1
|
Ragab A, Ayman R, Salem MA, Ammar YA, Abusaif MS. Unveiling a novel pyrazolopyrimidine scaffold as a dual COX-2/5-LOX inhibitor with immunomodulatory potential: Design, synthesis, target prediction, anti-inflammatory activity, and ADME-T with docking simulation. Eur J Med Chem 2025; 290:117499. [PMID: 40101450 DOI: 10.1016/j.ejmech.2025.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Dual-target COX-2/5-LOX inhibitors are regarded as a rational strategy for the design of potent anti-inflammatory agents with favorable safety profiles. In this study, novel pyrazolo[1,5-a]pyrimidine derivatives were synthesized, developed, and screened for their ability to inhibit the cyclooxygenase-2 enzyme in vitro, with comparisons made to the established inhibitors Celecoxib and Meloxicam. Spectroscopic analyses confirmed the structure of the designed derivatives. The target prediction using AI was performed to identify potential targets that could be engaged through Swiss target prediction database. The SAR study was established by incorporating various substituents and nuclei into the pyrazolopyrimidine pharmacophore. The synthesized pyrazolopyrimidines exhibited IC50 values ranging from 53.32 ± 4.43 to 254.90 ± 6.45 nM, in comparison to Celecoxib (IC50 = 6.73 ± 5.69 nM) and Meloxicam (IC50 = 52.35 ± 6.66 nM). Notably, compound 5a was identified as the most active derivative, demonstrating an IC50 of 53.32 ± 4.43 nM. The three most prominent pyrazolopyrimidine derivatives, 3a, 5a, and 6a, were subsequently evaluated for their ability to inhibit the COX-1 and 5-LOX enzymes. Compounds 3a, 5a, and 6a demonstrated inhibitory activity against COX-1, with IC50 values of 476.45 ± 16.56, 757.51 ± 2.61, and 169.13 ± 5.77 nM, respectively. These derivatives 3a, 5a, and 6a showed significant selectivity index values of 7.91, 14.20, and 2.80, respectively, toward COX-2 rather than COX-1 in comparison to Meloxicam (SI = 0.75) and Celecoxib (SI = 2.35). Moreover, compound 5a exhibited 86 % inhibition compared to Zileuton's 88 %, while compounds 3a and 6a displayed inhibition rates of 84 % and 80 %, respectively, at a concentration of 100 μM. The most potent compound 5a, demonstrated the highest 5-LOX inhibitory activity, with IC50 of 2.292 ± 0.14 μM. The most promising pyrazolopyrimidine derivative 5a demonstrated a down-regulation of TNF-α and IL-6 gene expression by approximately 0.3826-fold and 0.2732-fold, respectively, when compared to Celecoxib, which induced reductions of 0.2320-fold and 0.2730-fold in these cytokines to promote apoptosis in RAW264.7 cells. Finally, in-silico ADME-T and docking simulations were conducted to predict the oral bioavailability, toxicity, and binding interactions with binding affinity.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt; Chemistry Department, Faculty of Science, Galala University, Galala City, 43511, Suez, Egypt.
| | - Radwa Ayman
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
2
|
Hsu CY, Jasim SA, Rasool KH, H M, Kaur J, Jabir MS, Alhajlah S, Kumar A, Jawad SF, Husseen B. Divergent functions of TLRs in gastrointestinal (GI) cancer: Overview of their diagnostic, prognostic and therapeutic value. Semin Oncol 2025; 52:152344. [PMID: 40347779 DOI: 10.1016/j.seminoncol.2025.152344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 05/14/2025]
Abstract
The relationship between the innate immune signal and the start of the adaptive immune response is the central idea of this theory. By controlling the inflammatory and tissue-repair reactions to damage, the Toll-like receptors (TLRs), as a family of PRRs, have attracted increasing attention for its function in protecting the host against infection and preserving tissue homeostasis. Microbial infection, damage, inflammation, and tissue healing have all been linked to the development of malignancies, especially gastrointestinal (GI) cancers. Recently, increased studies on TLR recognition and binding, as well as their ligands, have significantly advanced our knowledge of the various TLR signaling pathways and offered therapy options for GI malignancies. Upon activation by pathogen-associated or damage-associated molecular patterns (DAMPs and PAMPs), TLRs trigger key pathways like NF-κB, MAPK, and IRF. NF-κB activation promotes inflammation, cell survival, and proliferation, often contributing to tumor growth, metastasis, and therapy resistance. MAPK pathways similarly drive uncontrolled cell growth and invasion, while IRF pathways modulate interferon production, yielding both anti-tumor and protumor effects. The resulting chronic inflammatory environment within tumors can foster progression, yet TLR activation can also stimulate beneficial anti-tumor immune responses. However, the functions of TLR expression in GI cancers and their diagnostic and prognostic along with therapeutic value have not yet entirely been elucidated. Understanding how TLR activation contributes to anti-cancer immunity against GI malignancies may hasten immunotherapy developments and increase patient survival.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq; Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | - Khetam Habeeb Rasool
- Department of Biology, College of Science, University of Mustansiriyah, Mustansiriyah, Iraq
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Jaswinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Mohali, Punjab, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Anbar, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia; Centre for Research Impact & Outcome, Chitkara University, Rajpura, Punjab, India; Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Shafiei M, Mardi S, Ghadimi S, Poorshahbazi H, Pourabbas R, Keykhah M, Rafiemanesh H. Efficacy and tolerability of probiotics, prebiotics, and symbiotics consumption on oral complications of patients with thyroid and head and neck cancers: a systematic review and meta-analysis. BMC Oral Health 2025; 25:677. [PMID: 40316921 PMCID: PMC12049045 DOI: 10.1186/s12903-025-05876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/26/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Oral complications following cancer treatment are a challenging issue for oncologists. Several studies have demonstrated the efficacy of biotics in the prevention and treatment of oral complications in thyroid and head and neck cancers. METHODS Following the PRISMA criteria, a systematic review and meta-analysis of included studies on efficacy, safety, dosage, and duration of treatment was performed. RESULTS A total of 12 randomized controlled trials and a total of 885 individuals were included in this meta-analysis. Our analysis showed that biotics had a slight but insignificant effect on the incidence of oral mucositis (Risk ratio (RR) = 0.90, 95% CI [0.79, 1.03]), and a significant impact on reducing the severity of oral mucositis (RR = 0.62, 95% CI [0.48, 0.80]). Biotics also had a slight but insignificant effect in developing xerostomia in thyroid and Head and neck cancer (HNC) patients. Subgroup meta-analysis demonstrated that Bifidobacterium-containing products were more effective than other blends. CONCLUSION Our findings demonstrated that biotics are effective and safe for HNC and thyroid patients suffering from oral complications.
Collapse
Affiliation(s)
- Mohammadreza Shafiei
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Shayan Mardi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Soodeh Ghadimi
- School of Medicine, Azad University of Medical Sciences, Tehran, Iran
| | - Helia Poorshahbazi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Roozbeh Pourabbas
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammadamin Keykhah
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Agrawal N. A Comprehensive Review on the Advancements of Dual COX-2/5-LOX Inhibitors as Anti-Inflammatory Drugs. Chem Biol Drug Des 2025; 105:e70114. [PMID: 40346930 DOI: 10.1111/cbdd.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 05/12/2025]
Abstract
Chronic pain and inflammation are widespread clinical issues that significantly affect patients' quality of life and are often associated with serious conditions such as arthritis, cancer, and cardiovascular disease. Effective management of inflammation is therefore a major public health priority. Current anti-inflammatory treatments-including non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, disease-modifying antirheumatic drugs (DMARDs), and biologics-offer symptomatic relief but are frequently limited by side effects such as gastrointestinal toxicity, immunosuppression, or cardiovascular risks. Moreover, most of these therapies target only a single pathway in the inflammatory cascade. Dual inhibitors of COX-2 and 5-LOX have emerged as a promising therapeutic class, as they simultaneously block two key enzymes involved in prostaglandin and leukotriene synthesis. This dual-action approach offers enhanced efficacy and may reduce adverse effects linked to selective or non-selective COX inhibition. This review discusses the underlying mechanisms of inflammation, evaluates current treatment options, and highlights the pharmacological advantages and development status of dual COX-2/5-LOX inhibitors as a next-generation strategy for inflammation management.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
5
|
Dal A, Hekimoğlu R, Sümbül B, Balıbey FB, Gökçe ZÖ, Akbulut E, Elbay A. Quorum-Sensing inhibition by furanone compounds and therapeutic effects on Pseudomonas aeruginosa keratitis rabbit model. BMC Ophthalmol 2025; 25:231. [PMID: 40264027 PMCID: PMC12013088 DOI: 10.1186/s12886-025-04061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND To investigate Quorum-Sensing inhibition by furanone compounds in Pseudomonas aeruginosa keratitis rabbit model. METHODS Thirty adult New Zealand White rabbits were used. Anesthetized rabbits were intrastromally injected with Pseudomonas aeruginosa (P. aeruginosa). The rabbits were divided into six groups: the control group (infected only with P. aeruginosa), group A (50 mg/mL ceftazidime), group B (0.1 mg/mL furanone), group C (0.2 mg/mL furanone), group D (0.3 mg/mL furanone), and group E (20% dimethyl sulfoxide). One drop of the treatment was applied every hour for 3 days, starting 1-h post-inoculation. Rabbits were then sacrificed, and corneas were analysed clinically, microbiologically, histologically, and biochemically. One-way analysis of variance was used for the mean comparison of independent groups. The Least Significant Difference method was used as a post-hoc test for pairwise comparisons. RESULTS In all evaluations, the antibiotic group (group A) showed the best therapeutic response. The slit-lamp examination score of group C was significantly lowered than those compared of to the control (p = 0.009) and E groups (p = 0.014). Histological evaluation showed that inflammation is decreased in groups B, C, and D. Levels of cyclooxygenase-2 (COX-2), superoxide dismutase-1, and reactive oxygen species (ROS) were lowest in the antibiotic-treated group, whereas the highest levels were detected in the control group. Notably, the COX-2 levels in group B and ROS levels in groups B and C were significantly lower than in control group. (p = 0.045, p = 0.039 and p = 0.045, respectively). CONCLUSION Furanone compounds may have minimal therapeutic effects against Pseudomonas keratitis. Its therapeutic effect has not been observed to be sufficient compared with that of antibiotics. Further studies are needed to investigate their protective effects and mechanisms.
