, Volz A, Saelens X, Sutter G. A new MVA ancestor-derived oncolytic vaccinia virus induces immunogenic tumor cell death and robust antitumor immune responses. Mol Ther 2024; 32:2406-2422. [PMID: 38734899 PMCID: PMC11286824 DOI: 10.1016/j.ymthe.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Vaccinia viruses (VACVs) are versatile therapeutic agents and different features of various VACV strains allow for a broad range of therapeutic applications. Modified VACV Ankara (MVA) is a particularly altered VACV strain that is highly immunogenic, incapable of replicating in mammalian hosts, and broadly used as a safe vector for vaccination. Alternatively, Western Reserve (WR) or Copenhagen (Cop) are VACV strains that efficiently replicate in cancer cells and, therefore, are used to develop oncolytic viruses. However, the immune evasion capacity of WR or Cop hinders their ability to elicit antitumor immune responses, which is crucial for efficacy in the clinic. Here, we describe a new VACV strain named Immune-Oncolytic VACV Ankara (IOVA), which combines efficient replication in cancer cells with induction of immunogenic tumor cell death (ICD). IOVA was engineered from an MVA ancestor and shows superior cytotoxicity in tumor cells. In addition, the IOVA genome incorporates mutations that lead to massive fusogenesis of tumor cells, which contributes to improved antitumor effects. In syngeneic mouse tumor models, the induction of ICD results in robust antitumor immunity directed against tumor neo-epitopes and eradication of large established tumors. These data present IOVA as an improved immunotherapeutic oncolytic vector.
Collapse
Affiliation(s)
- Juan J Rojas
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain; Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany.
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Miquel Conesa
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Carmen Bueno-Merino
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Ana Del Canizo
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Stephanie Riederer
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Maria Barcia
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Katrin Brosinski
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Michael H Lehmann
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Asisa Volz
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany; Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Xavier Saelens
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Gerd Sutter
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany; German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| |
Collapse
|
11
|
Mirbahari SN, Da Silva M, Zúñiga AIM, Kooshki Zamani N, St-Laurent G, Totonchi M, Azad T. Recent progress in combination therapy of oncolytic vaccinia virus. Front Immunol 2024; 15:1272351. [PMID: 38558795 PMCID: PMC10979700 DOI: 10.3389/fimmu.2024.1272351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, oncolytic viruses have emerged as promising agents for treating various cancers. An oncolytic virus is a non-pathogenic virus that, due to genetic manipulation, tends to replicate in and cause lysis of cancerous cells while leaving healthy cells unaffected. Among these viruses, vaccinia virus is an attractive platform for use as an oncolytic platform due to its 190 Kb genome with a high capacity for encoding therapeutic payloads. Combining oncolytic VV therapy with other conventional cancer treatments has been shown to be synergistic and more effective than monotherapies. Additionally, OVV can be used as a vector to deliver therapeutic payloads, alone or in combination with other treatments, to increase overall efficacy. Here, we present a comprehensive analysis of preclinical and clinical studies that have evaluated the efficacy of oncolytic vaccinia viruses in cancer immunotherapy. We discuss the outcomes of these studies, including tumor regression rates, overall survival benefits, and long-term responses. Moreover, we provide insights into the challenges and limitations associated with oncolytic vaccinia virus- based therapies, including immune evasion mechanisms, potential toxicities, and the development of resistance.
Collapse
Affiliation(s)
- Seyedeh Nasim Mirbahari
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Miles Da Silva
- Department of Microbiology and Immunology, University of British Colombia, Vancouver, BC, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Abril Ixchel Muñoz Zúñiga
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Nika Kooshki Zamani
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Gabriel St-Laurent
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Taha Azad
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
12
|
Ye J, Chen L, Waltermire J, Zhao J, Ren J, Guo Z, Bartlett DL, Liu Z. Intratumoral Delivery of Interleukin 9 via Oncolytic Vaccinia Virus Elicits Potent Antitumor Effects in Tumor Models. Cancers (Basel) 2024; 16:1021. [PMID: 38473379 DOI: 10.3390/cancers16051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The success of cancer immunotherapy is largely associated with immunologically hot tumors. Approaches that promote the infiltration of immune cells into tumor beds are urgently needed to transform cold tumors into hot tumors. Oncolytic viruses can transform the tumor microenvironment (TME), resulting in immunologically hot tumors. Cytokines are good candidates for arming oncolytic viruses to enhance their function in this transformation. Here, we used the oncolytic vaccinia virus (oVV) to deliver interleukin-9 (IL-9) into the tumor bed and explored its antitumor effects in colon and lung tumor models. Our data show that IL-9 prolongs viral persistence, which is probably mediated by the up-regulation of IL-10. The vvDD-IL-9 treatment elevated the expression of Th1 chemokines and antitumor factors such as IFN-γ, granzyme B, and perforin. IL-9 expression increased the percentages of CD4+ and CD8+ T cells in the TME and decreased the percentage of oVV-induced immune suppressive myeloid-derived suppressor cells (MDSC), leading to potent antitumor effects compared with parental virus treatment. The vvDD-IL-9 treatment also increased the percentage of regulatory T cells (Tregs) in the TME and elevated the expression of immune checkpoint molecules such as PD-1, PD-L1, and CTLA-4, but not GITR. The combination therapy of vvDD-IL-9 and the anti-CTLA-4 antibody, but not the anti-GITR antibody, induced systemic tumor-specific antitumor immunity and significantly extended the overall survival of mice, indicating a potential translation of the IL-9-expressing oncolytic virus into a clinical trial to enhance the antitumor effects elicited by an immune checkpoint blockade for cancer immunotherapy.
Collapse
Affiliation(s)
- Junjie Ye
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Department of Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lingjuan Chen
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Julia Waltermire
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
| | - Jinshun Zhao
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongsheng Guo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David L Bartlett
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Zuqiang Liu
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Wang Y, Cheng P. Arming oncolytic viruses with bispecific T cell engagers: The evolution and current status. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166962. [PMID: 37984801 DOI: 10.1016/j.bbadis.2023.166962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Oncolytic viruses (OVs) are emerging as therapeutically relevant anticancer agents as contemporary immunotherapy gains traction. Furthermore, OVs are an ideal platform for genetic modification to express therapeutic transgenes. Bispecific T cell engagers (BiTEs) can redirect T cells to tumor cells, resulting in targeted cytotoxicity. BiTEs have demonstrated success in hematological cancers but are rarely used in solid tumors. The drawbacks of BiTEs, including inadequate delivery and on-target-off-tumor activity have limited their efficacy. Combining OVs with BiTEs is a prospective area to investigate. This combined strategy can benefit from the best qualities of both therapies while overcoming the limitations.
Collapse
Affiliation(s)
- Yunmeng Wang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, PR China
| | - Ping Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, PR China.
| |
Collapse
|
14
|
Li Y, Duan HY, Yang KD, Ye JF. Advancements and challenges in oncolytic virus therapy for gastrointestinal tumors. Biomed Pharmacother 2023; 168:115627. [PMID: 37812894 DOI: 10.1016/j.biopha.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Tumors of the gastrointestinal tract impose a substantial healthcare burden due to their prevalence and challenging prognosis. METHODS We conducted a review of peer-reviewed scientific literature using reputable databases (PubMed, Scopus, Web of Science) with a focus on oncolytic virus therapy within the context of gastrointestinal tumors. Our search covered the period up to the study's completion in June 2023. INCLUSION AND EXCLUSION CRITERIA This study includes articles from peer-reviewed scientific journals, written in English, that specifically address oncolytic virus therapy for gastrointestinal tumors, encompassing genetic engineering advances, combined therapeutic strategies, and safety and efficacy concerns. Excluded are articles not meeting these criteria or focusing on non-primary gastrointestinal metastatic tumors. RESULTS Our review revealed the remarkable specificity of oncolytic viruses in targeting tumor cells and their potential to enhance anti-tumor immune responses. However, challenges related to safety and efficacy persist, underscoring the need for ongoing research and improvement. CONCLUSION This study highlights the promising role of oncolytic virus therapy in enhancing gastrointestinal tumor treatments. Continued investigation and innovative combination therapies hold the key to reducing the burden of these tumors on patients and healthcare systems.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China; School of Nursing, Jilin University, Changchun, China
| | - Hao-Yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - Jun-Feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
15
|
Lichtor T, Tang B, Roy EJ. Cytokine Gene Vaccine Therapy for Treatment of a Brain Tumor. Brain Sci 2023; 13:1505. [PMID: 38002466 PMCID: PMC10669932 DOI: 10.3390/brainsci13111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
A glioma is a malignant brain tumor with a poor prognosis. Attempts at the surgical removal of the tumor are the first approach, but additional treatment strategies, including radiation therapy and systemic or local chemotherapy, are necessary. Furthermore, the treatments are often associated with significant adverse side effects. Normal and malignant cells generally have antigenic differences, and this is the rationale for clinical immunotherapeutic strategies. Cytokines such as IL-15 or IL-2, which stimulate an anti-tumor immune response, have been shown to have a particularly high potential for use in immunotherapy against various tumors. In this review, treatments with either a poxvirus, genetically engineered to secrete IL-15, or allogeneic fibroblasts, transfected with tumor DNA and engineered to secrete IL-2, are shown to be effective strategies in extending the survival of mice with malignant brain tumors upon intracerebral injection of the treatment cells. Future studies with these treatment strategies in patients with intracerebral tumors are urgently needed.
