1
|
Magnarelli A, Liu Q, Wang F, Peng XP, Wright J, Oak N, Natale V, Rothblum-Oviatt C, Lefton-Greif MA, McGrath-Morrow S, Crawford TO, Ehrhardt MJ, Lederman HM, Sharma R. Prevalence and outcomes of cancer and treatment-associated toxicities for patients with ataxia telangiectasia. J Allergy Clin Immunol 2025; 155:640-649. [PMID: 39521281 PMCID: PMC11915532 DOI: 10.1016/j.jaci.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ataxia telangiectasia (A-T) is a DNA repair disorder with cancer predisposition. OBJECTIVE We sought to characterize the prevalence and outcomes of hematologic and solid cancers and treatment-associated toxicities in individuals with A-T. METHODS Data were retrospectively analyzed from the Johns Hopkins Ataxia Telangiectasia Clinical Center cohort. Cumulative incidence and standardized incidence ratios of cancer, survival probability after cancer diagnosis, and standardized mortality ratios were calculated. Cox regression estimated risk of death on the basis of chemotherapy (standard vs reduced) dosing, and multivariable logistic regression evaluated cancer risk associations with ataxia telangiectasia mutated (ATM) exons and variants. RESULTS Eighty-four (16.5%) of 508 individuals were diagnosed with a primary cancer, of whom 62 (74%) were hematologic in origin and 22 (26%) were solid-organ cancers. The cumulative incidence of cancer was 29% by age 35 years. Non-Hodgkin lymphoma occurred most frequently (n = 39), whereas solid cancers disproportionately affected those 18 years and older (n = 22). The standardized mortality ratio was 24.6 (95% CI, 21.1-28.4) overall and 232.9 (95% CI,178.1-299.2) among individuals with cancer. Risk of death was higher when treated with standard/unknown versus modified chemotherapy (hazard ratio, 2.2; 95% CI, 1.1-4.4; P = .024). Chemotherapy-associated toxicities developed in 58% of individuals, predominantly neurologic (n = 14) and gastrointestinal (n = 10) systems. Three exons were enriched for cancer-associated variants. CONCLUSIONS Individuals with A-T experience a wide array of blood and solid-organ malignancies, high mortality rates, and treatment-related toxicities, highlighting need for targeted therapies to mitigate toxicity and optimize survival.
Collapse
Affiliation(s)
- Aimee Magnarelli
- Eudowood Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Qi Liu
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fan Wang
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tenn
| | - Xiao P Peng
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Division of Genetics, Department of Pediatrics, Children's Hosptial at Montefiore, Albert Einstein College of Medicine, Bronx, NY
| | - Jennifer Wright
- Eudowood Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Md; A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md
| | - Ninad Oak
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tenn
| | - Valerie Natale
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Forgotten Diseases Research Foundation, Santa Clara, Calif
| | | | - Maureen A Lefton-Greif
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Md; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Md; Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, Md
| | - Sharon McGrath-Morrow
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Division of Pulmonary Medicine and Sleep, Children's Hospital of Philadelphia, Pa; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Thomas O Crawford
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Department of Neurology, Johns Hopkins Medicine, Baltimore, Md; Department of Pediatrics, Johns Hopkins Medicine, Baltimore, Md
| | - Matthew J Ehrhardt
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tenn; Department of Oncology, St Jude Children's Research Hospital, Memphis, Tenn
| | - Howard M Lederman
- Eudowood Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Md; A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md
| | - Richa Sharma
- A-T Clinical Center, Johns Hopkins Hospital, Baltimore, Md; Department of Hematology, St Jude Children's Research Hospital, Memphis, Tenn.
| |
Collapse
|
2
|
Lee JH. ATM in immunobiology: From lymphocyte development to cancer immunotherapy. Transl Oncol 2025; 52:102268. [PMID: 39752906 PMCID: PMC11754496 DOI: 10.1016/j.tranon.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Ataxia Telangiectasia Mutated (ATM) is a protein kinase traditionally known for its role in DNA damage response and cell cycle regulation. However, emerging research has revealed its multifaceted and crucial functions in the immune system. This comprehensive review explores the diverse roles of ATM in immune regulation, from lymphocyte development to its involvement in cancer immunotherapy. The review describes ATM's critical functions in V(D)J recombination and class switch recombination, highlighting its importance in adaptive immunity. It examines ATM's role in innate immunity, particularly in NF-κB signaling and cytokine production. Furthermore, the review analyzes the impact of ATM deficiency on oxidative stress and mitochondrial function in immune cells, providing insights into the immunological defects observed in Ataxia Telangiectasia (A-T). The article explores ATM's significance in maintaining hematopoietic stem cell function and its implications for bone marrow transplantation and gene therapy. Additionally, it addresses ATM's involvement in inflammation and immune senescence, linking DNA damage response to age-related immune decline. Finally, this review highlights the emerging role of ATM in cancer immunotherapy, where its inhibition shows promise in enhancing immune checkpoint blockade therapy. This review synthesizes current knowledge on ATM's functions in the immune system, offering insights into the pathophysiology of ATM-related disorders and potential therapeutic strategies for immune-related conditions and cancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
3
|
Ochodnicka-Mackovicova K, van Keimpema M, Spaargaren M, van Noesel CJM, Guikema JEJ. DNA damage-induced p53 downregulates expression of RAG1 through a negative feedback loop involving miR-34a and FOXP1. J Biol Chem 2024; 300:107922. [PMID: 39454960 PMCID: PMC11625342 DOI: 10.1016/j.jbc.2024.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
During the maturation of pre-B cells, the recombination activating gene 1 and 2 (RAG1/2) endonuclease complex plays a crucial role in coordinating V(D)J recombination by introducing DNA breaks in immunoglobulin (Ig) loci. Dysregulation of RAG1/2 has been linked to the onset of B cell malignancies, yet the mechanisms controlling RAG1/2 in pre-B cells exposed to excessive DNA damage are not fully understood. In this study, we show that DNA damage-induced activation of p53 initiates a negative-feedback loop which rapidly downregulates RAG1 levels. This feedback loop involves ataxia telangiectasia mutated activation, subsequent stabilization of p53, and modulation of microRNA-34a (miR-34a) levels, which is one of the p53 targets. Notably, this loop incorporates transcription factor forkhead box P1 as a downstream effector. The absence of p53 resulted in an increased proportion of IgM+ cells prompted to upregulate RAG1/2 and to undergo Ig light chain recombination. Similar results were obtained in primary pre-B cells with depleted levels of miR-34a. We propose that in pre-B cells undergoing Ig gene recombination, the DNA breaks activate a p53/miR-34a/forkhead box P1-mediated negative-feedback loop that contributes to the rapid downregulation of RAG. This regulation limits the RAG-dependent DNA damage, thereby protecting the stability of the genome during V(D)J rearrangement in developing B cells.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Martine van Keimpema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Chen Z, Wang X, Gao X, Arslanovic N, Chen K, Tyler JK. Transcriptional inhibition after irradiation occurs preferentially at highly expressed genes in a manner dependent on cell cycle progression. eLife 2024; 13:RP94001. [PMID: 39392398 PMCID: PMC11469672 DOI: 10.7554/elife.94001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
In response to DNA double-strand damage, ongoing transcription is inhibited to facilitate accurate DNA repair while transcriptional recovery occurs after DNA repair is complete. However, the mechanisms at play and the identity of the transcripts being regulated in this manner are unclear. In contrast to the situation following UV damage, we found that transcriptional recovery after ionizing radiation (IR) occurs in a manner independent of the HIRA histone chaperone. Sequencing of the nascent transcripts identified a programmed transcriptional response, where certain transcripts and pathways are rapidly downregulated after IR, while other transcripts and pathways are upregulated. Specifically, most of the loss of nascent transcripts occurring after IR is due to inhibition of transcriptional initiation of the highly transcribed histone genes and the rDNA. To identify factors responsible for transcriptional inhibition after IR in an unbiased manner, we performed a whole genome gRNA library CRISPR/Cas9 screen. Many of the top hits on our screen were factors required for protein neddylation. However, at short times after inhibition of neddylation, transcriptional inhibition still occurred after IR, even though neddylation was effectively inhibited. Persistent inhibition of neddylation blocked transcriptional inhibition after IR, and it also leads to cell cycle arrest. Indeed, we uncovered that many inhibitors and conditions that lead to cell cycle arrest in G1 or G2 phase also prevent transcriptional inhibition after IR. As such, it appears that transcriptional inhibition after IR occurs preferentially at highly expressed genes in cycling cells.
