1
|
Yasuda T, Ueura D, Nakagomi M, Hanashima S, Murata M. Relevance of ceramide 1-phosphate domain formation in activation of cytosolic phospholipase A 2. Biophys Chem 2025; 322:107433. [PMID: 40080927 DOI: 10.1016/j.bpc.2025.107433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Ceramide 1-phosphate (C1P), as a lipid mediator, specifically binds and activates cytosolic phospholipase A2α (cPLA2α). Previous findings revealed that modification of the specific hydrophobic moiety decreases the affinity with cPLA2α. However, the possible biological role of the temporal C1P-enriched domains formed in biomembranes for the molecular recognition of cPLA2α has not been fully elucidated. In this study we elucidated the properties of segregated domains formed by C1P (and its analogs) and the affinity of cPLA2α for C1P in different co-lipid environments by fluorescence spectroscopy using trans-parinaric acid and surface plasmon resonance (SPR). Fluorescence measurements suggested that the formation of C1P ordered domains is strongly influenced by interfacial 3-OH and phosphate groups of C1P, such as hydrogen-bonding and electrostatic interactions, and depends on the co-lipid composition of the host bilayer. SPR indicated that C1P under the lipid environment favorable for the formation of C1P clusters has higher affinity for cPLA2α. Thus, we speculate that C1P clusters formed under certain membrane conditions are important in specific binding with cPLA2α by increasing the interaction between the C1P headgroup and basic residues of cPLA2α. In conclusion, this study revealed that the local formation of lipid mediator-rich clusters in biomembranes likely has a significant effect on the interaction between the mediator and its receptor protein.
Collapse
Affiliation(s)
- Tomokazu Yasuda
- Research Foundation ITSUU Laboratory, C1232, Kanagawa Science Park R&D Building, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Daiki Ueura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Madoka Nakagomi
- Research Foundation ITSUU Laboratory, C1232, Kanagawa Science Park R&D Building, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori, Tottori 680-8550, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Hannun YA, Merrill AH, Luberto C. The Bioactive Sphingolipid Playbook. A Primer for the Uninitiated as well as Sphingolipidologists. J Lipid Res 2025:100813. [PMID: 40254066 DOI: 10.1016/j.jlr.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Sphingolipids and glycosphingolipids are among the most structurally diverse and complex compounds in the mammalian metabolome. They are well known to play important roles in biological architecture, cell-cell communication and cellular regulation, and for many biological processes, multiple sphingolipids are involved. Thus, it is not surprising that untargeted genetic/transcriptomic/pharmacologic/metabolomic screens have uncovered changes in sphingolipids and sphingolipid genes/proteins while studying physiological and pathological processes. Consequently, with increasing frequency, both targeted and untargeted mass spectrometry methodologies are being used to conduct sphingolipidomic analyses. Interpretation of such large data sets and design of follow-up experiments can be daunting for investigators with limited expertise with sphingolipids (and sometimes even for someone well-versed in sphingolipidology). Therefore, this review gives an overview of essential elements of sphingolipid structure and analysis, metabolism, functions, and roles in disease, and discusses some of the items to consider when interpreting lipidomics data and designing follow-up investigations.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Departments of Biochemistry, Medicine, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Chiara Luberto
- Department of Physiology and Biophysics, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
3
|
Xie X, Macknight HP, Lu AL, Chalfant CE. RNA splicing variants of the novel long non-coding RNA, CyKILR, possess divergent biological functions in non-small cell lung cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102412. [PMID: 39807365 PMCID: PMC11728077 DOI: 10.1016/j.omtn.2024.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene. This lncRNA, named cyclin-dependent kinase inhibitor 2A-regulated lncRNA (CyKILR), also correlated with an active WT STK11 gene, which encodes the tumor suppressor, liver kinase B1. CyKILR displayed two splice variants, CyKILRa (exon 3 included) and CyKILRb (exon 3 excluded), which are cooperatively regulated by CDKN2A and STK11 as knockdown of both tumor suppressor genes was required to induce a significant loss of exon 3 inclusion in mature CyKILR RNA. CyKILRa localized to the nucleus, and its downregulation using antisense RNA oligonucleotides enhanced cellular proliferation, migration, clonogenic survival, and tumor incidence. In contrast, CyKILRb localized to the cytoplasm, and its downregulation using small interfering RNA reduced cell proliferation, migration, clonogenic survival, and tumor incidence. Transcriptomics analyses revealed the enhancement of apoptotic pathways with concomitant suppression of key cell-cycle pathways by CyKILRa demonstrating its tumor-suppressive role. CyKILRb inhibited tumor suppressor miRNAs indicating an oncogenic nature. These findings elucidate the intricate roles of lncRNAs in cell signaling and tumorigenesis.