Collapse
Affiliation(s)
- Terry Lichtor
- Department of Neurological Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bingtao Tang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (B.T.); (E.J.R.)
| | - Edward J. Roy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (B.T.); (E.J.R.)
| |
Collapse
|
16
|
Béguin J, Laloy E, Cochin S, Gantzer M, Farine I, Pichon C, Moreau B, Foloppe J, Balloul JM, Machon C, Guitton J, Tierny D, Klonjkowski B, Quéméneur E, Maurey C, Erbs P. Oncolytic virotherapy with intratumoral injection of vaccinia virus TG6002 and 5-fluorocytosine administration in dogs with malignant tumors. Mol Ther Oncolytics 2023; 30:103-116. [PMID: 37635744 PMCID: PMC10448017 DOI: 10.1016/j.omto.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
TG6002 is an oncolytic vaccinia virus expressing FCU1 protein, which converts 5-fluorocytosine into 5-fluorouracil. The study objectives were to assess tolerance, viral replication, 5-fluorouracil synthesis, and tumor microenvironment modifications to treatment in dogs with spontaneous malignant tumors. Thirteen dogs received one to three weekly intratumoral injections of TG6002 and 5-fluorocytosine. The viral genome was assessed in blood and tumor biopsies by qPCR. 5-Fluorouracil concentrations were measured in serum and tumor biopsies by liquid chromatography or high-resolution mass spectrometry. Histological and immunohistochemical analyses were performed. The viral genome was detected in blood (7/13) and tumor biopsies (4/11). Viral replication was suspected in 6/13 dogs. The median intratumoral concentration of 5-fluorouracil was 314 pg/mg. 5-Fluorouracil was not detected in the blood. An increase in necrosis (6/9) and a downregulation of intratumoral regulatory T lymphocytes (6/6) were observed. Viral replication, 5-fluorouracil synthesis, and tumor microenvironment changes were more frequently observed with higher TG6002 doses. This study confirmed the replicative properties, targeted chemotherapy synthesis, and reversion of the immunosuppressive tumor microenvironment in dogs with spontaneous malignant tumors treated with TG6002 and 5-fluorocytosine.
Collapse
Affiliation(s)
- Jérémy Béguin
- Transgene, 67405 Illkirch-Graffenstaden, France
- UMR Virologie, INRAE, École Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France
- Department of Internal Medicine, École Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Eve Laloy
- UMR Virologie, INRAE, École Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France
- Anatomical Pathology Unit, Biopôle, École Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | | | | | | | | | | | | | | | - Christelle Machon
- Service de Biochimie et pharmacotoxicologie, Hôpital Lyon-Sud, Hospices Civils de Lyon, 69310, France
| | - Jérôme Guitton
- Service de Biochimie et pharmacotoxicologie, Hôpital Lyon-Sud, Hospices Civils de Lyon, 69310, France
| | | | - Bernard Klonjkowski
- UMR Virologie, INRAE, École Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France
| | | | - Christelle Maurey
- Department of Internal Medicine, École Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | | |
Collapse
|
17
|
Zhang Z, Yang A, Chaurasiya S, Park AK, Kim SI, Lu J, Valencia H, Fong Y, Woo Y. Anti-Tumor Immunogenicity of the Oncolytic Virus CF33-hNIS-antiPDL1 against Ex Vivo Peritoneal Cells from Gastric Cancer Patients. Int J Mol Sci 2023; 24:14189. [PMID: 37762490 PMCID: PMC10532045 DOI: 10.3390/ijms241814189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
We studied the immunotherapeutic potential of CF33-hNIS-antiPDL1 oncolytic virus (OV) against gastric cancer with peritoneal metastasis (GCPM). We collected fresh malignant ascites (MA) or peritoneal washings (PW) during routine paracenteses and diagnostic laparoscopies from GC patients (n = 27). Cells were analyzed for cancer cell markers and T cells, or treated with PBS, CF33-GFP, or CF33-hNIS-antiPDL1 (MOI = 3). We analyzed infectivity, replication, cytotoxicity, CD107α upregulation of CD8+ and CD4+ T cells, CD274 (PD-L1) blockade of cancer cells by virus-encoded anti-PD-L1 scFv, and the release of growth factors and cytokines. We observed higher CD45-/large-size cells and lower CD8+ T cell percentages in MA than PW. CD45-/large-size cells were morphologically malignant and expressed CD274 (PD-L1), CD252 (OX40L), and EGFR. CD4+ and CD8+ T cells did not express cell surface exhaustion markers. Virus infection and replication increased cancer cell death at 15 h and 48 h. CF33-hNIS-antiPDL1 treatment produced functional anti-PD-L1 scFv, which blocked surface PD-L1 binding of live cancer cells and increased CD8+CD107α+ and CD4+CD107α+ T cell percentages while decreasing EGF, PDGF, soluble anti-PD-L1, and IL-10. CF33-OVs infect, replicate in, express functional proteins, and kill ex vivo GCPM cells with immune-activating effects. CF33-hNIS-antiPDL1 displays real potential for intraperitoneal GCPM therapy.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Shyambabu Chaurasiya
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Anthony K. Park
- Cancer Immunotherapeutics Program, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Hannah Valencia
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (Z.Z.); (A.Y.); (S.C.); (S.-I.K.); (J.L.); (H.V.); (Y.F.)
