1
|
Singh J, Srikrishna S. Scribble knockdown induced metastasis, identification of its associated novel molecular candidates through proteome studies. Biochem Biophys Res Commun 2025; 769:151999. [PMID: 40367906 DOI: 10.1016/j.bbrc.2025.151999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Metastasis is the primary cause of cancer associated deaths globally. Loss of function of Scribble, a cell polarity regulator and tumor suppressor gene, is associated with many forms of human cancers but its role in cell proliferation and metastasis remains unknown. We generated metastatic cancer condition in Drosophila using UASRNAi-GAL4 system by knockdown of Scribble in the wing imaginal discs and tracked metastasis events from early to late pupae (0hr-84 h s) using fluorescence microscopy. Here, we report, for the first time, that the knockdown of Scribble alone could lead to the development of primary tumor in the wing imaginal discs, which is capable of establishing metastasis, apparently leading to secondary tumor formation in pupae at early stage, eventually resulting in absolute pupal lethality without organ development. MMP1, a metastasis biomarker, levels were assessed during pre-and post-metastatic phases in pupae using qRT-PCR and Western blot analysis. Further, we analyzed the proteome of Scribble knockdown induced tumor-bearing pupae by 2-D gel electrophoresis followed by MALDI-TOF MS to identify some novel proteins possibly involved in the progression of tumorigenesis and metastasis events. Six differentially expressed proteins, Obp 99b, Fer2LCH,CG13492, Hsp23, Ubiquitin and Colt, were identified in Scrib knockdown pupae and validated their expression using qRT-PCR. Thus, our results suggested that loss of Scrib alone capable of causing metastasis, without the need for cooperative interaction with oncogenic Ras. The newly identified proteins could be important candidates for biomarker/therapeutic target against Scrib associated metastatic cancers.
Collapse
Affiliation(s)
- Jyotsna Singh
- Cancer and Neurobiology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Peng Z, Huang X, Pan Y, Li W, Hu H, Chen X, Zhang Z, Hu J, Qi Y, Chen W, Cui X, Liu H, Liang W, Ding G, Chen Z. USP22 promotes angiotensin II-induced podocyte injury by deubiquitinating and stabilizing HMGB1. Cell Signal 2025; 131:111771. [PMID: 40154587 DOI: 10.1016/j.cellsig.2025.111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Chronic kidney disease (CKD) remains a significant global health burden, with hypertensive nephropathy (HN) as one of its primary causes. Podocyte injury is a key factor in the progression of CKD. However, the molecular mechanisms underlying angiotensin II-induced podocyte injury remain incompletely understood. Ubiquitin-specific protease 22 (USP22) has been reported to facilitate a range of cellular processes, including cell proliferation and apoptosis. However, the role of USP22 in HN pathogenesis is unclear. METHODS The expression of USP22 was assessed in kidney samples from hypertensive nephropathy patients, angiotensin II-induced hypertensive nephropathy mouse models, and cultured podocytes treated with angiotensin II. Podocyte-specific USP22 knockout mice were used to investigate the effects of USP22 deletion on podocyte injury and inflammation. RESULTS USP22 expression was significantly upregulated in kidneys of HN patients, angiotensin II-induced mouse models, and cultured podocytes. Podocyte-specific deletion of USP22 markedly reduced angiotensin II-induced podocyte injury and inflammatory responses. Furthermore, we identified high-mobility group box protein 1 (HMGB1) as a protein that interacts with USP22. USP22 deubiquitinated and stabilized HMGB1 through K48-linked ubiquitination. Downregulation of USP22 expression improved kidney function and pathological changes in HN by promoting HMGB1 degradation. CONCLUSION This study identifies USP22 as a key regulator of angiotensin II-induced podocyte injury and inflammation through its interaction with HMGB1. Our findings revealed that following glomerular injury, damage and shedding of tubular cells also occurred. Targeting the USP22-HMGB1 axis offers a promising therapeutic strategy for treating hypertensive nephropathy and other types of CKD.
Collapse
Affiliation(s)
- Zhuan Peng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiao Huang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangbin Pan
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Weiwei Li
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinghua Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Yue Qi
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjie Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaofei Cui
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyan Liu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Liu B, Li C, He S, Li Z, Wang H, Feng C, Xiong Z, Tu C, Song D, Li Z. Ubiquitin-conjugating enzyme E2S (UBE2S) as a prognostic biomarker and regulator of tumorigenesis in osteosarcoma. Int Immunopharmacol 2025; 154:114545. [PMID: 40188527 DOI: 10.1016/j.intimp.2025.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/25/2025] [Accepted: 03/21/2025] [Indexed: 04/08/2025]
Abstract
Ubiquitin-conjugating enzyme E2S (UBE2S) is a member of ubiquitin conjugating enzymes with unclear association with osteosarcoma (OS). This study aimed to assess UBE2S's predictive value in OS using data from TCGA and GEO databases. Kaplan-Meier survival analysis and ROC curves were used for prognostic evaluation, and a nomogram was developed for prognostic prediction. Potential biological functions, pathways, and correlations with tumor immune microenvironment, immunotherapy response, and drug sensitivity were analyzed. UBE2S overexpression was linked to poor prognosis, and the nomogram effectively predicted OS survival outcomes. UBE2S was found to impact tumorigenesis pathways, immune landscape, and treatment sensitivity in OS. Transcriptome sequencing, RT-qPCR, Western Blotting, and immunohistochemistry confirmed that UBE2S is abnormally overexpressed in OS. Additionally, a series of in vitro experiments showed that UBE2S knockdown reduced OS cell proliferation and migration while promoting apoptosis. In vivo experiments also confirmed that UBE2S knockdown could inhibit OS cell growth. In summary, our research demonstrates that UBE2S is a reliable prognostic factor for OS. Its abnormal overexpression enhances OS proliferation and migration, indicating its significance for future personalized treatment strategies in OS.
Collapse
Affiliation(s)
- Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Changsha Medical University, Changsha 410219, China
| | - Deye Song
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China.
| |
Collapse
|
4
|
Li Y, Wang Y, Jing Y, Zhu Y, Huang X, Wang J, Dilraba E, Guo C. Visualization analysis of breast cancer-related ubiquitination modifications over the past two decades. Discov Oncol 2025; 16:431. [PMID: 40163091 PMCID: PMC11958930 DOI: 10.1007/s12672-025-02032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Ubiquitination is a type of post-translational modification, referring to the process in which the small molecular protein ubiquitin covalently binds to target proteins under the catalysis of a series of enzymes. The process of ubiquitination is vital in the onset and progression of breast cancer. The use of the ubiquitin-protease system is expected to be a new way to treat human breast cancer. This research aimed to investigate the evolution patterns, key areas of interest, and future directions of ubiquitination in breast cancer via bibliometric analysis. METHODS Research articles on ubiquitination modifications in breast cancer were sourced from the Web of Science Core Collection database and analyzed via Microsoft Excel 2021, Bibliometrix, VOSviewer, and Citespace software for thorough bibliometrics. RESULTS From 2005-2024, 1850 English articles published in 405 journals by 1842 institutions/universities from 61 countries were included in the study. Keywords, research fields, co-cited literature and other information were included. Research on ubiquitination modifications has focused on breast cancer, expression, protein, activation, degradation, ubiquitination, phosphorylation, etc. Notably, the keywords that broke out in the past five years have focused on "triple-negative breast cancer", "promotion", and "metabolism". These findings suggest that key areas of current research are metabolism, immunity, survival, and prognosis in triple-negative breast cancer. CONCLUSIONS Our findings indicate that research on triple-negative breast cancer, as well as its immunological and metabolic aspects, is a burgeoning and promising area. Our work offers valuable guidance and fresh perspectives on the relationship between breast cancer and ubiquitin modification.
Collapse
Affiliation(s)
- Yongxiang Li
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yiyang Wang
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yubo Jing
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Youseng Zhu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Xinzhu Huang
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - JunYi Wang
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Elihamu Dilraba
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Chenming Guo
- Department of Breast Surgery, Center of Digestive and Vascular Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
5
|
Zhang S, Ding F, Jia F, Lu X. USP37 as a novel regulator of NRF2 protein stability and chemoresistance in HCC. Discov Oncol 2025; 16:312. [PMID: 40080254 PMCID: PMC11906963 DOI: 10.1007/s12672-025-01913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/04/2025] [Indexed: 03/15/2025] Open
Abstract
Chemoresistance is a prevalent issue in cancer, resulting in a poor prognosis. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2), a key regulator in cellular antioxidant responses, is implicated in cell survival, proliferation, and chemoresistance. It represents a promising target for treating Hepatocellular carcinoma (HCC). The NRF2 activity has been recently revealed to be controlled by the ubiquitination process mediated by the KEAP1-CUL3 E3 ligase, highlighting the importance of deubiquitination regulation. However, the specific deubiquitinase (DUB) responsible for NRF2 in liver cancer remains unclear. In this study, we demonstrate that Ubiquitin-Specific Protease 37 (USP37) acts as a novel regulator of NRF2 protein. Mechanistically, USP37 modulates the stability of NRF2 through enzymatic activity-dependent deubiquitination. Additionally, USP37 interacts with NRF2 and facilitates its deubiquitination. Elevated USP37 levels were associated with higher levels of NRF2 protein in samples from human patients. Importantly, the knockdown of USP37 results in increased NRF2 degradation and enhances cellular sensitivity to chemotherapy. Overall, our findings manifested the significant involvement of the USP37-NRF2 axis in regulating therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Shujiao Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, 450052, Henan, China
| | - Feihu Ding
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, 450052, Henan, China
| | - Fuxin Jia
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, 450052, Henan, China
| | - Xiubo Lu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
Liu P, Xie N. RFWD2 increases proliferation and CDDP resistance of osteosarcoma cells. Gene 2025; 933:148973. [PMID: 39349111 DOI: 10.1016/j.gene.2024.148973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
P53, a key tumor suppressor gene, usually produces mtp53 proteins with oncogenic functions due to missense mutations in the DNA-binding domain. P53 is the most commonly mutated gene in osteosarcoma and plays an important role in the development and metastasis of osteosarcoma. The ubiquitin proteasome system is an evolutionarily conserved post-translational modification that regulates a variety of disease processes, including tumors. Researches have shown that RFWD2, as a function of an E3 ubiquitin ligase, plays an important role in regulating tumor progression. However, the biological function of RFWD2 in osteosarcoma cells with different p53 status remains to be clarified. Initially, we found that sarcoma patients with high levels of RFWD2 expression tended to have shorter overall survival time by analyzing UALCAN-TCGA data. Subsequently, we used CCK-8, colony formation, Transwell, and xenograft methods to confirm that RFWD2 acts as an oncogene, regulating the proliferation and invasion of osteosarcoma cells (HOS(p53mut/-), U2OS(p53wt/wt) and Saos-2(p53-/-) cells) with different p53 status. Further co-IP experiments showed that in HOS(p53mut/-) and U2OS(p53wt/wt) cells, RFWD2 binds to p53 and participate in tumor progression. In addition, we demonstrated through both in vitro and in vivo experiments that RFWD2 regulates the sensitivity of osteosarcoma cells to CDDP. In conclusion, our study demonstrates that RFWD2 acts as an oncogene regulating osteosarcoma cell proliferation and sensitivity to CDDP. Our findings provide a new perspective and potential therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Pingting Liu
- Department of Health Management Center, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Na Xie
- Department of Pediatrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China.
| |
Collapse
|
7
|
Bagde PH, Kandpal M, Rani A, Kumar S, Mishra A, Jha HC. Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies. J Cell Biochem 2025; 126:e70000. [PMID: 39887732 DOI: 10.1002/jcb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target. Notably, compared to healthy cells, cancer cells have a higher protein homeostasis requirement and a faster protein turnover rate. The ubiquitin-proteasome system (UPS) helps cancer cells increase rapidly and experience less apoptotic cell death. Therefore, understanding UPS is essential to design and discover some effective inhibitors for cancer therapy. Hereby, we have focused on the role of the 26S proteasome complex, mainly the UPS, in carcinogenesis and seeking potential therapeutic targets in treating numerous cancers.