Collapse
Affiliation(s)
- Xiujie Xie
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - H. Patrick Macknight
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Amy L. Lu
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Charles E. Chalfant
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Program in Cancer Biology, University of Virginia NCI Comprehensive Cancer Center, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Day CA, Grigore F, Hakkim FL, Paul S, Langfald A, Weberg M, Fadness S, Schwab P, Sepaniac L, Stumpff J, Vaughan KT, Daniels DJ, Robinson JP, Hinchcliffe EH. The histone H3.3 K27M mutation suppresses Ser31phosphorylation and mitotic fidelity, which can directly drive gliomagenesis. Curr Biol 2025; 35:354-362.e7. [PMID: 39729988 DOI: 10.1016/j.cub.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/29/2024]
Abstract
Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G1 cell-cycle arrest.1,2,3,4 Ser31 is proximal to the H3.3 lysine 27-to-methionine (K27M) mutation that drives ∼80% of pediatric diffuse midline gliomas.5,6,7,8,9,10,11,12 Here, we show that expression of the H3.3 K27M mutant in normal, diploid cells results in increased chromosome missegregation and failure to arrest in the following G1. Expression of a non-phosphorylatable S31A mutant also drives chromosome missegregation, while the expression of a double K27M + phosphomimetic S31E mutant restores mitotic fidelity and the p53 response to chromosome missegregation. We show that patient-derived H3.3 K27M tumor cells have decreased mitotic Ser31 phosphorylation and increased frequency of chromosome missegregation. CRISPR reversion of the K27M mutation to wild type (WT) restores phospho-Ser31 levels and results in a decrease in chromosome missegregation. However, inserting an S31A mutation by CRISPR into these revertant cells disrupts mitotic fidelity. In vitro and in vivo analyses reveal that Chk1-the mitotic Ser31 kinase-is preferentially retained at pericentromeres in K27M-expressing tumor cells, compared with MLysine27-to-methionine mutation (M27K) isogenic revertants, correlating with both diminished phospho-Ser31 and mitotic defects. Interestingly, whereas M27K revertant cells do not form xenograft tumors in mice, H3.3 S31A cells do, similar to those formed by H3.3 K27M cells. Replication-competent avian leukosis virus splice-acceptor (RCAS)/cellular receptor for subgroup A avian sarcoma and leukosis virus (TVA) mice expressing S31A also form diffuse midline gliomas morphologically indistinguishable from K27M tumors. Together, our results reveal that the H3.3 K27M mutant alters H3.3 Ser31 phosphorylation, which, in turn, has profound impacts on chromosome segregation/cell-cycle regulation.
Collapse
Affiliation(s)
- Charles A Day
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Neuro-Oncology Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Florina Grigore
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Faruck L Hakkim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Souren Paul
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Alyssa Langfald
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Molly Weberg
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Sela Fadness
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Paiton Schwab
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Leslie Sepaniac
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA; Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Kevin T Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55905, USA
| | - James P Robinson
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Edward H Hinchcliffe
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
5
|
Gao Y, Le LTM, Alam A, Brown RE. Use of Bicelle-Generated Lipid Bilayer Vesicle Nanoparticles for In Vitro Measurement of Lipid Intermembrane Transport. Methods Mol Biol 2025; 2888:201-219. [PMID: 39699733 DOI: 10.1007/978-1-0716-4318-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Herein, we describe a straightforward, easy method for generating stable lipid bilayer vesicle nanoparticles and show their usefulness for efficient in vitro tracking of lipid intermembrane transfer activity. Bilayer model membrane discs, i.e., bicelles, are initially produced and then rapidly diluted, a process that transforms them into stable uniform-sized, unilamellar lipid bilayer vesicles as confirmed by cryo-EM. The resulting "donor" vesicles contain minor amounts of fluorescently labeled "substrate" lipids for specific lipid transfer proteins (LTPs), whereas "acceptor" vesicles do not. Upon donor and acceptor vesicle incubation with LTPs, fluorophore-labeled lipid departure from donor vesicles is continuously tracked in real time via Förster resonance energy transfer. FRET and various other means for measuring in vitro intermembrane lipid transfer have been detailed previously (Kenoth R, Brown RE, Kamlekar RK, Methods Mol Biol 1949:237-256 (2019)). The novelty of the methodology presented here lies in the use of bicelle dilution to easily generate stable donor and acceptor nanoparticles needed for tracking lipid transfer activity. The approach is readily adjustable for assessing lipid transfer involving (i) various lipid types by specific LTPs, (ii) crude or highly purified protein sample preparations, and (iii) no protein, i.e., spontaneous, and should facilitate the development of high throughput, plate reader-type LTP screening assays.