- Cancer Immunotherapeutics Program, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
18
|
Li M, Zhang M, Ye Q, Liu Y, Qian W. Preclinical and clinical trials of oncolytic vaccinia virus in cancer immunotherapy: a comprehensive review. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0202. [PMID: 37615308 PMCID: PMC10546091 DOI: 10.20892/j.issn.2095-3941.2023.0202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Oncolytic virotherapy has emerged as a promising treatment for human cancers owing to an ability to elicit curative effects via systemic administration. Tumor cells often create an unfavorable immunosuppressive microenvironment that degrade viral structures and impede viral replication; however, recent studies have established that viruses altered via genetic modifications can serve as effective oncolytic agents to combat hostile tumor environments. Specifically, oncolytic vaccinia virus (OVV) has gained popularity owing to its safety, potential for systemic delivery, and large gene insertion capacity. This review highlights current research on the use of engineered mutated viruses and gene-armed OVVs to reverse the tumor microenvironment and enhance antitumor activity in vitro and in vivo, and provides an overview of ongoing clinical trials and combination therapies. In addition, we discuss the potential benefits and drawbacks of OVV as a cancer therapy, and explore different perspectives in this field.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minghuan Zhang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qian Ye
- Hangzhou Rong-Gu Biotechnology Limited Company, Hangzhou 310056, China
| | - Yunhua Liu
- Department of Pathology & Pathophysiology and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
19
|
Ottolino-Perry K, Mealiea D, Sellers C, Acuna SA, Angarita FA, Okamoto L, Scollard D, Ginj M, Reilly R, McCart JA. Vaccinia virus and peptide-receptor radiotherapy synergize to improve treatment of peritoneal carcinomatosis. Mol Ther Oncolytics 2023; 29:44-58. [PMID: 37180034 PMCID: PMC10173076 DOI: 10.1016/j.omto.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Tumor-specific overexpression of receptors enables a variety of targeted cancer therapies, exemplified by peptide-receptor radiotherapy (PRRT) for somatostatin receptor (SSTR)-positive neuroendocrine tumors. While effective, PRRT is restricted to tumors with SSTR overexpression. To overcome this limitation, we propose using oncolytic vaccinia virus (vvDD)-mediated receptor gene transfer to permit molecular imaging and PRRT in tumors without endogenous SSTR overexpression, a strategy termed radiovirotherapy. We hypothesized that vvDD-SSTR combined with a radiolabeled somatostatin analog could be deployed as radiovirotherapy in a colorectal cancer peritoneal carcinomatosis model, producing tumor-specific radiopeptide accumulation. Following vvDD-SSTR and 177Lu-DOTATOC treatment, viral replication and cytotoxicity, as well as biodistribution, tumor uptake, and survival, were evaluated. Radiovirotherapy did not alter virus replication or biodistribution, but synergistically improved vvDD-SSTR-induced cell killing in a receptor-dependent manner and significantly increased the tumor-specific accumulation and tumor-to-blood ratio of 177Lu-DOTATOC, making tumors imageable by microSPECT/CT and causing no significant toxicity. 177Lu-DOTATOC significantly improved survival over virus alone when combined with vvDD-SSTR but not control virus. We have therefore demonstrated that vvDD-SSTR can convert receptor-negative tumors into receptor-positive tumors and facilitate molecular imaging and PRRT using radiolabeled somatostatin analogs. Radiovirotherapy represents a promising treatment strategy with potential applications in a wide range of cancers.
Collapse
Affiliation(s)
- Kathryn Ottolino-Perry
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - David Mealiea
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Clara Sellers
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
| | - Sergio A. Acuna
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
| | - Fernando A. Angarita
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Lili Okamoto
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Deborah Scollard
- STTARR, Radiation Medicine Program, Princess Margaret Hospital, UHN, 610 University Avenue, M5G 2C1 Toronto, ON, Canada
| | - Mihaela Ginj
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Raymond Reilly
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, M5S 3M2 Toronto, ON, Canada
| | - J. Andrea McCart
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
- Department of Surgery, Mount Sinai Hospital and University of Toronto, 600 University Avenue, M5G 1X5 Toronto, ON, Canada
- Corresponding author: Dave Mealiea, Room 1225, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
20
|
Zhu X, Fan C, Xiong Z, Chen M, Li Z, Tao T, Liu X. Development and application of oncolytic viruses as the nemesis of tumor cells. Front Microbiol 2023; 14:1188526. [PMID: 37440883 PMCID: PMC10335770 DOI: 10.3389/fmicb.2023.1188526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.
Collapse
Affiliation(s)
- Xiao Zhu
- Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Biological and Chemical Sciences, New York Institute of Technology—Manhattan Campus, New York, NY, United States
| | - Chenyang Fan
- Department of Clinical Medicine, Medicine and Technology, School of Zunyi Medical University, Zunyi, China
| | - Zhuolong Xiong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Mingwei Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital(Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Xiuqing Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
21
|
Zolaly MA, Mahallawi W, Khawaji ZY, Alahmadi MA. The Clinical Advances of Oncolytic Viruses in Cancer Immunotherapy. Cureus 2023; 15:e40742. [PMID: 37485097 PMCID: PMC10361339 DOI: 10.7759/cureus.40742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
A promising future for oncology treatment has been brought about by the emergence of a novel approach utilizing oncolytic viruses in cancer immunotherapy. Oncolytic viruses are viruses that have been exploited genetically to assault malignant cells and activate a robust immune response. Several techniques have been developed to endow viruses with an oncolytic activity through genetic engineering. For instance, redirection capsid modification, stimulation of anti-neoplastic immune response, and genetically arming viruses with cytokines such as IL-12. Oncolytic viral clinical outcomes are sought after, particularly in more advanced cancers. The effectiveness and safety profile of the oncolytic virus in clinical studies with or without the combination of standard treatment (chemotherapy, radiotherapy, or primary excision) has been assessed using response evaluation criteria in solid tumors (RECIST). This review will comprehensively outline the most recent clinical applications and provide the results from various phases of clinical trials in a variety of cancers in the latest published literature.
Collapse
Affiliation(s)
- Mohammed A Zolaly
- Pediatric Hematology Oncology, Taibah University, Al-Madinah al-Munawwarah, SAU
| | - Waleed Mahallawi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah al-Munawwarah, SAU
| | - Zakaria Y Khawaji
- Medicine and Surgery, Taibah University, Al-Madinah al-Munawwarah, SAU
| | | |
Collapse
|
22
|
Kumar A, Gautam V, Sandhu A, Rawat K, Sharma A, Saha L. Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review. World J Gastrointest Surg 2023; 15:495-519. [PMID: 37206081 PMCID: PMC10190721 DOI: 10.4240/wjgs.v15.i4.495] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 04/22/2023] Open
Abstract
Colorectal cancer (CRC) affects 1 in 23 males and 1 in 25 females, making it the third most common cancer. With roughly 608000 deaths worldwide, CRC accounts for 8% of all cancer-related deaths, making it the second most common cause of death due to cancer. Standard and conventional CRC treatments include surgical expurgation for resectable CRC and radiotherapy, chemotherapy, immunotherapy, and their combinational regimen for non-resectable CRC. Despite these tactics, nearly half of patients develop incurable recurring CRC. Cancer cells resist the effects of chemotherapeutic drugs in a variety of ways, including drug inactivation, drug influx and efflux modifications, and ATP-binding cassette transporter overexpression. These constraints necessitate the development of new target-specific therapeutic strategies. Emerging therapeutic approaches, such as targeted immune boosting therapies, non-coding RNA-based therapies, probiotics, natural products, oncolytic viral therapies, and biomarker-driven therapies, have shown promising results in preclinical and clinical studies. We tethered the entire evolutionary trends in the development of CRC treatments in this review and discussed the potential of new therapies and how they might be used in conjunction with conventional treatments as well as their advantages and drawbacks as future medicines.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
23
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
24
|
Groeneveldt C, van den Ende J, van Montfoort N. Preexisting immunity: Barrier or bridge to effective oncolytic virus therapy? Cytokine Growth Factor Rev 2023; 70:1-12. [PMID: 36732155 DOI: 10.1016/j.cytogfr.2023.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Oncolytic viruses (OVs) represent a highly promising treatment strategy for a wide range of cancers, by mediating both the direct killing of tumor cells as well as mobilization of antitumor immune responses. As many OVs circulate in the human population, preexisting OV-specific immune responses are prevalent. Indeed, neutralizing antibodies (NAbs) are abundantly present in the human population for commonly used OVs, such as Adenovirus type 5 (Ad5), Herpes Simplex Virus-1 (HSV-1), Vaccinia virus, Measles virus, and Reovirus. This review discusses (pre)clinical evidence regarding the effect of preexisting immunity against OVs on two distinct aspects of OV therapy; OV infection and spread, as well as the immune response induced upon OV therapy. Combined, this review provides evidence that consideration of preexisting immunity is crucial in realizing the full potential of the highly promising therapeutic implementation of OVs. Future investigation of current gaps in knowledge highlighted in this review should yield a more complete understanding of this topic, ultimately allowing for better and more personalized OV therapies.