Collapse
Affiliation(s)
- Pranit Hemant Bagde
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Sachin Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
8
|
Yao G, Wang Z, Xie R, Zhanghuang C, Yan B. Trace element zinc metabolism and its relation to tumors. Front Endocrinol (Lausanne) 2024; 15:1457943. [PMID: 39717098 PMCID: PMC11664221 DOI: 10.3389/fendo.2024.1457943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Zinc is an essential trace element in the human body, playing a crucial role in cellular metabolism.Dysregulation of zinc homeostasis can lead to abnormal cellular metabolism, contributing to diseases and closely related to tumor development. Adequate zinc intake can maintain zinc homeostasis in the body and support normal cellular metabolism. This review discusses the metabolic processes of zinc in the human body and its close relationship with tumorigenesis. It briefly describes zinc absorption, transport, storage, and release, as well as its important role in gene expression, signal transduction, oxidative stress, immune response, and apoptosis. It focuses on the abnormal cellular metabolism caused by excessive or insufficient zinc, the relationship between zinc homeostasis disruption and metabolic syndrome, and the mechanisms involved in tumor development. It analyzes how changes in the expression and activity of zinc transporters may lead to disrupted zinc homeostasis in tumor tissues. It points out that zinc deficiency is associated with various cancers, including prostate cancer, hepatocellular carcinoma, pancreatic cancer, lung cancer, ovarian cancer, esophageal squamous cell carcinoma, and breast cancer. The summary emphasizes that zinc metalloproteins could serve as potential targets for cancer therapy, and regulating the expression and activity of zinc transport proteins may offer new methods and strategies for clinical cancer treatment.
Collapse
Affiliation(s)
- Guiping Yao
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Zhiwei Wang
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Rui Xie
- Department of Orthopedics, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Chenghao Zhanghuang
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Solid Tumor Diagnosis and Treatment Center, Kunming, Yunnan, China
- Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Clinical Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Bing Yan
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Solid Tumor Diagnosis and Treatment Center, Kunming, Yunnan, China
- Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Clinical Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming, Yunnan, China
| |
Collapse
|
9
|
Wang H, Li Q, Tang Q, Shi G, Wu G, Mao X, Wu C, Zhang L, Liu J, Li J, Li B. Role and therapeutic potential of E3s in the tumor microenvironment of hepatocellular carcinoma. Front Immunol 2024; 15:1483721. [PMID: 39544935 PMCID: PMC11560419 DOI: 10.3389/fimmu.2024.1483721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a high-incidence, poor-prognosis malignancy worldwide, requiring new strategies for treatment. Ubiquitination, especially ubiquitination through E3 ubiquitin ligases, plays an indispensable role in the development and progression of HCC. E3 ubiquitin ligases are crucial enzymes in ubiquitination, controlling the degradation of specific substrate proteins and influencing various cellular functions, such as tumor cell proliferation, apoptosis, migration, and immune evasion. In this review, we systematically summarize the mechanisms of E3 ubiquitin ligases in HCC, with a focus on the significance of RING, HECT, and RBR types in HCC progression. The review also looks at the potential for targeting E3 ligases to modulate the tumor microenvironment (TME) and increase immunotherapy efficacy. Future studies will optimize HCC treatment by formulating specific inhibitors or approaches that will be based on gene therapy targeting E3 ligases in order to overcome resistance issues with present treatments and create optimism in the journey of treatment for HCC patients.
Collapse
Affiliation(s)
- Hailin Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qinqin Tang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Gang Shi
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guo Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xingbo Mao
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Changkang Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lixin Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (Beijing) 2024; 5:e736. [PMID: 39329019 PMCID: PMC11424685 DOI: 10.1002/mco2.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.
Collapse
Affiliation(s)
- Yan Liao
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Wangzheqi Zhang
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Yang Liu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Chenglong Zhu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Zui Zou
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| |
Collapse
|
11
|
Guo W, Ren Y, Qiu X. FBXO2 promotes the progression of papillary thyroid carcinoma through the p53 pathway. Sci Rep 2024; 14:22574. [PMID: 39343799 PMCID: PMC11439943 DOI: 10.1038/s41598-024-73455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Emerging evidence have demonstrated that F-box only protein 2 (FBXO2) is intimately associated with malignant tumor development and occurrence. However, neither the functions nor the molecular mechanisms underlying FBXO2 have been determined in the papillary thyroid carcinoma (PTC). The quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry were carried out to detect the FBXO2 expression in PTC tissues. CCK-8 assay, EdU assay and flow cytometry were used to assess cell proliferation, cell cycle and apoptosis. The trans-well assay was conducted to determine the cell invasiveness. The effect of FBXO2 on PTC cell proliferation in vivo was observed through a subcutaneous tumor formation experiment in nude mice. Immunoprecipitation were conducted to detect the interaction between FBXO2 and p53. The ubiquitination assays were conducted to assess the regulation of p53 ubiquitination by FBXO2. FBXO2 was overexpressed in both PTC tissues and cell lines. FBXO2 expression positively correlated with PTC tumor size, lymphatic metastasis, and extramembranous invasion. Furthermore, silencing FBXO2 inhibited PTC cell proliferation and promoted apoptosis. The overexpression of FBXO2 significantly promotes PTC cell proliferation. Mechanistic studies revealed that FBXO2 could directly bind to p53 and promote its ubiquitination degradation. Knockdown of p53 partially reversed the progression arrest induced by FBXO2 Knockdown in PTC cells. FBXO2 knockdown inhibited PTC cell proliferation and promoted apoptosis by targeting p53 for ubiquitination and degradation. This process represents a research foundation for its diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Wenke Guo
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaoqiang Ren
- Department of Urology, Fenyang Hospital of Shanxi Province, Lüliang, Shanxi, China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Wang Q, Peng W, Yang Y, Wu Y, Han R, Ding T, Zhang X, Liu J, Yang J, Liu J. Proteome and ubiquitinome analyses of the brain cortex in K18- hACE2 mice infected with SARS-CoV-2. iScience 2024; 27:110602. [PMID: 39211577 PMCID: PMC11357812 DOI: 10.1016/j.isci.2024.110602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Clinical research indicates that SARS-CoV-2 infection is linked to several neurological consequences, and the virus is still spreading despite the availability of vaccinations and antiviral medications. To determine how hosts respond to SARS-CoV-2 infection, we employed LC-MS/MS to perform ubiquitinome and proteome analyses of the brain cortexes from K18-hACE2 mice in the presence and absence of SARS-CoV-2 infection. A total of 8,024 quantifiable proteins and 5,220 quantifiable lysine ubiquitination (Kub) sites in 2023 proteins were found. Glutamatergic synapse, calcium signaling pathway, and long-term potentiation may all play roles in the neurological consequences of SARS-CoV-2 infection. Then, we observed possible interactions between 26 SARS-CoV-2 proteins/E3 ubiquitin-protein ligases/deubiquitinases and several differentially expressed mouse proteins or Kub sites. We present the first description of the brain cortex ubiquitinome in K18-hACE2 mice, laying the groundwork for further investigation into the pathogenic processes and treatment options for neurological dysfunction following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Qiaochu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Yehong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yue Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Rong Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Tao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xutong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Juntao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiangfeng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
13
|
Ji W, Zhang W, Zhang X, Ke Y. TRIM33 enhances the ubiquitination of TFRC to enhance the susceptibility of liver cancer cells to ferroptosis. Cell Signal 2024; 121:111268. [PMID: 38909931 DOI: 10.1016/j.cellsig.2024.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignancy, and ferroptosis is a novel form of cell death driven by excessive lipid peroxidation. In recent years, ferroptosis has been widely utilized in cancer treatment, and the ubiquitination modification system has been recognized to play a crucial role in tumorigenesis and metastasis. Increasing evidence suggests that ubiquitin regulates ferroptosis-related substrates involved in this process. However, the precise mechanism of utilizing ubiquitination modification to regulate ferroptosis for HCC treatment remains unclear. METHODS In this study, we detected the expression of TRIM33 in HCC using immunohistochemistry and western blotting techniques. The functional role of TRIM33 was verified through both in vitro and in vivo experiments. To evaluate the level of ferroptosis, mitochondrial superoxide levels, MDA levels, Fe2+ levels, and cell viability were assessed. Downstream substrates of TRIM33 were screened and confirmed via immunoprecipitation, immunofluorescence staining, and ubiquitination modification experiments. RESULTS Our findings demonstrate that TRIM33 inhibits the growth and metastasis of HCC cells both in vitro and in vivo while promoting their susceptibility to ferroptosis. Mechanistically speaking, TRIM33 induces cellular ferroptosis through E3 ligase-dependent degradation of TFRC-a known inhibitor of this process-thus elucidating the specific type and site at which TFRC undergoes modification by TRIM33. CONCLUSION In summary, our study reveals an important role for TRIM33 in HCC treatment while providing mechanistic support for its function. Additionally highlighted is the significance of ubiquitination modification leading to TFRC degradation-an insight that may prove valuable for future targeted therapies.
Collapse
Affiliation(s)
- Wenjing Ji
- Department of Gastroenterology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weibin Zhang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xin Zhang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yue Ke
- Department of Gastroenterology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
14
|
Harte DSG, Lynch AM, Verma J, Rees P, Filby A, Wills JW, Johnson GE. A multi-biomarker micronucleus assay using imaging flow cytometry. Arch Toxicol 2024; 98:3137-3153. [PMID: 38995349 PMCID: PMC11324684 DOI: 10.1007/s00204-024-03801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/23/2024] [Indexed: 07/13/2024]
Abstract
Genetic toxicity testing assesses the potential of compounds to cause DNA damage. There are many genetic toxicology screening assays designed to assess the DNA damaging potential of chemicals in early drug development aiding the identification of promising drugs that have low-risk potential for causing genetic damage contributing to cancer risk in humans. Despite this, in vitro tests generate a high number of misleading positives, the consequences of which can lead to unnecessary animal testing and/or the abandonment of promising drug candidates. Understanding chemical Mode of Action (MoA) is vital to identifying the true genotoxic potential of substances and, therefore, the risk translation into the clinic. Here we demonstrate a simple, robust protocol for staining fixed, human-lymphoblast p53 proficient TK6 cells with antibodies against ɣH2AX, p53 and pH3S28 along with DRAQ5™ DNA staining that enables analysis of un-lysed cells via microscopy approaches such as imaging flow cytometry. Here, we used the Cytek® Amnis® ImageStream®X Mk II which provides a high-throughput acquisition platform with the sensitivity of flow cytometry and spatial morphological information associated with microscopy. Using the ImageStream manufacturer's software (IDEAS® 6.2), a masking strategy was developed to automatically detect and quantify micronucleus events (MN) and characterise biomarker populations. The gating strategy developed enables the generation of a template capable of automatically batch processing data files quantifying cell-cycle, MN, ɣH2AX, p53 and pH3 populations simultaneously. In this way, we demonstrate how a multiplex system enables DNA damage assessment alongside MN identification using un-lysed cells on the imaging flow cytometry platform. As a proof-of-concept, we use the tool chemicals carbendazim and methyl methanesulphonate (MMS) to demonstrate the assay's ability to correctly identify clastogenic or aneugenic MoAs using the biomarker profiles established.