Collapse
Affiliation(s)
- Aleyna Dal
- Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Rümeysa Hekimoğlu
- Faculty of Medicine, Department of Histology and Embryology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Bilge Sümbül
- Faculty of Medicine, Department of Clinical Microbiology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Fatmanur Babalı Balıbey
- Faculty of Medicine, Department of Medical Biochemistry, Bezmialem Vakıf University, Istanbul, Turkey
| | - Zeynep Özman Gökçe
- Department of Medical Biochemistry, Institute of Health Sciences, Bezmialem Vakıf University, Istanbul, Turkey
| | - Ersin Akbulut
- Faculty of Medicine, Department of Ophthalmology, Bezmialem Vakıf University, Istanbul, 34093, Turkey
| | - Ahmet Elbay
- Faculty of Medicine, Department of Ophthalmology, Bezmialem Vakıf University, Istanbul, 34093, Turkey.
| |
Collapse
|
6
|
Safwat N, Elshimy R, Hassanin SO, El-manakhly AR, Noaf AN, Mansour AT, Alshehri F, Alhomrani M, Alamri AS, Bendary MM. Therapeutic approaches for septicemia induced by multidrug-resistant bacteria using desert-adapted plants. Front Cell Infect Microbiol 2025; 15:1493769. [PMID: 40330024 PMCID: PMC12052906 DOI: 10.3389/fcimb.2025.1493769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Aim Septicemia, a life-threatening condition, can arise when bacterial infections are left untreated, allowing the pathogens to spread into the bloodstream. Moreover, infections caused by MDR bacteria are particularly challenging, as they can persist and lead to septicemia even when treated with conventional antibiotics. This study aimed to address this crisis by investigating combination therapies using desert-adapted medicinal plant extracts, including Jasonia candicans (J. candicans), Cistanche tubulosa, Moltkiopsis ciliata, and Thymelea hirsuta, as alternative treatments. The goal was to develop new strategies to combat resistance and improve the management of septic patients. Methodology In this study, 400 blood samples from septic patients were analyzed to identify Gram-negative bacterial isolates. Antimicrobial resistance patterns were assessed using standard susceptibility tests. Medicinal plant extracts were evaluated for antimicrobial activity using agar diffusion and broth microdilution assays, while COX-1 and COX-2 inhibition and antioxidant activity were measured using in vitro assays. Histopathological examinations were conducted on treated mice to assess tissue damage and response. Results We observed a high prevalence of E. coli and K. pneumoniae among septic patients. Multidrug resistance was widespread, with many isolates showing high resistance to various antibiotics, although all were susceptible to colistin. Evaluation of desert-adapted plant extracts revealed that J. candicans exhibited the most potent antimicrobial activity and the strongest COX-1 and COX-2 inhibitory activities, as well as antioxidant effects, compared to other extracts and Celecoxib, with a concentration required to achieve 50% enzyme inhibition (IC50) value of 71.97 μg/mL for antioxidant activity. Moreover, the combination of this extract with amikacin showed a synergistic effect, significantly enhancing antimicrobial efficacy and converting over 50% of amikacin-resistant strains to sensitive phenotypes. Histopathological analysis of mice showed that the combination of J. candicans extract and amikacin resulted in reduced severity of pulmonary lesions and splenic damage compared to amikacin alone. Conclusion We highlighted the potential of J. candicans extracts as combination therapies alongside traditional antibiotics for combating MDR Gram-negative infections, due to their superior antimicrobial, anti-inflammatory, and antioxidant properties.
Collapse
Affiliation(s)
- Nesreen Safwat
- Department of Microbiology and Immunology, Faculty of pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Rana Elshimy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alhram Canadian University, Giza, Egypt
| | - Soha O. Hassanin
- Department of Biochemistry, Faculty of pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Arwa Ramadan El-manakhly
- Department of Microbiology and Immunology, Faculty of pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Abdullah N. Noaf
- Surgical Department, Al Hadithah General Hospital, Al-Qurayyat, Saudi Arabia
| | - Abdallah Tageldein Mansour
- Fish and Animal Production Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Fatma Alshehri
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Science, Taif University, Taif, Saudi Arabia
- Research Center for health science, Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Science, Taif University, Taif, Saudi Arabia
- Research Center for health science, Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Mahmoud Mohammed Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| |
Collapse
|
7
|
Zhang P, Wu Y, Chen X, Wang G, Li P, Cao Z, Du H, Zhang C, Du X, Chen G, Zhou Y, Sun Y. TroTNFα, a teleost tumour necrosis factor of golden pompano (Trachinotus ovatus), enhances pathogen clearance and acts as an immune adjuvant. Int J Biol Macromol 2025; 299:140128. [PMID: 39842583 DOI: 10.1016/j.ijbiomac.2025.140128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Tumour necrosis factor (TNF) is one of the most pivotal factors of the TNF family and plays an essential biological role in immunity. However, the antibacterial function and mechanism of TNFα in teleosts are relatively poorly understood. In this study, a novel TNFα from Trachinotus ovatus (TroTNFα) was characterized. TroTNFα is widely expressed in immune tissues and increased after Vibrio harveyi infection. The recombinant protein TroTNFα facilitated the proliferation and chemotaxis of T. ovatus head kidney lymphocytes, induced apoptosis in human hepatocellular carcinoma cells (HepG2), and enhanced NF-κB promoter activity, whereas mutants with altered conserved receptor binding sites (Phe and Tyr mutated to Ala) lost these functions. Similarly, in vivo research revealed that, compared with the control, TroTNFα overexpression significantly reduced bacterial colonization, whereas the bacterial colonization of the mutants was similar to that of the control. Furthermore, our results showed that TroTNFα increased the vaccine-induced immune responses induced by the DNA vaccine pCTssJ against V. harveyi. Taken together, our results indicate that TroTNFα plays an indispensable role in antibacterial immunity, providing the first evidence that the binding sites (Phe144 and Tyr216) of TroTNFα are crucial in these processes in teleosts and enhances DNA vaccine efficacy as an immune adjuvant.
Collapse
Affiliation(s)
- Panpan Zhang
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Ying Wu
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Xiaojuan Chen
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Guotao Wang
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Zhenjie Cao
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Hehe Du
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Chen Zhang
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Xiangyu Du
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Guisen Chen
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Yongcan Zhou
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Yun Sun
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China; Engineering Research Center of Hainan Province for Blue Carbonand Coastal Wetland Conservation and Restoration, China; International Joint Research Center of Hainan Province for Blue Carbon and Coastal Wetland, China.
| |
Collapse
|
8
|
Huang R, He X, Meng Q, Yan G, Dong K, Tian Y. Melittin: A promising therapeutic agent for rheumatoid arthritis treatment. Toxicon 2025; 258:108335. [PMID: 40147796 DOI: 10.1016/j.toxicon.2025.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/23/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
Rheumatoid Arthritis (RA) is a globally prevalent chronic disease that presents significant challenges in terms of curability. The etiology and onset of RA are not readily identifiable, and as the disease advances, it is characterized by joint pain, swelling, and damage, potentially resulting in paralysis. The adverse effects associated with existing pharmacological treatments are considerable, and prolonged use may pose significant health risks. Melittin, a naturally occurring anti-rheumatic compound, has garnered increasing scholarly interest. Melittin has demonstrated the potential to significantly augment the therapeutic efficacy of certain first-line pharmacological agents while minimizing adverse effects, thereby rendering it appropriate for prolonged use. Melittin's mechanisms of action in treating RA encompass anti-inflammatory effects, immunomodulatory effects, analgesic effects, reduction of cardiovascular disease risk, and organ-protective effects, targeting multiple aspects of RA to alleviate symptoms. Clarifying the biological functions of melittin and its mechanisms in treating RA can provide valuable insights for the application of melittin in the intervention of RA disease progression. However, melittin can cause allergic reactions, hemolysis, and cytotoxicity in the body, which limit its application. Research has shown that strategies including melittin-based nanomodification, immunoconjugation, and structural regulation can improve the specificity of melittin, decrease cytotoxicity, and mitigate the lytic effects on non-target cells of bee venom. These findings suggest that melittin holds promise for clinical applications. This article provides a comprehensive overview of the disease progression associated with RA, examines the biological properties of Mmelittin, and discusses therapeutic strategies for utilizing melittin in the treatment of rheumatoid arthritis. The objective is to mitigate the toxic side effects of melittin while enhancing its targeted anti-inflammatory effects, thereby investigating its potential clinical value in the prevention of rheumatoid arthritis.
Collapse
Affiliation(s)
- Rong Huang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiying He
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650032, China
| | - Qingxin Meng
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guangyu Yan
- Department of Rheumatology, Zhenxiong County Hospital of Traditional Medicine, Zhaotong, 657299, China
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Yakai Tian
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
9
|
Tamari M, Ver Heul AM. Neuroimmune mechanisms of type 2 inflammation in the skin and lung. Allergol Int 2025; 74:177-186. [PMID: 40064568 DOI: 10.1016/j.alit.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 04/01/2025] Open
Abstract
Type 2 inflammation has a major role in barrier tissues such as the skin and airways and underlies common conditions including atopic dermatitis (AD) and asthma. Cytokines including interleukin 4 (IL-4), IL-5, and IL-13 are key immune signatures of type 2 inflammation and are the targets of multiple specific therapeutics for allergic diseases. Despite shared core immune mechanisms, the distinct structures and functions of the skin and airways lead to unique therapeutic responses. It is increasingly recognized that the nervous system has a major role in sensing and directing inflammatory processes. Indeed, crosstalk between type 2 immune activation and somatosensory functions mediates tissue-specific signatures such as itching in the skin. However, neuroimmune interactions are shaped by distinct neuronal and immune landscapes, and differ between the skin and airways. In the skin, dorsal root ganglia-derived neurons mediate pruritus via type 2 cytokines and neurogenic inflammation by mast cell or basophil activation. Conversely, vagal ganglia-derived neurons regulate airway immune responses by releasing neuropeptides/neurotransmitters such as calcitonin gene-related peptides, neuromedin U, acetylcholine, and noradrenaline. Sensory neuron-derived vasoactive intestinal peptide forms a feedback loop with IL-5, amplifying eosinophilic inflammation in the airways, a mechanism that is absent in the skin. These differences influence the efficacy of cytokine-targeted therapies. For instance, IL-4/IL-13-targeted therapies like dupilumab demonstrate efficacy in AD and allergic airway diseases, whereas IL-5-targeted therapies are effective in eosinophilic asthma but not AD. Understanding these neuroimmune interactions underscores the need for tailored therapeutic approaches to address allergic diseases where barrier tissues are involved.
Collapse
Affiliation(s)
- Masato Tamari
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Aaron M Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, USA.
| |
Collapse
|
10
|
Chambers JP, Daum LT, Arulanandam BP, Valdes JJ. Polyunsaturated Fatty Acid Imbalance-A Contributor to SARS CoV-2 Disease Severity. J Nutr Metab 2025; 2025:7075883. [PMID: 40166706 PMCID: PMC11957867 DOI: 10.1155/jnme/7075883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/18/2025] [Indexed: 04/02/2025] Open
Abstract
Overview: SARS CoV-2 infection is accompanied by the development of acute inflammation, resolution of which determines the course of infection and its outcome. If not resolved (brought back to preinjury status), the inflamed state progresses to a severe clinical presentation characterized by uncontrolled cytokine release, systemic inflammation, and in some death. In severe CoV-2 disease, the required balance between protective inflammation and its resolution appears missing, suggesting that the ω-3-derived specialized proresolving mediators (SPMs) needed for resolution are either not present or present at ineffective levels compared to competing ω-6 polyunsaturated fatty acid (PUFA) metabolic derivatives. Aim: To determine whether ω-6 PUFA linoleic acid (LA) metabolites increased in those infected with severe disease compared to uninfected controls. Findings: Increased levels of ω-6 LA metabolites, e.g., arachidonic acid (AA), epoxyeicosatrienoic (EET) acid derivatives of AA (8,9-, 11,12-, and 14,15-EETs), AA-derived hydroxyeicosatetraenoic (HETE) acid, dihydroxylated diols (leukotoxin and isoleukotoxin), and prostaglandin E2 with decreased levels of ω-3-derived inflammation resolving SPMs. Therapeutic treatment of SARS CoV-2 patients with ω-3 PUFA significantly increased 18-HEPE (SPM precursor) and EPA-derived diols (11,12- and 14,15-diHETE), while toxic 9,10- and 12,13-diHOMEs (leukotoxin and iosleukotoxin, respectively) decreased. Conclusion: Unbalanced dietary intake of ω-6/ω-3 PUFAs contributed to SARS CoV-2 disease severity by decreasing ω-3-dependent SPM resolution of inflammation and increasing membrane-associated ferroptotic AA peroxidation.
Collapse
Affiliation(s)
- James P. Chambers
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Luke T. Daum
- Lujo BioScience Laboratory, San Antonio, Texas 78209, USA
| | - Bernard P. Arulanandam
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
11
|
Xu K, Wu K, Chen L, Zhao Y, Li H, Lin N, Ye Z, Xu J, Huang D, Huang X. Selective promotion of sensory innervation-mediated immunoregulation for tissue repair. SCIENCE ADVANCES 2025; 11:eads9581. [PMID: 40117376 PMCID: PMC11927663 DOI: 10.1126/sciadv.ads9581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Sensory innervation triggers the regenerative response after injury. However, dysfunction and impairment of sensory nerves, accompanied by excessive inflammation impede tissue regeneration. Consequently, specific induction of sensory innervation to mediate immunoregulation becomes a promising therapeutic approach. Herein, we developed a cell/drug-free strategy to selectively boost endogenous sensory innervation to harness immune responses for promoting tissue rehabilitation. Specifically, a dual-functional phage was constructed with a sensory nerve-homing peptide and a β-subunit of nerve growth factor (β-NGF)-binding peptide. These double-displayed phages captured endogenic β-NGF and localized to sensory nerves to promote sensory innervation. Furthermore, regarding bone regeneration, phage-loaded hydrogels achieved rapid sensory nerve ingrowth in bone defect areas. Mechanistically, sensory neurotization facilitated M2 polarization of macrophages through the Sema3A/XIAP/PAX6 pathway, thus decreasing the M1/M2 ratio to induce the dissipation of local inflammation. Collectively, these findings highlight the essential role of sensory innervation in manipulating inflammation and provide a conceptual framework based on neuroimmune interactions for promoting tissue regeneration.