Collapse
Affiliation(s)
- Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Jasper van den Ende
- Master Infection & Immunity, Utrecht University, 3584 CS Utrecht, the Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| |
Collapse
|
25
|
Lundstrom K. Gene Therapy Cargoes Based on Viral Vector Delivery. Curr Gene Ther 2023; 23:111-134. [PMID: 36154608 DOI: 10.2174/1566523222666220921112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Viral vectors have been proven useful in a broad spectrum of gene therapy applications due to their possibility to accommodate foreign genetic material for both local and systemic delivery. The wide range of viral vectors has enabled gene therapy applications for both acute and chronic diseases. Cancer gene therapy has been addressed by the delivery of viral vectors expressing anti-tumor, toxic, and suicide genes for the destruction of tumors. Delivery of immunostimulatory genes such as cytokines and chemokines has also been applied for cancer therapy. Moreover, oncolytic viruses specifically replicating in and killing tumor cells have been used as such for tumor eradication or in combination with tumor killing or immunostimulatory genes. In a broad meaning, vaccines against infectious diseases and various cancers can be considered gene therapy, which has been highly successful, not the least for the development of effective COVID-19 vaccines. Viral vector-based gene therapy has also demonstrated encouraging and promising results for chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, and hemophilia. Preclinical gene therapy studies in animal models have demonstrated proof-of-concept for a wide range of disease indications. Clinical evaluation of drugs and vaccines in humans has showed high safety levels, good tolerance, and therapeutic efficacy. Several gene therapy drugs such as the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, lentivirus-based treatment of SCID-X1 disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease, and adenovirus-based vaccines against COVID-19 have been developed.
Collapse
|
26
|
Basu R, Moles CM. Rational selection of an ideal oncolytic virus to address current limitations in clinical translation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37541726 DOI: 10.1016/bs.ircmb.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Oncolytic virus therapy (OVT) is a promising modality that leverages the propensity of natural or engineered viruses to selectively replicate in and kill cancer cells. Over the past decade, (pre)clinical studies have focused on the development and testing of adenovirus, herpes simplex virus, and vaccinia virus-based vectors. These studies have identified barriers to success confronting the field. Here, we propose a set of selection criteria or ideal properties of a successful oncolytic virus, which include lack of pathogenicity, low seroprevalence, selectivity (infection and replication), transgene carrying capacity, and genome stability. We use these requirements to analyze the oncolytic virus landscape, and then identify a potentially optimal species for platform development - vesicular stomatitis virus.
Collapse
|
27
|
Nguyen DH, Herrmann T, Härtl B, Draganov D, Minev I, Neuharth F, Gomez A, Alamillo A, Schneider LE, Kleinholz D, Minev B, Santidrian AF. Development of Allogeneic Stem Cell-Based Platform for Delivery and Potentiation of Oncolytic Virotherapy. Cancers (Basel) 2022; 14:cancers14246136. [PMID: 36551636 PMCID: PMC9777144 DOI: 10.3390/cancers14246136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
We describe the repurposing and optimization of the TK-positive (thymidine kinase) vaccinia virus strain ACAM1000/ACAM2000™ as an oncolytic virus. This virus strain has been widely used as a smallpox vaccine and was also used safely in our recent clinical trial in patients with advanced solid tumors and Acute Myeloid Leukemia (AML). The vaccinia virus was amplified in CV1 cells and named CAL1. CAL1 induced remarkable oncolysis in various human and mouse cancer cells and preferentially amplified in cancer cells, supporting the use of this strain as an oncolytic virus. However, the therapeutic potential of CAL1, as demonstrated with other oncolytic viruses, is severely restricted by the patients' immune system. Thus, to develop a clinically relevant oncolytic virotherapy agent, we generated a new off-the-shelf therapeutic called Supernova1 (SNV1) by loading CAL1 virus into allogeneic adipose-derived mesenchymal stem cells (AD-MSC). Culturing the CAL1-infected stem cells allows the expression of virally encoded proteins and viral amplification prior to cryopreservation. We found that the CAL1 virus loaded into AD-MSC was resistant to humoral inactivation. Importantly, the virus-loaded stem cells (SNV1) released larger number of infectious viral particles and virally encoded proteins, leading to augmented therapeutic efficacy in vitro and in animal tumor models.
Collapse
Affiliation(s)
- Duong Hoang Nguyen
- Calidi Biotherapeutics, San Diego, CA 92037, USA
- Correspondence: (D.H.N.); (A.F.S.); Tel.: +1-858-794-9600 (A.F.S.)
| | | | | | | | | | | | | | | | | | | | - Boris Minev
- Calidi Biotherapeutics, San Diego, CA 92037, USA
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA 92093, USA
| | - Antonio F. Santidrian
- Calidi Biotherapeutics, San Diego, CA 92037, USA
- Correspondence: (D.H.N.); (A.F.S.); Tel.: +1-858-794-9600 (A.F.S.)
| |
Collapse
|
28
|
Ling Q, Zheng B, Chen X, Ye S, Cheng Q. The employment of vaccinia virus for colorectal cancer treatment: A review of preclinical and clinical studies. Hum Vaccin Immunother 2022; 18:2143698. [PMID: 36369829 DOI: 10.1080/21645515.2022.2143698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading malignancies that causes death worldwide. Cancer vaccines and oncolytic immunotherapy bring new hope for patients with advanced CRC. The capability of vaccinia virus (VV) in carrying foreign genes as antigens or immunostimulatory factors has been demonstrated in animal models. VV of Wyeth, Western Reserve, Lister, Tian Tan, and Copenhagen strains have been engineered for the induction of antitumor response in multiple cancers. This paper summarized the preclinical and clinical application and development of VV serving as cancer vaccines and oncolytic vectors in CRC treatment. Additionally, the remaining challenges and future direction are also discussed.
Collapse
Affiliation(s)
- Qiaoyun Ling
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Bichun Zheng
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Xudong Chen
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Shaoshun Ye
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Quan Cheng
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
29
|
Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. J Control Release 2022; 351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
30
|
Wang X, Maeng HM, Lee J, Xie C. Therapeutic Implementation of Oncolytic Viruses for Cancer Immunotherapy: Review of Challenges and Current Clinical Trials. JOURNAL OF BIOMEDICAL SCIENCE AND RESEARCH 2022; 4:164. [PMID: 36381110 PMCID: PMC9647850 DOI: 10.36266/jbsr/164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of cancer therapeutics has evolved from general targets with radiation and chemotherapy and shifted toward treatments with a more specific mechanism of action such as small molecule kinase inhibitors, monoclonal antibodies against tumor antigens, or checkpoint inhibitors. Recently, oncolytic viruses (OVs) have come to the forefront as a viable option for cancer immunotherapy, especially for "cold" tumors, which are known to inhabit an immunologically suppressive tumor microenvironment. Desired characteristics of viruses are selected through genetic attenuation of uncontrolled virulence, and some genes are replaced with ones that enhance conditional viral replication within tumor cells. Treatment with OVs must overcome various hurdles such as premature viral suppression by the host's immune system and the dense stromal barrier. Currently, clinical studies investigate the efficacy of OVs in conjunction with various anti-cancer therapeutics, including radiotherapy, chemotherapy, immune checkpoint inhibitors, and monoclonal antibodies. Thus, future research should explore how cancer therapeutics work synergistically with certain OVs in order to create more effective combination therapies and improve patient outcomes.
Collapse
Affiliation(s)
- X Wang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - H M Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - J Lee
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - C Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
31
|
Design Strategies and Precautions for Using Vaccinia Virus in Tumor Virotherapy. Vaccines (Basel) 2022; 10:vaccines10091552. [PMID: 36146629 PMCID: PMC9504998 DOI: 10.3390/vaccines10091552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Oncolytic virotherapy has emerged as a novel form of cancer immunotherapy. Oncolytic viruses (OVs) can directly infect and lyse the tumor cells, and modulate the beneficial immune microenvironment. Vaccinia virus (VACV) is a promising oncolytic vector because of its high safety, easy gene editing, and tumor intrinsic selectivity. To further improve the safety, tumor-targeting ability, and OV-induced cancer-specific immune activation, various approaches have been used to modify OVs. The recombinant oncolytic VACVs with deleting viral virulence factors and/or arming various therapeutic genes have displayed better therapeutic effects in multiple tumor models. Moreover, the combination of OVs with other cancer immunotherapeutic approaches, such as immune checkpoint inhibitors and CAR-T cells, has the potential to improve the outcome in cancer patients. This will open up new possibilities for the application of OVs in cancer treatment, especially for personalized cancer therapies.