Collapse
Affiliation(s)
- Danielle S G Harte
- Swansea University Medical School, Swansea University, Swansea, UK
- GSK R&D, Stevenage, UK
| | - Anthony M Lynch
- Swansea University Medical School, Swansea University, Swansea, UK
- GSK R&D, Stevenage, UK
| | - Jatin Verma
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Paul Rees
- College of Engineering, Swansea University, Swansea, UK
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew Filby
- Core Flow Facility, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - John W Wills
- GSK R&D, Stevenage, UK
- Department of Veterinary Medicine, Cambridge University, Cambridge, UK
| | - George E Johnson
- Swansea University Medical School, Swansea University, Swansea, UK.
| |
Collapse
|
15
|
Gao B, Qiao Y, Zhu S, Yang N, Zou SS, Liu YJ, Chen J. USP36 inhibits apoptosis by deubiquitinating cIAP1 and survivin in colorectal cancer cells. J Biol Chem 2024; 300:107463. [PMID: 38876304 PMCID: PMC11268115 DOI: 10.1016/j.jbc.2024.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Chemotherapeutic agents for treating colorectal cancer (CRC) primarily induce apoptosis in tumor cells. The ubiquitin-proteasome system is critical for apoptosis regulation. Deubiquitinating enzymes (DUBs) remove ubiquitin from substrates to reverse ubiquitination. Although over 100 DUB members have been discovered, the biological functions of only a small proportion of DUBs have been characterized. Here, we aimed to systematically identify the DUBs that contribute to the development of CRC. Among the DUBs, ubiquitin-specific protease 36 (USP36) is upregulated in CRC. We showed that the knockdown of USP36 induces intrinsic and extrinsic apoptosis. Through gene silencing and coimmunoprecipitation techniques, we identified survivin and cIAP1 as USP36 targets. Mechanistically, USP36 binds and removes lysine-11-linked ubiquitin chains from cIAP1 and lysine-48-linked ubiquitin chains from survivin to abolish protein degradation. Overexpression of USP36 disrupts the formation of the XIAP-second mitochondria-derived activator of caspase complex and promotes receptor-interacting protein kinase 1 ubiquitination, validating USP36 as an inhibitor to intrinsic and extrinsic apoptosis through deubiquitinating survivin and cIAP1. Therefore, our results suggest that USP36 is involved in CRC progression and is a potential therapeutic target.
Collapse
Affiliation(s)
- Bao Gao
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuan Qiao
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Zhu
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ning Yang
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shan-Shan Zou
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yong-Jun Liu
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Jingtao Chen
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
16
|
Ye G, Wang J, Xia J, Zhu C, Gu C, Li X, Li J, Ye M, Jin X. Low protein expression of LZTR1 in hepatocellular carcinoma triggers tumorigenesis via activating the RAS/RAF/MEK/ERK signaling. Heliyon 2024; 10:e32855. [PMID: 38994114 PMCID: PMC11237970 DOI: 10.1016/j.heliyon.2024.e32855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
LZTR1 is a substrate specific adaptor for E3 ligase involved in the ubiquitination and degradation of RAS GTPases, which inhibits the RAS/RAF/MEK/ERK signaling to suppress the pathogenesis of Noonan syndrome and glioblastoma. However, it's still unknown whether LZTR1 destabilizes RAS GTPases to suppress HCC progression by inhibiting these signaling pathway. Lenvatinib is the first-line drug for the treatment of advanced HCC, however, it has high drug resistance. To explore the roles of LZTR1 in HCC progression and the underlying mechanisms of lenvatinib resistance, techniques such as bioinformatics analysis, immunohistochemical staining, RT-qPCR, Western blot, cell functional experiments, small interfering RNA transfection and cycloheximide chase assay were applied in our study. Among these, bioinformatics analysis and immunohistochemical staining results indicated that LZTR1 protein was aberrantly expressed at low levels in HCC tissues, and low protein expression of LZTR1 was associated with poor prognosis of HCC patients. In vitro functional experiments confirmed that low expression of LZTR1 promoted HCC cell proliferation and migration via the aberrant activation of the RAS/RAF/MEK/ERK signaling due to the dysregulation of LZTR1-induced KRAS ubiquitination and degradation. Transwell assays revealed that blocking of LZTR1-mediated KRAS degradation could induce lenvatinib resistance in HCC cells. In conclusion, our study revealed that LZTR1 knockdown promoted HCC cell proliferation and migration, and induced lenvatinib resistance via activating the RAS/RAF/MEK/ERK signaling, which may provide new ideas for HCC treatment.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jingyi Xia
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo, 315211, China
| | - Chenlu Zhu
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo, 315211, China
| | - Chaoyu Gu
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xinming Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jingyun Li
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
| |
Collapse
|
17
|
Cai X, Gao J, Yan Z, Zhang H, Guo D, Zhang S. MARCH5 promotes hepatocellular carcinoma progression by inducing p53 ubiquitination degradation. J Cancer Res Clin Oncol 2024; 150:303. [PMID: 38861187 PMCID: PMC11166841 DOI: 10.1007/s00432-024-05782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Human MARCH5 is a mitochondria-localized E3 ubiquitin-protein ligase that is essential for the regulation of mitochondrial dynamics. A large body of evidence suggests that imbalances in mitochondrial dynamics are strongly associated with cancer. However, the expression, biological function and prognostic significance of MARCH5 in hepatocellular carcinoma (HCC) have not been determined. MATERIALS AND METHODS The mRNA and protein expression of MARCH5 in HCC cell lines and tumor tissues was assessed by real-time quantitative PCR, Western blot analysis and immunohistochemistry. The clinical prognostic significance of MARCH5 was evaluated in 135 HCC patients. Knockdown or overexpression of MARCH5 in HCC cells was determined by in vitro cell proliferation, migration and invasion assays, and in vivo tumor growth and metastasis assays. In addition, the intrinsic mechanisms by which MARCH5 regulates HCC cell growth and metastasis were explored. RESULTS MARCH5 was significantly overexpressed in HCC cells and was closely associated with patients' poor postoperative prognosis. In vivo and in vitro experiments revealed that MARCH5 significantly promoted the increase and invasive and migratory ability of hepatocellular carcinoma cells, which was mainly due to the promotion of autophagy by MARCH5. Mechanistic studies revealed that MARCH5 promoted autophagy through ubiquitination degradation of p53 leading to malignant progression of hepatocellular carcinoma. CONCLUSION Our findings suggest that MARCH5 plays a critical oncogenic role in HCC cells, which provides experimental evidence for the use of MARCH5 as a potential target for HCC therapy.
Collapse
Affiliation(s)
- Xin Cai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, Zhengzhou, China
- The Main Construction Unit of National Regional Medical Center for Henan Organ Transplantation, Zhengzhou, China
- Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, Zhengzhou, China
- The Main Construction Unit of National Regional Medical Center for Henan Organ Transplantation, Zhengzhou, China
- Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China
| | - Zhiping Yan
- Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Huapeng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, Zhengzhou, China
- The Main Construction Unit of National Regional Medical Center for Henan Organ Transplantation, Zhengzhou, China
- Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, Zhengzhou, China
- The Main Construction Unit of National Regional Medical Center for Henan Organ Transplantation, Zhengzhou, China
- Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Liver Transplantation Centre, Zhengzhou, China.
- The Main Construction Unit of National Regional Medical Center for Henan Organ Transplantation, Zhengzhou, China.
- Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.
| |
Collapse
|
18
|
Zheng L, Shen J, Chen Y, Lin J, Li P, Zhao X, Ren H, Sun Y, Wang Z. FBXO43 promotes cell cycle progression in cancer cells through stabilizing SKP2. Cancer Lett 2024; 591:216848. [PMID: 38604312 DOI: 10.1016/j.canlet.2024.216848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
FBXO43 is a member of the FBXO subfamily of F-box proteins, known to be a regulatory hub during meiosis. A body of data showed that FBXO43 is overexpressed in a number of human cancers. However, whether and how FBXO43 affects cell cycle progression and growth of cancer cells remain elusive. In this study, we provide first piece of evidence, showing a pivotal role of FBXO43 in cell cycle progression and growth of cancer cells. Specifically, FBXO43 acts as a positive cell cycle regulator with an oncogenic activity in variety types of human cancer, including non-small cell lung cancer, hepatocellular carcinoma and sarcoma. Mechanistically, FBXO43 interacts with phosphorylated SKP2 induced by AKT1, leading to reduced SKP2 auto-ubiquitylation and subsequent proteasome degradation. Taken together, our study demonstrates that FBXO43 promotes cell cycle progression by stabilizing SKP2, and FBXO43 could serve as a potential anti-cancer target.
Collapse
Affiliation(s)
- Liyun Zheng
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiajia Shen
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Chen
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyu Lin
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Pengyu Li
- Qilu Hospital of Shan Dong University, Jinan, Shandong Province, China
| | - Xiaoli Zhao
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hangjiang Ren
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Research Center for Life Science and Human Health, Beijing Institute of Zhejiang University, Hangzhou, China.
| | - Zhen Wang
- Department of Biochemistry, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
19
|
Lin X, Zheng M, Xiong K, Wang F, Chen Y, Ji L, Chao H. Two-Photon Photodegradation of E3 Ubiquitin Ligase Cereblon by a Ru(II) Complex: Inducing Ferroptosis in Cisplatin-Resistant Tumor Cells. J Med Chem 2024; 67:8372-8382. [PMID: 38745549 DOI: 10.1021/acs.jmedchem.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Using photodynamic therapy (PDT) to trigger nonconventional cell death pathways has provided a new scheme for highly efficient and non-side effects to drug-resistant cancer therapies. Nonetheless, the unclear targets of available photosensitizers leave the manner of PDT-induced tumor cell death relatively unpredictable. Herein, we developed a novel Ru(II)-based photosensitizer, Ru-Poma. Possessing the E3 ubiquitin ligase CRBN-targeting moiety and high singlet oxygen yield of 0.96, Ru-Poma was demonstrated to specifically photodegrade endogenous CRBN, increase lipid peroxide, downregulate GPX4 and GAPDH expression, and consequently induce ferroptosis in cisplatin-resistant cancerous cells. Furthermore, with the deep penetration of two-photon excitation, Ru-Poma achieved drug-resistant circumvention in a 3D tumor cell model. Thus, we describe the first sample of the CRBN-targeting Ru(II) complex active in PDT.
Collapse
Affiliation(s)
- Xinlin Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Mengsi Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Fa Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
20
|
Cao P, Li Q, Zou D, Wang L, Wang Z. Identification of crucial ubiquitin-associated genes for predicting the effects of immunotherapy and therapeutic agents in colorectal cancer. Gene 2024; 904:148215. [PMID: 38307218 DOI: 10.1016/j.gene.2024.148215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND A growing body of research indicates that colorectal cancer (CRC) is significantly influenced by the ubiquitin-proteasome system. Nevertheless, reliable immune landscapes and ubiquitin-associated prognostic markers are still scarce. METHODS We systematically analyzed the RNA-seq data of 2,830 ubiquitin-related genes from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). A CRC prognostic risk model was developed based on ubiquitin-associated gene signatures. In-depth multi-dimensional analyses were performed on ubiquitin-related subgroups with high and low risk. Drug response sensitivity for high-risk CRC patients was also predicted. RESULTS A total of 131 ubiquitin-related differentially expressed genes were retrieved, of which 9 prognostic genes for CRC were ultimately identified and further validated by our clinical CRC tumor and adjacent normal samples. The expression pattern of these 9 ubiquitin-associated genes was found to be strongly related to overall survival, immune cell fractions, and immune-related genes of CRC patients. CRC patients stratified by the ubiquitin prognostic model exhibited distinct clinicopathological characteristics and immune landscapes. A comprehensive framework for personalized medicine prediction identified regorafenib and sorafenib as the most promising therapeutic agents for high ubiquitin-related risk CRC patients, which was confirmed in cell viability assays. CONCLUSIONS Ubiquitin characteristics can reflect CRC prognosis and help develop innovative biomarkers for precision treatment.