Collapse
Affiliation(s)
- Kaicheng Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Kaile Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yubin Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Donghua Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Wang Z, Li D, Wang Y, Yuan P, Zhang W, Zhang Y, He F, Yang J, Bi H, Duan H. Hyaluronic acid methacryloyl hydrogel with sustained IL-10 release promotes macrophage M2 polarization and motor function after spinal cord injury. J Biomater Appl 2025:8853282251329302. [PMID: 40111115 DOI: 10.1177/08853282251329302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
(1)Background: Inflammation plays a key role in spinal cord injury (SCI), where excessive inflammatory responses exacerbate neural damage and hinder regeneration. Modulating macrophage polarization, particularly through the sustained release of IL-10 to promote the anti-inflammatory M2 phenotype, represents a promising strategy to mitigate inflammation. In this study we developed a Hyaluronic Acid Methacryloyl (HAMA) hydrogel capable of sustained IL-10 release to regulate macrophage polarization and explore its therapeutic potential. (2)Methods: A photo-curable HAMA hydrogel was synthesized via methacrylation and designed for the sustained release of IL-10. The structural and functional properties were characterized using NMR and FT-IR. In vitro assays, including immunofluorescence, flow cytometry, and Western blotting, were performed to evaluate IL-10's effect on macrophage polarization. The anti-inflammatory and reparative effects of the hydrogel were further validated in a rat SCI. (3)Results: The HAMA hydrogel with sustained IL-10 release demonstrated excellent biocompatibility. It significantly promoted macrophage polarization to the anti-inflammatory M2 phenotype by increasing the expression of CD206. In vivo studies demonstrated that the group treated by HAMA with IL-10 exhibited recovery of sensory and motor functions, along with improvement of the inflammatory microenvironment at the site of injury. (4)Conclusion: The HAMA hydrogel with sustained IL-10 release effectively alleviates inflammation, enhances motor function after SCI, and serves as a promising immunomodulatory platform. This novel approach presents considerable potential for improving neural regeneration.
Collapse
Affiliation(s)
- Zhihua Wang
- Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Denghui Li
- Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanghao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ping Yuan
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wan Zhang
- Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yihe Zhang
- Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fei He
- Department of Orthopedics, Guandu District People's Hospital, Kunming, China
| | - Jianyi Yang
- Department of Orthopedics, Guandu District People's Hospital, Kunming, China
| | - Hangchuan Bi
- Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Duan
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Azumi J, Takeda T, Shibata S, Shimada Y, Aso H, Nakamura T. The Organogermanium Compound 3-(trihydroxygermyl)propanoic Acid Exerts Anti-Inflammatory Effects via Adenosine-NR4A2 Signaling. Int J Mol Sci 2025; 26:2449. [PMID: 40141094 PMCID: PMC11941763 DOI: 10.3390/ijms26062449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
We previously reported that 3-(trihydroxygermyl)propanoic acid (THGP) suppresses inflammasome activation in THP-1 cells following stimulation with lipopolysaccharide (LPS) and ATP (signals 1 and 2) by forming a complex with ATP, thereby inhibiting IL-1β secretion. Our findings also suggested that THGP inhibits inflammasome activation through mechanisms independent of ATP complex formation. This study investigated the anti-inflammatory effects of THGP on signal 1 (ATP-independent) of inflammasome activation. THGP suppressed NF-κB nuclear translocation in LPS-stimulated THP-1 cells, which reduced the mRNA expression of the proinflammatory cytokines TNF-α and IL-6, as well as IL-1β secretion. This mechanism was mediated by the formation of a THGP-adenosine complex, which inhibited adenosine degradation and subsequently activated adenosine-NR4A2 signaling. Thus, THGP exerts anti-inflammatory effects by forming a complex with adenosine, leading to adenosine-NR4A2 signaling pathway activation. This mechanism is distinct from the ATP-dependent pathway by which THGP was previously reported to function. By targeting both ATP-dependent and ATP-independent inflammasome activation pathways, THGP has potential as a broad-spectrum therapeutic agent for various inflammatory diseases.
Collapse
Affiliation(s)
- Junya Azumi
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Hokkaido, Japan; (T.T.); (S.S.); (Y.S.); (H.A.); (T.N.)
| | - Tomoya Takeda
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Hokkaido, Japan; (T.T.); (S.S.); (Y.S.); (H.A.); (T.N.)
| | - Shunya Shibata
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Hokkaido, Japan; (T.T.); (S.S.); (Y.S.); (H.A.); (T.N.)
| | - Yasuhiro Shimada
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Hokkaido, Japan; (T.T.); (S.S.); (Y.S.); (H.A.); (T.N.)
| | - Hisashi Aso
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Hokkaido, Japan; (T.T.); (S.S.); (Y.S.); (H.A.); (T.N.)
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza, Aoba, Sendai 980-8578, Miyagi, Japan
| | - Takashi Nakamura
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Hokkaido, Japan; (T.T.); (S.S.); (Y.S.); (H.A.); (T.N.)
| |
Collapse
|
14
|
Liu H, Wang J, Zhang W, Zhao X, Jin H. AjMALT1 promotes Vibrio splendidus-induced inflammation through the NF-κB pathway in Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105346. [PMID: 39984065 DOI: 10.1016/j.dci.2025.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), an intracellular signaling molecule, is widely expressed during inflammatory responses. To investigate the immune function of AjMALT1 in Apostichopus japonicus, the full length of AjMALT1 gene was cloned using transcriptome data and RACE technology. The results showed that AjMALT1 was distributed in all tissues, with higher expression found in coelomocytes and intestine. The expression of AjMALT1 was significantly upregulated in Vibrio splendidus-challenged sea cucumbers, as well as in coelomocytes exposed to inactive V. splendidus, and was positively correlated with the expression of the pro-inflammatory cytokine AjIL17 and the inflammasome component AjNLRP3. Further investigation using specific siRNA to silence AjMALT1 for 48 h revealed that the expression of AjIL17 and AjNLRP3 was reduced under V. splendidus stimulation. Additionally, histological observations showed a decrease in intestinal inflammation. Interference with AjMALT1 also led to downregulation of AjTRAF6 and AjRel expression, as well as inhibited nuclear translocation of AjRel. These findings suggest AjMALT1 exacerbates intestinal and coelomic inflammation by activating the AjTRAF6-dependent NF-κB pathway in A. japonicus.
Collapse
Affiliation(s)
- Haiping Liu
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Jiping Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Weiwei Zhang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China
| | - Xuelin Zhao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315800, PR China.
| | - Heng Jin
- School of Mechatronics and Energy Engineering, NingboTech University, Ningbo, 315000, PR China
| |
Collapse
|
15
|
Kim SY, Kim JM, Chung KS, Jang DS, Lee JY, Kim C, Lee JY, Lee JK, Lee KT. In vitro and in vivo anti-inflammatory effects of 5-hydroxyconiferaldehyde via NF-κB, MAPK/AP-1, and Nrf2 modulation. Chem Biol Interact 2025; 409:111427. [PMID: 39956256 DOI: 10.1016/j.cbi.2025.111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
We previously reported that 5-hydroxyconiferaldehyde (5-HCA), a phenolic compound isolated from the Campanula takesimana, potently inhibits prostaglandin E2 (PGE2) production triggered by lipopolysaccharide (LPS) in macrophages. As the precise molecular mechanisms underlying the anti-inflammatory effects of 5-HCA remain unclear, we further examined these mechanisms in LPS-stimulated RAW 264.7 macrophages and carrageenan-induced paw edema rats. The results revealed that 5-HCA considerably impeded nitric oxide (NO) and PGE2 production as well as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β expression by suppressing the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) signaling pathways in LPS-induced RAW 264.7 macrophages. Furthermore, 5-HCA suppressed the generation of reactive oxygen species (ROS) triggered by LPS by enhancing heme oxygenase-1 (HO-1) expression via nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). In rats with carrageenan-induced paw edema, administration of 5-HCA (10 or 30 mg/kg, i.p.) resulted in a significant reduction in the inflammatory response (paw volume and thickness) and inflammatory hyperalgesia by suppressing pro-inflammatory mediators through NF-κB, MAPK/AP-1, and Nrf2 regulation. These findings highlight the anti-inflammatory properties of 5-HCA in the acute inflammation model and suggest its potential for further investigation of broader inflammatory disorders.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee -University, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Min Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee -University, Seoul, 02447, Republic of Korea; Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee -University, Seoul, 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ja-Yeon Lee
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Choi Kim
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Yeol Lee
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jong Kil Lee
- Department of Chemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee -University, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
16
|
Katoh D, Senga Y, Mizutani K, Maruyama K, Yamakawa D, Yamamuro T, Hiroe M, Yamanaka K, Sudo A, Katayama N, Yoshida T, Imanaka-Yoshida K. Negative regulation of lymphangiogenesis by Tenascin-C delays the resolution of inflammation. iScience 2025; 28:111756. [PMID: 39925433 PMCID: PMC11803235 DOI: 10.1016/j.isci.2025.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 02/11/2025] Open
Abstract
Lymphatic vessels are required for the clearance of excess fluid and immune cells from inflamed tissue, making the regulation of lymphangiogenesis an important area of research. Although the positive regulatory mechanisms of lymphangiogenesis are well known, the negative regulatory mechanisms observed during inflammation remain unclear. Here, we identify tenascin-C (TNC) as a spatiotemporal negative regulator of lymphangiogenesis during inflammation. We found an inverse correlation between lymphangiogenesis and TNC expression in a mouse lymphedema model. Genetic deletion of Tnc promotes lymphangiogenesis and improves lymphatic drainage function, thereby accelerating the resolution of inflammation. Conversely, the exogenous addition of TNC suppresses lymphangiogenesis and prolongs inflammation. TNC inhibits the proliferation and promotes apoptosis of lymphatic endothelial cells. Mechanistically, TNC facilitates integrin αvβ1 heterodimer formation, leading to the activation of non-canonical (TAK1/p38MAPK/ATF-2) TGFβ signaling to suppress lymphangiogenesis. Our study highlights the importance of negative regulation of lymphangiogenesis in modulating immune responses.
Collapse
Affiliation(s)
- Daisuke Katoh
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yoshiyuki Senga
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kento Mizutani
- Department of Dermatology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daishi Yamakawa
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Tadashi Yamamuro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Michiaki Hiroe
- Department of Cardiology, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Keiichi Yamanaka
- Department of Dermatology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
17
|
Zhang J, Tian Y, Yan H, Wu X, Deng C, Zhou Y, Liu J, Li X, Tian J, Bian Z, Yang Y, Chen Y. Protective effect and mechanism of plant-derived Lactobacillus G11 on septic myocardial injury. Int Immunopharmacol 2025; 148:114021. [PMID: 39827668 DOI: 10.1016/j.intimp.2025.114021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Sepsis is currently one of the leading causes of morbidity and mortality worldwide. Myocardial injury is the most common and severe complication of sepsis. Lactic acid bacteria are a type of gram-positive bacteria found in fermented foods. Our research group previously isolated two new strains G8 and G11 from Jiangshui. METHODS The probiotic effects of G8 and G11 strains were measured using acid and bile salt resistance tests, bacteriostasis tests, and extracellular polysaccharide (EPS) production tests. In a mouse SIMI model induced by cecal ligation and puncture (CLP), their protective effects were explored using survival rate, body weight, sepsis score, and rectal temperature. Furthermore, RNA-seq and some molecular biology methods were used to investigate G11's protective mechanism against SIMI. RESULTS Initially, strain G8 and G11 from LAB were successfully isolated and found to possess multiple probiotic functions, such as cholesterol degradation, bacteria inhibition, and production of extracellular polysaccharides (EPS). Treatment with G11 increased the survival rate in CLP-injured mice. Subsequently, G11 treatment improved the rectal temperature, sepsis score, blood routine parameters, and blood biochemical parameters in CLP-injured mice. Additionally, G11 was observed to significantly alleviate cardiac dysfunction, oxidative stress, apoptosis, mitochondrial dysfunction, and inflammation in CLP-injured mice. Finally, this study also confirmed that the AMPK/ACC and SIRT1/PGC-1α signaling pathways may play a crucial role in the protective effects of G11. CONCLUSION These findings support G11 as a potential cardioprotective probiotic for alleviating SIMI in clinical practice and expanding the use of G11 in sepsis treatment.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061 China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069 China
| | - Yifan Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069 China
| | - Huanle Yan
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069 China
| | - Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069 China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061 China
| | - Yazhe Zhou
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069 China
| | - Jie Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069 China
| | - Xiaoru Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069 China
| | - Jiayin Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069 China
| | - Ziqi Bian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069 China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069 China.