Collapse
Affiliation(s)
- Zulong Chen
- Weill Cornell Medicine, Department of Pathology and Laboratory MedicineNew YorkUnited States
| | - Xin Wang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's HospitalBostonUnited States
- Department of Pediatrics, Harvard Medical SchoolBostonUnited States
| | - Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's HospitalBostonUnited States
- Department of Pediatrics, Harvard Medical SchoolBostonUnited States
| | - Nina Arslanovic
- Weill Cornell Medicine, Department of Pathology and Laboratory MedicineNew YorkUnited States
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's HospitalBostonUnited States
- Department of Pediatrics, Harvard Medical SchoolBostonUnited States
| | - Jessica K Tyler
- Weill Cornell Medicine, Department of Pathology and Laboratory MedicineNew YorkUnited States
| |
Collapse
|
5
|
Ochodnicka-Mackovicova K, Mokry M, Haagmans M, Bradley TE, van Noesel CJM, Guikema JEJ. RAG1/2 induces double-stranded DNA breaks at non-Ig loci in the proximity of single sequence repeats in developing B cells. Eur J Immunol 2024; 54:e2350958. [PMID: 39046890 DOI: 10.1002/eji.202350958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
In developing B cells, V(D)J gene recombination is initiated by the RAG1/2 endonuclease complex, introducing double-stranded DNA breaks (DSBs) in V, D, and J genes and resulting in the formation of the hypervariable parts of immunoglobulins (Ig). Persistent or aberrant RAG1/2 targeting is a potential threat to genome integrity. While RAG1 and RAG2 have been shown to bind various regions genome-wide, the in vivo off-target DNA damage instigated by RAG1/2 endonuclease remains less well understood. In the current study, we identified regions containing RAG1/2-induced DNA breaks in mouse pre-B cells on a genome-wide scale using a global DNA DSB detection strategy. We detected 1489 putative RAG1/2-dependent DSBs, most of which were located outside the Ig loci. DNA sequence motif analysis showed a specific enrichment of RAG1/2-induced DNA DSBs at GA- and CA-repeats and GC-rich motifs. These findings provide further insights into RAG1/2 off-target activity. The ability of RAG1/2 to introduce DSBs on the non-Ig loci during the endogenous V(D)J recombination emphasizes its genotoxic potential in developing lymphocytes.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Martin Haagmans
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Ted E Bradley
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| |
Collapse
|
6
|
Chen BR, Pham T, Reynolds LD, Dang N, Zhang Y, Manalang K, Matos-Rodrigues G, Neidigk JR, Nussenzweig A, Tyler JK, Sleckman BP. Senataxin and DNA-PKcs Redundantly Promote Non-Homologous End Joining Repair of DNA Double Strand Breaks During V(D)J Recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615014. [PMID: 39386666 PMCID: PMC11463457 DOI: 10.1101/2024.09.25.615014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Non-homologous end joining (NHEJ) is required for repairing DNA double strand breaks (DSBs) generated by the RAG endonuclease during lymphocyte antigen receptor gene assembly by V(D)J recombination. The Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) kinases regulate functionally redundant pathways required for NHEJ. Here we report that loss of the senataxin helicase leads to a significant defect in RAG DSB repair upon inactivation of DNA-PKcs. The NHEJ function of senataxin is redundant with the RECQL5 helicase and the HLTF translocase and is epistatic with ATM. Co-inactivation of ATM, RECQL5 and HLTF results in an NHEJ defect similar to that from the combined deficiency of DNA-PKcs and senataxin or losing senataxin, RECQL5 and HLTF. These data suggest that ATM and DNA-PKcs regulate the functions of senataxin and RECQL5/HLTF, respectively to provide redundant support for NHEJ.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Thu Pham
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Lance D. Reynolds
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Nghi Dang
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Yanfeng Zhang
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
- Genetics Research Division, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Kimberly Manalang
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | | | - Jason Romero Neidigk
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, MD 20892
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Barry P. Sleckman
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
| |
Collapse
|
7
|
Elitzur S, Shiloh R, Loeffen JLC, Pastorczak A, Takagi M, Bomken S, Baruchel A, Lehrnbecher T, Tasian SK, Abla O, Arad-Cohen N, Astigarraga I, Ben-Harosh M, Bodmer N, Brozou T, Ceppi F, Chugaeva L, Dalla Pozza L, Ducassou S, Escherich G, Farah R, Gibson A, Hasle H, Hoveyan J, Jacoby E, Jazbec J, Junk S, Kolenova A, Lazic J, Lo Nigro L, Mahlaoui N, Miller L, Papadakis V, Pecheux L, Pillon M, Sarouk I, Stary J, Stiakaki E, Strullu M, Tran TH, Ussowicz M, Verdu-Amoros J, Wakulinska A, Zawitkowska J, Stoppa-Lyonnet D, Taylor AM, Shiloh Y, Izraeli S, Minard-Colin V, Schmiegelow K, Nirel R, Attarbaschi A, Borkhardt A. ATM germ line pathogenic variants affect outcomes in children with ataxia-telangiectasia and hematological malignancies. Blood 2024; 144:1193-1205. [PMID: 38917355 DOI: 10.1182/blood.2024024283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
ABSTRACT Ataxia-telangiectasia (A-T) is an autosomal-recessive disorder caused by pathogenic variants (PVs) of the ATM gene, predisposing children to hematological malignancies. We investigated their characteristics and outcomes to generate data-based treatment recommendations. In this multinational, observational study we report 202 patients aged ≤25 years with A-T and hematological malignancies from 25 countries. Ninety-one patients (45%) presented with mature B-cell lymphomas, 82 (41%) with acute lymphoblastic leukemia/lymphoma, 21 (10%) with Hodgkin lymphoma and 8 (4%) with other hematological malignancies. Four-year overall survival and event-free survival (EFS) were 50.8% (95% confidence interval [CI], 43.6-59.1) and 47.9% (95% CI 40.8-56.2), respectively. Cure rates have not significantly improved over the last four decades (P = .76). The major cause of treatment failure was treatment-related mortality (TRM) with a four-year cumulative incidence of 25.9% (95% CI, 19.5-32.4). Germ line ATM PVs were categorized as null or hypomorphic and patients with available genetic data (n = 110) were classified as having absent (n = 81) or residual (n = 29) ATM kinase activity. Four-year EFS was 39.4% (95% CI, 29-53.3) vs 78.7% (95% CI, 63.7-97.2), (P < .001), and TRM rates were 37.6% (95% CI, 26.4-48.7) vs 4.0% (95% CI, 0-11.8), (P = .017), for those with absent and residual ATM kinase activity, respectively. Absence of ATM kinase activity was independently associated with decreased EFS (HR = 0.362, 95% CI, 0.16-0.82; P = .009) and increased TRM (hazard ratio [HR] = 14.11, 95% CI, 1.36-146.31; P = .029). Patients with A-T and leukemia/lymphoma may benefit from deescalated therapy for patients with absent ATM kinase activity and near-standard therapy regimens for those with residual kinase activity.
Collapse
Affiliation(s)
- Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Shiloh
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Jan L C Loeffen
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, and Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Andre Baruchel
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré, Paris, France
| | - Thomas Lehrnbecher
- Division of Hematology, Oncology and Hemostaseology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Oussama Abla
- Division of Hematology/Oncology, Hospital For Sick Children, Toronto, ON, Canada
| | - Nira Arad-Cohen
- Department of Pediatric Hemato-Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Itziar Astigarraga
- Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Pediatric Oncology Group, Bizkaia Health Research Institute, Pediatric Department, Universidad del País Vasco UPV/EHU, Barakaldo, Spain
| | - Miriam Ben-Harosh
- Department of Pediatric Hematology-Oncology, Soroka Medical Center, Beer Sheva, Israel
| | - Nicole Bodmer
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Francesco Ceppi
- Division of Pediatrics, Pediatric Hematology-Oncology Unit, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Liliia Chugaeva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Luciano Dalla Pozza
- Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Stephane Ducassou
- Department of Pediatric Hemato-Oncology, CHU Bordeaux, Bordeaux, France
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roula Farah
- Department of Pediatrics and Pediatric Hematology/Oncology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Julieta Hoveyan
- Pediatric Cancer and Blood Disorders Center of Armenia, Yeolyan Hematology and Oncology Center and Immune Oncology Research Institute, Yerevan, Armenia
| | - Elad Jacoby
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Janez Jazbec
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Faculty of Medicine, University of Ljubljan, Ljubljana, Slovenia
| | - Stefanie Junk
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Alexandra Kolenova
- Department of Pediatric Hematology and Oncology, National Institute of Children's Diseases, Comenius University Children's Hospital, Bratislava, Slovakia
| | - Jelena Lazic
- Department of Hematology and Oncology, University Children's Hospital, School of Medicine University of Belgrade, Belgrade, Serbia
| | - Luca Lo Nigro
- Azienda Policlinico, San Marco, Center of Pediatric Hematology Oncology, Catania, Italy
| | - Nizar Mahlaoui
- Immuno-Haematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, French National Reference Center for Primary Immune Deficiencies, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lane Miller
- Cancers and Blood Disorders Program, Children's Minnesota, Minneapolis, MN
| | - Vassilios Papadakis
- Department of Pediatric Hematology-Oncology, Agia Sofia Children's Hospital, Athens, Greece
| | - Lucie Pecheux
- Department of Pediatric Hematology-Oncology, Stollery Children Hospital, University of Alberta, Edmonton, Canada
| | - Marta Pillon
- Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
| | - Ifat Sarouk
- Pediatric Pulmonology Unit and Ataxia Telangiectasia Center, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Heraklion Crete, Greece
| | - Marion Strullu
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré, Paris, France
| | - Thai Hoa Tran
- Division of Pediatric Hematology Oncology, CHU Sainte Justine, Montreal, QC, Canada
| | - Marek Ussowicz
- Clinical Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Wroclaw, Poland
| | - Jaime Verdu-Amoros
- Department of Pediatric Hematology and Oncology, University Hospital Valencia, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Anna Wakulinska
- Department of Oncology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, Lublin, Poland
| | | | - A Malcolm Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Shai Izraeli
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Ronit Nirel
- Department of Statistics and Data Science, Hebrew University, Jerusalem, Israel
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
- St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
8
|
Xiang Z, Hou G, Zheng S, Lu M, Li T, Lin Q, Liu H, Wang X, Guan T, Wei Y, Zhang W, Zhang Y, Liu C, Li L, Lei QY, Hu Y. ER-associated degradation ligase HRD1 links ER stress to DNA damage repair by modulating the activity of DNA-PKcs. Proc Natl Acad Sci U S A 2024; 121:e2403038121. [PMID: 39226359 PMCID: PMC11406283 DOI: 10.1073/pnas.2403038121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/02/2024] [Indexed: 09/05/2024] Open
Abstract
Proteostasis and genomic integrity are respectively regulated by the endoplasmic reticulum-associated protein degradation (ERAD) and DNA damage repair signaling pathways, with both pathways essential for carcinogenesis and drug resistance. How these signaling pathways coordinate with each other remains unexplored. We found that ER stress specifically induces the DNA-PKcs-regulated nonhomologous end joining (NHEJ) pathway to amend DNA damage and impede cell death. Intriguingly, sustained ER stress rapidly decreased the activity of DNA-PKcs and DNA damage accumulated, facilitating a switch from adaptation to cell death. This DNA-PKcs inactivation was caused by increased KU70/KU80 protein degradation. Unexpectedly, the ERAD ligase HRD1 was found to efficiently destabilize the classic nuclear protein HDAC1 in the cytoplasm, by catalyzing HDAC1's polyubiquitination at lysine 74, at a late stage of ER stress. By abolishing HDAC1-mediated KU70/KU80 deacetylation, HRD1 transmits ER signals to the nucleus. The resulting enhanced KU70/KU80 acetylation provides binding sites for the nuclear E3 ligase TRIM25, resulting in the promotion of polyubiquitination and the degradation of KU70/KU80 proteins. Both in vitro and in vivo cancer models showed that genetic or pharmacological inhibition of HADC1 or DNA-PKcs sensitizes colon cancer cells to ER stress inducers, including the Food and Drug Administration-approved drug celecoxib. The antitumor effects of the combined approach were also observed in patient-derived xenograft models. These findings identify a mechanistic link between ER stress (ERAD) in the cytoplasm and DNA damage (NHEJ) pathways in the nucleus, indicating that combined anticancer strategies may be developed that induce severe ER stress while simultaneously inhibiting KU70/KU80/DNA-PKcs-mediated NHEJ signaling.
Collapse
Affiliation(s)
- Zhiyuan Xiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Guixue Hou
- Beijing Genomics Institute-Shenzhen, Shenzhen518083, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Tianyu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Tianqi Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Yuhan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Wenxin Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Yi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Chaoran Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Li Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin150040, China
| | - Qun-ying Lei
- Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| |
Collapse
|
9
|
Zhu Y, Lee BJ, Fujii S, Jonchhe S, Zhang H, Li A, Wang KJ, Rothenberg E, Modesti M, Zha S. The KU70-SAP domain has an overlapping function with DNA-PKcs in limiting the lateral movement of KU along DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609806. [PMID: 39253422 PMCID: PMC11383278 DOI: 10.1101/2024.08.26.609806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The non-homologous end-joining (NHEJ) pathway is critical for DNA double-strand break repair and is essential for lymphocyte development and maturation. The Ku70/Ku80 heterodimer (KU) binds to DNA ends, initiating NHEJ and recruiting additional factors, including DNA-dependent protein kinase catalytic subunit (DNA-PKcs) that caps the ends and pushes KU inward. The C-terminus of Ku70 in higher eukaryotes includes a flexible linker and a SAP domain, whose physiological role remains poorly understood. To investigate this, we generated a mouse model with knock-in deletion of the SAP domain ( Ku70 ΔSAP/ΔSAP ). Ku70 ΔSAP supports KU stability and its recruitment to DNA damage sites in vivo . In contrast to the growth retardation and immunodeficiency seen in Ku70 -/- mice, Ku70 ΔSAP/ΔSAP mice show no defects in lymphocyte development and maturation. Structural modeling of KU on long dsDNA, but not dsRNA suggests that the SAP domain can bind to an adjacent major groove, where it can limit KU's rotation and lateral movement along the dsDNA. Accordingly, in the absence of DNA-PKcs that caps the ends, Ku70 ΔSAP fails to support stable DNA damage-induced KU foci. In DNA-PKcs -/- mice, Ku70 ΔSAP abrogates the leaky T cell development and reduces both the qualitative and quantitative aspects of residual V(D)J recombination. In the absence of DNA-PKcs, purified Ku70 ΔSAP has reduced affinity for DNA ends and dissociates more readily at lower concentration and accumulated as multimers at high concentration. These findings revealed a physiological role of the SAP domain in NHEJ by restricting KU rotation and lateral movement on DNA that is largely masked by DNA-PKcs. Highlight Ku70 is a conserved non-homologous end-joining (NHEJ) factor. Using genetically engineered mouse models and biochemical analyses, our study uncovered a previously unappreciated role of the C-terminal SAP domain of Ku70 in limiting the lateral movement of KU on DNA ends and ensuring end protection. The presence of DNA-PKcs partially masks this role of the SAP domain.