Collapse
Affiliation(s)
- Peng Cao
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qilin Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Danyi Zou
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong, University of Science & Technology, Wuhan 430022, China.
| |
Collapse
|
21
|
Cheng C, Yao H, Li H, Liu J, Liu Z, Wu Y, Zhu L, Hu H, Fang Z, Wu L. Blockade of the deubiquitinating enzyme USP48 degrades oncogenic HMGA2 and inhibits colorectal cancer invasion and metastasis. Acta Pharm Sin B 2024; 14:1624-1643. [PMID: 38572092 PMCID: PMC10985028 DOI: 10.1016/j.apsb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
HMGA2, a pivotal transcription factor, functions as a versatile regulator implicated in the progression of diverse aggressive malignancies. In this study, mass spectrometry was employed to identify ubiquitin-specific proteases that potentially interact with HMGA2, and USP48 was identified as a deubiquitinating enzyme of HMGA2. The enforced expression of USP48 significantly increased HMGA2 protein levels by inhibiting its degradation, while the deprivation of USP48 promoted HMGA2 degradation, thereby suppressing tumor invasion and metastasis. We discovered that USP48 undergoes SUMOylation at lysine 258, which enhances its binding affinity to HMGA2. Through subsequent phenotypic screening of small molecules, we identified DUB-IN-2 as a remarkably potent pharmacological inhibitor of USP48. Interestingly, the small-molecule inhibitor targeting USP48 induces destabilization of HMGA2. Clinically, upregulation of USP48 or HMGA2 in cancerous tissues is indicative of poor prognosis for patients with colorectal cancer (CRC). Collectively, our study not only elucidates the regulatory mechanism of DUBs involved in HMGA2 stability and validates USP48 as a potential therapeutic target for CRC, but also identifies DUB-IN-2 as a potent inhibitor of USP48 and a promising candidate for CRC treatment.
Collapse
Affiliation(s)
- Can Cheng
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hanhui Yao
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Heng Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jingwen Liu
- Anhui Provincial Hospital Health Management Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhengyi Liu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Yang Wu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Liang Zhu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hejie Hu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhengdong Fang
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Liang Wu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
22
|
Boretto M, Geurts MH, Gandhi S, Ma Z, Staliarova N, Celotti M, Lim S, He GW, Millen R, Driehuis E, Begthel H, Smabers L, Roodhart J, van Es J, Wu W, Clevers H. Epidermal growth factor receptor (EGFR) is a target of the tumor-suppressor E3 ligase FBXW7. Proc Natl Acad Sci U S A 2024; 121:e2309902121. [PMID: 38483988 PMCID: PMC10962967 DOI: 10.1073/pnas.2309902121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/08/2024] [Indexed: 03/19/2024] Open
Abstract
FBXW7 is an E3 ubiquitin ligase that targets proteins for proteasome-mediated degradation and is mutated in various cancer types. Here, we use CRISPR base editors to introduce different FBXW7 hotspot mutations in human colon organoids. Functionally, FBXW7 mutation reduces EGF dependency of organoid growth by ~10,000-fold. Combined transcriptomic and proteomic analyses revealed increased EGFR protein stability in FBXW7 mutants. Two distinct phosphodegron motifs reside in the cytoplasmic tail of EGFR. Mutations in these phosphodegron motifs occur in human cancer. CRISPR-mediated disruption of the phosphodegron motif at T693 reduced EGFR degradation and EGF growth factor dependency. FBXW7 mutant organoids showed reduced sensitivity to EGFR-MAPK inhibitors. These observations were further strengthened in CRC-derived organoid lines and validated in a cohort of patients treated with panitumumab. Our data imply that FBXW7 mutations reduce EGF dependency by disabling EGFR turnover.
Collapse
Affiliation(s)
- Matteo Boretto
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Maarten H. Geurts
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Shashank Gandhi
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
- Department of Molecular and Cellular Biology, Miller Institute for Basic Research in Science, University of California, Berkeley, CA94720
| | - Ziliang Ma
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore138648, Singapore
- Department of Pharmacy, National University of Singapore, Singapore117543, Singapore
- Department of Biomolecular Mass Spectrometry and Proteomics, Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Nadzeya Staliarova
- Department of Biomolecular Mass Spectrometry and Proteomics, Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Martina Celotti
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Sangho Lim
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Gui-Wei He
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Rosemary Millen
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Else Driehuis
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Harry Begthel
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Lidwien Smabers
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CXUtrecht, the Netherlands
| | - Jeanine Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CXUtrecht, the Netherlands
| | - Johan van Es
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| | - Wei Wu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore138648, Singapore
- Department of Pharmacy, National University of Singapore, Singapore117543, Singapore
- Department of Biomolecular Mass Spectrometry and Proteomics, Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Hans Clevers
- Organoid group, Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584CTUtrecht, the Netherlands
| |
Collapse
|
23
|
Cui Z, Sun H, Gao Z, Li C, Xiao T, Bian Y, Liu Z, Gu T, Zhang J, Li T, Zhou Q, He Z, Li B, Li F, Xu Z, Xu H. TRIM21/USP15 balances ACSL4 stability and the imatinib resistance of gastrointestinal stromal tumors. Br J Cancer 2024; 130:526-541. [PMID: 38182686 PMCID: PMC10876985 DOI: 10.1038/s41416-023-02562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Imatinib has become an exceptionally effective targeted drug for treating gastrointestinal stromal tumors (GISTs). Despite its efficacy, the resistance to imatinib is common in GIST patients, posing a significant challenge to the effective treatment. METHODS The expression profiling of TRIM21, USP15, and ACSL4 in GIST patients was evaluated using Western blot and immunohistochemistry. To silence gene expression, shRNA was utilized. Biological function of TRIM21, USP15, and ACSL4 was examined through various methods, including resistance index calculation, colony formation, shRNA interference, and xenograft mouse model. The molecular mechanism of TRIM21 and USP15 in GIST was determined by conducting Western blot, co-immunoprecipitation, and quantitative real-time PCR (qPCR) analyses. RESULTS Here we demonstrated that downregulation of ACSL4 is associated with imatinib (IM) resistance in GIST. Moreover, clinical data showed that higher levels of ACSL4 expression are positively correlated with favorable clinical outcomes. Mechanistic investigations further indicated that the reduced expression of ACSL4 in GIST is attributed to excessive protein degradation mediated by the E3 ligase TRIM21 and the deubiquitinase USP15. CONCLUSION These findings demonstrate that the TRIM21 and USP15 control ACSL4 stability to maintain the IM sensitive/resistant status of GIST.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Haoyu Sun
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhishuang Gao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chao Li
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, #180 Fenglin Road, Shanghai, 200032, China
| | - Tingting Xiao
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Yibo Bian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Rd, Xi'an, 710032, Shaanxi, China
| | - Zonghang Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Tianhao Gu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Jianan Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Tengyun Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Qianzheng Zhou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhongyuan He
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Fengyuan Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China.
| |
Collapse
|
24
|
Arrighi N, Breda L, Kerdilès T, Meyer C, Prugneau L, Rabatel O, Wagner G, Krossa I, Pisibon C. [When ubiquitination intertwines with cutaneous melanoma: a mechanism to explore]. Med Sci (Paris) 2024; 40:308-310. [PMID: 38520112 DOI: 10.1051/medsci/2024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Affiliation(s)
- Nicole Arrighi
- Polytech Nice Sophia, Spécialité Génie biologique 5e année, Pharmacologie et Biotechnologies, Université Côte d'Azur, France
| | - Laura Breda
- Polytech Nice Sophia, Spécialité Génie biologique 5e année, Pharmacologie et Biotechnologies, Université Côte d'Azur, France
| | - Tiffany Kerdilès
- Polytech Nice Sophia, Spécialité Génie biologique 5e année, Pharmacologie et Biotechnologies, Université Côte d'Azur, France
| | - Charlène Meyer
- Polytech Nice Sophia, Spécialité Génie biologique 5e année, Pharmacologie et Biotechnologies, Université Côte d'Azur, France
| | - Laura Prugneau
- Polytech Nice Sophia, Spécialité Génie biologique 5e année, Pharmacologie et Biotechnologies, Université Côte d'Azur, France
| | - Ophélie Rabatel
- Polytech Nice Sophia, Spécialité Génie biologique 5e année, Pharmacologie et Biotechnologies, Université Côte d'Azur, France
| | - Gaëlle Wagner
- Polytech Nice Sophia, Spécialité Génie biologique 5e année, Pharmacologie et Biotechnologies, Université Côte d'Azur, France
| | - Imène Krossa
- Centre Méditerranéen de Médecine Moléculaire, Biologie et pathologies des mélanocytes, Equipe 1, Université Côte d'Azur, Nice, France
| | - Céline Pisibon
- Centre Méditerranéen de Médecine Moléculaire, Biologie et pathologies des mélanocytes, Equipe 1, Université Côte d'Azur, Nice, France
| |
Collapse
|
25
|
Tessier TM, Chowdhury A, Stekel Z, Fux J, Sartori MA, Teyra J, Jarvik N, Chung J, Kurinov I, Sicheri F, Sidhu SS, Singer AU, Zhang W. Structural and functional validation of a highly specific Smurf2 inhibitor. Protein Sci 2024; 33:e4885. [PMID: 38147466 PMCID: PMC10823456 DOI: 10.1002/pro.4885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
Smurf1 and Smurf2 are two closely related member of the HECT (homologous to E6AP carboxy terminus) E3 ubiquitin ligase family and play important roles in the regulation of various cellular processes. Both were initially identified to regulate transforming growth factor-β and bone morphogenetic protein signaling pathways through regulating Smad protein stability and are now implicated in various pathological processes. Generally, E3 ligases, of which over 800 exist in humans, are ideal targets for inhibition as they determine substrate specificity; however, there are few inhibitors with the ability to precisely target a particular E3 ligase of interest. In this work, we explored a panel of ubiquitin variants (UbVs) that were previously identified to bind Smurf1 or Smurf2. In vitro binding and ubiquitination assays identified a highly specific Smurf2 inhibitor, UbV S2.4, which was able to inhibit ligase activity with high potency in the low nanomolar range. Orthologous cellular assays further demonstrated high specificity of UbV S2.4 toward Smurf2 and no cross-reactivity toward Smurf1. Structural analysis of UbV S2.4 in complex with Smurf2 revealed its mechanism of inhibition was through targeting the E2 binding site. In summary, we investigated several protein-based inhibitors of Smurf1 and Smurf2 and identified a highly specific Smurf2 inhibitor that disrupts the E2-E3 protein interaction interface.