Collapse
|
32
|
Yun CO, Hong J, Yoon AR. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front Immunol 2022; 13:953410. [PMID: 36091031 PMCID: PMC9458317 DOI: 10.3389/fimmu.2022.953410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses (OVs) have been gaining attention in the pharmaceutical industry as a novel immunotherapeutic and therapeutic adjuvant due to their ability to induce and boost antitumor immunity through multiple mechanisms. First, intrinsic mechanisms of OVs that enable exploitation of the host immune system (e.g., evading immune detection) can nullify the immune escape mechanism of tumors. Second, many types of OVs have been shown to cause direct lysis of tumor cells, resulting in an induction of tumor-specific T cell response mediated by release of tumor-associated antigens and danger signal molecules. Third, armed OV-expressing immune stimulatory therapeutic genes could be highly expressed in tumor tissues to further improve antitumor immunity. Last, these OVs can inflame cold tumors and their microenvironment to be more immunologically favorable for other immunotherapeutics. Due to these unique characteristics, OVs have been tested as an adjuvant of choice in a variety of therapeutics. In light of these promising attributes of OVs in the immune-oncology field, the present review will examine OVs in clinical development and discuss various strategies that are being explored in preclinical stages for the next generation of OVs that are optimized for immunotherapy applications.
Collapse
Affiliation(s)
- Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
- GeneMedicine CO., Ltd., Seoul, South Korea
| | | | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| |
Collapse
|
33
|
Liu L, Li H, Xu Q, Wu Y, Chen D, Yu F. Antitumor activity of recombinant oncolytic vaccinia virus with human IL2. Open Med (Wars) 2022; 17:1084-1091. [PMID: 35799600 PMCID: PMC9206501 DOI: 10.1515/med-2022-0496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
The tumor microenvironment is highly immunosuppressive. The genetically modified oncolytic vaccinia virus (OVV) is a promising vector for cancer immunotherapy. The aim of the present study was to assess the antitumor effects of human interleukin-2 (hIL2)-armed OVV in vitro. The hIL2 gene was inserted into a thymidine kinase and the viral growth factor double deleted oncolytic VV (VVDD) to generate recombinant hIL2-armed OVV (rVVDD-hIL2). Viral replication capacity in A549 cells was quantified by plaque titration on CV-1 cells. Production of hIL2 in cancer cells infected by rVVDD-hIL2 was measured by enzyme-linked immunosorbent assay. Finally, 3-(4,5-dimethylthiazol-2-yl)-5-(3-arboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay was performed to assess the antitumor effects of rVVDD-hIL2. The results showed that rVVDD-hIL2 viral particles expressed increasing levels of hIL2 in human and murine cancer cell lines with growing multiplicities of infection (MOIs). The insertion of the hIL2 gene did not impair the replication capacity of VV, and the rVVDD-hIL2 virus killed cancer cells efficaciously. The lytic effects of the recombinant oncolytic virus on tumor cells increased with the growing MOIs. In conclusion, these findings suggest that hIL2-armed VVDD effectively infects and lyses tumor cells, with high expression of hIL2.
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong Province, 518052, P. R. China
| | - Huiqun Li
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong Province, 518052, P. R. China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yan Wu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| |
Collapse
|
34
|
Brown M. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity. Cancer Treat Res 2022; 183:91-129. [PMID: 35551657 DOI: 10.1007/978-3-030-96376-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant tumors frequently exploit innate immunity to evade immune surveillance. The priming, function, and polarization of antitumor immunity fundamentally depends upon context provided by the innate immune system, particularly antigen presenting cells. Such context is determined in large part by sensing of pathogen specific and damage associated features by pathogen recognition receptors (PRRs). PRR activation induces the delivery of T cell priming cues (e.g. chemokines, co-stimulatory ligands, and cytokines) from antigen presenting cells, playing a decisive role in the cancer immunity cycle. Indeed, endogenous PRR activation within the tumor microenvironment (TME) has been shown to generate spontaneous antitumor T cell immunity, e.g., cGAS-STING mediated activation of antigen presenting cells after release of DNA from dying tumor cells. Thus, instigating intratumor PRR activation, particularly with the goal of generating Th1-promoting inflammation that stokes endogenous priming of antitumor CD8+ T cells, is a growing area of clinical investigation. This approach is analogous to in situ vaccination, ultimately providing a personalized antitumor response against relevant tumor associated antigens. Here I discuss clinical stage intratumor modalities that function via activation of PRRs. These approaches are being tested in various solid tumor contexts including melanoma, colorectal cancer, glioblastoma, head and neck squamous cell carcinoma, bladder cancer, and pancreatic cancer. Their mechanism (s) of action relative to other immunotherapy approaches (e.g., antigen-defined cancer vaccines, CAR T cells, dendritic cell vaccines, and immune checkpoint blockade), as well as their potential to complement these approaches are also discussed. Examples to be reviewed include TLR agonists, STING agonists, RIG-I agonists, and attenuated or engineered viruses and bacterium. I also review common key requirements for effective in situ immune activation, discuss differences between various strategies inclusive of mechanisms that may ultimately limit or preclude antitumor efficacy, and provide a summary of relevant clinical data.
Collapse
Affiliation(s)
- Michael Brown
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
35
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
36
|
Vasileva N, Ageenko A, Dmitrieva M, Nushtaeva A, Mishinov S, Kochneva G, Richter V, Kuligina E. Double Recombinant Vaccinia Virus: A Candidate Drug against Human Glioblastoma. Life (Basel) 2021; 11:life11101084. [PMID: 34685455 PMCID: PMC8538059 DOI: 10.3390/life11101084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma is one of the most aggressive brain tumors. Given the poor prognosis of this disease, novel methods for glioblastoma treatment are needed. Virotherapy is one of the most actively developed approaches for cancer therapy today. VV-GMCSF-Lact is a recombinant vaccinia virus with deletions of the viral thymidine kinase and growth factor genes and insertions of the granulocyte–macrophage colony-stimulating factor and oncotoxic protein lactaptin genes. The virus has high cytotoxic activity against human cancer cells of various histogenesis and antitumor efficacy against breast cancer. In this work, we show VV-GMCSF-Lact to be a promising therapeutic agent for glioblastoma treatment. VV-GMCSF-Lact effectively decreases the viability of glioblastoma cells of both immortalized and patient-derived cultures in vitro, crosses the blood–brain barrier, selectively replicates into orthotopically transplanted human glioblastoma when intravenously injected, and inhibits glioblastoma xenograft and metastasis growth when injected intratumorally.
Collapse
Affiliation(s)
- Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
- LLC “Oncostar”, R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(913)-949-6585
| | - Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Maria Dmitrieva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Anna Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Sergey Mishinov
- Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Department of Neurosurgery, Frunze Street 17, 630091 Novosibirsk, Russia;
| | - Galina Kochneva
- The State Research Center of Virology and Biotechnology “VECTOR”, Department of Molecular Virology of Flaviviruses and Viral Hepatitis, Novosibirsk Region, 630559 Koltsovo, Russia;
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
- LLC “Oncostar”, R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
37
|
Wang W, Liu S, Dai P, Yang N, Wang Y, Giese RA, Merghoub T, Wolchok J, Deng L. Elucidating mechanisms of antitumor immunity mediated by live oncolytic vaccinia and heat-inactivated vaccinia. J Immunother Cancer 2021; 9:jitc-2021-002569. [PMID: 34593618 PMCID: PMC8487208 DOI: 10.1136/jitc-2021-002569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Background Viral-based immunotherapy can overcome resistance to immune checkpoint blockade (ICB) and fill the unmet needs of many patients with cancer. Oncolytic viruses (OVs) are defined as engineered or naturally occurring viruses that selectively replicate in and kill cancer cells. OVs also induce antitumor immunity. The purpose of this study was to compare the antitumor effects of live oncolytic vaccinia viruses versus the inactivated versions and elucidate their underlying immunological mechanisms. Methods We engineered a replication-competent, oncolytic vaccinia virus (OV-GM) by inserting a murine GM-CSF gene into the thymidine kinase locus of a mutant vaccinia E3L∆83N, which lacks the Z-DNA-binding domain of vaccinia virulence factor E3. We compared the antitumor effects of intratumoral (IT) delivery of live OV-GM versus heat-inactivated OV-GM (heat-iOV-GM) in a murine B16-F10 melanoma bilateral implantation model. We also generated vvDD, a well-studied oncolytic vaccinia virus, and compared the antitumor effects of live vvDD vs heat-inactivated vvDD (heat-ivvDD) in a murine A20 B-cell lymphoma bilateral tumor implantation model. Results Heat-iOV-GM infection of dendritic cells (DCs) and tumor cells in vitro induced type I interferon and proinflammatory cytokines and chemokines, whereas live OV-GM did not. IT live OV-GM was less effective in generating systemic antitumor immunity compared with heat-iOV-GM. Similar to heat-iOV-GM, the antitumor effects of live OV-GM also require Batf3-dependent CD103+ dendritic cells. When combined with systemic delivery of ICB, IT heat-iOV-GM was more effective in eradicating tumors, compared with live OV-GM. IT heat-ivvDD was also more effective in treating murine A20 B-cell lymphoma, compared with live vvDD. Conclusions Tumor lysis induced by the replication of oncolytic vaccinia virus has a limited effect on the generation of systemic antitumor immunity. The activation of Batf3-dependent CD103+ DCs is critical for antitumor effects induced by both live OV-GM and heat-iOV-GM, with the latter being more potent than live OV-GM in inducing innate and adaptive immunity in both locally injected and distant, non-injected tumors. We propose that evaluations of both innate and adaptive immunity, induced by IT oncolytic viral immunotherapy at injected and non-injected tumors, should be included as potential biomarkers for host responses to viral therapy.