Collapse
|
10
|
Wang J, Sadeghi CA, Le LV, Le Bouteiller M, Frock RL. ATM and 53BP1 regulate alternative end joining-mediated V(D)J recombination. SCIENCE ADVANCES 2024; 10:eadn4682. [PMID: 39083600 PMCID: PMC11290492 DOI: 10.1126/sciadv.adn4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
G0-G1 phase alternative end joining (A-EJ) is a recently defined mutagenic pathway characterized by resected deletion and translocation joints that are predominantly direct and are distinguished from A-EJ in cycling cells that rely much more on microhomology-mediated end joining (MMEJ). Using chemical and genetic approaches, we systematically evaluate potential A-EJ factors and DNA damage response (DDR) genes to support this mechanism by mapping the repair fates of RAG1/2-initiated double-strand breaks in the context of Igκ locus V-J recombination and chromosome translocation. Our findings highlight a polymerase theta-independent Parp1-XRCC1/LigIII axis as central A-EJ components, supported by 53BP1 in the context of an Ataxia-telangiectasia mutated (ATM)-activated DDR. Mechanistically, we demonstrate varied changes in short-range resection, MMEJ, and translocation, imposed by compromising specific DDR activities, which include polymerase alpha, Ataxia-telangiectasia and Rad3-related (ATR), DNA2, and Mre11. This study advances our understanding of DNA damage repair within the 53BP1 regulatory domain and the RAG1/2 postcleavage complex.
Collapse
Affiliation(s)
- Jinglong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheyenne A. Sadeghi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Long V. Le
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marie Le Bouteiller
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
11
|
Marshall S, Navarro MVAS, Ascenҫão CFR, Dibitetto D, Smolka MB. In-depth mapping of DNA-PKcs signaling uncovers noncanonical features of its kinase specificity. J Biol Chem 2024; 300:107513. [PMID: 38945450 PMCID: PMC11327452 DOI: 10.1016/j.jbc.2024.107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
DNA-PKcs is a DNA damage sensor kinase with established roles in DNA double-strand break repair via nonhomologous end joining. Recent studies have revealed additional roles of DNA-PKcs in the regulation of transcription, translation, and DNA replication. However, the substrates through which DNA-PKcs regulates these processes remain largely undefined. Here, we utilized quantitative phosphoproteomics to generate a high coverage map of DNA-PKcs signaling in response to ionizing radiation and mapped its interplay with the ATM kinase. Beyond the detection of the canonical S/T-Q phosphorylation motif, we uncovered a noncanonical mode of DNA-PKcs signaling targeting S/T-ψ-D/E motifs. Sequence and structural analyses of the DNA-PKcs substrate recognition pocket revealed unique features compared to closely related phosphatidylinositol 3-kinase-related kinases that may explain its broader substrate preference. These findings expand the repertoire of DNA-PKcs and ATM substrates while establishing a novel preferential phosphorylation motif for DNA-PKcs.
Collapse
Affiliation(s)
- Shannon Marshall
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Marcos V A S Navarro
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA; IFSC Institute of Physics of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil.
| | - Carolline F R Ascenҫão
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Diego Dibitetto
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA; Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
12
|
Wang X, Deng L, Ping L, Shi Y, Wang H, Feng F, Leng X, Tang Y, Xie Y, Ying Z, Liu W, Zhu J, Song Y. Germline variants of DNA repair and immune genes in lymphoma from lymphoma-cancer families. Int J Cancer 2024; 155:93-103. [PMID: 38446987 DOI: 10.1002/ijc.34892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
The genetic predisposition to lymphoma is not fully understood. We identified 13 lymphoma-cancer families (2011-2021), in which 27 individuals developed lymphomas and 26 individuals had cancers. Notably, male is the predominant gender in lymphoma patients, whereas female is the predominant gender in cancer patients (p = .019; OR = 4.72, 95% CI, 1.30-14.33). We collected samples from 18 lymphoma patients, and detected germline variants through exome sequencing. We found that germline protein truncating variants (PTVs) were enriched in DNA repair and immune genes. Totally, we identified 31 heterozygous germline mutations (including 12 PTVs) of 25 DNA repair genes and 19 heterozygous germline variants (including 7 PTVs) of 14 immune genes. PTVs of ATM and PNKP were found in two families, respectively. We performed whole genome sequencing of diffuse large B cell lymphomas (DLBCLs), translocations at IGH locus and activation of oncogenes (BCL6 and MYC) were verified, and homologous recombination deficiency was detected. In DLBCLs with germline PTVs of ATM, deletion and insertion in CD58 were further revealed. Thus, in lymphoma-cancer families, we identified germline defects of both DNA repair and immune genes in lymphoma patients.
Collapse
Affiliation(s)
- Xiaogan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lijuan Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lingyan Ping
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yunfei Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Haojie Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Feier Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin Leng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yahan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhitao Ying
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weiping Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
13
|
Rozenbaum M, Fluss R, Marcu-Malina V, Sarouk I, Meir A, Elitzur S, Zinger T, Jacob-Hirsch J, Saar EG, Rechavi G, Jacoby E. Genotoxicity Associated with Retroviral CAR Transduction of ATM-Deficient T Cells. Blood Cancer Discov 2024; 5:267-275. [PMID: 38747501 PMCID: PMC11215369 DOI: 10.1158/2643-3230.bcd-23-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024] Open
Abstract
Somatic variants in DNA damage response genes such as ATM are widespread in hematologic malignancies. ATM protein is essential for double-strand DNA break repair. Germline ATM deficiencies underlie ataxia-telangiectasia (A-T), a disease manifested by radiosensitivity, immunodeficiency, and predisposition to lymphoid malignancies. Patients with A-T diagnosed with malignancies have poor tolerance to chemotherapy or radiation. In this study, we investigated chimeric antigen receptor (CAR) T cells using primary T cells from patients with A-T (ATM-/-), heterozygote donors (ATM+/-), and healthy donors. ATM-/- T cells proliferate and can be successfully transduced with CARs, though functional impairment of ATM-/- CAR T-cells was observed. Retroviral transduction of the CAR in ATM-/- T cells resulted in high rates of chromosomal lesions at CAR insertion sites, as confirmed by next-generation long-read sequencing. This work suggests that ATM is essential to preserve genome integrity of CAR T-cells during retroviral manufacturing, and its lack poses a risk of chromosomal translocations and potential leukemogenicity. Significance: CAR T-cells are clinically approved genetically modified cells, but the control of genome integrity remains largely uncharacterized. This study demonstrates that ATM deficiency marginally impairs CAR T-cell function and results in high rates of chromosomal aberrations after retroviral transduction, which may be of concern in patients with DNA repair deficiencies.
Collapse
Affiliation(s)
- Meir Rozenbaum
- Cell Therapy Lab, Sheba Medical Center, Tel Hashomer, Israel.
| | - Reut Fluss
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel.
- Wohl Centre for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel.
| | | | - Ifat Sarouk
- National A-T Center, Pediatric Pulmonology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Israel.
| | - Amilia Meir
- Cell Therapy Lab, Sheba Medical Center, Tel Hashomer, Israel.
| | - Sarah Elitzur
- Department of Pediatric Hematology-Oncology, Schneider Children’s Medical Center, Petah Tikva, Israel.
- Faculty of Medicinal & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Tal Zinger
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel.
| | - Jasmine Jacob-Hirsch
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel.
- Wohl Centre for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel.
| | - Efrat G. Saar
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel.
- Wohl Centre for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel.
| | - Gideon Rechavi
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel.
- Wohl Centre for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel.
- Faculty of Medicinal & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Elad Jacoby
- Cell Therapy Lab, Sheba Medical Center, Tel Hashomer, Israel.
- Faculty of Medicinal & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Israel.
| |
Collapse
|
14
|
Chen Z, Wang X, Gao X, Arslanovic N, Chen K, Tyler J. Transcriptional inhibition after irradiation occurs preferentially at highly expressed genes in a manner dependent on cell cycle progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567799. [PMID: 38045243 PMCID: PMC10690177 DOI: 10.1101/2023.11.20.567799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In response to DNA double strand damage, ongoing transcription is inhibited to facilitate accurate DNA repair while transcriptional recovery occurs after DNA repair is complete. However, the mechanisms at play and identity of the transcripts being regulated in this manner are unclear. In contrast to the situation following UV damage, we found that transcriptional recovery after ionizing radiation (IR) occurs in a manner independent of the HIRA histone chaperone. Sequencing of the nascent transcripts identified a programmed transcriptional response, where certain transcripts and pathways are rapidly downregulated after IR, while other transcripts and pathways are upregulated. Specifically, most of the loss of nascent transcripts occurring after IR is due to inhibition of transcriptional initiation of the highly transcribed histone genes and the rDNA. To identify factors responsible for transcriptional inhibition after IR in an unbiased manner, we performed a whole genome gRNA library CRISPR / Cas9 screen. Many of the top hits in our screen were factors required for protein neddylation. However, at short times after inhibition of neddylation, transcriptional inhibition still occurred after IR, even though neddylation was effectively inhibited. Persistent inhibition of neddylation blocked transcriptional inhibition after IR, and it also leads to cell cycle arrest. Indeed, we uncovered that many inhibitors and conditions that lead to cell cycle arrest in G1 or G2 phase also prevent transcriptional inhibition after IR. As such, it appears that transcriptional inhibition after IR occurs preferentially at highly expressed genes in cycling cells.