Collapse
Affiliation(s)
- Tanner M. Tessier
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Arvid Chowdhury
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Zane Stekel
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Julia Fux
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | | | | | - Nick Jarvik
- Department of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Jacky Chung
- Department of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Igor Kurinov
- NE‐CAT, Department of Chemistry and Chemical BiologyCornell UniversityArgonneIllinoisUSA
| | - Frank Sicheri
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalTorontoOntarioCanada
| | - Sachdev S. Sidhu
- Department of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Alex U. Singer
- Department of PharmacyUniversity of WaterlooKitchenerOntarioCanada
| | - Wei Zhang
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
26
|
Bendellaa M, Lelièvre P, Coll JL, Sancey L, Deniaud A, Busser B. Roles of zinc in cancers: From altered metabolism to therapeutic applications. Int J Cancer 2024; 154:7-20. [PMID: 37610131 DOI: 10.1002/ijc.34679] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Zinc (Zn) is a crucial trace element involved in various cellular processes, including oxidative stress, apoptosis and immune response, contributing to cellular homeostasis. Dysregulation of Zn homeostasis occurs in certain cancers. This review discusses the role of Zn in cancer and its associated components, such as Zn-related proteins, their potential as biomarkers and the use of Zn-based strategies for tumor treatment. ZIP and ZnT proteins regulate Zn metabolism under normal conditions, but their expression is aberrant in cancer. These Zn proteins can serve as prognostic or diagnostic biomarkers, aiding in early cancer detection and disease monitoring. Moreover, targeting Zn and its pathways offers potential therapeutic approaches for cancer treatment. Modulating Zn biodistribution within cells using metal-binding agents allows for the control of downstream signaling pathways. Direct utilization of zinc as a therapeutic agent, including Zn supplementation or Zn oxide nanoparticle administration, holds promise for improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Mohamed Bendellaa
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Pierre Lelièvre
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Jean-Luc Coll
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Lucie Sancey
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Aurélien Deniaud
- Grenoble Alpes University, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Benoit Busser
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
- Department of Laboratory Medicine, Grenoble Alpes University Hospital, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
27
|
Kimani SW, Perveen S, Szewezyk M, Zeng H, Dong A, Li F, Ghiabi P, Li Y, Chau I, Arrowsmith CH, Barsyte-Lovejoy D, Santhakumar V, Vedadi M, Halabelian L. The co-crystal structure of Cbl-b and a small-molecule inhibitor reveals the mechanism of Cbl-b inhibition. Commun Biol 2023; 6:1272. [PMID: 38104184 PMCID: PMC10725504 DOI: 10.1038/s42003-023-05655-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
Cbl-b is a RING-type E3 ubiquitin ligase that is expressed in several immune cell lineages, where it negatively regulates the activity of immune cells. Cbl-b has specifically been identified as an attractive target for cancer immunotherapy due to its role in promoting an immunosuppressive tumor environment. A Cbl-b inhibitor, Nx-1607, is currently in phase I clinical trials for advanced solid tumor malignancies. Using a suite of biophysical and cellular assays, we confirm potent binding of C7683 (an analogue of Nx-1607) to the full-length Cbl-b and its N-terminal fragment containing the TKBD-LHR-RING domains. To further elucidate its mechanism of inhibition, we determined the co-crystal structure of Cbl-b with C7683, revealing the compound's interaction with both the TKBD and LHR, but not the RING domain. Here, we provide structural insights into a novel mechanism of Cbl-b inhibition by a small-molecule inhibitor that locks the protein in an inactive conformation by acting as an intramolecular glue.
Collapse
Affiliation(s)
- Serah W Kimani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Magdalena Szewezyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Pegah Ghiabi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Masoud Vedadi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Zhou Z, Zheng K, Zhou S, Yang Y, Chen J, Jin X. E3 ubiquitin ligases in nasopharyngeal carcinoma and implications for therapies. J Mol Med (Berl) 2023; 101:1543-1565. [PMID: 37796337 DOI: 10.1007/s00109-023-02376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common squamous cell carcinomas of the head and neck, and Epstein-Barr virus (EBV) infection is one of the pathogenic factors involved in the oncogenetic development and progression of NPC. E3 ligases, which are key members of the ubiquitin proteasome system (UPS), specifically recognize various oncogenic factors and tumor suppressors and contribute to determining their fate through ubiquitination. Several studies have demonstrated that E3 ligases are aberrantly expressed and mutated in NPC and that these changes are closely associated with the occurrence and progression of NPC. Herein, we aim to thoroughly review the specific action mechanisms by which E3 ligases participate in NPC signaling pathways and discuss their functional relationship with EBV. Moreover, we describe the current progress in and limitations for targeted therapies against E3 ligases in NPC. KEY MESSAGES: • E3 ubiquitin ligases, as members of the UPS system, determine the fate of their substrates and may act either as oncogenic or anti-tumorigenic factors in NPC. • Mutations or dysregulated expression of E3 ubiquitin ligases is closely related to the occurrence, development, and therapeutic sensitivity of NPC, as they play important roles in several signaling pathways affected by EBV infection. • As promising therapeutic targets, E3 ligases may open new avenues for treatment and for improving the prognosis of NPC patients.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Shao Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Youxiong Yang
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315199, China.
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
29
|
Le Clorennec C, Subramonian D, Huo Y, Zage PE. UBE4B interacts with the ITCH E3 ubiquitin ligase to induce Ku70 and c-FLIPL polyubiquitination and enhanced neuroblastoma apoptosis. Cell Death Dis 2023; 14:739. [PMID: 37957138 PMCID: PMC10643674 DOI: 10.1038/s41419-023-06252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Expression of the UBE4B ubiquitin ligase is strongly associated with neuroblastoma patient outcomes, but the functional roles of UBE4B in neuroblastoma pathogenesis are not known. We evaluated interactions of UBE4B with the E3 ubiquitin ligase ITCH/AIP4 and the effects of UBE4B expression on Ku70 and c-FLIPL ubiquitination and proteasomal degradation by co-immunoprecipitation and Western blots. We also evaluated the role of UBE4B in apoptosis induced by histone deacetylase (HDAC) inhibition using Western blots. UBE4B binding to ITCH was mediated by WW domains in the ITCH protein. ITCH activation led to ITCH-UBE4B complex formation and recruitment of Ku70 and c-FLIPL via ITCH WW domains, followed by Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination and proteasomal degradation. HDAC inhibition induced Ku70 acetylation, leading to release of c-FLIPL and Bax from Ku70, increased Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination via the ITCH-UBE4B complex, and induction of apoptosis. UBE4B depletion led to reduced polyubiquitination and increased levels of Ku70 and c-FLIPL and to reduced apoptosis induced by HDAC inhibition via stabilization of c-FLIPL and Ku70 and inhibition of caspase 8 activation. Our results have identified novel interactions and novel targets for UBE4B ubiquitin ligase activity and a direct role for the ITCH-UBE4B complex in responses of neuroblastoma cells to HDAC inhibition, suggesting that the ITCH-UBE4B complex plays a critical role in responses of neuroblastoma to therapy and identifying a potential mechanism underlying the association of UBE4B expression with neuroblastoma patient outcomes.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Divya Subramonian
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA.
- Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
30
|
Shi F, Wu Y, Wang K, Wang J, Liu M, Sun X. A pancancer analysis of the oncogenic role of ZNRF2 in human tumours. J Cell Mol Med 2023; 27:3296-3312. [PMID: 37551845 PMCID: PMC10623518 DOI: 10.1111/jcmm.17900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/19/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023] Open
Abstract
Finding effective treatments for cancer requires a thorough understanding of how it develops and progresses. Recent research has revealed the crucial role that Zinc and ring finger 2 (ZNRF2) play in the progression of non-small cell lung cancer (NSCLC) by controlling cell growth and death. However, a comprehensive analysis of ZNRF2's role in cancer as a whole has yet to be conducted. Our study sought to investigate the impact of ZNRF2 on diverse human tumours, as well as the molecular pathways involved, using databases such as TCGA (The Cancer Genome Atlas), GEO (Gene Expression Omnibus) and the Human Protein Atlas (HPA), as well as several bioinformatic tools. Our findings indicate that ZNRF2 is generally expressed at higher levels in tumours than in normal tissues, and in some cancers, its levels correlate positively with disease stage, potentially predicting a poor prognosis for patients. We also discovered genetic changes in ZNRF2 among cancer patients, as well as its relationship with cancer-related fibroblasts, endothelial cells and immune cell infiltration. Additionally, we explored potential molecular mechanisms of ZNRF2 in tumours, finding that it increases in hepatocellular carcinoma (HCC) tissues and that inhibiting its expression through ZNRF2 siRNA can limit HepG2 cell proliferation. Overall, our study provides a comprehensive overview of ZNRF2's oncogenic roles across various cancers.
Collapse
Affiliation(s)
- Fujie Shi
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- School of Life SciencesNanjing UniversityNanjingChina
| | - Yunfei Wu
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Kai Wang
- Division of Trauma and Surgical Intensive Care UnitResearch Institute of General Surgery, Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jiafan Wang
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Minghui Liu
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Xinlei Sun
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
31
|
Ma S, Chen Q, Li X, Fu J, Zhao L. UBE2C serves as a prognosis biomarker of uterine corpus endometrial carcinoma via promoting tumor migration and invasion. Sci Rep 2023; 13:16899. [PMID: 37803076 PMCID: PMC10558470 DOI: 10.1038/s41598-023-44189-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
The biological functions of ubiquitin-conjugating enzymes E2 (UBE2) family members in uterine corpus endometrial carcinoma (UCEC) remains unclear. Our study aimed to systematically analyze the expression patterns, prognostic value, biological functions and molecular regulatory mechanisms of UBE2 family in UCEC. Among nine screened UBE2 family members associated with UCEC, UBE2C was the most significantly overexpressed gene with poor prognosis. High expression levels of UBE2C in UCEC was correlated with stages, histological subtypes, patient's menopause status and TP53 mutation. Three molecules (CDC20, PTTG1 and AURKA), were identified as the key co-expression proteins of UBE2C. The generic alterations (mutation, amplification) and DNA hypomethylation might contribute to UBE2C's high expression in UCEC. Furthermore, in vitro experiments showed that the interference of UBE2C inhibited the migration and invasion of endometrial cancer cells, while partially impact cell proliferation and didn't impact the expression of epithelial-mesenchymal transition (EMT) markers. Using comprehensive bioinformatics analysis and in vitro experiments, our study provided a novel insight into the oncogenic role of UBE2 family, specifically UBE2C in UCEC. UBE2C might serve as an effective biomarker to predict poor prognosis and a potential therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Sijia Ma
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qian Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jing Fu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Le Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| |
Collapse
|
32
|
Hu J, Huang R, Liang C, Wang Y, Wang M, Chen Y, Wu C, Zhang J, Liu Z, Zhao Q, Liu Z, Wang F, Yuan S. TRIM50 Inhibits Gastric Cancer Progression by Regulating the Ubiquitination and Nuclear Translocation of JUP. Mol Cancer Res 2023; 21:1107-1119. [PMID: 37409971 PMCID: PMC10543995 DOI: 10.1158/1541-7786.mcr-23-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/04/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Gastric cancer is one of the most frequent cancers in the world. Emerging clinical data show that ubiquitination system disruptions are likely involved in carcinoma genesis and progression. However, the precise role of ubiquitin (Ub)-mediated control of oncogene products or tumor suppressors in gastric cancer is unknown. Tripartite motif-containing 50 (TRIM50), an E3 ligase, was discovered by high-output screening of ubiquitination-related genes in tissues from patients with gastric cancer to be among the ubiquitination-related enzymes whose expression was most downregulated in gastric cancer. With two different databases, we verified that TRIM50 expression was lower in tumor tissues relative to normal tissues. TRIM50 also suppressed gastric cancer cell growth and migration in vitro and in vivo. JUP, a transcription factor, was identified as a new TRIM50 ubiquitination target by MS and coimmunoprecipitation experiments. TRIM50 increases JUP K63-linked polyubiquitination mostly at the K57 site. We discovered that the K57 site is critical for JUP nuclear translocation by prediction with the iNuLoC website and further studies. Furthermore, ubiquitination of the K57 site limits JUP nuclear translocation, consequently inhibiting the MYC signaling pathway. These findings identify TRIM50 as a novel coordinator in gastric cancer cells, providing a potential target for the development of new gastric cancer treatment strategies. IMPLICATIONS TRIM50 regulates gastric cancer tumor progression, and these study suggest TRIM50 as a new cancer target.