Collapse
Affiliation(s)
- Weiyi Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shuaitong Liu
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peihong Dai
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ning Yang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yi Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rachel A Giese
- Immuno-oncology service, Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Taha Merghoub
- Immuno-oncology service, Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jedd Wolchok
- Immuno-oncology service, Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA .,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
38
|
Ho TY, Mealiea D, Okamoto L, Stojdl DF, McCart JA. Deletion of immunomodulatory genes as a novel approach to oncolytic vaccinia virus development. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:85-97. [PMID: 34514091 PMCID: PMC8411212 DOI: 10.1016/j.omto.2021.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Vaccinia virus (VV) has emerged as a promising platform for oncolytic virotherapy. Many clinical VV candidates, such as the double-deleted VV, vvDD, are engineered with deletions that enhance viral tumor selectivity based on cellular proliferation rates. An alternative approach is to exploit the dampened interferon-based innate immune responses of tumor cells by deleting one of the many VV immunomodulatory genes expressed to dismantle the antiviral response. We hypothesized that such a VV mutant would be attenuated in non-tumor cells but retain the ability to effectively propagate in and kill tumor cells, yielding a tumor-selective oncolytic VV with significant anti-tumor potency. In this study, we demonstrated that VVs with a deletion in one of several VV immunomodulatory genes (N1L, K1L, K3L, A46R, or A52R) have similar or improved in vitro replication, spread, and cytotoxicity in colon and ovarian cancer cells compared to vvDD. These deletion mutants are tumor selective, and the best performing candidates (ΔK1L, ΔA46R, and ΔA52R VV) are associated with significant improvement in survival, as well as immunomodulation, within the tumor environment. Overall, we show that exploiting the diminished antiviral responses in tumors serves as an effective strategy for generating tumor-selective and potent oncolytic VVs, with important implications in future oncolytic virus (OV) design.
Collapse
Affiliation(s)
- Tiffany Y Ho
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - David Mealiea
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada.,Department of Surgery, University of Toronto, Stewart Building, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Lili Okamoto
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - David F Stojdl
- Department of Biology, Microbiology, and Immunology, Children's Hospital of Eastern Ontario (CHEO) Research Institute, 401 Smyth Road, Ottawa ON K1H 5B2, Canada
| | - J Andrea McCart
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada.,Department of Surgery, University of Toronto, Stewart Building, 149 College Street, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
39
|
Kulkarni R, Chen WC, Lee Y, Kao CF, Hu SL, Ma HH, Jan JT, Liao CC, Liang JJ, Ko HY, Sun CP, Lin YS, Wang YC, Wei SC, Lin YL, Ma C, Chao YC, Chou YC, Chang W. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS One 2021; 16:e0257191. [PMID: 34499677 PMCID: PMC8428573 DOI: 10.1371/journal.pone.0257191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yin-Shoiou Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chiuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Academi Sinica SPF Animal Facility, Academia Sinica, Taipei, Taiwan
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Wen Chang
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
40
|
Ge Y, Wang H, Ren J, Liu W, Chen L, Chen H, Ye J, Dai E, Ma C, Ju S, Guo ZS, Liu Z, Bartlett DL. Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J Immunother Cancer 2021; 8:jitc-2020-000710. [PMID: 32209602 PMCID: PMC7103801 DOI: 10.1136/jitc-2020-000710] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 12/29/2022] Open
Abstract
Immune checkpoint blockade is arguably the most effective current cancer therapy approach; however, its efficacy is limited to patients with "hot" tumors, warranting an effective approach to transform "cold" tumors. Oncolytic viruses (especially properly armed ones) have positive effects on almost every aspect of the cancer-immunity cycle and can change the cancer-immune set point of a tumor. Here, we tested whether oncolytic vaccinia virus delivering tethered interleukin 12 (IL-12) could turn a "cold" tumor into a "hot" tumor while avoiding IL-12's systemic toxicity. Our data demonstrated that tethered IL-12 could be maintained in the tumor without treatment-induced toxic side effects. Moreover, the treatment facilitated tumor infiltration of more activated CD4+ and CD8+ T cells and less Tregs, granulocytic myeloid-derivedsuppressor cells, and exhausted CD8+ T cells, with increased interferon γ and decreased transforming growth factor β, cyclooxygenase-2, and vascular endothelial growth factor expression, leading to transformed, immunogenic tumors and improved survival. Combined with programmed cell death 1 blockade, vaccinia virus expressing tethered IL-12 cured all mice with late-stage colon cancer, suggesting immediate translatability to the clinic.
Collapse
Affiliation(s)
- Yan Ge
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiyan Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Jinghua Ren
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Weilin Liu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Lingjuan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongqi Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junjie Ye
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Enyong Dai
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Congrong Ma
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Songguang Ju
- Department of Immunology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Zong Sheng Guo
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Zuqiang Liu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA .,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA .,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
41
|
Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes. Viruses 2021; 13:1271. [PMID: 34209981 PMCID: PMC8309967 DOI: 10.3390/v13071271] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment.
Collapse
Affiliation(s)
- Alexander Malogolovkin
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| | | | | | | | | | - Alexander Karabelsky
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| |
Collapse
|
42
|
Park AK, Fong Y, Kim SI, Yang J, Murad JP, Lu J, Jeang B, Chang WC, Chen NG, Thomas SH, Forman SJ, Priceman SJ. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci Transl Med 2021; 12:12/559/eaaz1863. [PMID: 32878978 DOI: 10.1126/scitranslmed.aaz1863] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 06/12/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
Chimeric antigen receptor (CAR)-engineered T cell therapy for solid tumors is limited by the lack of both tumor-restricted and homogeneously expressed tumor antigens. Therefore, we engineered an oncolytic virus to express a nonsignaling, truncated CD19 (CD19t) protein for tumor-selective delivery, enabling targeting by CD19-CAR T cells. Infecting tumor cells with an oncolytic vaccinia virus coding for CD19t (OV19t) produced de novo CD19 at the cell surface before virus-mediated tumor lysis. Cocultured CD19-CAR T cells secreted cytokines and exhibited potent cytolytic activity against infected tumors. Using several mouse tumor models, delivery of OV19t promoted tumor control after CD19-CAR T cell administration. OV19t induced local immunity characterized by tumor infiltration of endogenous and adoptively transferred T cells. CAR T cell-mediated tumor killing also induced release of virus from dying tumor cells, which propagated tumor expression of CD19t. Our study features a combination immunotherapy approach using oncolytic viruses to promote de novo CAR T cell targeting of solid tumors.