Collapse
Affiliation(s)
- Zulong Chen
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| | - Xin Wang
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Arslanovic
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Tyler
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| |
Collapse
|
15
|
Zhang Y, Li X, Ba Z, Lou J, Gaertner KE, Zhu T, Lin X, Ye AY, Alt FW, Hu H. Molecular basis for differential Igk versus Igh V(D)J joining mechanisms. Nature 2024; 630:189-197. [PMID: 38811728 PMCID: PMC11153149 DOI: 10.1038/s41586-024-07477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
In developing B cells, V(D)J recombination assembles exons encoding IgH and Igκ variable regions from hundreds of gene segments clustered across Igh and Igk loci. V, D and J gene segments are flanked by conserved recombination signal sequences (RSSs) that target RAG endonuclease1. RAG orchestrates Igh V(D)J recombination upon capturing a JH-RSS within the JH-RSS-based recombination centre1-3 (RC). JH-RSS orientation programmes RAG to scan upstream D- and VH-containing chromatin that is presented in a linear manner by cohesin-mediated loop extrusion4-7. During Igh scanning, RAG robustly utilizes only D-RSSs or VH-RSSs in convergent (deletional) orientation with JH-RSSs4-7. However, for Vκ-to-Jκ joining, RAG utilizes Vκ-RSSs from deletional- and inversional-oriented clusters8, inconsistent with linear scanning2. Here we characterize the Vκ-to-Jκ joining mechanism. Igk undergoes robust primary and secondary rearrangements9,10, which confounds scanning assays. We therefore engineered cells to undergo only primary Vκ-to-Jκ rearrangements and found that RAG scanning from the primary Jκ-RC terminates just 8 kb upstream within the CTCF-site-based Sis element11. Whereas Sis and the Jκ-RC barely interacted with the Vκ locus, the CTCF-site-based Cer element12 4 kb upstream of Sis interacted with various loop extrusion impediments across the locus. Similar to VH locus inversion7, DJH inversion abrogated VH-to-DJH joining; yet Vκ locus or Jκ inversion allowed robust Vκ-to-Jκ joining. Together, these experiments implicated loop extrusion in bringing Vκ segments near Cer for short-range diffusion-mediated capture by RC-based RAG. To identify key mechanistic elements for diffusional V(D)J recombination in Igk versus Igh, we assayed Vκ-to-JH and D-to-Jκ rearrangements in hybrid Igh-Igk loci generated by targeted chromosomal translocations, and pinpointed remarkably strong Vκ and Jκ RSSs. Indeed, RSS replacements in hybrid or normal Igk and Igh loci confirmed the ability of Igk-RSSs to promote robust diffusional joining compared with Igh-RSSs. We propose that Igk evolved strong RSSs to mediate diffusional Vκ-to-Jκ joining, whereas Igh evolved weaker RSSs requisite for modulating VH joining by RAG-scanning impediments.
Collapse
Affiliation(s)
- Yiwen Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Xiang Li
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Zhaoqing Ba
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- National Institute of Biological Sciences, Beijing, China
| | - Jiangman Lou
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Copenhagen University, Copenhagen, Denmark
| | - K Elyse Gaertner
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Georgetown University, Washington, DC, USA
| | - Tammie Zhu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Xin Lin
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Adam Yongxin Ye
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Hongli Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Ferrão Maciel-Fiuza M, Rengel BD, Wachholz GE, do Amaral Gomes J, de Oliveira MR, Kowalski TW, Roehe PM, Luiz Vianna FS, Schüler-Faccini L, Mayer FQ, Varela APM, Fraga LR. New candidate genes potentially involved in Zika virus teratogenesis. Comput Biol Med 2024; 173:108259. [PMID: 38522248 DOI: 10.1016/j.compbiomed.2024.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Despite efforts to elucidate Zika virus (ZIKV) teratogenesis, still several issues remain unresolved, particularly on the molecular mechanisms behind the pathogenesis of Congenital Zika Syndrome (CZS). To answer this question, we used bioinformatics tools, animal experiments and human gene expression analysis to investigate genes related to brain development potentially involved in CZS. Searches in databases for genes related to brain development and CZS were performed, and a protein interaction network was created. The expression of these genes was analyzed in a CZS animal model and secondary gene expression analysis (DGE) was performed in human cells exposed to ZIKV. A total of 2610 genes were identified in the databases, of which 1013 were connected. By applying centrality statistics of the global network, 36 candidate genes were identified, which, after selection resulted in nine genes. Gene expression analysis revealed distinctive expression patterns for PRKDC, PCNA, ATM, SMC3 as well as for FGF8 and SHH in the CZS model. Furthermore, DGE analysis altered expression of ATM, PRKDC, PCNA. In conclusion, systems biology are helpful tools to identify candidate genes to be validated in vitro and in vivo. PRKDC, PCNA, ATM, SMC3, FGF8 and SHH have altered expression in ZIKV-induced brain malformations.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriela Elis Wachholz
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maikel Rosa de Oliveira
- Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Bioinformatics Core, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Paulo Michel Roehe
- Department of Microbiology, Immunology and Parasitology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fabiana Quoos Mayer
- Graduate Program in Molecular and Cellular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Muterle Varela
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| | - Lucas Rosa Fraga
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
17
|
Takada S, Weitering TJ, van Os NJH, Du L, Pico-Knijnenburg I, Kuipers TB, Mei H, Salzer E, Willemsen MAAP, Weemaes CMR, Pan-Hammarstrom Q, van der Burg M. Causative mechanisms and clinical impact of immunoglobulin deficiencies in ataxia telangiectasia. J Allergy Clin Immunol 2024; 153:1392-1405. [PMID: 38280573 DOI: 10.1016/j.jaci.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Ataxia telangiectasia (AT) is characterized by cerebellar ataxia, telangiectasia, immunodeficiency, and increased cancer susceptibility and is caused by mutations in the ataxia telangiectasia mutated (ATM) gene. The immunodeficiency comprises predominantly immunoglobulin deficiency, mainly IgA and IgG2, with a variable severity. So far, the exact mechanisms underlying the immunoglobulin deficiency, especially the variable severity, remain unelucidated. OBJECTIVE We characterized the clinical impact of immunoglobulin deficiencies in AT and elucidated their mechanisms in AT. METHODS We analyzed long-term immunoglobulin levels, immunophenotyping, and survival time in our cohort (n = 87, median age 16 years; maximum 64 years). Somatic hypermutation and class-switch junctions in B cells were analyzed by next-generation sequencing. Furthermore, an in vitro class-switching induction assay was performed, followed by RNA sequencing, to assess the effect of ATM inhibition. RESULTS Only the hyper-IgM AT phenotype significantly worsened survival time, while IgA or IgG2 deficiencies did not. The immunoglobulin levels showed predominantly decreased IgG2 and IgA. Moreover, flow cytometric analysis demonstrated reduced naive B and T lymphocytes and a deficiency of class-switched IgG2 and IgA memory B cells. Somatic hypermutation frequencies were lowered in IgA- and IgG2-deficient patients, indicating hampered germinal center reaction. In addition, the microhomology of switch junctions was elongated, suggesting alternative end joining during class-switch DNA repair. The in vitro class switching and proliferation were negatively affected by ATM inhibition. RNA sequencing analysis showed that ATM inhibitor influenced expression of germinal center reaction genes. CONCLUSION Immunoglobulin deficiency in AT is caused by disturbed development of class-switched memory B cells. ATM deficiency affects both germinal center reaction and choice of DNA-repair pathway in class switching.
Collapse
Affiliation(s)
- Sanami Takada
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas J Weitering
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke J H van Os
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas B Kuipers
- Sequencing Analysis Support Core Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth Salzer
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Michèl A A P Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corry M R Weemaes
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Qiang Pan-Hammarstrom
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Mathias B, O'Leary D, Saucier N, Ahmad F, White LS, Russell L, Shinawi M, Smith MJ, Abraham RS, Cooper MA, Kitcharoensakkul M, Green AM, Bednarski JJ. MYSM1 attenuates DNA damage signals triggered by physiologic and genotoxic DNA breaks. J Allergy Clin Immunol 2024; 153:1113-1124.e7. [PMID: 38065233 PMCID: PMC11417613 DOI: 10.1016/j.jaci.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/31/2023]
Abstract
BACKGROUND Patients with deleterious variants in MYSM1 have an immune deficiency characterized by B-cell lymphopenia, hypogammaglobulinemia, and increased radiosensitivity. MYSM1 is a histone deubiquitinase with established activity in regulating gene expression. MYSM1 also localizes to sites of DNA injury but its function in cellular responses to DNA breaks has not been elucidated. OBJECTIVES This study sought to determine the activity of MYSM1 in regulating DNA damage responses (DDRs) to DNA double-stranded breaks (DSBs) generated during immunoglobulin receptor gene (Ig) recombination and by ionizing radiation. METHODS MYSM1-deficient pre- and non-B cells were used to determine the role of MYSM1 in DSB generation, DSB repair, and termination of DDRs. RESULTS Genetic testing in a newborn with abnormal screen for severe combined immune deficiency, T-cell lymphopenia, and near absence of B cells identified a novel splice variant in MYSM1 that results in nearly absent protein expression. Radiosensitivity testing in patient's peripheral blood lymphocytes showed constitutive γH2AX, a marker of DNA damage, in B cells in the absence of irradiation, suggesting a role for MYSM1 in response to DSBs generated during Ig recombination. Suppression of MYSM1 in pre-B cells did not alter generation or repair of Ig DSBs. Rather, loss of MYSM1 resulted in persistent DNA damage foci and prolonged DDR signaling. Loss of MYSM1 also led to protracted DDRs in U2OS cells with irradiation induced DSBs. CONCLUSIONS MYSM1 regulates termination of DNA damage responses but does not function in DNA break generation and repair.
Collapse
Affiliation(s)
- Brendan Mathias
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - David O'Leary
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Nermina Saucier
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Faiz Ahmad
- Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Lynn S White
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Le'Mark Russell
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Matthew J Smith
- Division of Hematology Research, Mayo Clinic, Rochester, Minn
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan A Cooper
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | | | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St Louis, Mo.
| |
Collapse
|
19
|
Castiello MC, Brandas C, Ferrari S, Porcellini S, Sacchetti N, Canarutto D, Draghici E, Merelli I, Barcella M, Pelosi G, Vavassori V, Varesi A, Jacob A, Scala S, Basso Ricci L, Paulis M, Strina D, Di Verniere M, Sergi Sergi L, Serafini M, Holland SM, Bergerson JRE, De Ravin SS, Malech HL, Pala F, Bosticardo M, Brombin C, Cugnata F, Calzoni E, Crooks GM, Notarangelo LD, Genovese P, Naldini L, Villa A. Exonic knockout and knockin gene editing in hematopoietic stem and progenitor cells rescues RAG1 immunodeficiency. Sci Transl Med 2024; 16:eadh8162. [PMID: 38324638 PMCID: PMC11149094 DOI: 10.1126/scitranslmed.adh8162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Chiara Brandas
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Samuele Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Simona Porcellini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Nicolò Sacchetti
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Daniele Canarutto
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ivan Merelli
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Matteo Barcella
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Gabriele Pelosi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luca Basso Ricci
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianna Paulis
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Dario Strina
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Lucia Sergi Sergi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marta Serafini
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza (MI) 20900, Italy
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Enrica Calzoni
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Pietro Genovese
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Luigi Naldini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| |
Collapse
|
20
|
Marshall S, Navarro MV, Ascenҫão CF, Smolka MB. IN-DEPTH MAPPING OF DNA-PKcs SIGNALING UNCOVERS CONSERVED FEATURES OF ITS KINASE SPECIFICITY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576037. [PMID: 38293078 PMCID: PMC10827184 DOI: 10.1101/2024.01.17.576037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
DNA-PKcs is a DNA damage sensor kinase with established roles in DNA double-strand break repair via non-homologous end joining. Recent studies have revealed additional roles of DNA-PKcs in the regulation of transcription, translation and DNA replication. However, the substrates through which DNA-PKcs regulates these processes remain largely undefined. Here we utilized quantitative phosphoproteomics to generate a high coverage map of DNA-PKcs signaling in response to ionizing radiation and mapped its interplay with the ATM kinase. Beyond the detection of the canonical S/T-Q phosphorylation motif, we uncovered a non-canonical mode of DNA-PKcs signaling targeting S/T-ψ-D/E motifs. Cross-species analysis in mouse pre-B and human HCT116 cell lines revealed splicing factors and transcriptional regulators phosphorylated at this novel motif, several of which contain SAP domains. These findings expand the list of DNA-PKcs and ATM substrates and establish a novel preferential phosphorylation motif for DNA-PKcs that connects it to proteins involved in nucleotide processes and interactions.