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061 China.
| |
Collapse
|
18
|
Liu Z, Li F, Li N, Chen Y, Chen Z. MicroRNAs as regulators of cardiac dysfunction in sepsis: pathogenesis and diagnostic potential. Front Cardiovasc Med 2025; 12:1517323. [PMID: 40041174 PMCID: PMC11876399 DOI: 10.3389/fcvm.2025.1517323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Sepsis, a life-threatening condition arising from an uncontrolled immune response to infection, can lead to organ dysfunction, with severe inflammation potentially causing multiple organ failures. Sepsis-induced cardiac dysfunction (SIMD) is a common and severe complication of sepsis, significantly increasing patient mortality. Understanding the pathogenesis of SIMD is crucial for improving treatment, and microRNAs (miRNAs) have emerged as important regulators in this process. Methods A comprehensive literature search was conducted in PubMed, Science Direct, and Embase databases up to September 2024. The search terms included ["miRNA" or "microRNA"] and ["Cardiac" or "Heart"] and ["Sepsis" or "Septic"], with the language limited to English. After initial filtering by the database search engine, Excel software was used to further screen references. Duplicate articles, those without abstracts or full texts, and review/meta-analyses or non-English articles were excluded. Finally, 106 relevant research articles were included for data extraction and analysis. Results The pathogenesis of SIMD is complex and involves mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis and pyroptosis, dysregulation of myocardial calcium homeostasis, myocardial inhibitory factors, autonomic nervous regulation disorders, hemodynamic changes, and myocardial structural alterations. miRNAs play diverse roles in SIMD. They are involved in regulating the above-mentioned pathological processes. Discussion Although significant progress has been made in understanding the role of miRNAs in SIMD, there are still challenges. Some studies on the pathogenesis of SIMD have limitations such as small sample sizes and failure to account for confounding factors. Research on miRNAs also faces issues like inconsistent measurement techniques and unclear miRNA-target gene relationships. Moreover, the translation of miRNA-based research into clinical applications is hindered by problems related to miRNA stability, delivery mechanisms, off-target effects, and long-term safety. In conclusion, miRNAs play a significant role in the pathogenesis of SIMD and have potential as diagnostic biomarkers. Further research is needed to overcome existing challenges and fully exploit the potential of miRNAs in the diagnosis and treatment of SIMD.
Collapse
Affiliation(s)
- Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiyang Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong Chen
- Department of Critical Care Medicine, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
19
|
Shu A, Tian X, Yue J, Jiang Y, Liu Y. Unveiling the role of lncRNA ERDR1 in immune cell regulation. Heliyon 2025; 11:e42085. [PMID: 39991241 PMCID: PMC11847233 DOI: 10.1016/j.heliyon.2025.e42085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA molecules that exceed 200 nucleotides in length and lack the capacity to encode proteins. In recent years, there has been a surge of interest in lncRNA research, leading to the discovery of their diverse structures and functions. This review focused on elucidating the regulatory roles of lncRNA erythroid differentiation regulatory 1 (Erdr1) within immune cells and its involvement in related disorders. By synthesizing findings from recent studies sourced from PubMed, this paper examined the biological functions and underlying mechanisms by which lncRNA Erdr1 influences immune cells and contributes to various diseases. Emerging research highlights that lncRNA Erdr1 exerts significant effects on the functionality of immune cells, particularly T lymphocytes (T cells), natural killer (NK) cells, and macrophages. Furthermore, Erdr1 has been implicated in the mitigation of several diseases, including acne, wound healing, osteoarthritis, melanoma, gastric cancer, obesity, and autism. Given its complex biological functions and mechanisms, Erdr1 presents itself as a promising biomarker and a potential therapeutic target for a range of immune cell-related disorders.
Collapse
Affiliation(s)
- Aihua Shu
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China
- Yichang Central People's Hospital, Yichang, Hubei Province, 443000, China
- The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Xu Tian
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China
- Yichang Central People's Hospital, Yichang, Hubei Province, 443000, China
- The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Jie Yue
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China
- Yichang Central People's Hospital, Yichang, Hubei Province, 443000, China
- The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Yuxia Jiang
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China
- Yichang Central People's Hospital, Yichang, Hubei Province, 443000, China
- The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Yifei Liu
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China
- Yichang Central People's Hospital, Yichang, Hubei Province, 443000, China
- The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| |
Collapse
|
20
|
Bascuñán KA, Araya M, Rodríguez JM, Roncoroni L, Elli L, Alvarez JDPL, Valenzuela R. Interplay of n-3 Polyunsaturated Fatty Acids, Intestinal Inflammation, and Gut Microbiota in Celiac Disease Pathogenesis. Nutrients 2025; 17:621. [PMID: 40004950 PMCID: PMC11858531 DOI: 10.3390/nu17040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Celiac disease (CD) is a chronic autoimmune disorder driven by both genetic and environmental factors, with the HLA DQ2/DQ8 genotypes playing a central role in its development. Despite the genetic predisposition, only a small percentage of individuals carrying these genotypes develop the disease. Gluten, a protein found in wheat, rye, and barley, is the primary environmental trigger, but other factors, such as the intestinal microbiota, may also contribute to disease progression. While the gluten-free diet (GFD) remains the cornerstone of treatment, many CD patients experience persistent inflammation and gut dysbiosis, leading to ongoing symptoms and complications. This chronic inflammation, which impairs nutrient absorption, increases the risk of malnutrition, anemia, and other autoimmune disorders. Recent studies have identified an altered gut microbiota in CD patients, both on and off the GFD, highlighting the potential role of the microbiota in disease pathogenesis. An emerging area of interest is the supplementation of n-3 polyunsaturated fatty acids (PUFAs), known for their anti-inflammatory properties, as a potential therapeutic strategy. n-3 PUFAs, found in fish oil and certain plant oils, modulate the immune cell function and cytokine production, making them a promising intervention for controlling chronic inflammation in CD. This review explores the current understanding of n-3 PUFAs' effects on the gut microbiota's composition and inflammation in CD, with the goal of identifying new avenues for complementary treatments to improve disease management.
Collapse
Affiliation(s)
- Karla A. Bascuñán
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (K.A.B.); (J.D.P.L.A.)
| | - Magdalena Araya
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile (J.M.R.)
| | - Juan Manuel Rodríguez
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile (J.M.R.)
| | - Leda Roncoroni
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.R.); (L.E.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Luca Elli
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.R.); (L.E.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | | | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (K.A.B.); (J.D.P.L.A.)
| |
Collapse
|
21
|
Fiocchi C. An Attack on All Fronts-Extinguishing the Fire of IBD with an Integrative Approach. Dig Dis Sci 2025; 70:451-453. [PMID: 39446199 DOI: 10.1007/s10620-024-08642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 10/25/2024]
|
22
|
Chen Z, Zhao X, Lin L, Cui Y, Cao D, Chen XL, Wang X. CaGA nanozymes with multienzyme activity realize multifunctional repair of acute wounds by alleviating oxidative stress and inhibiting cell apoptosis. Biomater Sci 2025; 13:422-433. [PMID: 39412895 DOI: 10.1039/d4bm01155d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Acute wounds result from damage to the skin barrier, exposing underlying tissues and increasing susceptibility to bacterial and other pathogen infections. Improper wound care increases the risk of exposure and infection, often leading to chronic nonhealing wounds, which cause significant patient suffering. Early wound repair can effectively prevent the development of chronic nonhealing wounds. In this study, Ca-Gallic Acid (CaGA) nanozymes with multienzyme catalytic activity were constructed for treating acute wounds by coordinating Ca ions with gallic acid. CaGA nanozymes exhibit high superoxide dismutase/catalase (SOD/CAT) catalytic activity and good antioxidant performance in vitro. In vitro experiments demonstrated that CaGA nanozymes can effectively promote cell migration, efficiently scavenge ROS, maintain mitochondrial homeostasis, reduce inflammation, and decrease cell apoptosis. In vivo, CaGA nanozymes promoted granulation tissue formation, accelerated collagen fiber deposition, and reconstructed skin appendages, thereby accelerating acute wound healing. CaGA nanozymes have potential clinical application value in wound healing treatment.
Collapse
Affiliation(s)
- Zenghong Chen
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yuyu Cui
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Dongsheng Cao
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Xianwen Wang
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
23
|
Castillo-Galán S, Parra V, Cuenca J. Unraveling the pathogenesis of viral-induced pulmonary arterial hypertension: Possible new therapeutic avenues with mesenchymal stromal cells and their derivatives. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167519. [PMID: 39332781 DOI: 10.1016/j.bbadis.2024.167519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe condition characterized by elevated pressure in the pulmonary artery, where metabolic and mitochondrial dysfunction may contribute to its progression. Within the PH spectrum, pulmonary arterial hypertension (PAH) stands out with its primary pulmonary vasculopathy. PAH's prevalence varies from 0.4 to 1.4 per 100,000 individuals and is associated with diverse conditions, including viral infections such as HIV. Notably, recent observations highlight an increased occurrence of PAH among COVID-19 patients, even in the absence of pre-existing cardiopulmonary disorders. While current treatments offer partial relief, there's a pressing need for innovative therapeutic strategies, among which mesenchymal stromal cells (MSCs) and their derivatives hold promise. This review critically evaluates recent investigations into viral-induced PAH, encompassing pathogens like human immunodeficiency virus, herpesvirus, Cytomegalovirus, Hepatitis B and C viruses, SARS-CoV-2, and Human endogenous retrovirus K (HERKV), with a specific emphasis on mitochondrial dysfunction. Furthermore, we explore the underlying rationale driving novel therapeutic modalities, including MSCs, extracellular vesicles, and mitochondrial interventions, within the framework of PAH management.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Valentina Parra
- Laboratory of Differentiation and Cell Metabolism (D&M), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile; Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile.
| |
Collapse
|
24
|
Pandey V, Khanal S, Shahi N, Parajuli R, Adhikari A, Pokharel YR. Anti-inflammatory and Anti-proliferative Role of Essential Oil of Leaves of Cleistocalyx operculatus (Roxb.) Merr. & Perry. Anticancer Agents Med Chem 2025; 25:232-243. [PMID: 39568110 DOI: 10.2174/0118715206304193240715043704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Phytochemicals have long remained an essential component of the traditional medicine system worldwide. Advancement of research in phytochemicals has led to the identification of novel constituents and metabolites from phytochemicals, performing various vital functions ranging from antimicrobial properties to anticarcinogenic roles. Cleistocalyx operculatus is traditionally used by local people to manage inflammation. In this study, we aim to extract and chemically profile the essential oil from the leaves of Cleistocalyx operculatus (Roxb.) Merr. & Perry and study of the anti-inflammatory and anti-proliferative role of essential oil. METHODS The hydro distillation method was used for the extraction of essential oil, and the GC-MS was applied for the chemical profiling. The percentage of cell viability was calculated using a crystal violet assay, colony formation assay was performed using Semiquantitative PCR, Propodium iodite staining was used for cell death assay, and Western blotting was used to determine antibodies and proteins. Schrodinger 2015 software was used for molecular docking. RESULTS Myrcene, a monoterpene, constitutes 56% of the oil and could be attributed to its anti-inflammatory potential. Treatment of LPS-challenged mouse macrophages RAW264.7 cells with essential oil resulted in a decline in the inflammatory markers, such as IL-1β, TNFα, iNOS, COX-2, and NFκB. Further, essential oil inhibited cancer PC-3, A431, A549, and MCF-7 cell lines at concentrations lower than normal PNT2 and HEK-293 cell lines. This decline in proliferative potential can be attributed to a decline in anti-apoptotic proteins, such as procaspase 3 and PARP, an increase in CKIs, such as p21, and a decline in the Akt signaling responsible for survival. CONCLUSION The essential oil of the plant Cleistocalyx operculatus may be a potential lead for anti-inflammatory and anti-proliferative function.