Collapse
Affiliation(s)
- Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Runjie Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chengcai Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yingnan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yanxing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chenyi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jinling Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shuqiang Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
33
|
Celada SI, Li G, Celada LJ, Lu W, Kanagasabai T, Feng W, Cao Z, Salsabeel N, Mao N, Brown LK, Mark ZA, Izban MG, Ballard BR, Zhou X, Adunyah SE, Matusik RJ, Wang X, Chen Z. Lysosome-dependent FOXA1 ubiquitination contributes to luminal lineage of advanced prostate cancer. Mol Oncol 2023; 17:2126-2146. [PMID: 37491794 PMCID: PMC10552895 DOI: 10.1002/1878-0261.13497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
Changes in FOXA1 (forkhead box protein A1) protein levels are well associated with prostate cancer (PCa) progression. Unfortunately, direct targeting of FOXA1 in progressive PCa remains challenging due to variations in FOXA1 protein levels, increased FOXA1 mutations at different stages of PCa, and elusive post-translational FOXA1 regulating mechanisms. Here, we show that SKP2 (S-phase kinase-associated protein 2) catalyzes K6- and K29-linked polyubiquitination of FOXA1 for lysosomal-dependent degradation. Our data indicate increased SKP2:FOXA1 protein ratios in stage IV human PCa compared to stages I-III, together with a strong inverse correlation (r = -0.9659) between SKP2 and FOXA1 levels, suggesting that SKP2-FOXA1 protein interactions play a significant role in PCa progression. Prostate tumors of Pten/Trp53 mice displayed increased Skp2-Foxa1-Pcna signaling and colocalization, whereas disruption of the Skp2-Foxa1 interplay in Pten/Trp53/Skp2 triple-null mice demonstrated decreased Pcna levels and increased expression of Foxa1 and luminal positive cells. Treatment of xenograft mice with the SKP2 inhibitor SZL P1-41 decreased tumor proliferation, SKP2:FOXA1 ratios, and colocalization. Thus, our results highlight the significance of the SKP2-FOXA1 interplay on the luminal lineage in PCa and the potential of therapeutically targeting FOXA1 through SKP2 to improve PCa control.
Collapse
Affiliation(s)
- Sherly I. Celada
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
- Department of Biological SciencesTennessee State UniversityNashvilleTNUSA
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | | | - Wenfu Lu
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Weiran Feng
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Zhen Cao
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Weill Cornell Graduate School of Medical SciencesWeill Cornell MedicineNew YorkNYUSA
| | - Nazifa Salsabeel
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Ninghui Mao
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - LaKendria K. Brown
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Zaniya A. Mark
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Michael G. Izban
- Department of Pathology, Anatomy and Cell BiologyMeharry Medical CollegeNashvilleTNUSA
| | - Billy R. Ballard
- Department of Pathology, Anatomy and Cell BiologyMeharry Medical CollegeNashvilleTNUSA
| | - Xinchun Zhou
- Department of PathologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Robert J. Matusik
- Department of UrologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Xiaofei Wang
- Department of Biological SciencesTennessee State UniversityNashvilleTNUSA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| |
Collapse
|
34
|
Ye Z, Yang J, Jiang H, Zhan X. The roles of protein ubiquitination in tumorigenesis and targeted drug discovery in lung cancer. Front Endocrinol (Lausanne) 2023; 14:1220108. [PMID: 37795365 PMCID: PMC10546409 DOI: 10.3389/fendo.2023.1220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
The malignant lung cancer has a high morbidity rate and very poor 5-year survival rate. About 80% - 90% of protein degradation in human cells is occurred through the ubiquitination enzyme pathway. Ubiquitin ligase (E3) with high specificity plays a crucial role in the ubiquitination process of the target protein, which usually occurs at a lysine residue in a substrate protein. Different ubiquitination forms have different effects on the target proteins. Multiple short chains of ubiquitination residues modify substrate proteins, which are favorable signals for protein degradation. The dynamic balance adapted to physiological needs between ubiquitination and deubiquitination of intracellular proteins is beneficial to the health of the organism. Ubiquitination of proteins has an impact on many biological pathways, and imbalances in these pathways lead to diseases including lung cancer. Ubiquitination of tumor suppressor protein factors or deubiquitination of tumor carcinogen protein factors often lead to the progression of lung cancer. Ubiquitin proteasome system (UPS) is a treasure house for research and development of new cancer drugs for lung cancer, especially targeting proteasome and E3s. The ubiquitination and degradation of oncogene proteins with precise targeting may provide a bright prospect for drug development in lung cancer; Especially proteolytic targeted chimerism (PROTAC)-induced protein degradation technology will offer a new strategy in the discovery and development of new drugs for lung cancer.
Collapse
Affiliation(s)
- Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingru Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hanming Jiang
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
35
|
Long D, Zhang R, Du C, Tong J, Ni Y, Zhou Y, Zuo Y, Liao M. Integrated analysis of the ubiquitination mechanism reveals the specific signatures of tissue and cancer. BMC Genomics 2023; 24:523. [PMID: 37667177 PMCID: PMC10478310 DOI: 10.1186/s12864-023-09583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Ubiquitination controls almost all cellular processes. The dysregulation of ubiquitination signals is closely associated with the initiation and progression of multiple diseases. However, there is little comprehensive research on the interaction and potential function of ubiquitination regulators (UBRs) in spermatogenesis and cancer. METHODS We systematically characterized the mRNA and protein expression of UBRs across tissues and further evaluated their roles in testicular development and spermatogenesis. Subsequently, we explored the genetic alterations, expression perturbations, cancer hallmark-related pathways, and clinical relevance of UBRs in pan-cancer. RESULTS This work reveals heterogeneity in the expression patterns of UBRs across tissues, and the expression pattern in testis is the most distinct. UBRs are dynamically expressed during testis development, which are critical for normal spermatogenesis. Furthermore, UBRs have widespread genetic alterations and expression perturbations in pan-cancer. The expression of 79 UBRs was identified to be closely correlated with the activity of 32 cancer hallmark-related pathways, and ten hub genes were screened for further clinical relevance analysis by a network-based method. More than 90% of UBRs can affect the survival of cancer patients, and hub genes have an excellent prognostic classification for specific cancer types. CONCLUSIONS Our study provides a comprehensive analysis of UBRs in spermatogenesis and pan-cancer, which can build a foundation for understanding male infertility and developing cancer drugs in the aspect of ubiquitination.
Collapse
Affiliation(s)
- Deyu Long
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, 010070, Hohhot, China
| | - Ruiqi Zhang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Changjian Du
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jiapei Tong
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Ni
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yaqi Zhou
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, 010070, Hohhot, China.
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
36
|
Chen A, Zhou Y, Ren Y, Liu C, Han X, Wang J, Ma Z, Chen Y. Ubiquitination of acetyltransferase Gcn5 contributes to fungal virulence in Fusarium graminearum. mBio 2023; 14:e0149923. [PMID: 37504517 PMCID: PMC10470610 DOI: 10.1128/mbio.01499-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
The histone acetyltransferase general control non-depressible 5 (Gcn5) plays a critical role in the epigenetic landscape and chromatin modification for regulating a wide variety of biological events. However, the post-translational regulation of Gcn5 itself is poorly understood. Here, we found that Gcn5 was ubiquitinated and deubiquitinated by E3 ligase Tom1 and deubiquitinating enzyme Ubp14, respectively, in the important plant pathogenic fungus Fusarium graminearum. Tom1 interacted with Gcn5 in the nucleus and subsequently ubiquitinated Gcn5 mainly at K252 to accelerate protein degradation. Conversely, Ubp14 deubiquitinated Gcn5 and enhanced its stability. In the deletion mutant Δubp14, protein level of Gcn5 was significantly reduced and resulted in attenuated virulence in the fungus by affecting the mycotoxin production, autophagy process, and the penetration ability. Our findings indicate that Tom1 and Ubp14 show antagonistic functions in the control of the protein stability of Gcn5 via post-translational modification and highlight the importance of Tom1-Gcn5-Ubp14 circuit in the fungal virulence. IMPORTANCE Post-translational modification (PTM) enzymes have been reported to be involved in regulating numerous cellular processes. However, the modification of these PTM enzymes themselves is largely unknown. In this study, we found that the E3 ligase Tom1 and deubiquitinating enzyme Ubp14 contributed to the regulation of ubiquitination and deubiquitination of acetyltransferase Gcn5, respectively, in Fusarium graminearum, the causal agent of Fusarium head blight of cereals. Our findings provide deep insights into the modification of acetyltransferase Gcn5 and its dynamic regulation via ubiquitination and deubiquitination. To our knowledge, this work is the most comprehensive analysis of a regulatory network of ubiquitination that impinges on acetyltransferase in filamentous pathogens. Moreover, our findings are important because we present the novel roles of the Tom1-Gcn5-Ubp14 circuit in fungal virulence, providing novel possibilities and targets to control fungal diseases.
Collapse
Affiliation(s)
- Ahai Chen
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yifan Zhou
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiyi Ren
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xingmin Han
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jing Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Wang Z, Yuan Q, Chen X, Luo F, Shi X, Guo F, Ren J, Li S, Shang D. A prospective prognostic signature for pancreatic adenocarcinoma based on ubiquitination-related mRNA-lncRNA with experimental validation in vitro and vivo. Funct Integr Genomics 2023; 23:263. [PMID: 37540295 PMCID: PMC10403435 DOI: 10.1007/s10142-023-01158-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
Ubiquitination-related genes (URGs) exerted a crucial part in a variety of human disease disorders; however, their association with pancreatic adenocarcinoma (PAAD) had yet to be clearly described. We aimed to comprehensively characterize the contributions of URGs in PAAD through in silico analysis and experimental validation, and then identified a robust mRNA-lncRNA-based molecular prognostic panel for patients with PAAD using bulk RNA-sequencing and single-cell RNA-sequencing data. Initially, we collected the multi-omics data from TCGA platform to depict a comprehensive landscape of URGs in pan-cancer. Furthermore, we were accurate to PAAD for in-depth analysis. Significant differences of the activation of ubiquitination pathways and the expression of URGs were detected between normal and malignant cells. Unsupervised hierarchical clustering determined two PAAD subtypes with distinct clinical outcomes, ubiquitination pathway activities, immune microenvironment, and functional annotation characteristics. The expression profiles of ubiquitination-associated mRNAs and lncRNAs in the training and validation datasets were utilized to develop and verify a novel ubiquitination-related mRNA-lncRNA prognostic panel, which had a satisfied prediction efficiency. Our ubiquitination-associated model could function as an effective prognostic index and outperformed four other recognized panels in evaluating PAAD patients' survival status. Tumor immune microenvironment, mutation burden, and chemotherapy response were intensively explored to demonstrate the underlying mechanism of prognostic difference according to our panel. Our findings also revealed that FTI-277, a farnesyltransferase inhibitor, had a better curative effect in high-risk patients, while MK-2206, an Akt allosteric inhibitor, had a superior therapeutic effect in low-risk patients. The real-time PCR results uncovered the RNA expression of AC005062.1 in all the three PAAD cell lines was elevated several thousandfold. In conclusion, our URGs-based classification panel could be triumphantly served as a prediction tool for survival evaluation in patients with PAAD, and the genes in this panel could be developed as a potential target in PAAD therapy.