Collapse
Affiliation(s)
- Yongguang Gao
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Le Thi My Le
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Amer Alam
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | | |
Collapse
|
6
|
Dubot P, Sabourdy F, Levade T. Human genetic defects of sphingolipid synthesis. J Inherit Metab Dis 2025; 48:e12745. [PMID: 38706107 PMCID: PMC11730260 DOI: 10.1002/jimd.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Sphingolipids are ubiquitous lipids, present in the membranes of all cell types, the stratum corneum and the circulating lipoproteins. Autosomal recessive as well as dominant diseases due to disturbed sphingolipid biosynthesis have been identified, including defects in the synthesis of ceramides, sphingomyelins and glycosphingolipids. In many instances, these gene variants result in the loss of catalytic function of the mutated enzymes. Additional gene defects implicate the subcellular localization of the sphingolipid-synthesizing enzyme, the regulation of its activity, or even the function of a sphingolipid-transporter protein. The resulting metabolic alterations lead to two major, non-exclusive types of clinical manifestations: a neurological disease, more or less rapidly progressive, associated or not with intellectual disability, and an ichthyotic-type skin disorder. These phenotypes highlight the critical importance of sphingolipids in brain and skin development and homeostasis. The present article reviews the clinical symptoms, genetic and biochemical alterations, pathophysiological mechanisms and therapeutic options of this relatively novel group of metabolic diseases.
Collapse
Affiliation(s)
- Patricia Dubot
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III—Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT)ToulouseFrance
- Laboratoire de BiochimieInstitut Fédératif de Biologie, CHU PurpanToulouseFrance
- Centre de RecherchesCHU Sainte‐Justine, Université de MontréalMontréalCanada
| | - Frédérique Sabourdy
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III—Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT)ToulouseFrance
- Laboratoire de BiochimieInstitut Fédératif de Biologie, CHU PurpanToulouseFrance
| | - Thierry Levade
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III—Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT)ToulouseFrance
- Laboratoire de BiochimieInstitut Fédératif de Biologie, CHU PurpanToulouseFrance
| |
Collapse
|
7
|
Hamaï A, Drin G. Specificity of lipid transfer proteins: An in vitro story. Biochimie 2024; 227:85-110. [PMID: 39304019 DOI: 10.1016/j.biochi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lipids, which are highly diverse, are finely distributed between organelle membranes and the plasma membrane (PM) of eukaryotic cells. As a result, each compartment has its own lipid composition and molecular identity, which is essential for the functional fate of many proteins. This distribution of lipids depends on two main processes: lipid synthesis, which takes place in different subcellular regions, and the transfer of these lipids between and across membranes. This review will discuss the proteins that carry lipids throughout the cytosol, called LTPs (Lipid Transfer Proteins). More than the modes of action or biological roles of these proteins, we will focus on the in vitro strategies employed during the last 60 years to address a critical question: What are the lipid ligands of these LTPs? We will describe the extent to which these strategies, combined with structural data and investigations in cells, have made it possible to discover proteins, namely ORPs, Sec14, PITPs, STARDs, Ups/PRELIs, START-like, SMP-domain containing proteins, and bridge-like LTPs, which compose some of the main eukaryotic LTP families, and their lipid ligands. We will see how these approaches have played a central role in cell biology, showing that LTPs can connect distant metabolic branches, modulate the composition of cell membranes, and even create new subcellular compartments.