Collapse
Affiliation(s)
- Anthony K Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA.,Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Jason Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - John P Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Brook Jeang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Nanhai G Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Sandra H Thomas
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA 91010, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA. .,Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
43
|
Sun F, Guo ZS, Gregory AD, Shapiro SD, Xiao G, Qu Z. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. J Immunother Cancer 2021; 8:jitc-2019-000294. [PMID: 32461344 PMCID: PMC7254155 DOI: 10.1136/jitc-2019-000294] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade therapy fails in the majority of patients with cancer. Oncolytic viruses represent a new class of therapeutic agents, yet the therapeutic efficacy is still disappointing. Moreover, intratumoral injection of viruses is the main approach and preclinical studies mainly employ syngeneic or xenograft models. Methods Use an endogenous mouse lung cancer model that faithfully recapitulates human lung cancer, and various in vivo, ex vivo and in vitro assays, to investigate the efficacy, mechanism of action and resistance of systemically administered oncolytic vaccinia virus (oVV), immunotherapy and their combination, to find an effective therapy for refractory lung cancer. Results Resembling human lung cancers, the majority of which are largely resistant to PD-1/PD-L1 blockade and with decreased PD-L1 expression and T-cell activation by our analysis, urethane-induced endogenous lung tumors in mice show reduced PD-L1 expression, low tumor-infiltrating lymphocytes and innate resistance to PD-1/PD-L1 blockade. Intravenous administration of oVV has efficacy and synergizes with simultaneous but not single blockade of PD-1 and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) in this cancer model. Besides direct tumor cell killing, oVV induces T-cell lung recruitment, tumor infiltration, along with expression of PD-1 and TIM-3 on T cells and PD-1 and TIM-3 ligands on tumor cells and tumor-associated immune cells. Blockade of PD-1 or TIM-3 also causes their mutual induction on T cells. Conclusions While systemic administration of oVV shows efficacy in lung cancer by killing tumor cells directly and recruiting and activating T cells for indirect tumor killing, its induction of PD-1 and TIM-3 on T cells and PD-1 and TIM-3 ligands on tumors and tumor-associated immune cells as well as mutual induction of PD-1 or TIM-3 on T cells by their blockade restricts the efficacy of oVV or its combination with single PD-1 or TIM-3 blockade. The triple combination therapy is more effective for refractory lung cancer, and possibly other cold cancers as well.
Collapse
Affiliation(s)
- Fan Sun
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven D Shapiro
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Chen L, Chen H, Ye J, Ge Y, Wang H, Dai E, Ren J, Liu W, Ma C, Ju S, Guo ZS, Liu Z, Bartlett DL. Intratumoral expression of interleukin 23 variants using oncolytic vaccinia virus elicit potent antitumor effects on multiple tumor models via tumor microenvironment modulation. Am J Cancer Res 2021; 11:6668-6681. [PMID: 34093846 PMCID: PMC8171085 DOI: 10.7150/thno.56494] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/11/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Newly emerging cancer immunotherapy has led to significant progress in cancer treatment; however, its efficacy is limited in solid tumors since the majority of them are “cold” tumors. Oncolytic viruses, especially when properly armed, can directly target tumor cells and indirectly modulate the tumor microenvironment (TME), resulting in “hot” tumors. These viruses can be applied as a cancer immunotherapy approach either alone or in combination with other cancer immunotherapies. Cytokines are good candidates to arm oncolytic viruses. IL-23, an IL-12 cytokine family member, plays many roles in cancer immunity. Here, we used oncolytic vaccinia viruses to deliver IL-23 variants into the tumor bed and explored their activity in cancer treatment on multiple tumor models. Methods: Oncolytic vaccinia viruses expressing IL-23 variants were generated by homologue recombination. The characteristics of these viruses were in vitro evaluated by RT-qPCR, ELISA, flow cytometry and cytotoxicity assay. The antitumor effects of these viruses were evaluated on multiple tumor models in vivo and the mechanisms were investigated by RT-qPCR and flow cytometry. Results: IL-23 prolonged viral persistence, probably mediated by up-regulated IL-10. The sustainable IL-23 expression and viral oncolysis elevated the expression of Th1 chemokines and antitumor factors such as IFN-γ, TNF-α, Perforin, IL-2, Granzyme B and activated T cells in the TME, transforming the TME to be more conducive to antitumor immunity. This leads to a systemic antitumor effect which is dependent on CD8+ and CD4+ T cells and IFN-γ. Oncolytic vaccinia viruses could not deliver stable IL-23A to the tumor, attributed to the elevated tristetraprolin which can destabilize the IL-23A mRNA after the viral treatment; whereas vaccinia viruses could deliver membrane-bound IL-23 to elicit a potent antitumor effect which might avoid the possible toxicity normally associated with systemic cytokine exposure. Conclusion: Either secreted or membrane-bound IL-23-armed vaccinia virus can induce potent antitumor effects and IL-23 is a candidate cytokine to arm oncolytic viruses for cancer immunotherapy.
Collapse
|
45
|
Oncolytic Virotherapy for Cancer: Clinical Experience. Biomedicines 2021; 9:biomedicines9040419. [PMID: 33924556 PMCID: PMC8069290 DOI: 10.3390/biomedicines9040419] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses are a new class of therapeutics which are largely in the experimental stage, with just one virus approved by the FDA thus far. While the concept of oncolytic virotherapy is not new, advancements in the fields of molecular biology and virology have renewed the interest in using viruses as oncolytic agents. Backed by robust preclinical data, many oncolytic viruses have entered clinical trials. Oncolytic viruses that have completed some levels of clinical trials or are currently undergoing clinical trials are mostly genetically engineered viruses, with the exception of some RNA viruses. Reolysin, an unmodified RNA virus is clinically the most advanced oncolytic RNA virus that has completed different phases of clinical trials. Other oncolytic viruses that have been studied in clinical trials are mostly DNA viruses that belong to one of the three families: herpesviridae, poxviridae or adenoviridae. In this review work we discuss recent clinical studies with oncolytic viruses, especially herpesvirus, poxvirus, adenovirus and reovirus. In summary, the oncolytic viruses tested so far are well tolerated, even in immune-suppressed patients. For most oncolytic viruses, mild and acceptable toxicities are seen at the currently defined highest feasible doses. However, anti-tumor efficacies of oncolytic viruses have been modest, especially when used as monotherapy. Therefore, the potency of oncolytic viruses needs to be enhanced for more oncolytic viruses to hit the clinic. Aiming to achieve higher therapeutic benefits, oncolytic viruses are currently being studied in combination with other therapies. Here we discuss the currently available clinical data on oncolytic viruses, either as monotherapy or in combination with other treatments.
Collapse
|
46
|
Zhang CD, Wang YL, Zhou DM, Zhu MY, Lv Y, Hao XQ, Qu CF, Chen Y, Gu WZ, Wu BQ, Chen PC, Zhao ZY. A recombinant Chinese measles virus vaccine strain rMV-Hu191 inhibits human colorectal cancer growth through inducing autophagy and apoptosis regulating by PI3K/AKT pathway. Transl Oncol 2021; 14:101091. [PMID: 33848808 PMCID: PMC8063909 DOI: 10.1016/j.tranon.2021.101091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The recombinant Chinese measles virus vaccine strain rMV-Hu191 induced efficient infection and oncolytic effects in human CRC both in vitro and in vivo. rMV-Hu191 induced the caspase-dependent apoptosis and complete autophagy in CRC cells. Autophagy served as a protective role in human CRC cells’ apoptosis induced by rMV-Hu191. rMV-Hu191-induced autophagy and apoptosis were regulated by the PI3K/AKT signaling pathway in human CRC.
The potential therapeutic effects of oncolytic measles virotherapy have been verified against plenty of malignancies. However, the oncolytic effects and underlying mechanisms of the recombinant Chinese measles virus vaccine strain Hu191 (rMV-Hu191) against human colorectal cancer (CRC) remain elusive. In this study, the antitumor effects of rMV-Hu191 were evaluated in CRC both in vitro and in vivo. From our data, rMV-Hu191 induced remarkably caspase-dependent apoptosis and complete autophagy in vitro. In mice bearing CRC xenografts, tumor volume was remarkably suppressed and median survival was prolonged significantly with intratumoral treatment of rMV-Hu191. To gain further insight into the relationship of rMV-Hu191-induced apoptosis and autophagy, we utilized Rapa and shATG7 to regulate autophagy. Our data suggested that autophagy was served as a protective role in rMV-Hu191-induced apoptosis in CRC. PI3K/AKT signaling pathway as one of the common upstream pathways of apoptosis and autophagy was activated in CRC after treatment with rMV-Hu191. And inhibition of PI3K/AKT pathway using LY294002 was accompanied by enhanced apoptosis and decreased autophagy which suggested that PI3K/AKT pathway promoted rMV-Hu191-induced autophagy and inhibited rMV-Hu191-induced apoptosis. This is the first study to demonstrate that rMV-Hu191 could be used as a potentially effective therapeutic agent in CRC treatment. As part of the underlying cellular mechanisms, apoptosis and autophagy were involved in the oncolytic effects generated by rMV-Hu191. And the cross-talk between these two processes and the PI3K/AKT signaling pathway was well identified.