Collapse
Affiliation(s)
- Zhizhou Wang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fei Luo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Xueying Shi
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jie Ren
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Shuang Li
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
38
|
Tang Y, Dai G, Yang Y, Liu H. GSG2 facilitates the progression of human breast cancer through MDM2-mediated ubiquitination of E2F1. J Transl Med 2023; 21:523. [PMID: 37537694 PMCID: PMC10398932 DOI: 10.1186/s12967-023-04358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Breast cancer (BC) has posed a great threat to world health as the leading cause of cancer death among women. Previous evidence demonstrated that germ cell-specific gene 2 (GSG2) was involved in the regulation of multiple cancers. Thus, the clinical value, biological function and underlying mechanism of GSG2 in BC were investigated in this study. METHODS The expression of GSG2 in BC was revealed by immunohistochemistry (IHC), qPCR and western blotting. Secondly, the biological function of GSG2 in BC was evaluated by MTT assay, flow cytometry, Transwell assay and wound healing assay. Furthermore, the potential molecular mechanism of GSG2 regulating the progression of BC by co-immunoprecipitation (Co-IP) and protein stability detection. RESULTS Our data indicated that GSG2 was frequently overexpressed in BC. Moreover, there was a significant correlation between the GSG2 expression and the poor prognosis of BC patients. Functionally, GSG2 knockdown inhibited the malignant progression of BC characterized by reduced proliferation, enhanced apoptosis and attenuated tumor growth. Migration inhibition of GSG2 knockdown BC cells via epithelial-mesenchymal transition (EMT), such as downregulation of Vimentin and Snail. In addition, E2F transcription factor 1 (E2F1) was regarded as a target protein of GSG2. Downregulation of E2F1 attenuated the promoting role of GSG2 on BC cells. Mechanistically, knockdown of GSG2 accelerated the ubiquitination of E2F1 protein, which was mediated by E3 ubiquitin ligase MDM2. CONCLUSIONS GSG2 facilitated the development and progression of BC through MDM2-mediated ubiquitination of E2F1, which may be a promising candidate target with potential therapeutic value.
Collapse
Affiliation(s)
- Yu Tang
- Day Ward, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xianheyan Road, Shenyang, 110042, China
| | - Gaosai Dai
- Department of Breast Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yupeng Yang
- Department of Thyroid and Breast Surgery, Jinan Zhangqiu District Hospital of TCM, Xiushui Street 1463, Jinan, 250200, Shandong, China
| | - Huantao Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
39
|
Wang M, Zhang Z, Li Z, Zhu Y, Xu C. E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and implications for immunotherapies. Front Immunol 2023; 14:1226057. [PMID: 37497216 PMCID: PMC10366618 DOI: 10.3389/fimmu.2023.1226057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
With the rapidly increasing incidence of bladder cancer in China and worldwide, great efforts have been made to understand the detailed mechanism of bladder cancer tumorigenesis. Recently, the introduction of immune checkpoint inhibitor-based immunotherapy has changed the treatment strategy for bladder cancer, especially for advanced bladder cancer, and has improved the survival of patients. The ubiquitin-proteasome system, which affects many biological processes, plays an important role in bladder cancer. Several E3 ubiquitin ligases and deubiquitinases target immune checkpoints, either directly or indirectly. In this review, we summarize the recent progress in E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and further highlight the implications for bladder cancer immunotherapies.
Collapse
Affiliation(s)
- Maoyu Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhensheng Zhang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhizhou Li
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yasheng Zhu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
40
|
Chen J, Wu Z, Deng W, Tang M, Wu L, Lin N, Chen L, Fu Y, Zhao M, Chen C, Li W. USP51 promotes non-small cell lung carcinoma cell stemness by deubiquitinating TWIST1. J Transl Med 2023; 21:453. [PMID: 37422632 PMCID: PMC10329790 DOI: 10.1186/s12967-023-04304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/24/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND USP51 is a deubiquitinase (DUB), that is involved in diverse cellular processes. Accumulating evidence has demonstrated that USP51 contributes to cancer development. However, its impact on non-small cell lung carcinoma (NSCLC) cell malignancy is largely unknown. METHODS In this study, we performed bioinformatics analysis on a dataset from The Cancer Genome Atlas to determine the association between USP51 and cell stemness marker expression in NSCLC patients. RT‒qPCR, Western blotting, and flow cytometry were performed to examine the effects of USP51 depletion on stemness marker expression. Colony formation and tumor sphere formation assays were used to assess the stemness of NSCLC cells. A cycloheximide chase time-course assay and a polyubiquitination assay were carried out to analyze the effects of USP51 on the TWIST1 protein level. TWIST1 was overexpressed in USP51 knockdown NSCLC cells to determine whether TWIST1 is required. The effect of USP51 on the in vivo growth of NSCLC cells was tested through subcutaneous injections in mice. RESULTS We found that USP51 deubiquitinates TWIST1, which is significantly upregulated in the tissues of patients with NSCLC and is closely associated with poor prognosis. USP51 expression was positively correlated with the expression of stemness marker CD44, SOX2, NANOG, and OCT4 in NSCLC patients. USP51 depletion attenuated mRNA, protein, and cell surface expression of stemness markers and the stemness of NSCLC cells. Ectopic USP51 expression potentiated the stability of the TWIST1 protein by attenuating its polyubiquitination. In addition, TWIST1 re-expression in NSCLC cells reversed the inhibitory effect of USP51 knockdown on cell stemness. Furthermore, the in vivo results confirmed the suppressive effect of USP51 depletion on NSCLC cell growth. CONCLUSIONS Our results show that USP51 maintains the stemness of NSCLC cells by deubiquitinating TWIST1. Knocking it down reduces both cell stemness and growth of NSCLC cells.
Collapse
Affiliation(s)
- Jin Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Zhongqiu Wu
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, Xiamen, China
- Department of Ultrasound, 900th Hospital, Xiamen University, Xiamen, China
| | - Wenyi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Minying Tang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, Xiamen, China
| | - Lvying Wu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Na Lin
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, Xiamen, China
| | - Liuyan Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yunfeng Fu
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, Xiamen, China
| | - Min Zhao
- Department of Clinical Laboratory, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Changguo Chen
- Department of Clinical Laboratory, The Sixth Medical Center of PLA General Hospital, Beijing, China.
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
41
|
Kim YJ, Lee Y, Shin H, Hwang S, Park J, Song EJ. Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res 2023; 46:573-597. [PMID: 37541992 DOI: 10.1007/s12272-023-01455-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
As the ubiquitin-proteasome system (UPS) regulates almost every biological process, the dysregulation or aberrant expression of the UPS components causes many pathological disorders, including cancers. To find a novel target for anticancer therapy, the UPS has been an active area of research since the FDA's first approval of a proteasome inhibitor bortezomib in 2003 for treating multiple myeloma (MM). Here, we summarize newly described UPS components, including E3 ubiquitin ligases, deubiquitinases (DUBs), and immunoproteasome, whose malfunction leads to tumorigenesis and whose inhibitors have been investigated in clinical trials as anticancer therapy since 2020. We explain the mechanism and effects of several inhibitors in depth to better comprehend the advantages of targeting UPS components for cancer treatment. In addition, we describe attempts to overcome resistance and limited efficacy of some launched proteasome inhibitors, as well as an emerging PROTAC-based tool targeting UPS components for anticancer therapy.
Collapse
Affiliation(s)
- Yeon Jung Kim
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yeonjoo Lee
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyungkyung Shin
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - SuA Hwang
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jinyoung Park
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
42
|
Altaf R, Ilyas U, Ma A, Shi M. Identification and validation of differentially expressed genes for targeted therapy in NSCLC using integrated bioinformatics analysis. Front Oncol 2023; 13:1206768. [PMID: 37324026 PMCID: PMC10264625 DOI: 10.3389/fonc.2023.1206768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background Despite the high prevalence of lung cancer, with a five-year survival rate of only 23%, the underlying molecular mechanisms of non-small cell lung cancer (NSCLC) remain unknown. There is a great need to identify reliable candidate biomarker genes for early diagnosis and targeted therapeutic strategies to prevent cancer progression. Methods In this study, four datasets obtained from the Gene Expression Omnibus were evaluated for NSCLC- associated differentially expressed genes (DEGs) using bioinformatics analysis. About 10 common significant DEGs were shortlisted based on their p-value and FDR (DOCK4, ID2, SASH1, NPR1, GJA4, TBX2, CD24, HBEGF, GATA3, and DDR1). The expression of significant genes was validated using experimental data obtained from TCGA and the Human Protein Atlas database. The human proteomic data for post- translational modifications was used to interpret the mutations in these genes. Results Validation of DEGs revealed a significant difference in the expression of hub genes in normal and tumor tissues. Mutation analysis revealed 22.69%, 48.95%, and 47.21% sequence predicted disordered regions of DOCK4, GJA4, and HBEGF, respectively. The gene-gene and drug-gene network analysis revealed important interactions between genes and chemicals suggesting they could act as probable drug targets. The system-level network showed important interactions between these genes, and the drug interaction network showed that these genes are affected by several types of chemicals that could serve as potential drug targets. Conclusions The study demonstrates the importance of systemic genetics in identifying potential drug- targeted therapies for NSCLC. The integrative system- level approach should contribute to a better understanding of disease etiology and may accelerate drug discovery for many cancer types.
Collapse
Affiliation(s)
- Reem Altaf
- Department of Pharmacy, Iqra University, Islamabad, Pakistan
| | - Umair Ilyas
- Department of Pharmaceutics, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Anmei Ma
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meiqi Shi
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Gatti V, De Domenico S, Melino G, Peschiaroli A. Senataxin and R-loops homeostasis: multifaced implications in carcinogenesis. Cell Death Discov 2023; 9:145. [PMID: 37147318 PMCID: PMC10163015 DOI: 10.1038/s41420-023-01441-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
R-loops are inherent byproducts of transcription consisting of an RNA:DNA hybrid and a displaced single-stranded DNA. These structures are of key importance in controlling numerous physiological processes and their homeostasis is tightly controlled by the activities of several enzymes deputed to process R-loops and prevent their unproper accumulation. Senataxin (SETX) is an RNA/DNA helicase which catalyzes the unwinding of RNA:DNA hybrid portion of the R-loops, promoting thus their resolution. The key importance of SETX in R-loops homeostasis and its relevance with pathophysiological events is highlighted by the evidence that gain or loss of function SETX mutations underlie the pathogenesis of two distinct neurological disorders. Here, we aim to describe the potential impact of SETX on tumor onset and progression, trying to emphasize how dysregulation of this enzyme observed in human tumors might impact tumorigenesis. To this aim, we will describe the functional relevance of SETX in regulating gene expression, genome integrity, and inflammation response and discuss how cancer-associated SETX mutations might affect these pathways, contributing thus to tumor development.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy
| | - Sara De Domenico
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy.