Collapse
Affiliation(s)
- Amazigh Hamaï
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France.
| |
Collapse
|
8
|
Xie X, Macknight HP, Lu AL, Chalfant CE. RNA splicing variants of the novel long non-coding RNA, CyKILR, possess divergent biological functions in non-small cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602494. [PMID: 39026815 PMCID: PMC11257467 DOI: 10.1101/2024.07.08.602494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene. This lncRNA, named Cy clin-Dependent K inase I nhibitor 2A-regulated l nc R NA (CyKILR), also correlated with an active WT STK11 gene, which encodes the tumor suppressor, Liver kinase B1. CyKILR displayed two splice variants, CyKILRa (exon 3 included) and CyKILRb (exon 3 excluded), which are cooperatively regulated by CDKN2A and STK11 as knockdown of both tumor suppressor genes was required to induce a significant loss of exon 3 inclusion in mature CyKILR RNA. CyKILRa localized to the nucleus, and its downregulation using antisense RNA oligonucleotides enhanced cellular proliferation, migration, clonogenic survival, and tumor incidence. In contrast, CyKILRb localized to the cytoplasm, and its downregulation using siRNA reduced cell proliferation, migration, clonogenic survival, and tumor incidence. Transcriptomics analyses revealed enhancement of apoptotic pathways with concomitant suppression of key cell cycle pathways by CyKILRa demonstrating its tumor-suppressive role. CyKILRb inhibited tumor suppressor microRNAs indicating an oncogenic nature. These findings elucidate the intricate roles of lncRNAs in cell signaling and tumorigenesis.
Collapse
|
9
|
Srinivasan S, Álvarez D, John Peter AT, Vanni S. Unbiased MD simulations identify lipid binding sites in lipid transfer proteins. J Cell Biol 2024; 223:e202312055. [PMID: 39105757 PMCID: PMC11303870 DOI: 10.1083/jcb.202312055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/29/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024] Open
Abstract
The characterization of lipid binding to lipid transfer proteins (LTPs) is fundamental to understand their molecular mechanism. However, several structures of LTPs, and notably those proposed to act as bridges between membranes, do not provide the precise location of their endogenous lipid ligands. To address this limitation, computational approaches are a powerful alternative methodology, but they are often limited by the high flexibility of lipid substrates. Here, we develop a protocol based on unbiased coarse-grain molecular dynamics simulations in which lipids placed away from the protein can spontaneously bind to LTPs. This approach accurately determines binding pockets in LTPs and provides a working hypothesis for the lipid entry pathway. We apply this approach to characterize lipid binding to bridge LTPs of the Vps13-Atg2 family, for which the lipid localization inside the protein is currently unknown. Overall, our work paves the way to determine binding pockets and entry pathways for several LTPs in an inexpensive, fast, and accurate manner.
Collapse
Affiliation(s)
| | - Daniel Álvarez
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo, España
| | | | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
10
|
Farooqui AA, Farooqui T. Phospholipids, Sphingolipids, and Cholesterol-Derived Lipid Mediators and Their Role in Neurological Disorders. Int J Mol Sci 2024; 25:10672. [PMID: 39409002 PMCID: PMC11476704 DOI: 10.3390/ijms251910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Neural membranes are composed of phospholipids, sphingolipids, cholesterol, and proteins. In response to cell stimulation or injury, the metabolism of lipids generates various lipid mediators, which perform many cellular functions. Thus, phospholipids release arachidonic acid or docosahexaenoic acid from the sn-2 position of the glycerol moiety by the action of phospholipases A2. Arachidonic acid is a precursor for prostaglandins, leukotrienes, thromboxane, and lipoxins. Among these mediators, prostaglandins, leukotrienes, and thromboxane produce neuroinflammation. In contrast, lipoxins produce anti-inflammatory and pro-resolving effects. Prostaglandins, leukotrienes, and thromboxane are also involved in cell proliferation, differentiation, blood clotting, and blood vessel permeability. In contrast, DHA-derived lipid mediators are called specialized pro-resolving lipid metabolites (SPMs). They include resolvins, protectins, and maresins. These mediators regulate immune function by producing anti-inflammatory, pro-resolving, and cell protective effects. Sphingolipid-derived metabolites are ceramide, ceramide1-phosphate, sphingosine, and sphingosine 1 phosphate. They regulate many cellular processes, including enzyme activities, cell migration and adhesion, inflammation, and immunity. Cholesterol is metabolized into hydroxycholesterols and 7-ketocholesterol, which not only disrupts membrane fluidity, but also promotes inflammation, oxidative stress, and apoptosis. These processes lead to cellular damage.