Collapse
Affiliation(s)
- Shannon Marshall
- 1. Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marcos V.A.S. Navarro
- 1. Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- 2. IFSC Institute of Physics of São Carlos, University of São Paulo, São Carlos - SP, 13566-590, Brazil
| | - Carolline F.R. Ascenҫão
- 1. Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marcus B. Smolka
- 1. Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Sala L, Kumar M, Prajapat M, Chandrasekhar S, Cosby RL, La Rocca G, Macfarlan TS, Awasthi P, Chari R, Kruhlak M, Vidigal JA. AGO2 silences mobile transposons in the nucleus of quiescent cells. Nat Struct Mol Biol 2023; 30:1985-1995. [PMID: 37985687 DOI: 10.1038/s41594-023-01151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Argonaute 2 (AGO2) is a cytoplasmic component of the miRNA pathway, with essential roles in development and disease. Yet little is known about its regulation in vivo. Here we show that in quiescent mouse splenocytes, AGO2 localizes almost exclusively to the nucleus. AGO2 subcellular localization is modulated by the Pi3K-AKT-mTOR pathway, a well-established regulator of quiescence. Signaling through this pathway in proliferating cells promotes AGO2 cytoplasmic accumulation, at least in part by stimulating the expression of TNRC6, an essential AGO2 binding partner in the miRNA pathway. In quiescent cells in which mTOR signaling is low, AGO2 accumulates in the nucleus, where it binds to young mobile transposons co-transcriptionally to repress their expression via its catalytic domain. Our data point to an essential but previously unrecognized nuclear role for AGO2 during quiescence as part of a genome-defense system against young mobile elements and provide evidence of RNA interference in the soma of mammals.
Collapse
Affiliation(s)
- Laura Sala
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Manish Kumar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Mahendra Prajapat
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Srividya Chandrasekhar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Rachel L Cosby
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
- The National Institute for General Medical Sciences, The National Institutes of Health, Bethesda, MD, USA
| | - Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, The National Institutes of Health, Frederick, MD, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, The National Institutes of Health, Frederick, MD, USA
| | - Michael Kruhlak
- CCR Confocal Microscopy Core Facility, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Kabrani E, Saha T, Di Virgilio M. DNA repair and antibody diversification: the 53BP1 paradigm. Trends Immunol 2023; 44:782-791. [PMID: 37640588 DOI: 10.1016/j.it.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.
Collapse
Affiliation(s)
- Eleni Kabrani
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Freie Universität Berlin, Berlin 14195, Germany
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
23
|
Cavone F, Cappelli S, Bonuccelli A, D’Elios S, Costagliola G, Peroni D, Orsini A, Consolini R. Ataxia Telangiectasia Arising as Immunodeficiency: The Intriguing Differential Diagnosis. J Clin Med 2023; 12:6041. [PMID: 37762981 PMCID: PMC10531840 DOI: 10.3390/jcm12186041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Ataxia telangiectasia (AT) is a rare disease characterized by the early onset and slow progression of neurodegenerative defects, mainly affecting the cerebellum, associated with immunodeficiency and teleangiectasias. Ataxia is the hallmark of the disease and usually its first manifestation. Overt cerebellar ataxia usually becomes evident between 16 and 18 months of age, after the onset of walking, and is characterized by frequent falls and an ataxic gait with an enlarged base. We report the case of a child who first presented with serious recurrent infectious, without exhibiting neurological symptoms. The patient was initially diagnosed with combined immunodeficiency (CID) of unknown etiology for nearly 3 years, before he was definitively diagnosed with ataxia telangiectasia.
Collapse
Affiliation(s)
- Federica Cavone
- Pediatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.C.); (G.C.); (D.P.)
| | - Susanna Cappelli
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (S.D.)
| | - Alice Bonuccelli
- Section of Pediatric Neurology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (A.B.); (A.O.)
| | - Sofia D’Elios
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (S.D.)
| | - Giorgio Costagliola
- Pediatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.C.); (G.C.); (D.P.)
| | - Diego Peroni
- Pediatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.C.); (G.C.); (D.P.)
| | - Alessandro Orsini
- Section of Pediatric Neurology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (A.B.); (A.O.)
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (S.D.)
| |
Collapse
|
24
|
Liang Z, Zhao L, Ye AY, Lin SG, Zhang Y, Guo C, Dai HQ, Ba Z, Alt FW. Contribution of the IGCR1 regulatory element and the 3' Igh CTCF-binding elements to regulation of Igh V(D)J recombination. Proc Natl Acad Sci U S A 2023; 120:e2306564120. [PMID: 37339228 PMCID: PMC10293834 DOI: 10.1073/pnas.2306564120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023] Open
Abstract
Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from VH, D, and JH gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a JH-based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to JHs to form a DJH-RC. Igh has a provocative number and organization of CTCF-binding elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the VH and D/JH domains, over 100 CBEs across the VH domain convergent to CBE1, and 10 clustered 3'Igh-CBEs convergent to CBE2 and VH CBEs. IGCR1 CBEs segregate D/JH and VH domains by impeding loop extrusion-mediated RAG-scanning. Downregulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJH-RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3'Igh-CBEs in regulating RAG-scanning and elucidate the mechanism of the ordered transition from D-to-JH to VH-to-DJH recombination, we tested effects of inverting and/or deleting IGCR1 or 3'Igh-CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3'Igh-CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL downregulation mechanism in progenitor-B cells as opposed to a strict developmental switch.
Collapse
Affiliation(s)
- Zhuoyi Liang
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Lijuan Zhao
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Adam Yongxin Ye
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Sherry G. Lin
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Yiwen Zhang
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Chunguang Guo
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Hai-Qiang Dai
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Zhaoqing Ba
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Frederick W. Alt
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
25
|
Liang Z, Zhao L, Yongxin Ye A, Lin SG, Zhang Y, Guo C, Dai HQ, Ba Z, Alt FW. Contribution of the IGCR1 regulatory element and the 3 'Igh CBEs to Regulation of Igh V(D)J Recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537836. [PMID: 37163018 PMCID: PMC10168220 DOI: 10.1101/2023.04.21.537836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from V H , D, and J H gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a J H -based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to J H s to form a DJ H -RC. Igh has a provocative number and organization of CTCF-binding-elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the V H and D/J H domains, over 100 CBEs across the V H domain convergent to CBE1, and 10 clustered 3' Igh -CBEs convergent to CBE2 and V H CBEs. IGCR1 CBEs segregate D/J H and V H domains by impeding loop extrusion-mediated RAG-scanning. Down-regulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJ H -RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3' Igh -CBEs in regulating RAG-scanning and elucidate the mechanism of the "ordered" transition from D-to-J H to V H -to-DJ H recombination, we tested effects of deleting or inverting IGCR1 or 3' Igh -CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3' Igh -CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL down-regulation mechanism in progenitor B cells as opposed to a strict developmental switch. SIGNIFICANCE STATEMENT To counteract diverse pathogens, vertebrates evolved adaptive immunity to generate diverse antibody repertoires through a B lymphocyte-specific somatic gene rearrangement process termed V(D)J recombination. Tight regulation of the V(D)J recombination process is vital to generating antibody diversity and preventing off-target activities that can predispose the oncogenic translocations. Recent studies have demonstrated V(D)J rearrangement is driven by cohesin-mediated chromatin loop extrusion, a process that establishes genomic loop domains by extruding chromatin, predominantly, between convergently-oriented CTCF looping factor-binding elements (CBEs). By deleting and inverting CBEs within a critical antibody heavy chain gene locus developmental control region and a loop extrusion chromatin-anchor at the downstream end of this locus, we reveal how these elements developmentally contribute to generation of diverse antibody repertoires.
Collapse
|
26
|
Bhat KH, Priyadarshi S, Naiyer S, Qu X, Farooq H, Kleiman E, Xu J, Lei X, Cantillo JF, Wuerffel R, Baumgarth N, Liang J, Feeney AJ, Kenter AL. An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation. Nat Commun 2023; 14:1225. [PMID: 36869028 PMCID: PMC9984487 DOI: 10.1038/s41467-023-36414-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023] Open
Abstract
The mouse Igh locus is organized into a developmentally regulated topologically associated domain (TAD) that is divided into subTADs. Here we identify a series of distal VH enhancers (EVHs) that collaborate to configure the locus. EVHs engage in a network of long-range interactions that interconnect the subTADs and the recombination center at the DHJH gene cluster. Deletion of EVH1 reduces V gene rearrangement in its vicinity and alters discrete chromatin loops and higher order locus conformation. Reduction in the rearrangement of the VH11 gene used in anti-PtC responses is a likely cause of the observed reduced splenic B1 B cell compartment. EVH1 appears to block long-range loop extrusion that in turn contributes to locus contraction and determines the proximity of distant VH genes to the recombination center. EVH1 is a critical architectural and regulatory element that coordinates chromatin conformational states that favor V(D)J rearrangement.
Collapse
Affiliation(s)
- Khalid H Bhat
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- SKUAST Kashmir, Division of Basic Science and Humanities, Faculty of Agriculture, Wadura Sopore-193201, Wadoora, India
| | - Saurabh Priyadarshi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Sarah Naiyer
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Xinyan Qu
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- Medpace, Cincinnati, Ohio, 45227, USA
| | - Hammad Farooq
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
| | - Eden Kleiman
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
- Crown Bioscience, San Diego, CA, 92127, USA
| | - Jeffery Xu
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
- Brookwood Baptist Health General Surgery Residency, Birmingham, AL, 35211, USA
| | - Xue Lei
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jose F Cantillo
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- Immunotek, S.L. Alcala de Henares, Spain
| | - Robert Wuerffel
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- 10441 Circle Dr. Apt 47C, Oak Lawn, IL, 60453, USA
| | - Nicole Baumgarth
- W. Harry Feinstone Dept. Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
| | - Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA.
| |
Collapse
|
27
|
Sible E, Attaway M, Fiorica G, Michel G, Chaudhuri J, Vuong BQ. Ataxia Telangiectasia Mutated and MSH2 Control Blunt DNA End Joining in Ig Class Switch Recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:369-376. [PMID: 36603026 PMCID: PMC9915862 DOI: 10.4049/jimmunol.2200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Class-switch recombination (CSR) produces secondary Ig isotypes and requires activation-induced cytidine deaminase (AID)-dependent DNA deamination of intronic switch regions within the IgH (Igh) gene locus. Noncanonical repair of deaminated DNA by mismatch repair (MMR) or base excision repair (BER) creates DNA breaks that permit recombination between distal switch regions. Ataxia telangiectasia mutated (ATM)-dependent phosphorylation of AID at serine 38 (pS38-AID) promotes its interaction with apurinic/apyrimidinic endonuclease 1 (APE1), a BER protein, suggesting that ATM regulates CSR through BER. However, pS38-AID may also function in MMR during CSR, although the mechanism remains unknown. To examine whether ATM modulates BER- and/or MMR-dependent CSR, Atm-/- mice were bred to mice deficient for the MMR gene mutS homolog 2 (Msh2). Surprisingly, the predicted Mendelian frequencies of Atm-/-Msh2-/- adult mice were not obtained. To generate ATM and MSH2-deficient B cells, Atm was conditionally deleted on an Msh2-/- background using a floxed ATM allele (Atmf) and B cell-specific Cre recombinase expression (CD23-cre) to produce a deleted ATM allele (AtmD). As compared with AtmD/D and Msh2-/- mice and B cells, AtmD/DMsh2-/- mice and B cells display a reduced CSR phenotype. Interestingly, Sμ-Sγ1 junctions from AtmD/DMsh2-/- B cells that were induced to switch to IgG1 in vitro showed a significant loss of blunt end joins and an increase in insertions as compared with wild-type, AtmD/D, or Msh2-/- B cells. These data indicate that the absence of both ATM and MSH2 blocks nonhomologous end joining, leading to inefficient CSR. We propose a model whereby ATM and MSH2 function cooperatively to regulate end joining during CSR through pS38-AID.