Collapse
MESH Headings
- Oils, Volatile/pharmacology
- Oils, Volatile/chemistry
- Oils, Volatile/isolation & purification
- Plant Leaves/chemistry
- Cell Proliferation/drug effects
- Humans
- Mice
- Animals
- Drug Screening Assays, Antitumor
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Dose-Response Relationship, Drug
- Cell Survival/drug effects
- Syzygium/chemistry
- Structure-Activity Relationship
- Molecular Structure
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/chemistry
- Anti-Inflammatory Agents/isolation & purification
Collapse
Affiliation(s)
- Vivek Pandey
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Sumnath Khanal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Nerina Shahi
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Rupak Parajuli
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Yuba Raj Pokharel
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| |
Collapse
|
25
|
Warias P, Plewa P, Poniewierska-Baran A. Resveratrol, Piceatannol, Curcumin, and Quercetin as Therapeutic Targets in Gastric Cancer-Mechanisms and Clinical Implications for Natural Products. Molecules 2024; 30:3. [PMID: 39795061 PMCID: PMC11721033 DOI: 10.3390/molecules30010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Gastric cancer remains a significant global health challenge, driving the need for innovative therapeutic approaches. Natural polyphenolic compounds such as resveratrol, piceatannol, curcumin, and quercetin currently show promising results in the prevention and treatment of various cancers, due to their diverse biological activities. This review presents the effects of natural compounds on important processes related to cancer, such as apoptosis, proliferation, migration, invasion, angiogenesis, and autophagy. Resveratrol, naturally found in red grapes, has been shown to induce apoptosis and inhibit the proliferation, migration, and invasion of gastric cancer cells. Piceatannol, a metabolite of resveratrol, shares similar anticancer properties, particularly in modulating autophagy. Curcumin, derived from turmeric, is known for its anti-inflammatory and antioxidant properties, and its ability to inhibit tumor growth and metastasis. Quercetin, a flavonoid found in various fruits and vegetables, induces cell cycle arrest and apoptosis while enhancing the efficacy of conventional therapies. Despite their potential, challenges such as low bioavailability limit their clinical application, necessitating further research into novel delivery systems. Collectively, these compounds represent a promising avenue for enhancing gastric cancer treatment and improving patient outcomes through their multifaceted biological effects.
Collapse
Affiliation(s)
- Paulina Warias
- Doctoral School, University of Szczecin, Mickiewicza 18, 70-384 Szczecin, Poland;
| | - Paulina Plewa
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Agata Poniewierska-Baran
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| |
Collapse
|
26
|
Zhao L, Zhang S, Li J, Zhang C, Xiao R, Bai X, Xu H, Zhang F. Unveiling Diversity and Function: Venom-Associated Microbes in Two Spiders, Heteropoda venatoria and Chilobrachys guangxiensis. MICROBIAL ECOLOGY 2024; 87:156. [PMID: 39708146 DOI: 10.1007/s00248-024-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Spiders are natural predators of agricultural pests, primarily due to the potent venom in their venom glands. Spider venom is compositionally complex and holds research value. This study analyzes the diversity of symbiotic bacteria in spider venom glands and venom, as well as the biological activity of culturable symbiotic bacteria. Focusing on the venom glands and venom of Heteropoda venatoria and Chilobrachys guangxiensis, we identified a diverse array of microorganisms. High-throughput sequencing detected 2151 amplicon sequence variants (ASVs), spanning 31 phyla, 75 classes, and 617 genera. A total of 125 strains of cultivable bacteria were isolated. Using the Oxford cup method, crude extracts from 46 of these strains exhibited inhibitory effects against at least one indicator bacterium. MTT (Thiazolyl blue) assays revealed that the crude extracts from 43 strains had inhibitory effects on tumor cell line MGC-803 growth. Additionally, DAPI (4',6-diamidino-2'-phenylindole) staining and flow cytometry were employed to detect cell apoptosis. The anti-inflammatory activity of nine bacterial strains was assessed using a NO assay kit and enzyme-linked immunosorbent assay (ELISA). This study further investigated the biological activity of venom, exploring the relationship between the venom and the functional activity of venom-associated bacteria.
Collapse
Affiliation(s)
- Likun Zhao
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, Hebei, China
| | - Shanfeng Zhang
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding, China
| | - Jingchen Li
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding, China
| | - Chao Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Ruoyi Xiao
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Xinyuan Bai
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
| | - Hongkang Xu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Feng Zhang
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, Hebei, China.
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
27
|
Stamou P, Gianniou DD, Trougakos IP, Mitakou S, Halabalaki M, Kostakis IK, Skaltsounis AL. Anti-Inflammatory Activity of the Major Triterpenic Acids of Chios Mastic Gum and Their Semi-Synthetic Analogues. Biomolecules 2024; 14:1618. [PMID: 39766325 PMCID: PMC11727566 DOI: 10.3390/biom14121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025] Open
Abstract
24Z-Masticadienonic acid (MNA) and 24Z-isomasticadienonic acid (IMNA) are the major triterpenic acids in Chios Mastic Gum (CMG), a resin derived from Pistacia lentiscus var. Chia. Despite their promising pharmacological potential, limited information is available due to the complexity of isolating them in pure form. This study developed a chemo-selective method for isolating MNA and IMNA and investigated their chemical transformation through isomerization of the external double bond and A-ring contraction of the triterpene scaffold. A rapid method for isolating MNA from CMG was first established, followed by a high-yield acid-catalyzed procedure to obtain both 24Z and 24E isomers of IMNA. Additionally, a basic catalyzed isomerization of IMNA led to the formation of two new compounds with A-ring contraction, which could serve as novel scaffolds for the design of new triterpene analogs. The mixture of MNA/IMNA, along with the individual compounds and their semi-synthetic analogs, exhibited significant anti-inflammatory activity. Notably, 24E-isomasticadienonic acid and 24Z-2-hydroxy-3-oxotirucalla-1,8,24-trien-26-oic acid, a previously unreported compound, significantly reduced the mRNA expression levels of Tnf, Il6, and Nfkb1 in RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Panagiota Stamou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (D.D.G.); (I.P.T.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (D.D.G.); (I.P.T.)
| | - Sofia Mitakou
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.M.); (M.H.)
| | - Maria Halabalaki
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.M.); (M.H.)
| | - Ioannis K. Kostakis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.M.); (M.H.)
| |
Collapse
|
28
|
Russo RC, Ryffel B. The Chemokine System as a Key Regulator of Pulmonary Fibrosis: Converging Pathways in Human Idiopathic Pulmonary Fibrosis (IPF) and the Bleomycin-Induced Lung Fibrosis Model in Mice. Cells 2024; 13:2058. [PMID: 39768150 PMCID: PMC11674266 DOI: 10.3390/cells13242058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases. Chemokine receptors trigger the activation, proliferation, and migration of lung-resident cells, including pneumocytes, endothelial cells, alveolar macrophages, and fibroblasts. Around 50 chemokines can potentially interact with 20 receptors, expressed by both leukocytes and non-leukocytes such as tissue parenchyma cells, contributing to processes such as leukocyte mobilization from the bone marrow, recirculation through lymphoid organs, and tissue influx during inflammation or immune response. This narrative review explores the complexity of the chemokine system in the context of IPF and the bleomycin-induced lung fibrosis mouse model. The goal is to identify specific chemokines and receptors as potential therapeutic targets. Recent progress in understanding the role of the chemokine system during IPF, using experimental models and molecular diagnosis, underscores the complex nature of this system in the context of the disease. Despite advances in experimental models and molecular diagnostics, discovering an effective therapy for IPF remains a significant challenge in both medicine and pharmacology. This work delves into microarray results from lung samples of IPF patients and murine samples at different stages of bleomycin-induced pulmonary fibrosis. By discussing common pathways identified in both IPF and the experimental model, we aim to shed light on potential targets for therapeutic intervention. Dysregulation caused by abnormal chemokine levels observed in IPF lungs may activate multiple targets, suggesting that chemokine signaling plays a central role in maintaining or perpetuating lung fibrogenesis. The highlighted chemokine axes (CCL8-CCR2, CCL19/CCL21-CCR7, CXCL9-CXCR3, CCL3/CCL4/CCL5-CCR5, and CCL20-CCR6) present promising opportunities for advancing IPF treatment research and uncovering new pharmacological targets within the chemokine system.
Collapse
Affiliation(s)
- Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France
| |
Collapse
|
29
|
Sun L, Wei S, Wang C, Zhang Y, Zan X, Li L, Zhang C. Procyanidin capsules provide a new option for long-term ROS scavenging in chronic inflammatory diseases. Mater Today Bio 2024; 29:101310. [PMID: 39534678 PMCID: PMC11554635 DOI: 10.1016/j.mtbio.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic inflammatory diseases such as diabetic wounds and osteoarthritis are significant threats to human health. Failure to scavenge longstanding excessive reactive oxygen species (ROS) is an important cause of chronic inflammatory diseases, yet existing treatments that provide long-lasting therapeutic effects are limited. Here, procyanidin capsules were synthesized in a simple one-step way using calcium carbonate as a template. The biosafety of procyanidin capsules in vitro and in vivo was monitored by cytotoxicity and pathological sections. The therapeutic effect of procyanidin capsules in diabetic wounds and osteoarthritis was accessed by pathological evaluation combined with the quantification of inflammatory markers. The data showed that procyanidin capsules could long-term scavenge excessive ROS and effectively promote articular cartilage repair in osteoarthritis, accelerating diabetic wound healing. Lastly, transcriptome analysis suggested that procyanidin capsules commonly regulated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling in diabetic wounds and osteoarthritis. This study provides a straightforward protocol for creating procyanidin capsules, while presenting a promising new therapeutic option for long-term scavenging ROS in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Linxiao Sun
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shaoyin Wei
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Chenglong Wang
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yipiao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Lianxin Li
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chunwu Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
30
|
He T, Qian W. Immunologic derangement caused by intestinal dysbiosis and stress is the intrinsic basis of reactive arthritis. Z Rheumatol 2024; 83:305-313. [PMID: 38403666 PMCID: PMC11655581 DOI: 10.1007/s00393-024-01480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Reactive arthritis (ReA) is defined as arthritis resulting from infections in other body parts, such as the gastrointestinal and urogenital tracts. The primary clinical manifestations involve acute-onset and self-limiting asymmetric large joint inflammation in the lower limbs. Although bacterial or chlamydia infections have long been recognized as playing a pivotal role in its pathogenesis, recent studies suggest that antibiotic treatment may perpetuate rather than eradicate chlamydia within the host, indicating an involvement of other mechanisms in Reactive arthritis. Reactive arthritis is currently believed to be associated with infection, genetic marker (HLA-B27), and immunologic derangement. As an autoimmune disease, increasing attention has been given to understanding the role of the immune system in Reactive arthritis. This review focuses on elucidating how the immune system mediates reactive arthritis and explores the roles of intestinal dysbiosis-induced immune disorders and stress-related factors in autoimmune diseases, providing novel insights into understanding reactive arthritis.