Collapse
Affiliation(s)
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
11
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
12
|
Iezhitsa I, Agarwal R, Agarwal P. Unveiling enigmatic essence of Sphingolipids: A promising avenue for glaucoma treatment. Vision Res 2024; 221:108434. [PMID: 38805893 DOI: 10.1016/j.visres.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Treatment of glaucoma, the leading cause of irreversible blindness, remains challenging. The apoptotic loss of retinal ganglion cells (RGCs) in glaucoma is the pathological hallmark. Current treatments often remain suboptimal as they aim to halt RGC loss secondary to reduction of intraocular pressure. The pathophysiological targets for exploring direct neuroprotective approaches, therefore are highly relevant. Sphingolipids have emerged as significant target molecules as they are not only the structural components of various cell constituents, but they also serve as signaling molecules that regulate molecular pathways involved in cell survival and death. Investigations have shown that a critical balance among various sphingolipid species, particularly the ceramide and sphingosine-1-phosphate play a role in deciding the fate of the cell. In this review we briefly discuss the metabolic interconversion of sphingolipid species to get an insight into "sphingolipid rheostat", the dynamic balance among metabolites. Further we highlight the role of sphingolipids in the key pathophysiological mechanisms that lead to glaucomatous loss of RGCs. Lastly, we summarize the potential drug candidates that have been investigated for their neuroprotective effects in glaucoma via their effects on sphingolipid axis.
Collapse
|
13
|
Srinivasan S, Di Luca A, Álvarez D, John Peter AT, Gehin C, Lone MA, Hornemann T, D’Angelo G, Vanni S. The conformational plasticity of structurally unrelated lipid transport proteins correlates with their mode of action. PLoS Biol 2024; 22:e3002737. [PMID: 39159271 PMCID: PMC11361750 DOI: 10.1371/journal.pbio.3002737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/29/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
Lipid transfer proteins (LTPs) are key players in cellular homeostasis and regulation, as they coordinate the exchange of lipids between different cellular organelles. Despite their importance, our mechanistic understanding of how LTPs function at the molecular level is still in its infancy, mostly due to the large number of existing LTPs and to the low degree of conservation at the sequence and structural level. In this work, we use molecular simulations to characterize a representative dataset of lipid transport domains (LTDs) of 12 LTPs that belong to 8 distinct families. We find that despite no sequence homology nor structural conservation, the conformational landscape of LTDs displays common features, characterized by the presence of at least 2 main conformations whose populations are modulated by the presence of the bound lipid. These conformational properties correlate with their mechanistic mode of action, allowing for the interpretation and design of experimental strategies to further dissect their mechanism. Our findings indicate the existence of a conserved, fold-independent mechanism of lipid transfer across LTPs of various families and offer a general framework for understanding their functional mechanism.
Collapse
Affiliation(s)
| | - Andrea Di Luca
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Daniel Álvarez
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
| | | | - Charlotte Gehin
- Institute of Bioengineering (IBI) and Global Heath Institute (GHI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Museer A. Lone
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giovanni D’Angelo
- Institute of Bioengineering (IBI) and Global Heath Institute (GHI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- National Center of Competence in Research Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Mondal K, Del Mar NA, Gary AA, Grambergs RC, Yousuf M, Tahia F, Stephenson B, Stephenson DJ, Chalfant CE, Reiner A, Mandal N. Sphingolipid changes in mouse brain and plasma after mild traumatic brain injury at the acute phases. Lipids Health Dis 2024; 23:200. [PMID: 38937745 PMCID: PMC11209960 DOI: 10.1186/s12944-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI. METHODS Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey's correction for multiple comparisons. RESULTS In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days. CONCLUSIONS Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
- Molecular Diagnostics Laboratory, Department of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, Kolkata, WB, 700 063, India
| | - Nobel A Del Mar
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Ashlyn A Gary
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Richard C Grambergs
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Mohd Yousuf
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Faiza Tahia
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Benjamin Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Daniel J Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Charles E Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Research Service, Richmond VA Medical Center, Richmond, VA, 23298, USA