Collapse
Affiliation(s)
- Chu-di Zhang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China; Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang. China.
| | - Yi-Long Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China.
| | - Dong-Ming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China.
| | - Meng-Ying Zhu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China; Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang. China.
| | - Yao Lv
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China.
| | - Xiao-Qiang Hao
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China.
| | - Chu-Fan Qu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China; Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang. China.
| | - Yi Chen
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China; Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang. China.
| | - Wei-Zhong Gu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China.
| | - Ben-Qing Wu
- University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen 518000, China.
| | - Pei-Chun Chen
- University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen 518000, China.
| | - Zheng-Yan Zhao
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China; Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang. China.
| |
Collapse
|
47
|
Kana SI, Essani K. Immuno-Oncolytic Viruses: Emerging Options in the Treatment of Colorectal Cancer. Mol Diagn Ther 2021; 25:301-313. [PMID: 33713031 DOI: 10.1007/s40291-021-00517-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
Colorectal cancer is the third most common neoplasm in the world and the third leading cause of cancer-related deaths in the USA. A safer and more effective therapeutic intervention against this malignant carcinoma is called for given the limitations and toxicities associated with the currently available treatment modalities. Immuno-oncolytic or oncolytic virotherapy, the use of viruses to selectively or preferentially kill cancer cells, has emerged as a potential anticancer treatment modality. Oncolytic viruses act as double-edged swords against the tumors through the direct cytolysis of cancer cells and the induction of antitumor immunity. A number of such viruses have been tested against colorectal cancer, in both preclinical and clinical settings, and many have produced promising results. Oncolytic virotherapy has also shown synergistic antitumor efficacy in combination with conventional treatment regimens. In this review, we describe the status of this therapeutic approach against colorectal cancer at both preclinical and clinical levels. Successes with and the challenges of using oncolytic viruses, both as monotherapy and in combination therapy, are also highlighted.
Collapse
Affiliation(s)
- Sadia Islam Kana
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA.
| |
Collapse
|
48
|
Zhang Z, Dong L, Zhao C, Zheng P, Zhang X, Xu J. Vaccinia virus-based vector against infectious diseases and tumors. Hum Vaccin Immunother 2021; 17:1578-1585. [PMID: 33606578 DOI: 10.1080/21645515.2020.1840887] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vaccinia virus was used to prevent smallpox. After the World Health Organization declared smallpox extinct, vaccinia virus has been explored for the development of vaccines against a variety of infectious diseases. It also finds a new place in oncolytic therapy. Here we provide a brief review of the history, current status, and future prospect of vaccinia virus-based vaccine and oncolytic virus. New advancements, including a single vaccine targeting multiple viruses, strategies of arming vaccinia viruses to enhance anti-tumor activity, the promise and challenge of combining vaccinia-based virotherapy with immunotherapy, are discussed as special focus.
Collapse
Affiliation(s)
- Ziling Zhang
- Shanghai Public Health ClinicalCenter& Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lanlan Dong
- Shanghai Public Health ClinicalCenter& Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health ClinicalCenter& Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health ClinicalCenter& Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory for Infectious Disease Prevention and Control, China Centers for Disease Control and Prevention, Beijing, China
| | - Jianqing Xu
- Shanghai Public Health ClinicalCenter& Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory for Infectious Disease Prevention and Control, China Centers for Disease Control and Prevention, Beijing, China
| |
Collapse
|
49
|
Giehl E, Kosaka H, Liu Z, Feist M, Kammula US, Lotze MT, Ma C, Guo ZS, Bartlett DL. In Vivo Priming of Peritoneal Tumor-Reactive Lymphocytes With a Potent Oncolytic Virus for Adoptive Cell Therapy. Front Immunol 2021; 12:610042. [PMID: 33679747 PMCID: PMC7930493 DOI: 10.3389/fimmu.2021.610042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/04/2021] [Indexed: 01/07/2023] Open
Abstract
Adoptive cell therapy (ACT) using autologous tumor infiltrating lymphocytes (TIL) achieves durable clinical benefit for patients from whom these cells can be derived in advanced metastatic melanoma but is limited in most solid tumors as a result of immune escape and exclusion. A tumor microenvironment (TME) priming strategy to improve the quantity and quality of TIL represents an important tactic to explore. Oncolytic viruses expressing immune stimulatory cytokines induce a potent inflammatory response that may enhance infiltration and activation of T cells. In this study, we examined the ability of an attenuated oncolytic vaccinia virus expressing IL15/IL15Rα (vvDD-IL15/Rα) to enhance recovery of lavage T cells in peritoneal carcinomatosis (PC). We found that intraperitoneal (IP) vvDD-IL15/Rα treatment of animals bearing PC resulted in a significant increase in cytotoxic function and memory formation in CD8+ T cells in peritoneal fluid. Using tetramers for vaccinia virus B8R antigen and tumor rejection antigen p15E, we found that the expanded population of peritoneal CD8+ T cells are specific for vaccinia or tumor with increased tumor-specificity over time, reinforced with viral clearance. Application of these vvDD-IL15/Rα induced CD8+ T cells in ACT of a lethal model of PC significantly increased survival. In addition, we found in patients with peritoneal metastases from various primary solid tumors that peritoneal T cells could be recovered but were exhausted with infrequent tumor-reactivity. If clinically translatable, vvDD-IL15/Rα in vivo priming would greatly expand the number of patients with advanced metastatic cancers responsive to T cell therapy.
Collapse
Affiliation(s)
- Esther Giehl
- Departments of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Hiromichi Kosaka
- Departments of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Oncology Research Laboratories Oncology R&D Unit, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Zuqiang Liu
- Departments of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Mathilde Feist
- Departments of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Department of Surgery, CCM/CVK, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Udai S. Kammula
- Departments of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Michael T. Lotze
- Departments of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Congrong Ma
- Departments of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Zong Sheng Guo
- Departments of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - David L. Bartlett
- Departments of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
50
|
Yang M, Giehl E, Feng C, Feist M, Chen H, Dai E, Liu Z, Ma C, Ravindranathan R, Bartlett DL, Lu B, Guo ZS. IL-36γ-armed oncolytic virus exerts superior efficacy through induction of potent adaptive antitumor immunity. Cancer Immunol Immunother 2021; 70:2467-2481. [PMID: 33538860 PMCID: PMC8360872 DOI: 10.1007/s00262-021-02860-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 01/22/2023]
Abstract
In this study, we aimed to apply the cytokine IL-36γ to cancer immunotherapy by constructing new oncolytic vaccinia viruses (OV) expressing interleukin-36γ (IL-36γ-OVs), leveraging unique synergism between OV and IL-36γ’s ability to promote antitumor adaptive immunity and modulate tumor microenvironment (TME). IL-36γ-OV had dramatic therapeutic efficacies in multiple murine tumor models, frequently leading to complete cancer eradication in large fractions of mice. Mechanistically, IL-36-γ-armed OV induced infiltration of lymphocytes and dendritic cells, decreased myeloid-derived suppressor cells and M2-like tumor-associated macrophages, and T cell differentiation into effector cells. Further study showed that IL-36γ-OV increased the number of tumor antigen-specific CD4+ and CD8+ T cells and the therapeutic efficacy depended on both CD8+ and CD4+ T cells. These results demonstrate that these IL36γ-armed OVs exert potent therapeutic efficacy mainly though antitumor immunity and they may hold great potential to advance treatment in human cancer patients.
Collapse
Affiliation(s)
- Min Yang
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Chao Feng
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgery, CCM/CVK, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Hongqi Chen
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Congrong Ma
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roshni Ravindranathan
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,AHN-Cancer Institute, Pittsburgh, PA, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|