Collapse
Affiliation(s)
- Tao He
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiqing Qian
- Nanjing City Hospital of Chinese Medicine, 157, Daming Road, Nanjing, Qinhuai District, China.
| |
Collapse
|
31
|
Wu Y, Shen J. Unraveling the intricacies of neutrophil extracellular traps in inflammatory bowel disease: Pathways, biomarkers, and promising therapies. Cytokine Growth Factor Rev 2024; 80:156-167. [PMID: 39438227 DOI: 10.1016/j.cytogfr.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The development of inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, involves various factors and is characterized by persistent inflammation of the mucosal lining. However, the role of neutrophils in this process remains controversial. Neutrophil extracellular traps (NETs), which consist of chromatin, antimicrobial proteins, and oxidative enzymes, are released by neutrophils to trap pathogens. They are also involved in various immune-mediated and vascular diseases. NETs act as a vital defense mechanisms at the gut-mucosal interface and are frequently exposed to bacterial, viral, and fungal threats. However, they can also contribute to inflammation and worsen imbalances in the gut bacteria. Recent studies have suggested that NETs have a significant impact on IBD development. Previous studies have shown increased levels of NETs in tissue and blood samples from patients with IBD, as well as in experimental colitis mouse models. Therefore, this review discusses how NETs are formed and their role in the pathophysiology of IBD. It discusses how NETs may lead to tissue damage and contribute to IBD-associated complications. Moreover, non-invasive biomarkers are needed to replace invasive procedures such as endoscopy to better evaluate the disease status. Given the crucial role of NETs in IBD progression, this review focuses on potential NET biomarkers that can help predict the evolution of IBD. Furthermore, this review identifies potential therapeutic targets for regulating NET production, which could expand the range of available treatment options for IBD.
Collapse
Affiliation(s)
- Yilin Wu
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China.
| |
Collapse
|
32
|
Rezaei M, Moghoofei M. The role of viral infection in implantation failure: direct and indirect effects. Reprod Biol Endocrinol 2024; 22:142. [PMID: 39529140 PMCID: PMC11552308 DOI: 10.1186/s12958-024-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Implantation is the key initial complex stage of pregnancy. Several factors are involved in implantation, but acute and controlled inflammation has been shown to play as a key role. On the other hand, the role of viral infections in directly infecting blastocyst and trophoblast and inducing chronic and uncontrolled inflammation and disrupting microRNAs expression can make this review strongly attractive and practical. We aim to provide an overview of viral infections as the potential etiology of unsuccessful implantation pathophysiology through alteration of the cellular and molecular endometrial microenvironment. Based on our search, this is the first review to discuss the role of inflammation associated with viral infection in implantation failure.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Obstetrics and Gynecology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Moghoofei
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
33
|
Zhang X, Guan M, Yi W, Li X, Ding X, He Y, Han W, Wang Z, Tang Q, Liao B, Shen J, Han X, Bai D. Smart Response Biomaterials for Pain Management. Adv Healthc Mater 2024; 13:e2401555. [PMID: 39039990 DOI: 10.1002/adhm.202401555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Indexed: 07/24/2024]
Abstract
The intricate nature of pain classification and mechanism constantly affects the recovery of diseases and the well-being of patients. Key medical challenges persist in devising effective pain management strategies. Therefore, a comprehensive review of relevant methods and research advancements in pain management is conducted. This overview covers the main categorization of pain and its developmental mechanism, followed by a review of pertinent research and techniques for managing pain. These techniques include commonly prescribed medications, invasive procedures, and noninvasive physical therapy methods used in rehabilitation medicine. Additionally, for the first time, a systematic summary of the utilization of responsive biomaterials in pain management is provided, encompassing their response to physical stimuli such as ultrasound, magnetic fields, electric fields, light, and temperature, as well as changes in the physiological environment like reactive oxygen species (ROS) and pH. Even though the application of responsive biomaterials in pain management remains limited and at a fundamental level, recent years have seen the examination and debate of relevant research findings. These profound discussions aim to provide trends and directions for future research in pain management.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Mengtong Guan
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xinhe Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xiaoqian Ding
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yi He
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Wang Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zijie Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Qiuyu Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Liao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jieliang Shen
- Department of Rehabilitation Medicine, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, 402760, P. R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
34
|
Haridevamuthu B, Nayak SPRR, Madesh S, Dhivya LS, Chagaleti BK, Pasupuleti M, Rajakrishnan R, Alfarhan A, Muthu Kumaradoss K, Arockiaraj J. A novel brominated chalcone derivative as a promising multi-target inhibitor against multidrug-resistant Listeria monocytogenes. Microb Pathog 2024; 196:106968. [PMID: 39307201 DOI: 10.1016/j.micpath.2024.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Foodborne pathogens continue to challenge public health due to their ability to cause severe illness and their increasing resistance to current antimicrobial treatments. Listeria monocytogenes is a resilient foodborne pathogen that poses significant risks to vulnerable populations, leading to severe infections and high hospitalization rates. The emergence of antimicrobial-resistant (AMR) strains of L. monocytogenes underscores the need for novel therapeutic strategies. In this study, we investigated the antimicrobial efficacy of the (2E)-3-(3,5-dibromo-2-hydroxylphenyl)-1-(5-methylfuran-2-yl) prop-2-en-1-one (DK06) against multidrug-resistant L. monocytogenes. DK06 exhibited a significant dose-dependent inhibition of L. monocytogenes growth, achieving a maximum inhibition of 92.9 % at 320 μM. Molecular docking and dynamics simulations revealed high binding affinities for key virulence proteins PlcB and ArgA, with stable protein-ligand interactions. DK06 also disrupted biofilm formation at sub-MIC levels, reducing extracellular polymeric substances (EPS) and biofilm mass, as observed by scanning electron microscopy (SEM) analysis. Furthermore, DK06 downregulated the expression of virulence genes (plcB, argA, and hly) and decreased hemolytic activity. In vivo zebrafish studies confirmed the safety of DK06 up to 80 μM, demonstrating its efficacy in reducing mortality and oxidative stress associated with L. monocytogenes infection. DK06 also attenuated inflammation by downregulating key inflammatory markers (tnfa, il1b, il6, and nfkb). These findings indicate that DK06 is a promising multi-target inhibitor with potential application in treating infections and combating antimicrobial resistance.
Collapse
Affiliation(s)
- B Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Chennai, Tamil Nadu, India.
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - L S Dhivya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Bharath Kumar Chagaleti
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Division of Molecular Microbiology & Immunology, CSIR - Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - R Rajakrishnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
35
|
Pohl S, Akamp T, Smeda M, Uderhardt S, Besold D, Krastl G, Galler KM, Buchalla W, Widbiller M. Understanding dental pulp inflammation: from signaling to structure. Front Immunol 2024; 15:1474466. [PMID: 39534600 PMCID: PMC11554472 DOI: 10.3389/fimmu.2024.1474466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
The pulp is a unique tissue within each tooth that is susceptible to painful inflammation, known as pulpitis, triggered by microbial invasion from carious lesions or trauma that affect many individuals. The host response involves complex immunological processes for pathogen defense and dentin apposition at the site of infection. The interplay of signaling between the immune and non-immune cells via cytokines, chemokines, neuropeptides, proteases, and reactive nitrogen and oxygen species leads to tissue reactions and structural changes in the pulp that escalate beyond a certain threshold to irreversible tissue damage. If left untreated, the inflammation, which is initially localized, can progress to pulpal necrosis, requiring root canal treatment and adversely affecting the prognosis of the tooth. To preserve pulp vitality and dental health, a deeper understanding of the molecular and cellular mechanisms of pulpitis is imperative. In particular, elucidating the links between signaling pathways, clinical symptoms, and spatiotemporal spread is essential to develop novel therapeutic strategies and push the boundaries of vital pulp therapy.
Collapse
Affiliation(s)
- Sandra Pohl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Akamp
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Martyna Smeda
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Uderhardt
- Medical Department 3, Rheumatology and Immunology, University Hospital Erlangen, Erlangen, Germany
| | - David Besold
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Gabriel Krastl
- Department of Conservative Dentistry and Periodontology, University Hospital Würzburg, Würzburg, Germany
| | - Kerstin M. Galler
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Cucarian J, Raposo P, Vavrek R, Nguyen A, Nelson B, Monnier P, Torres-Espin A, Fenrich K, Fouad K. No impact of anti-inflammatory medication on inflammation-driven recovery following cervical spinal cord injury in rats. Exp Neurol 2024; 383:115039. [PMID: 39481514 DOI: 10.1016/j.expneurol.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Following spinal cord injury (SCI), inflammation is associated with the exacerbation of damage to spinal tissue. Consequently, managing inflammation during the acute and subacute phases is a common target in SCI treatment. However, inflammation may also induce potential benefits, including the stimulation of neuroplasticity and repair. This positive role of inflammation in spinal cord healing and functional recovery is not fully understood. To address this knowledge gap, we examined the effects of two common anti-inflammatory medications, Diphenhydramine and Methylprednisolone, on the efficacy of rehabilitative motor training on recovery from subacute cervical SCI in adult rats. Training depends critically on neuroplasticity thus if inflammation is a key regulator, we propose that anti-inflammatory drugs will reduce subsequent recovery. Both drugs were administered orally over one month, alongside task-specific reaching and grasping training. After treatment, no substantial changes in motor recovery or lesion size between the treated and control groups were observed. Treated animals also did not show any discernible changes in sensory function or anxiety-like behavior. Taken together, our data indicate that the prolonged use of these anti-inflammatory agents at commonly used doses did not profoundly impact recovery following an SCI. Therefore, considering earlier reports of the benefits of pro-inflammatory stimuli on plasticity, further studies in this area are imperative to elucidate the true impact of treating inflammation and its implications for recovery after spinal cord injuries.
Collapse
Affiliation(s)
- Jaison Cucarian
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| | - Pamela Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Antoinette Nguyen
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Brooklynn Nelson
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Philippe Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Abel Torres-Espin
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada; School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada; Department of Neurological Surgery and Brain and Spinal Injury Center (BASIC), Faculty of Medicine, University of California San Francisco, San Francisco, USA
| | - Keith Fenrich
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
37
|
Fatima I, Sahar A, Tariq A, Naz T, Usman M. Exploring the Role of Licorice and Its Derivatives in Cell Signaling Pathway NF- κB and MAPK. J Nutr Metab 2024; 2024:9988167. [PMID: 39479405 PMCID: PMC11524698 DOI: 10.1155/2024/9988167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Licorice is a therapeutic herb in traditional Chinese herbal medicine. Licorice is considered as an anti-inflammatory agent due to its suppression and inhibition of inflammatory pathways. Licorice has many bioactive compounds such as glycyrrhetinic acid, glycyrrhizin, liquiritigenin, and isoliquirtigenin which are principally accountable for its therapeutic benefits. These bioactive components reduce inflammation by preventing the activation of important inflammatory pathways including mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB). As a result of this tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) are among the proinflammatory cytokines whose production is inhibited. Components present in licorice inhibit the activation by suppressing the IκBα phosphorylation and degradation. Moreover, licorice compounds also attenuate the MAPK signaling cascades by inhibiting the MAPK kinase phosphorylation and downstream MAPKs such as extracellular signal-regulated kinase (ERK), p38 MAPK, and c-Jun N-terminal kinase (JNK). The present review focuses on the current understanding of licorice effect on the NF-κB and MAPK inflammatory cell signaling pathways at molecular level. Furthermore, emerging evidence suggested that licorice-derived bioactive compounds may attenuate the molecular mechanism which is associated with inflammation, providing the additional insights into the therapeutic potential. Further studies explained the precise molecular mechanism at the cellular level underlying the licorice anti-inflammatory effect and potential application in managing inflammatory disorders. In conclusion, licorice has a complex mode of action and is a valuable natural anti-inflammatory. Its natural origin and effectiveness in clinical applications make it an intriguing topic for additional study. As licorice becomes more widely used in medicine, future research should focus on refining its formulations to optimize therapeutic advantages.