Collapse
Affiliation(s)
- Emily Sible
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Mary Attaway
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Giuseppe Fiorica
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Genesis Michel
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | | | - Bao Q. Vuong
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| |
Collapse
|
28
|
Johnston R, Mathias B, Crowley SJ, Schmidt HA, White LS, Mosammaparast N, Green AM, Bednarski JJ. Nuclease-independent functions of RAG1 direct distinct DNA damage responses in B cells. EMBO Rep 2023; 24:e55429. [PMID: 36382770 PMCID: PMC9827558 DOI: 10.15252/embr.202255429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Developing B cells generate DNA double-stranded breaks (DSBs) to assemble immunoglobulin receptor (Ig) genes necessary for the expression of a mature B cell receptor. These physiologic DSBs are made by the RAG endonuclease, which is comprised of the RAG1 and RAG2 proteins. In pre-B cells, RAG-mediated DSBs activate the ATM kinase to coordinate canonical and non-canonical DNA damage responses (DDR) that trigger DSB repair and B cell developmental signals, respectively. Whether this broad cellular response is distinctive to RAG DSBs is poorly understood. To delineate the factors that direct DDR signaling in B cells, we express a tetracycline-inducible Cas9 nuclease in Rag1-deficient pre-B cells. Both RAG- and Cas9-mediated DSBs at Ig genes activate canonical DDR. In contrast, RAG DSBs, but not Cas9 DSBs, induce the non-canonical DDR-dependent developmental program. This unique response to RAG DSBs is, in part, regulated by non-core regions of RAG1. Thus, B cells trigger distinct cellular responses to RAG DSBs through unique properties of the RAG endonuclease that promotes activation of B cell developmental programs.
Collapse
Affiliation(s)
- Rachel Johnston
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Brendan Mathias
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Stephanie J Crowley
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Haley A Schmidt
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Lynn S White
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Nima Mosammaparast
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | - Abby M Green
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Jeffrey J Bednarski
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
29
|
Hoolehan W, Harris JC, Byrum JN, Simpson DA, Rodgers K. An updated definition of V(D)J recombination signal sequences revealed by high-throughput recombination assays. Nucleic Acids Res 2022; 50:11696-11711. [PMID: 36370096 PMCID: PMC9723617 DOI: 10.1093/nar/gkac1038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
In the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel assay to evaluate V(D)J recombination activity on thousands of RSSs where the 12-RSS heptamer and adjoining spacer region contained randomized sequences. While the consensus heptamer sequence (CACAGTG) was marginally preferred, V(D)J recombination was highly active on a wide range of non-consensus sequences. Select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site were generally preferred. In addition, while different coding flanks and nonamer sequences affected recombination efficiency, the relative dependency on the purine/pyrimidine motifs in the RSS heptamer remained unchanged. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions.
Collapse
Affiliation(s)
- Walker Hoolehan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Justin C Harris
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Destiny A Simpson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karla K Rodgers
- To whom correspondence should be addressed. Tel: +1 405 271 2227 (Ext 61248);
| |
Collapse
|
30
|
The role of chromatin loop extrusion in antibody diversification. Nat Rev Immunol 2022; 22:550-566. [PMID: 35169260 PMCID: PMC9376198 DOI: 10.1038/s41577-022-00679-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Cohesin mediates chromatin loop formation across the genome by extruding chromatin between convergently oriented CTCF-binding elements. Recent studies indicate that cohesin-mediated loop extrusion in developing B cells presents immunoglobulin heavy chain (Igh) variable (V), diversity (D) and joining (J) gene segments to RAG endonuclease through a process referred to as RAG chromatin scanning. RAG initiates V(D)J recombinational joining of these gene segments to generate the large number of different Igh variable region exons that are required for immune responses to diverse pathogens. Antigen-activated mature B cells also use chromatin loop extrusion to mediate the synapsis, breakage and end joining of switch regions flanking Igh constant region exons during class-switch recombination, which allows for the expression of different antibody constant region isotypes that optimize the functions of antigen-specific antibodies to eliminate pathogens. Here, we review recent advances in our understanding of chromatin loop extrusion during V(D)J recombination and class-switch recombination at the Igh locus.
Collapse
|
31
|
Arnovitz S, Mathur P, Tracy M, Mohsin A, Mondal S, Quandt J, Hernandez KM, Khazaie K, Dose M, Emmanuel AO, Gounari F. Tcf-1 promotes genomic instability and T cell transformation in response to aberrant β-catenin activation. Proc Natl Acad Sci U S A 2022; 119:e2201493119. [PMID: 35921443 PMCID: PMC9371646 DOI: 10.1073/pnas.2201493119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms promoting chromosomal translocations of the rearranging receptor loci in leukemia and lymphoma remains incomplete. Here we show that leukemias induced by aberrant activation of β-catenin in thymocytes, which bear recurrent Tcra/Myc-Pvt1 translocations, depend on Tcf-1. The DNA double strand breaks (DSBs) in the Tcra site of the translocation are Rag-generated, whereas the Myc-Pvt1 DSBs are not. Aberrantly activated β-catenin redirects Tcf-1 binding to novel DNA sites to alter chromatin accessibility and down-regulate genome-stability pathways. Impaired homologous recombination (HR) DNA repair and replication checkpoints lead to retention of DSBs that promote translocations and transformation of double-positive (DP) thymocytes. The resulting lymphomas, which resemble human T cell acute lymphoblastic leukemia (T-ALL), are sensitive to PARP inhibitors (PARPis). Our findings indicate that aberrant β-catenin signaling contributes to translocations in thymocytes by guiding Tcf-1 to promote the generation and retention of replication-induced DSBs allowing their coexistence with Rag-generated DSBs. Thus, PARPis could offer therapeutic options in hematologic malignancies with active Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Stephen Arnovitz
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Priya Mathur
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Melissa Tracy
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Azam Mohsin
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Soumi Mondal
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jasmin Quandt
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | | | | | - Marei Dose
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | | | - Fotini Gounari
- Department of Medicine, University of Chicago, Chicago, IL 60637
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259
| |
Collapse
|
32
|
Vincendeau E, Wei W, Zhang X, Planchais C, Yu W, Lenden-Hasse H, Cokelaer T, Pipoli da Fonseca J, Mouquet H, Adams DJ, Alt FW, Jackson SP, Balmus G, Lescale C, Deriano L. SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination. Nat Commun 2022; 13:3707. [PMID: 35764636 PMCID: PMC9240092 DOI: 10.1038/s41467-022-31287-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
SHLD1 is part of the Shieldin (SHLD) complex, which acts downstream of 53BP1 to counteract DNA double-strand break (DSB) end resection and promote DNA repair via non-homologous end-joining (NHEJ). While 53BP1 is essential for immunoglobulin heavy chain class switch recombination (CSR), long-range V(D)J recombination and repair of RAG-induced DSBs in XLF-deficient cells, the function of SHLD during these processes remains elusive. Here we report that SHLD1 is dispensable for lymphocyte development and RAG-mediated V(D)J recombination, even in the absence of XLF. By contrast, SHLD1 is essential for restricting resection at AID-induced DSB ends in both NHEJ-proficient and NHEJ-deficient B cells, providing an end-protection mechanism that permits productive CSR by NHEJ and alternative end-joining. Finally, we show that this SHLD1 function is required for orientation-specific joining of AID-initiated DSBs. Our data thus suggest that 53BP1 promotes V(D)J recombination and CSR through two distinct mechanisms: SHLD-independent synapsis of V(D)J segments and switch regions within chromatin, and SHLD-dependent protection of AID-DSB ends against resection.
Collapse
Affiliation(s)
- Estelle Vincendeau
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France
| | - Wenming Wei
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France
| | - Xuefei Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China
| | - Cyril Planchais
- Institut Pasteur, Université de Paris, INSERM U1222, Laboratory of Humoral Immunology, 75015, Paris, France
| | - Wei Yu
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France
| | - Hélène Lenden-Hasse
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques, 75015, Paris, France
- Institut Pasteur, Hub de Bioinformatique et Biostatistique, Département de Biologie Computationnelle, 75015, Paris, France
| | - Juliana Pipoli da Fonseca
- Institut Pasteur, Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques, 75015, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Université de Paris, INSERM U1222, Laboratory of Humoral Immunology, 75015, Paris, France
| | - David J Adams
- Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen P Jackson
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Chloé Lescale
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France.
| | - Ludovic Deriano
- Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, France.
| |
Collapse
|
33
|
Wu GS, Culberson EJ, Allyn BM, Bassing CH. Poor-Quality Vβ Recombination Signal Sequences and the DNA Damage Response ATM Kinase Collaborate to Establish TCRβ Gene Repertoire and Allelic Exclusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2583-2592. [PMID: 35534211 PMCID: PMC9133172 DOI: 10.4049/jimmunol.2100489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/23/2022] [Indexed: 06/03/2023]
Abstract
The monoallelic expression (allelic exclusion) of diverse lymphocyte Ag receptor genes enables specific immune responses. Allelic exclusion is achieved by asynchronous initiation of V(D)J recombination between alleles and protein encoded by successful rearrangement on the first allele signaling permanent inhibition of V rearrangement on the other allele. The ATM kinase that guides DNA repair and transiently suppresses V(D)J recombination also helps impose allelic exclusion through undetermined mechanisms. At the TCRβ locus, one Vβ gene segment (V31) rearranges only by inversion, whereas all other Vβ segments rearrange by deletion except for rare cases in which they rearrange through inversion following V31 rearrangement. The poor-quality recombination signal sequences (RSSs) of V31 and V2 help establish TCRβ gene repertoire and allelic exclusion by stochastically limiting initiation of Vβ rearrangements before TCRβ protein-signaled permanent silencing of Vβ recombination. We show in this study in mice that ATM functions with these RSSs and the weak V1 RSS to shape TCRβ gene repertoire by restricting their Vβ segments from initiating recombination and hindering aberrant nonfunctional Vβ recombination products, especially during inversional V31 rearrangements. We find that ATM collaborates with the V1 and V2 RSSs to help enforce allelic exclusion by facilitating competition between alleles for initiation and functional completion of rearrangements of these Vβ segments. Our data demonstrate that the fundamental genetic DNA elements that underlie inefficient Vβ recombination cooperate with ATM-mediated rapid DNA damage responses to help establish diversity and allelic exclusion of TCRβ genes.