| | - Anton Reiner
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
15
|
Tian L, Zhao C, Yan Y, Jia Q, Cui S, Chen H, Li X, Jiang H, Yao Y, He K, Zhao X. Ceramide-1-phosphate alleviates high-altitude pulmonary edema by stabilizing circadian ARNTL-mediated mitochondrial dynamics. J Adv Res 2024; 60:75-92. [PMID: 37479181 PMCID: PMC11156611 DOI: 10.1016/j.jare.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
INTRODUCTION High-altitude pulmonary edema (HAPE) is a severe and potentially fatal condition with limited treatment options. Although ceramide kinase (CERK)-derived ceramide-1-phosphate (C1P) has been demonstrated to offer protection against various pulmonary diseases, its effects on HAPE remain unclear. OBJECTIVES Our study aimed to investigate the potential role of CERK-derived C1P in the development of HAPE and to reveal the molecular mechanisms underlying its protective effects. We hypothesized that CERK-derived C1P could protect against HAPE by stabilizing circadian rhythms and maintaining mitochondrial dynamics. METHODS To test our hypothesis, we used CERK-knockout mice and established HAPE mouse models using a FLYDWC50-1C hypobaric hypoxic cabin. We utilized a range of methods, including lipidomics, transcriptomics, immunofluorescence, Western blotting, and transmission electron microscopy, to identify the mechanisms of regulation. RESULTS Our findings demonstrated that CERK-derived C1P played a protective role against HAPE. Inhibition of CERK exacerbated HAPE induced by the hypobaric hypoxic environment. Specifically, we identified a novel mechanism in which CERK inhibition induced aryl hydrocarbon receptor nuclear translocator-like (ARNTL) autophagic degradation, inducing the circadian rhythm and triggering mitochondrial damage by controlling the expression of proteins required for mitochondrial fission and fusion. The decreased ARNTL caused by CERK inhibition impaired mitochondrial dynamics, induced oxidative stress damage, and resulted in defects in mitophagy, particularly under hypoxia. Exogenous C1P prevented ARNTL degradation, alleviated mitochondrial damage, neutralized oxidative stress induced by CERK inhibition, and ultimately relieved HAPE. CONCLUSIONS This study provides evidence for the protective effect of C1P against HAPE, specifically, through stabilizing circadian rhythms and maintaining mitochondrial dynamics. Exogenous C1P therapy may be a promising strategy for treating HAPE. Our findings also highlight the importance of the circadian rhythm and mitochondrial dynamics in the pathogenesis of HAPE, suggesting that targeting these pathways may be a potential therapeutic approach for this condition.
Collapse
Affiliation(s)
- Liuyang Tian
- School of Medicine, Nankai University, Tianjin 300071, China; Medical Big Data Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China; National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China
| | - Chenghui Zhao
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Biomedical Engineering, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Yan
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Jia
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Saijia Cui
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Huining Chen
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaolu Li
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University Beijing Anzhen Hospital, Beijing 100029, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University Beijing Anzhen Hospital, Beijing 100029, China
| | - Yongming Yao
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China; National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| | - Xiaojing Zhao
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
16
|
Read CB, Ali AN, Stephenson DJ, Macknight HP, Maus KD, Cockburn CL, Kim M, Xie X, Carlyon JA, Chalfant CE. Ceramide-1-phosphate is a regulator of Golgi structure and is co-opted by the obligate intracellular bacterial pathogen Anaplasma phagocytophilum. mBio 2024; 15:e0029924. [PMID: 38415594 PMCID: PMC11005342 DOI: 10.1128/mbio.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Many intracellular pathogens structurally disrupt the Golgi apparatus as an evolutionarily conserved promicrobial strategy. Yet, the host factors and signaling processes involved are often poorly understood, particularly for Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We found that A. phagocytophilum elevated cellular levels of the bioactive sphingolipid, ceramide-1-phosphate (C1P), to promote Golgi fragmentation that enables bacterial proliferation, conversion from its non-infectious to infectious form, and productive infection. A. phagocytophilum poorly infected mice deficient in ceramide kinase, the Golgi-localized enzyme responsible for C1P biosynthesis. C1P regulated Golgi morphology via activation of a PKCα/Cdc42/JNK signaling axis that culminates in phosphorylation of Golgi structural proteins, GRASP55 and GRASP65. siRNA-mediated depletion of Cdc42 blocked A. phagocytophilum