Collapse
Affiliation(s)
- Ieaman Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Amna Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Tabana Naz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- School of Food and Agriculture Science, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
38
|
Chang HH, Liou YS, Sun DS. Unraveling the interplay between inflammation and stem cell mobilization or homing: Implications for tissue repair and therapeutics. Tzu Chi Med J 2024; 36:349-359. [PMID: 39421490 PMCID: PMC11483098 DOI: 10.4103/tcmj.tcmj_100_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammation and stem cell mobilization or homing play pivotal roles in tissue repair and regeneration. This review explores their intricate interplay, elucidating their collaborative role in maintaining tissue homeostasis and responding to injury or disease. While examining the fundamentals of stem cells, we detail the mechanisms underlying inflammation, including immune cell recruitment and inflammatory mediator release, highlighting their self-renewal and differentiation capabilities. Central to our exploration is the modulation of hematopoietic stem cell behavior by inflammatory cues, driving their mobilization from the bone marrow niche into circulation. Key cytokines, chemokines, growth factors, and autophagy, an intracellular catabolic mechanism involved in this process, are discussed alongside their clinical relevance. Furthermore, mesenchymal stem cell homing in response to inflammation contributes to tissue repair processes. In addition, we discuss stem cell resilience in the face of inflammatory challenges. Moreover, we examine the reciprocal influence of stem cells on the inflammatory milieu, shaping immune responses and tissue repair. We underscore the potential of targeting inflammation-induced stem cell mobilization for regenerative therapies through extensive literature analysis and clinical insights. By unraveling the complex interplay between inflammation and stem cells, this review advances our understanding of tissue repair mechanisms and offers promising avenues for clinical translation in regenerative medicine.
Collapse
Affiliation(s)
- Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
39
|
Guo M, Peng R, Jin K, Zhang X, Mo H, Li X, Qu F, Tang J, Cao S, Zhou Y, He Z, Mao Z, Fan J, Li J, Liu Z. Effects of Aeromonas infection on the immune system, physical barriers and microflora structure in the intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109790. [PMID: 39059563 DOI: 10.1016/j.fsi.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Grass carp (Ctenopharyngodon idella) is an intensively cultured and economically important herbivorous fish species in China, but its culture is often impacted by Aeromonas pathogens such as Aeromonas hydrophila and Aeromonas veronii. In this study, healthy grass carp were separately infected with A. hydrophila or A. veronii for 12, 24, 48 or 72 h. The results showed that the mRNA expression levels of intestinal inflammatory factors (tnf-α, il-1β and il-8), complement factors (c3 and c4), antimicrobial peptides (hepcidin, nk-lysin and β-defensin-1), immunoglobulins (igm and igt), and immune pathway-related signaling molecules (tlr1, tlr2, tlr4, myd88, irak4, irak1, traf6, nf-κb p65 and ap-1) were differentially upregulated in response to A. hydrophila and A. veronii challenge. Additionally, the expression levels of the intestinal pro-apoptotic genes tnfr1, tnfr2, tradd, caspase-8, caspase-3 and bax were significantly increased, whereas the expression of the inhibitory factor bcl-2 was significantly downregulated, indicating that Aeromonas infection significantly induced apoptosis in the intestine of grass carp. Moreover, the expression of intestinal tight junction proteins (occludin, zo-1, claudin b and claudin c) was significantly decreased after infection with Aeromonas. Histopathological analysis indicated the Aeromonas challenge caused severe damage to the intestinal villi with adhesions and detachment of intestinal villi accompanied by severe inflammatory cell infiltration at 12 h and 72 h. The 16S rRNA sequencing results showed that Aeromonas infection significantly altered the structure of the intestinal microflora of the grass carp at the phylum (Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes) and genus (Proteus, Cetobacterium, Bacteroides, and Aeromonas) levels. Take together, the findings of this study revealed that Aeromonas infection induces an intestinal immune response, triggers cell apoptosis, destroys physical barriers and alters microflora structure in the intestine of juvenile grass carp; the results will help to reveal the pathogenesis of intestinal bacterial diseases in grass carp.
Collapse
Affiliation(s)
- Meixing Guo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ran Peng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kelan Jin
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xia Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Huilan Mo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, China
| | - Jianzhong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
40
|
Khalil NA, Ahmed EM, Tharwat T, Mahmoud Z. NSAIDs between past and present; a long journey towards an ideal COX-2 inhibitor lead. RSC Adv 2024; 14:30647-30661. [PMID: 39324041 PMCID: PMC11423417 DOI: 10.1039/d4ra04686b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most abundantly used classes among therapeutic agents in medicine. NSAIDs inhibit the enzyme cyclooxygenase (COX), which is responsible for the conversion of arachidonic acid to prostaglandins. Meanwhile, non-selective NSAIDs are considered as a double-edged weapon since inhibition of COX-1 can lead to gastrointestinal side effects and kidney damage, whereas selective COX-2 inhibition provides anti-inflammatory effects without gastrointestinal toxicity. The detection of COX-2 role in inflammation process launched a new era in its management. Several trials have been established to proceed towards selectivity of well-defined anti-inflammatory members. COX-2 selective inhibitors are evidently safer on the gastrointestinal tract than non-selective NSAIDs. Nevertheless, their unexpected cardiovascular risks cannot be ignored. This review article highlights the latest trials aimed at developing new compounds with promising selective COX-2 activity.
Collapse
Affiliation(s)
- Nadia A Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt
| | - Eman M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt
| | - Toka Tharwat
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt
| | - Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt
| |
Collapse
|
41
|
Dienel A, Hong SH, Zeineddine HA, Thomas S, M SC, Jose DA, Torres K, Guzman J, Dunn A, T PK, Rao GN, Blackburn SL, McBride DW. 12/15-Lipooxygenase Inhibition Reduces Microvessel Constriction and Microthrombi After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2024:10.1007/s12975-024-01295-0. [PMID: 39294532 DOI: 10.1007/s12975-024-01295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Impaired cerebral circulation, induced by blood vessel constrictions and microthrombi, leads to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). 12/15-Lipooxygenase (12/15-LOX) overexpression has been implicated in worsening early brain injury outcomes following SAH. However, it is unknown if 12/15-LOX is important in delayed pathophysiological events after SAH. Since 12/15-LOX produces metabolites that induce inflammation and vasoconstriction, we hypothesized that 12/15-LOX leads to microvessel constriction and microthrombi formation after SAH, and thus, 12/15-LOX is an important target to prevent delayed cerebral ischemia. SAH was induced in C57BL/6 and 12/15-LOX-/- mice of both sexes by endovascular perforation. Expression of 12/15-LOX was assessed in brain tissue slices and in vitro. C57BL/6 mice were administered either ML351 (12/15-LOX inhibitor) or vehicle. Mice were evaluated for daily neuroscore and euthanized on day 5 to assess cerebral 12/15-LOX expression, vessel constrictions, platelet activation, microthrombi, neurodegeneration, infarction, cortical perfusion, and development of delayed deficits. Finally, the effect of 12/15-LOX inhibition on platelet activation was assessed in SAH patient samples using a platelet spreading assay. In SAH mice, 12/15-LOX was upregulated in brain vascular cells, and there was an increase in 12-S-HETE. Inhibition of 12/15-LOX improved brain perfusion on days 4-5 and attenuated delayed pathophysiological events, including microvessel constrictions, microthrombi, neuronal degeneration, and infarction. Additionally, 12/15-LOX inhibition reduced platelet activation in human and mouse blood samples. Cerebrovascular 12/15-LOX overexpression plays a major role in brain dysfunction after SAH by triggering microvessel constrictions and microthrombi formation, which reduces brain perfusion. Inhibiting 12/15-LOX may be a therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| | - Sung Ha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Hussein A Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Sithara Thomas
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Shafeeque C M
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Dania A Jose
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - P Kumar T
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| |
Collapse
|
42
|
Shen Q, Ge L, Lu W, Wu H, Zhang L, Xu J, Tang O, Muhammad I, Zheng J, Wu Y, Wang SW, Zeng XX, Xue J, Cheng K. Transplanting network pharmacology technology into food science research: A comprehensive review on uncovering food-sourced functional factors and their health benefits. Compr Rev Food Sci Food Saf 2024; 23:e13429. [PMID: 39217524 DOI: 10.1111/1541-4337.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Network pharmacology is an emerging interdisciplinary research method. The application of network pharmacology to reveal the nutritional effects and mechanisms of active ingredients in food is of great significance in promoting the development of functional food, facilitating personalized nutrition, and exploring the mechanisms of food health effects. This article systematically reviews the application of network pharmacology in the field of food science using a literature review method. The application progress of network pharmacology in food science is discussed, and the mechanisms of functional factors in food on the basis of network pharmacology are explored. Additionally, the limitations and challenges of network pharmacology are discussed, and future directions and application prospects are proposed. Network pharmacology serves as an important tool to reveal the mechanisms of action and health benefits of functional factors in food. It helps to conduct in-depth research on the biological activities of individual ingredients, composite foods, and compounds in food, and assessment of the potential health effects of food components. Moreover, it can help to control and enhance their functionality through relevant information during the production and processing of samples to guarantee food safety. The application of network pharmacology in exploring the mechanisms of functional factors in food is further analyzed and summarized. Combining machine learning, artificial intelligence, clinical experiments, and in vitro validation, the achievement transformation of functional factor in food driven by network pharmacology is of great significance for the future development of network pharmacology research.
Collapse
Affiliation(s)
- Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lijun Ge
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Weibo Lu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Huixiang Wu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Li Zhang
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
| | - Jun Xu
- Ningbo Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Oushan Tang
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Imran Muhammad
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Zheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yeshun Wu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
43
|
Tan Y, Lai T, Li Y, Tang Q, Zhang W, Liu Q, Wu S, Peng X, Sui X, Reggiori F, Jiang X, Chen Q, Wang C. An oil-in-gel type of organohydrogel loaded with methylprednisolone for the treatment of secondary injuries following spinal cord traumas. J Control Release 2024; 374:505-524. [PMID: 39182693 DOI: 10.1016/j.jconrel.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The secondary injuries following traumatic spinal cord injury (SCI) is a multiphasic and complex process that is difficult to treat. Although methylprednisolone (MP) is the only available pharmacological regime for SCI treatment, its efficacy remains controversial due to its very narrow therapeutic time window and safety concerns associated with high dosage. In this study, we have developed an oil-in-gel type of organohydrogel (OHG) in which the binary oleic-water phases coexist, for the local delivery of MP. This new OHG is fabricated by a glycol chitosan/oxidized hyaluronic acid hydrophilic network that is uniformly embedded with a biocompatible oil phase, and it can be effectively loaded with MP or other hydrophobic compounds. In addition to spatiotemporally control MP release, this biodegradable OHG also provides a brain tissue-mimicking scaffold that can promote tissue regeneration. OHG remarkably decreases the therapeutic dose of MP in animals and extends its treatment course over 21 d, thereby timely manipulating microglia/macrophages and their associated with signaling molecules to restore immune homeostasis, leading to a long-term functional improvement in a complete transection SCI rat model. Thus, this OHG represents a new type of gel for clinical treatment of secondary injuries in SCI.