Collapse
Affiliation(s)
- Glendon S Wu
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erica J Culberson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brittney M Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
34
|
Luo S, Qiao R, Zhang X. DNA Damage Response and Repair in Adaptive Immunity. Front Cell Dev Biol 2022; 10:884873. [PMID: 35663402 PMCID: PMC9157429 DOI: 10.3389/fcell.2022.884873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
The diversification of B-cell receptor (BCR), as well as its secreted product, antibody, is a hallmark of adaptive immunity, which has more specific roles in fighting against pathogens. The antibody diversification is from recombination-activating gene (RAG)-initiated V(D)J recombination, activation-induced cytidine deaminase (AID)-initiated class switch recombination (CSR), and V(D)J exon somatic hypermutation (SHM). The proper repair of RAG- and AID-initiated DNA lesions and double-strand breaks (DSBs) is required for promoting antibody diversification, suppressing genomic instability, and oncogenic translocations. DNA damage response (DDR) factors and DSB end-joining factors are recruited to the RAG- and AID-initiated DNA lesions and DSBs to coordinately resolve them for generating productive recombination products during antibody diversification. Recently, cohesin-mediated loop extrusion is proposed to be the underlying mechanism of V(D)J recombination and CSR, which plays essential roles in promoting the orientation-biased deletional end-joining . Here, we will discuss the mechanism of DNA damage repair in antibody diversification.
Collapse
Affiliation(s)
- Sha Luo
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
- Academy for Advanced Interdisciplinery Studies, Peking University, Beijing, China
| | - Ruolin Qiao
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
- Academy for Advanced Interdisciplinery Studies, Peking University, Beijing, China
| | - Xuefei Zhang
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
| |
Collapse
|
35
|
Fowler FC, Chen BR, Zolnerowich N, Wu W, Pavani R, Paiano J, Peart C, Chen Z, Nussenzweig A, Sleckman BP, Tyler JK. DNA-PK promotes DNA end resection at DNA double strand breaks in G 0 cells. eLife 2022; 11:e74700. [PMID: 35575473 PMCID: PMC9122494 DOI: 10.7554/elife.74700] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination is confined to the S and G2 phases of the cell cycle partly due to 53BP1 antagonizing DNA end resection in G1 phase and non-cycling quiescent (G0) cells where DSBs are predominately repaired by non-homologous end joining (NHEJ). Unexpectedly, we uncovered extensive MRE11- and CtIP-dependent DNA end resection at DSBs in G0 murine and human cells. A whole genome CRISPR/Cas9 screen revealed the DNA-dependent kinase (DNA-PK) complex as a key factor in promoting DNA end resection in G0 cells. In agreement, depletion of FBXL12, which promotes ubiquitylation and removal of the KU70/KU80 subunits of DNA-PK from DSBs, promotes even more extensive resection in G0 cells. In contrast, a requirement for DNA-PK in promoting DNA end resection in proliferating cells at the G1 or G2 phase of the cell cycle was not observed. Our findings establish that DNA-PK uniquely promotes DNA end resection in G0, but not in G1 or G2 phase cells, which has important implications for DNA DSB repair in quiescent cells.
Collapse
Affiliation(s)
- Faith C Fowler
- Weill Cornell Medicine Pharmacology Graduate ProgramNew YorkUnited States
- Weill Cornell Medicine, Department of Pathology and Laboratory MedicineNew YorkUnited States
| | - Bo-Ruei Chen
- Department of Medicine, Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | | | - Wei Wu
- Laboratory of Genome Integrity, National Cancer InstituteBethesdaUnited States
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer InstituteBethesdaUnited States
| | - Jacob Paiano
- Laboratory of Genome Integrity, National Cancer InstituteBethesdaUnited States
| | - Chelsea Peart
- Weill Cornell Medicine, Department of Pathology and Laboratory MedicineNew YorkUnited States
| | - Zulong Chen
- Weill Cornell Medicine, Department of Pathology and Laboratory MedicineNew YorkUnited States
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer InstituteBethesdaUnited States
| | - Barry P Sleckman
- Department of Medicine, Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at BirminghamBirminghamUnited States
| | - Jessica K Tyler
- Weill Cornell Medicine, Department of Pathology and Laboratory MedicineNew YorkUnited States
| |
Collapse
|
36
|
Tang J, Li Z, Wu Q, Irfan M, Li W, Liu X. Role of Paralogue of XRCC4 and XLF in DNA Damage Repair and Cancer Development. Front Immunol 2022; 13:852453. [PMID: 35309348 PMCID: PMC8926060 DOI: 10.3389/fimmu.2022.852453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
Non-homologous end joining (cNHEJ) is a major pathway to repair double-strand breaks (DSBs) in DNA. Several core cNHEJ are involved in the progress of the repair such as KU70 and 80, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Artemis, X-ray repair cross-complementing protein 4 (XRCC4), DNA ligase IV, and XRCC4-like factor (XLF). Recent studies have added a number of new proteins during cNHEJ. One of the newly identified proteins is Paralogue of XRCC4 and XLF (PAXX), which acts as a scaffold that is required to stabilize the KU70/80 heterodimer at DSBs sites and promotes the assembly and/or stability of the cNHEJ machinery. PAXX plays an essential role in lymphocyte development in XLF-deficient background, while XLF/PAXX double-deficient mouse embryo died before birth. Emerging evidence also shows a connection between the expression levels of PAXX and cancer development in human patients, indicating a prognosis role of the protein. This review will summarize and discuss the function of PAXX in DSBs repair and its potential role in cancer development.
Collapse
Affiliation(s)
- Jialin Tang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhongxia Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qiong Wu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Muhammad Irfan
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weili Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiangyu Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Hematology, The Second People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
37
|
Paschold L, Simnica D, Brito RB, Zhang T, Schultheiß C, Dierks C, Binder M. Subclonal heterogeneity sheds light on the transformation trajectory in IGLV3-21 R110 chronic lymphocytic leukemia. Blood Cancer J 2022; 12:49. [PMID: 35354800 PMCID: PMC8969164 DOI: 10.1038/s41408-022-00650-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Donjete Simnica
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ramon Benitez Brito
- Department of Hematology, Inselspital, University of Bern, Bern, Switzerland
| | - Tianjiao Zhang
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christine Dierks
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
38
|
van de Kooij B, van Attikum H. Genomic Reporter Constructs to Monitor Pathway-Specific Repair of DNA Double-Strand Breaks. Front Genet 2022; 12:809832. [PMID: 35237296 PMCID: PMC8884240 DOI: 10.3389/fgene.2021.809832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Repair of DNA Double-Strand Breaks (DSBs) can be error-free or highly mutagenic, depending on which of multiple mechanistically distinct pathways repairs the break. Hence, DSB-repair pathway choice directly affects genome integrity, and it is therefore of interest to understand the parameters that direct repair towards a specific pathway. This has been intensively studied using genomic reporter constructs, in which repair of a site-specific DSB by the pathway of interest generates a quantifiable phenotype, generally the expression of a fluorescent protein. The current developments in genome editing with targetable nucleases like Cas9 have increased reporter usage and accelerated the generation of novel reporter constructs. Considering these recent advances, this review will discuss and compare the available DSB-repair pathway reporters, provide essential considerations to guide reporter choice, and give an outlook on potential future developments.
Collapse
Affiliation(s)
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
39
|
Fang M, Su Z, Abolhassani H, Zhang W, Jiang C, Cheng B, Luo L, Wu J, Wang S, Lin L, Wang X, Wang L, Aghamohammadi A, Li T, Zhang X, Hammarström L, Liu X. T Cell Repertoire Abnormality in Immunodeficiency Patients with DNA Repair and Methylation Defects. J Clin Immunol 2022; 42:375-393. [PMID: 34825286 PMCID: PMC8821531 DOI: 10.1007/s10875-021-01178-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
Both DNA damage response and methylation play a crucial role in antigen receptor recombination by creating a diverse repertoire in developing lymphocytes, but how their defects relate to T cell repertoire and phenotypic heterogeneity of immunodeficiency remains obscure. We studied the TCR repertoire in patients with the mutation in different genes (ATM, DNMT3B, ZBTB24, RAG1, DCLRE1C, and JAK3) and uncovered distinct characteristics of repertoire diversity. We propose that early aberrancies in thymus T cell development predispose to the heterogeneous phenotypes of the immunodeficiency spectrum. Shorter CDR3 lengths in ATM-deficient patients, resulting from a decreased number of nucleotide insertions during VDJ recombination in the pre-selected TCR repertoire, as well as the increment of CDR3 tyrosine residues, lead to the enrichment of pathology-associated TCRs, which may contribute to the phenotypes of ATM deficiency. Furthermore, patients with DNMT3B and ZBTB24 mutations who exhibit discrepant phenotypes present longer CDR3 lengths and reduced number of known pathology-associated TCRs.
Collapse
Affiliation(s)
- Mingyan Fang
- BGI-Shenzhen, Shenzhen, 518083, China
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Zheng Su
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW, Australia
| | - Hassan Abolhassani
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | | | | | - Lihua Luo
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Liya Lin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xie Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tao Li
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Lennart Hammarström
- BGI-Shenzhen, Shenzhen, 518083, China.
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Libri A, Marton T, Deriano L. The (Lack of) DNA Double-Strand Break Repair Pathway Choice During V(D)J Recombination. Front Genet 2022; 12:823943. [PMID: 35082840 PMCID: PMC8785701 DOI: 10.3389/fgene.2021.823943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can be mended via several DNA repair pathways. Multiple factors can influence the choice and the restrictiveness of repair towards a given pathway in order to warrant the maintenance of genome integrity. During V(D)J recombination, RAG-induced DSBs are (almost) exclusively repaired by the non-homologous end-joining (NHEJ) pathway for the benefit of antigen receptor gene diversity. Here, we review the various parameters that constrain repair of RAG-generated DSBs to NHEJ, including the peculiarity of DNA DSB ends generated by the RAG nuclease, the establishment and maintenance of a post-cleavage synaptic complex, and the protection of DNA ends against resection and (micro)homology-directed repair. In this physiological context, we highlight that certain DSBs have limited DNA repair pathway choice options.
Collapse
Affiliation(s)
- Alice Libri
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| | - Timea Marton
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| |
Collapse
|
41
|
Glynn RA, Bassing CH. Nemo-Dependent, ATM-Mediated Signals from RAG DNA Breaks at Igk Feedback Inhibit V κ Recombination to Enforce Igκ Allelic Exclusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:371-383. [PMID: 34965965 PMCID: PMC8756740 DOI: 10.4049/jimmunol.2100696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023]
Abstract
Monoallelic AgR gene expression underlies specific adaptive immune responses. AgR allelic exclusion is achieved by sequential initiation of V(D)J recombination between alleles and resultant protein from one allele signaling to prevent recombination of the other. The ATM kinase, a regulator of the DNA double-strand break (DSB) response, helps enforce allelic exclusion through undetermined mechanisms. ATM promotes repair of RAG1/RAG2 (RAG) endonuclease-induced DSBs and transduces signals from RAG DSBs during Igk gene rearrangement on one allele to transiently inhibit RAG1 protein expression, Igk accessibility, and RAG cleavage of the other allele. Yet, the relative contributions of ATM functions in DSB repair versus signaling to enforce AgR allelic exclusion remain undetermined. In this study, we demonstrate that inactivation in mouse pre-B cells of the NF-κB essential modulator (Nemo) protein, an effector of ATM signaling, diminishes RAG DSB-triggered repression of Rag1/Rag2 transcription and Igk accessibility but does not result in aberrant repair of RAG DSBs like ATM inactivation. We show that Nemo deficiency increases simultaneous biallelic Igk cleavage in pre-B cells and raises the frequency of B cells expressing Igκ proteins from both alleles. In contrast, the incidence of biallelic Igκ expression is not elevated by inactivation of the SpiC transcriptional repressor, which is induced by RAG DSBs in an ATM-dependent manner and suppresses Igk accessibility. Thus, we conclude that Nemo-dependent, ATM-mediated DNA damage signals enforce Igκ allelic exclusion by orchestrating transient repression of RAG expression and feedback inhibition of additional Igk rearrangements in response to RAG cleavage on one Igk allele.