| |
Collapse
|
44
|
Dai T, Yang Y, Zhang J, Ma X, Chen L, Zhang C, Lv S, Li L, Tang R, Zhen N, Lu W, Li C, Hu R, Xiao Y, Dong Z. GCK exonic mutations induce abnormal biochemical activities and result in GCK-MODY. Front Genet 2023; 14:1120153. [PMID: 37082200 PMCID: PMC10110986 DOI: 10.3389/fgene.2023.1120153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: Glucokinase-maturity-onset diabetes of the young (GCK-MODY; MODY2) is a rare genetic disorder caused by mutations in the glucokinase (GCK) gene. It is often under- or misdiagnosed in clinical practice, but correct diagnosis can be facilitated by genetic testing. In this study, we examined the genes of three patients diagnosed with GCK-MODY and tested their biochemical properties, such as protein stability and half-life, to explore the function of the mutant proteins and identify the pathogenic mechanism of GCK-MODY.Methods: Three patients with increased blood glucose levels were diagnosed with MODY2 according to the diagnostic guidelines of GCK-MODY proposed by the International Society for Pediatric and Adolescent Diabetes (ISPAD) in 2018. Next-generation sequencing (whole exome detection) was performed to detect gene mutations. The GCK gene and its mutations were introduced into the pCDNA3.0 and pGEX-4T-1 vectors. Following protein purification, enzyme activity assay, and protein immunoblotting, the enzyme activity of GCK was determined, along with the ubiquitination level of the mutant GCK protein.Results: Genetic testing revealed three mutations in the GCK gene of the three patients, including c.574C>T (p.R192W), c.758G>A (p.C253Y), and c.794G>A (p.G265D). The biochemical characteristics of the protein encoded by wild-type GCK and mutant GCK were different, compared to wild-type GCK, the enzyme activity encoded by the mutant GCK was reduced, suggesting thermal instability of the mutant GST-GCK. The protein stability and expression levels of the mutant GCK were reduced, and the enzyme activity of GCK was negatively correlated with the levels of fasting blood glucose and HbA1c. In addition, ubiquitination of the mutant GCK protein was higher than that of the wild-type, suggesting a higher degradation rate of mutant GCK than WT-GCK.Conclusion:GCK mutations lead to changes in the biochemical characteristics of its encoded proteins. The enzyme activities, protein expression, and protein stability of GCK may be reduced in patients with GCK gene mutations, which further causes glucose metabolism disorders and induces MODY2.
Collapse
Affiliation(s)
- Tongtong Dai
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Yang
- School of Medicine, Guizhou University, Guiyang, China
| | - Juanjuan Zhang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lifen Chen
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Caiping Zhang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Lv
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Li
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renqiao Tang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Zhen
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyin Li
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Liu Y, Wu M, Xu S, Niu X, Liu W, Miao C, Lin A, Xu Y, Yu L. PSMD2 contributes to the progression of esophageal squamous cell carcinoma by repressing autophagy. Cell Biosci 2023; 13:67. [PMID: 36998052 DOI: 10.1186/s13578-023-01016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The ubiquitin-proteasome and autophagy-lysosomal systems collaborate in regulating the levels of intracellular proteins. Dysregulation of protein homeostasis is a central feature of malignancy. The gene encoding 26S proteasome non-ATPase regulatory subunit 2 (PSMD2) of the ubiquitin-proteasome system is an oncogene in various types of cancer. However, the detailed role of PSMD2 in autophagy and its relationship to tumorigenesis in esophageal squamous cell carcinoma (ESCC) remain unknown. In the present study, we have investigated the tumor-promoting roles of PSMD2 in the context of autophagy in ESCC. METHODS Molecular approaches including DAPgreen staining, 5-Ethynyl-2'-deoxyuridine (EdU), cell counting kit 8 (CCK8), colony formation, transwell assays, and cell transfection, xenograft model, immunoblotting and Immunohistochemical analysis were used to investigate the roles of PSMD2 in ESCC cells. Data-independent acquisition (DIA) quantification proteomics analysis and rescue experiments were used to study the roles of PSMD2 in ESCC cells. RESULTS We demonstrate that the overexpression of PSMD2 promotes ESCC cell growth by inhibiting autophagy and is correlated with tumor progression and poor prognosis of ESCC patients. DIA quantification proteomics analysis shows a significant positive correlation between argininosuccinate synthase 1 (ASS1) and PSMD2 levels in ESCC tumors. Further studies indicate that PSMD2 activates the mTOR pathway by upregulating ASS1 to inhibit autophagy. CONCLUSIONS PSMD2 plays an important role in repressing autophagy in ESCC, and represents a promising biomarker to predict prognosis and a therapeutic target of ESCC patients.
Collapse
Affiliation(s)
- Yachen Liu
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Meng Wu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shuxiang Xu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xiangjie Niu
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Weiling Liu
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Chuanwang Miao
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Ai Lin
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yang Xu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Lili Yu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
46
|
Hao Y, Guy MM, Liu Q, Li R, Mao Z, Jiang N, Wang B, Cui B, Zhang W. Construction of a prognostic model based on eight ubiquitination-related genes via machine learning and potential therapeutics analysis for cervical cancer. Front Genet 2023; 14:1142938. [PMID: 36999051 PMCID: PMC10043205 DOI: 10.3389/fgene.2023.1142938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction: Ubiquitination is involved in many biological processes and its predictive value for prognosis in cervical cancer is still unclear.Methods: To further explore the predictive value of the ubiquitination-related genes we obtained URGs from the Ubiquitin and Ubiquitin-like Conjugation Database, analyzed datasets from The Cancer Genome Atlas and Gene Expression Omnibus databases, and then selected differentially expressed ubiquitination-related genes between normal and cancer tissues. Then, DURGs significantly associated with overall survival were selected through univariate Cox regression. Machine learning was further used to select the DURGs. Then, we constructed and validated a reliable prognostic gene signature by multivariate analysis. In addition, we predicted the substrate proteins of the signature genes and did a functional analysis to further understand the molecular biology mechanisms. The study provided new guidelines for evaluating cervical cancer prognosis and also suggested new directions for drug development.Results: By analyzing 1,390 URGs in GEO and TCGA databases, we obtained 175 DURGs. Our results showed 19 DURGs were related to prognosis. Finally, eight DURGs were identified via machine learning to construct the first ubiquitination prognostic gene signature. Patients were stratified into high-risk and low-risk groups and the prognosis was worse in the high-risk group. In addition, these gene protein levels were mostly consistent with their transcript level. According to the functional analysis of substrate proteins, the signature genes may be involved in cancer development through the transcription factor activity and the classical P53 pathway ubiquitination-related signaling pathways. Additionally, 71 small molecular compounds were identified as potential drugs.Conclusion: We systematically studied the influence of ubiquitination-related genes on prognosis in cervical cancer, established a prognostic model through a machine learning algorithm, and verified it. Also, our study provides a new treatment strategy for cervical cancer.
Collapse
|
47
|
Ma Q, Lu Q, Lei X, Zhao J, Sun W, Wang J, Zhu Q, Huang D. UCHL3 promotes hepatocellular carcinoma cell migration by de-ubiquitinating and stabilizing Vimentin. Front Oncol 2023; 13:1088475. [PMID: 36969045 PMCID: PMC10036040 DOI: 10.3389/fonc.2023.1088475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is a common malignant tumor associated with a poor prognosis. Ubiquitin carboxyl-terminal hydrolase L3 (UCHL3) has been reported to promote diverse tumors, but little is known about its role in HCC.MethodsExpression levels of UCHL3 in Huh7 and Hep3B cells were measured by qRT-PCR. UCHL3, Vimentin protein levels, and ubiquitination levels were determined by Western blot assay. co-immunoprecipitation, Immunofluorescence, and IHC were used to detect the interaction and expression association between UCHL3 and Vimentin in the cells. Wound healing and Transwell assays were used to measure cell migration. Spheroid formation assay were used to assess stem-like properties.ResultsUCHL3 expression was found to be significantly elevated in HCC and associated with poor prognosis. UCHL3 promoted migration and stem-like properties of HCC cells. Vimentin was identified as a potential de-ubiquitination substrate of UCHL3 and UCHL3 interacted with and promoted the de-ubiquitination of Vimentin, enhancing its stability. Moreover, the suppression of UCHL3 by siRNA or the inhibition by TCID upregulated ubiquitinated Vimentin. Vimentin attenuated the suppression of cell migration caused by knockdown of UCHL3.ConclusionUCHL3 was highly expressed in HCC and functioned as an oncogene. Vimentin is a novel substrate of UCHL3 and its stabilization and de-ubiquitination enhanced HCC cell migration.
Collapse
Affiliation(s)
- Qiancheng Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiangxiang Lei
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wen Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Wang
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qing Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Qing Zhu, ; Dongsheng Huang,
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Qing Zhu, ; Dongsheng Huang,
| |
Collapse
|
48
|
Zhou X, Fu C, Chen X. The role of ubiquitin pathway-mediated regulation of immune checkpoints in cancer immunotherapy. Cancer 2023; 129:1649-1661. [PMID: 36857206 DOI: 10.1002/cncr.34729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
With the continuous cognition of the relationship between tumor cells and tumor immune microenvironment, immunotherapy based on the immune checkpoint blockade has achieved great breakthroughs, led to improved clinical outcomes, and prolonged survival for cancer patients in recent years. Nevertheless, the de novo or acquired resistance to immunotherapy has greatly counteracted the efficacy, leading to a 20%-40% overall response rate. Thus, further in-depth understanding of the regulation of the tumor microenvironment and antitumor immunity is urgently warranted. Ubiquitination-mediated protein degradation plays vital roles in protein stabilization, activation, and dynamics as well as in cellular homeostasis modulation. The dysregulated ubiquitination and deubiquitination are closely related to the changes in physiological and pathological processes, which subsequently result in a variety of diseases including cancer. In this review, the authors first summarize the current knowledge about the involvement of the ubiquitin-proteasome system in tumor development with the ubiquitin conjugation-regulated stability of p53, phosphatase and tensin homolog, and Myc protein as examples, then dissect the potential implications of ubiquitination-mediated immune checkpoints degradation in tumor microenvironment and immune responses, and finally discuss the effects of therapeutically targeting the ubiquitin-proteasome pathway on immunotherapy, with the goal of providing deep insights into the exploitation of more precise and effective combinational therapy against cancer.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Chengxiao Fu
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xisha Chen
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
49
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
50
|
Zhang Z, Peng L, Yang W, Li B, Hua Y, Luo S. PHF5A facilitates the development and progression of gastric cancer through SKP2-mediated stabilization of FOS. J Transl Med 2023; 21:5. [PMID: 36609277 PMCID: PMC9817416 DOI: 10.1186/s12967-022-03821-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common cancer and the third most common cause of cancer death worldwide. Plant homeodomain (PHD)-finger domain protein PHF5A has been demonstrated to play a promoting role in a variety of cancers. This study aimed to clarify the role of PHF5A in the progression of GC and its potential mechanism of action. METHODS Immunohistochemical staining experiments were performed based on tissues from clinical GC patients to reveal PHF5A expression. A series of functional experiments in vitro and in vivo were used to clarify the role of PHF5A in GC. RESULTS Clinically, PHF5A was abundantly expressed in GC and existed clinical value indicating poor prognosis. In addition, GC cells with knockdown of PHF5A expression showed slowed proliferation, enhanced sensitivity to apoptosis and inhibition of migration. Mechanically, knockdown of PHF5A led to decreased protein stability of FOS, which was mediated ubiquitination of E3 ubiquitin ligase S-phase kinase-associated protein 2 (SKP2). Moreover, downregulation of FOS attenuated the promotion of PHF5A overexpression on GC cells. Consistently, Pladienolide B (PHF5A inhibitor) treatment reversed the induction of PHF5A overexpression on the malignant phenotypes and tumor formation of GC cells. CONCLUSION Knockdown of PHF5A inhibited the progression of GC through SKP2-mediated ubiquitination of FOS, which may be a promising candidate target with potential therapeutic value.
Collapse
Affiliation(s)
- Zhandong Zhang
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Liangqun Peng
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Wei Yang
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Baodong Li
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Yawei Hua
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Suxia Luo
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| |
Collapse
|