Collapse
Affiliation(s)
- Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ting Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qi Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qi Liu
- The First Dongguan Affiliated Hospital Guangdong Medical University No. 42, Jiaoping Road Dongguan, Guangdong 523710, PR China
| | - Sihan Wu
- Center for Biomedical Optics and Photonics (CBOP)&College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Xiao Peng
- Center for Biomedical Optics and Photonics (CBOP)&College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaofeng Sui
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| | - Cuifeng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Neurosurgery, JiuJiang Hospital of Traditional Chinese Medicine, Jiujiang, PR China.
| |
Collapse
|
44
|
Melvin WJ, Bauer TM, Mangum KD, Audu CO, Shadiow J, Barrett EC, Joshi AD, Moon JY, Bogle R, Mazumder P, Wolf SJ, Kunke SL, Gudjonsson JE, Davis FM, Gallagher KA. The histone methyltransferase Mixed-lineage-leukemia-1 drives T cell phenotype via Notch signaling in diabetic tissue repair. JCI Insight 2024; 9:e179012. [PMID: 39250432 PMCID: PMC11463913 DOI: 10.1172/jci.insight.179012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Immune cell-mediated inflammation is important in normal tissue regeneration but can be pathologic in diabetic wounds. Limited literature exists on the role of CD4+ T cells in normal or diabetic wound repair; however, the imbalance of CD4+ Th17/Tregs has been found to promote inflammation in other diabetic tissues. Here, using human tissue and murine transgenic models, we identified that the histone methyltransferase Mixed-lineage-leukemia-1 (MLL1) directly regulates the Th17 transcription factor RORγ via an H3K4me3 mechanism and increases expression of Notch receptors and downstream Notch signaling. Furthermore, we found that Notch receptor signaling regulates CD4+ Th cell differentiation and is critical for normal wound repair, and loss of upstream Notch pathway mediators or receptors in CD4+ T cells resulted in the loss of CD4+ Th cell differentiation in wounds. In diabetes, MLL1 and Notch-receptor signaling was upregulated in wound CD4+ Th cells, driving CD4+ T cells toward the Th17 cell phenotype. Treatment of diabetic wound CD4+ T cells with a small molecule inhibitor of MLL1 (MI-2) yielded a significant reduction in CD4+ Th17 cells and IL-17A. This is the first study to our knowledge to identify the MLL1-mediated mechanisms responsible for regulating the Th17/Treg balance in normal and diabetic wounds and to define the complex role of Notch signaling in CD4+ T cells in wounds, where increased or decreased Notch signaling both result in pathologic wound repair. Therapeutic targeting of MLL1 in diabetic CD4+ Th cells may decrease pathologic inflammation through regulation of CD4+ T cell differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sonya J. Wolf
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven L. Kunke
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Chen T, Zhou N, Liang Q, Li Q, Li B, Chu Y, Zhang D, Chen Z, Tsao JR, Feng X, Hu K. Biochanin A: Disrupting the inflammatory vicious cycle for dry eye disease. Eur J Pharmacol 2024; 977:176583. [PMID: 38679123 DOI: 10.1016/j.ejphar.2024.176583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Dry eye disease (DED) is a complex disorder driven by several factors like reduced tear production, increased evaporation, or poor tear quality. Oxidative stress plays a key role by exacerbating the inflammatory cycle. Previous studies explored antioxidants for DED treatment due to the link between oxidative damage and inflammation. Biochanin A (BCA) is a bioisoflavone from red clover with potent anti-inflammatory effects. This study investigated BCA's therapeutic potential for DED. Human corneal epithelial cells were cultured under hyperosmotic conditions to mimic DED. BCA treatment increased cell viability and decreased apoptosis and inflammatory cytokine expression. A DED mouse model was developed using female C57BL/6 mice in a controlled low-humidity environment combined with scopolamine injections. Mice received eye drops containing phosphate-buffered saline, low-dose BCA, or high-dose BCA. The effectiveness was evaluated by measuring tear volume, fluorescein staining, eye-closing ratio, corneal sensitivity and PAS staining. The levels of inflammatory components in corneas and conjunctiva were measured to assess DED severity. Maturation of antigen-presenting cells in cervical lymph nodes was analyzed by flow cytometry. BCA eye drops effectively reduced inflammation associated with DED in mice. BCA also decreased oxidative stress levels by reducing reactive oxygen species and enhancing the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2). These findings demonstrate that BCA ameliorates oxidative stress and ocular surface inflammation, indicating potential as a DED treatment by relieving oxidative damage and mitigating inflammation.
Collapse
Affiliation(s)
- Taige Chen
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China; Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Nan Zhou
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Qi Liang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, Zhejiang, China
| | - Qi Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Boda Li
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Yiran Chu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Di Zhang
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Zeying Chen
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Jia-Ruei Tsao
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China.
| | - Kai Hu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
46
|
Song SY, Park DH, Lee SH, Lim HK, Park JW, Seo JW, Cho SS. Protective Effects of 7S,15R-Dihydroxy-16S,17S-Epoxy-Docosapentaenoic Acid (diHEP-DPA) against Blue Light-Induced Retinal Damages in A2E-Laden ARPE-19 Cells. Antioxidants (Basel) 2024; 13:982. [PMID: 39199228 PMCID: PMC11351242 DOI: 10.3390/antiox13080982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
The purpose of this study was to investigate the protective effects of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA) in retinal pigment epithelial (RPE) cell damage. ARPE-19 cells, a human RPE cell line, were cultured with diHEP-DPA and Bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E), followed by exposure to BL. Cell viability and cell death rates were determined. Western blotting was performed to determine changes in apoptotic factors, mitogen-activated protein kinase (MAPK) family proteins, inflammatory proteins, and oxidative and carbonyl stresses. The levels of pro-inflammatory cytokines in the culture medium supernatants were also measured. Exposure to A2E and BL increased the ARPE-19 cell death rate, which was alleviated by diHEP-DPA in a concentration-dependent manner. A2E and BL treatments induced apoptosis in ARPE-19 cells, which was also alleviated by diHEP-DPA. Analysis of the relationship with MAPK proteins revealed that the expression of p-JNK and p-P38 increased after A2E and BL treatments and decreased with exposure to diHEP-DPA in a concentration-dependent manner. DiHEP-DPA also affected the inflammatory response by suppressing the expression of inflammatory proteins and the production of pro-inflammatory cytokines. Furthermore, it was shown that diHEP-DPA regulated the proteins related to oxidative and carbonyl stresses. Taken together, our results provide evidence that diHEP-DPA can inhibit cell damage caused by A2E and BL exposure at the cellular level by controlling various pathways involved in apoptosis and inflammatory responses.
Collapse
Affiliation(s)
- Seung-Yub Song
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju-si 58245, Jeonnam, Republic of Korea;
| | - Sung-Ho Lee
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Han-Kyu Lim
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
- Department of Marine and Fisheries Resources, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea
| | - Jin-Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Jeollabuk-do, Republic of Korea;
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| |
Collapse
|
47
|
Falvey A, Palandira SP, Chavan SS, Brines M, Dantzer R, Tracey KJ, Pavlov VA. Electrical stimulation of the dorsal motor nucleus of the vagus in male mice can regulate inflammation without affecting the heart rate. Brain Behav Immun 2024; 120:630-639. [PMID: 38670240 PMCID: PMC11957331 DOI: 10.1016/j.bbi.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN), as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications. However, the anti-inflammatory effectiveness of electrical stimulation of the DMN (eDMNS) and the possible heart rate (HR) alterations associated with this approach have not been investigated. Here, we examined the effects of eDMNS on HR and cytokine levels in mice administered with lipopolysaccharide (LPS, endotoxin) and in mice subjected to cecal ligation and puncture (CLP) sepsis. METHODS Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (500, 250 or 50 μA at 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 μA or 50 μA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24 h after CLP. CLP survival was monitored for 14 days. RESULTS Either left or right eDMNS at 500 μA and 250 μA decreased HR, compared with baseline pre-stimulation. This effect was not observed at 50 μA. Left side eDMNS at 50 μA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and was not associated with serum corticosterone alterations. Right side eDMNS in endotoxemic mice suppressed serum TNF and increased serum IL-10 levels but had no effects on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. CONCLUSIONS For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation. These eDMNS anti-inflammatory effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.
Collapse
Affiliation(s)
- Aidan Falvey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Santhoshi P Palandira
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Michael Brines
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Robert Dantzer
- University of Texas MD Anderson Cancer Center, Department of Symptom Research, Houston, TX 77030, USA
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Valentin A Pavlov
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
48
|
Komatsu W, Kishi H, Uchiyama K, Ohhira S, Kobashi G. Urolithin A suppresses NLRP3 inflammasome activation by inhibiting the generation of reactive oxygen species and prevents monosodium urate crystal-induced peritonitis. Biosci Biotechnol Biochem 2024; 88:966-978. [PMID: 38772744 DOI: 10.1093/bbb/zbae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the maturation of interleukin-1β (IL-1β) and is implicated in the pathogenesis of various inflammatory diseases. Urolithin A, a gut microbial metabolite of ellagic acid, reportedly exerts antiinflammatory effects in vitro and in vivo. However, whether urolithin A suppresses NLRP3 inflammasome activation is unclear. In this study, urolithin A inhibited the cleavage of NLRP3 inflammasome agonist-induced caspase-1, maturation of IL-1β, and activation of pyroptosis in lipopolysaccharide-primed mouse bone marrow-derived macrophages. Urolithin A reduced generation of intracellular and mitochondrial reactive oxygen species (ROS) and restricted the interaction between thioredoxin-interacting protein and NLRP3, which attenuated NLRP3 inflammasome activation. Urolithin A administration prevented monosodium urate-induced peritonitis in mice. Collectively, these findings indicate that urolithin A suppresses NLRP3 inflammasome activation, at least partially, by repressing the generation of intracellular and mitochondrial ROS.
Collapse
Affiliation(s)
- Wataru Komatsu
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Hisashi Kishi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Koji Uchiyama
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Shuji Ohhira
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
49
|
Pei J, Chen S, Li L, Wang K, Pang A, Niu M, Peng X, Li N, Wu H, Nie P. Impact of polystyrene nanoplastics on apoptosis and inflammation in zebrafish larvae: Insights from reactive oxygen species perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174737. [PMID: 39004365 DOI: 10.1016/j.scitotenv.2024.174737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In recent years, there has been a growing focus on the toxicity and mortality induced by nanoplastics (NPs) in aquatic organisms. However, studies investigating mechanisms underlying oxidative stress (OS), apoptosis, and inflammation induced by NPs in fish remain limited. This study observed that polystyrene NPs (PS-NPs) were accumulated into zebrafish larvae and zebrafish embryonic fibroblast (ZF4 cells), accompanied by the occurrence of pathological damage both at the cellular and tissue-organ level. Additionally, the transcriptional up-regulation of NADPH oxidases (NOXs) and subsequent excessive generation of reactive oxygen species (ROS) resulted in notable changes in the relative mRNA and protein expression levels associated with antioxidant oxidase systems in larvae. Furthermore, the study identified the impact of NPs on mitochondrial ultrastructural, resulting in mitochondrial depolarization and downregulation of mRNA expression related to the electron transport chain due to excessive ROS generation. Short-term exposure to NPs also triggered apoptosis and inflammation in zebrafish larvae, evident from significant up-regulation in mRNA expressions of proapoptotic factors and NF-κB proinflammatory signaling pathway, as well as increased transcription and protein levels of pro-inflammatory factors in larvae. Inhibition of intracellular excessive ROS effectively reduced the induction of apoptosis, NF-κB P65 nuclear migration levels, and cytokine secretion, underscoring OS as a pivotal factor throughout the process of apoptosis and inflammatory responses induced by NPs. This research significantly advances our comprehension of biological effects and underlying mechanisms of NPs in freshwater fish.
Collapse
Affiliation(s)
- Jincheng Pei
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Kailun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Anning Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Mengmeng Niu
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Xueyun Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Hongjuan Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
50
|
Ma J, Ding L, Peng X, Jiang L, Liu G. Recent Advances of Engineered Cell Membrane-Based Nanotherapeutics to Combat Inflammatory Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308646. [PMID: 38334202 DOI: 10.1002/smll.202308646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/20/2024] [Indexed: 02/10/2024]
Abstract
An immune reaction known as inflammation serves as a shield from external danger signals, but an overactive immune system may additionally lead to tissue damage and even a variety of inflammatory disorders. By inheriting biological functionalities and serving as both a therapeutic medication and a drug carrier, cell membrane-based nanotherapeutics offer the potential to treat inflammatory disorders. To further strengthen the anti-inflammatory benefits of natural cell membranes, researchers alter and optimize the membranes using engineering methods. This review focuses on engineered cell membrane-based nanotherapeutics (ECMNs) and their application in treating inflammation-related diseases. Specifically, this article discusses the methods of engineering cell membranes for inflammatory diseases and examines the progress of ECMNs in inflammation-targeted therapy, inflammation-neutralizing therapy, and inflammation-immunomodulatory therapy. Additionally, the article looks into the perspectives and challenges of ECMNs in inflammatory treatment and offers suggestions as well as guidance to encourage further investigations and implementations in this area.
Collapse
Affiliation(s)
- Jiaxin Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Linyu Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xuqi Peng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lai Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Gang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|