Collapse
Affiliation(s)
- Rebecca A. Glynn
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104,Department of Pathology and Laboratory Medicine, Children’s Hospital of Pennsylvania, Philadelphia, PA 19104
| | - Craig H. Bassing
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104,Department of Pathology and Laboratory Medicine, Children’s Hospital of Pennsylvania, Philadelphia, PA 19104,Corresponding Author: Craig H. Bassing, Ph.D., Children’s Hospital of Philadelphia, 4054 Colket Translational Research Building, 3501 Civic Center Blvd., Philadelphia, PA 19104, 267-426-0311,
| |
Collapse
|
42
|
Abstract
Development of B cells requires the programmed generation and repair of double-stranded DNA breaks in antigen receptor genes. Investigation of the cellular responses to these DNA breaks has established important insights into B cell development and, more broadly, has provided fundamental advances into the molecular mechanisms of DNA damage response pathways. Abelson transformed pre-B cell lines and primary pre-B cell cultures are malleable experimental systems with diverse applications for studying DNA damage responses. This chapter describes methods for generating these cellular systems, inducing and quantifying DSBs, and assessing DNA damage programs.
Collapse
Affiliation(s)
- Rachel Johnston
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lynn S White
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
43
|
Chen BR, Sleckman BP. A Whole Genome CRISPR/Cas9 Screening Approach for Identifying Genes Encoding DNA End-Processing Proteins. Methods Mol Biol 2022; 2444:15-27. [PMID: 35290629 DOI: 10.1007/978-1-0716-2063-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA double-strand breaks (DSBs) are mainly repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of HR or NHEJ is dictated in part by whether the broken DNA ends are resected to generate extended single-stranded DNA (ssDNA) overhangs, which are quickly bound by the trimeric ssDNA binding complex RPA, the first step of HR. Here we describe a series of protocols for generating Abelson murine leukemia virus-transformed pre-B cells (abl pre-B cells) with stably integrated inducible Cas9 that can be used to identify and study novel pathways regulating DNA end processing. These approaches involve gene inactivation by CRISPR/Cas9, whole genome guide RNA (gRNA) library-mediated screen, and flow cytometry-based detection of chromatin-bound RPA after DNA damage.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Barry P Sleckman
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
44
|
Mirzaei G, Petreaca RC. Distribution of copy number variations and rearrangement endpoints in human cancers with a review of literature. Mutat Res 2022; 824:111773. [PMID: 35091282 PMCID: PMC11301607 DOI: 10.1016/j.mrfmmm.2021.111773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Copy number variations (CNVs) which include deletions, duplications, inversions, translocations, and other forms of chromosomal re-arrangements are common to human cancers. In this report we investigated the pattern of these variations with the goal of understanding whether there exist specific cancer signatures. We used re-arrangement endpoint data deposited on the Catalogue of Somatic Mutations in Cancers (COSMIC) for our analysis. Indeed, we find that human cancers are characterized by specific patterns of chromosome rearrangements endpoints which in turn result in cancer specific CNVs. A review of the literature reveals tissue specific mutations which either drive these CNVs or appear as a consequence of CNVs because they confer an advantage to the cancer cell. We also identify several rearrangement endpoints hotspots that were not previously reported. Our analysis suggests that in addition to local chromosomal architecture, CNVs are driven by the internal cellular or nuclear physiology of each cancer tissue.
Collapse
Affiliation(s)
- Golrokh Mirzaei
- Department of Computer Science and Engineering, The Ohio State University at Marion, Marion, OH, 43302, USA
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University at Marion, Marion, OH, 43302, USA; Cancer Biology Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
45
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
46
|
Perez H, Abdallah MF, Chavira JI, Norris AS, Egeland MT, Vo KL, Buechsenschuetz CL, Sanghez V, Kim JL, Pind M, Nakamura K, Hicks GG, Gatti RA, Madrenas J, Iacovino M, McKinnon PJ, Mathews PJ. A novel, ataxic mouse model of ataxia telangiectasia caused by a clinically relevant nonsense mutation. eLife 2021; 10:e64695. [PMID: 34723800 PMCID: PMC8601662 DOI: 10.7554/elife.64695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Ataxia Telangiectasia (A-T) and Ataxia with Ocular Apraxia Type 1 (AOA1) are devastating neurological disorders caused by null mutations in the genome stability genes, A-T mutated (ATM) and Aprataxin (APTX), respectively. Our mechanistic understanding and therapeutic repertoire for treating these disorders are severely lacking, in large part due to the failure of prior animal models with similar null mutations to recapitulate the characteristic loss of motor coordination (i.e., ataxia) and associated cerebellar defects. By increasing genotoxic stress through the insertion of null mutations in both the Atm (nonsense) and Aptx (knockout) genes in the same animal, we have generated a novel mouse model that for the first time develops a progressively severe ataxic phenotype associated with atrophy of the cerebellar molecular layer. We find biophysical properties of cerebellar Purkinje neurons (PNs) are significantly perturbed (e.g., reduced membrane capacitance, lower action potential [AP] thresholds, etc.), while properties of synaptic inputs remain largely unchanged. These perturbations significantly alter PN neural activity, including a progressive reduction in spontaneous AP firing frequency that correlates with both cerebellar atrophy and ataxia over the animal's first year of life. Double mutant mice also exhibit a high predisposition to developing cancer (thymomas) and immune abnormalities (impaired early thymocyte development and T-cell maturation), symptoms characteristic of A-T. Finally, by inserting a clinically relevant nonsense-type null mutation in Atm, we demonstrate that Small Molecule Read-Through (SMRT) compounds can restore ATM production, indicating their potential as a future A-T therapeutic.
Collapse
Affiliation(s)
- Harvey Perez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - May F Abdallah
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jose I Chavira
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Angelina S Norris
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Martin T Egeland
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Karen L Vo
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Callan L Buechsenschuetz
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Valentina Sanghez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jeannie L Kim
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Molly Pind
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Kotoka Nakamura
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Geoffrey G Hicks
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Richard A Gatti
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Joaquin Madrenas
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Medicine, Harbor-UCLA Medical CenterTorranceUnited States
| | - Michelina Iacovino
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Pediatrics, Harbor-UCLA Medical CenterTorranceUnited States
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, St. Jude Children’s Research HospitalMemphisUnited States
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Neurology, Harbor-UCLA Medical CenterTorranceUnited States
| |
Collapse
|
47
|
Gan T, Wang Y, Liu Y, Schatz DG, Hu J. RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Rep 2021; 37:109824. [PMID: 34644584 DOI: 10.1016/j.celrep.2021.109824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 02/09/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022] Open
Abstract
RAG1 and RAG2 form a tetramer nuclease to initiate V(D)J recombination in developing T and B lymphocytes. The RAG1 protein evolves from a transposon ancestor and possesses nuclease activity that requires interaction with RAG2. Here, we show that the human RAG1 aggregates in the nucleus in the absence of RAG2, exhibiting an extremely low V(D)J recombination activity. In contrast, RAG2 does not aggregate by itself, but it interacts with RAG1 to disrupt RAG1 aggregates and thereby activate robust V(D)J recombination. Moreover, RAG2 from mouse and zebrafish could not disrupt the aggregation of human RAG1 as efficiently as human RAG2 did, indicating a species-specific regulatory mechanism for RAG1 by RAG2. Therefore, we propose that RAG2 coevolves with RAG1 to release inert RAG1 from aggregates and thereby activate V(D)J recombination to generate diverse antigen receptors in lymphocytes.
Collapse
Affiliation(s)
- Tingting Gan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuhong Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
49
|
Wang XS, Menolfi D, Wu-Baer F, Fangazio M, Meyer SN, Shao Z, Wang Y, Zhu Y, Lee BJ, Estes VM, Cupo OM, Gautier J, Pasqualucci L, Dalla-Favera R, Baer R, Zha S. DNA damage-induced phosphorylation of CtIP at a conserved ATM/ATR site T855 promotes lymphomagenesis in mice. Proc Natl Acad Sci U S A 2021; 118:e2105440118. [PMID: 34521752 PMCID: PMC8463888 DOI: 10.1073/pnas.2105440118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
CtIP is a DNA end resection factor widely implicated in alternative end-joining (A-EJ)-mediated translocations in cell-based reporter systems. To address the physiological role of CtIP, an essential gene, in translocation-mediated lymphomagenesis, we introduced the T855A mutation at murine CtIP to nonhomologous end-joining and Tp53 double-deficient mice that routinely succumbed to lymphomas carrying A-EJ-mediated IgH-Myc translocations. T855 of CtIP is phosphorylated by ATM or ATR kinases upon DNA damage to promote end resection. Here, we reported that the T855A mutation of CtIP compromised the neonatal development of Xrcc4-/-Tp53-/- mice and the IgH-Myc translocation-driven lymphomagenesis in DNA-PKcs-/-Tp53-/- mice. Mechanistically, the T855A mutation limits DNA end resection length without affecting hairpin opening, translocation frequency, or fork stability. Meanwhile, after radiation, CtIP-T855A mutant cells showed a consistent decreased Chk1 phosphorylation and defects in the G2/M cell cycle checkpoint. Consistent with the role of T855A mutation in lymphomagenesis beyond translocation, the CtIP-T855A mutation also delays splenomegaly in λ-Myc mice. Collectively, our study revealed a role of CtIP-T855 phosphorylation in lymphomagenesis beyond A-EJ-mediated chromosomal translocation.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Graduate Program of Pathobiology and Molecular Medicine, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Foon Wu-Baer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Marco Fangazio
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Stefanie N Meyer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Yunyue Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Yimeng Zhu
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Olivia M Cupo
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Jean Gautier
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Genetics and Development, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Genetics and Development, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Richard Baer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032;
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
50
|
Chen BR, Wang Y, Tubbs A, Zong D, Fowler FC, Zolnerowich N, Wu W, Bennett A, Chen CC, Feng W, Nussenzweig A, Tyler JK, Sleckman BP. LIN37-DREAM prevents DNA end resection and homologous recombination at DNA double-strand breaks in quiescent cells. eLife 2021; 10:68466. [PMID: 34477552 PMCID: PMC8416021 DOI: 10.7554/elife.68466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/18/2021] [Indexed: 12/29/2022] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) is thought to be restricted to the S- and G2- phases of the cell cycle in part due to 53BP1 antagonizing DNA end resection in G1-phase and non-cycling quiescent (G0) cells. Here, we show that LIN37, a component of the DREAM transcriptional repressor, functions in a 53BP1-independent manner to prevent DNA end resection and HR in G0 cells. Loss of LIN37 leads to the expression of HR proteins, including BRCA1, BRCA2, PALB2, and RAD51, and promotes DNA end resection in G0 cells even in the presence of 53BP1. In contrast to 53BP1-deficiency, DNA end resection in LIN37-deficient G0 cells depends on BRCA1 and leads to RAD51 filament formation and HR. LIN37 is not required to protect DNA ends in cycling cells at G1-phase. Thus, LIN37 regulates a novel 53BP1-independent cell phase-specific DNA end protection pathway that functions uniquely in quiescent cells.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, United States
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Anthony Tubbs
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Faith C Fowler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Nicholas Zolnerowich
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Amelia Bennett
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Chun-Chin Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Wendy Feng
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Barry P Sleckman
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|