from altering Golgi morphology, which impaired anterograde trafficking of trans-Golgi vesicles into and maturation of the pathogen-occupied vacuole. Cells overexpressing phosphorylation-resistant versions of GRASP55 and GRASP65 presented with suppressed C1P- and A. phagocytophilum-induced Golgi fragmentation and poorly supported infection by the bacterium. By studying A. phagocytophilum, we identify C1P as a regulator of Golgi structure and a host factor that is relevant to disease progression associated with Golgi fragmentation.IMPORTANCECeramide-1-phosphate (C1P), a bioactive sphingolipid that regulates diverse processes vital to mammalian physiology, is linked to disease states such as cancer, inflammation, and wound healing. By studying the obligate intracellular bacterium Anaplasma phagocytophilum, we discovered that C1P is a major regulator of Golgi morphology. A. phagocytophilum elevated C1P levels to induce signaling events that promote Golgi fragmentation and increase vesicular traffic into the pathogen-occupied vacuole that the bacterium parasitizes. As several intracellular microbial pathogens destabilize the Golgi to drive their infection cycles and changes in Golgi morphology is also linked to cancer and neurodegenerative disorder progression, this study identifies C1P as a potential broad-spectrum therapeutic target for infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Curtis B. Read
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Anika N. Ali
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Daniel J. Stephenson
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - H. Patrick Macknight
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth D. Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Chelsea L. Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Xiujie Xie
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Charles E. Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, Virginia, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, Virginia, USA
| |
Collapse
|
17
|
Biran A, Santos TCB, Dingjan T, Futerman AH. The Sphinx and the egg: Evolutionary enigmas of the (glyco)sphingolipid biosynthetic pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159462. [PMID: 38307322 DOI: 10.1016/j.bbalip.2024.159462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
In eukaryotes, the de novo synthesis of sphingolipids (SLs) consists of multiple sequential steps which are compartmentalized between the endoplasmic reticulum and the Golgi apparatus. Studies over many decades have identified the enzymes in the pathway, their localization, topology and an array of regulatory mechanisms. However, little is known about the evolutionary forces that underly the generation of this complex pathway or of its anteome, i.e., the metabolic pathways that converge on the SL biosynthetic pathway and are essential for its activity. After briefly describing the pathway, we discuss the mechanisms by which the enzymes of the SL biosynthetic pathway are targeted to their different subcellular locations, how the pathway per se may have evolved, including its compartmentalization, and the relationship of the pathway to eukaryogenesis. We discuss the circular interdependence of the evolution of the SL pathway, and comment on whether current Darwinian evolutionary models are able to provide genuine mechanistic insight into how the pathway came into being.
Collapse
Affiliation(s)
- Assaf Biran
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tania C B Santos
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
18
|
Mangwani-Mordani S, Prislovsky A, Stephenson D, Chalfant CE, Galor A, Mandal N. Role of Polyunsaturated Fatty Acids (PUFAs) and Eicosanoids on Dry Eye Symptoms and Signs. Biomolecules 2024; 14:376. [PMID: 38540794 PMCID: PMC10968634 DOI: 10.3390/biom14030376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 01/30/2025] Open
Abstract
Polyunsaturated fatty acids (PUFAs) generate pro- and anti-inflammatory eicosanoids via three different metabolic pathways. This study profiled tear PUFAs and their metabolites and examined the relationships with dry eye (DE) and meibomian gland dysfunction (MGD) symptoms and signs. A total of 40 individuals with normal eyelids and corneal anatomies were prospectively recruited. The symptoms and signs of DE and MGD were assessed, and tear samples (from the right eye) were analyzed by mass spectrometry. Mann-Whitney U tests assessed differences between medians; Spearman tests assessed correlations between continuous variables; and linear regression models assessed the impact of potential confounders. The median age was 63 years; 95% were male; 30% were White; and 85% were non-Hispanic. The symptoms of DE/MGD were not correlated with tear PUFAs and eicosanoids. DE signs (i.e., tear break-up time (TBUT) and Schirmer's) negatively correlated with anti-inflammatory eicosanoids (11,12-dihydroxyeicosatrienoic acid (11,12 DHET) and 14,15-dihydroxyicosatrienoic acid (14,15, DHET)). Corneal staining positively correlated with the anti-inflammatory PUFA, docosahexaenoic acid (DHA). MGD signs significantly associated with the pro-inflammatory eicosanoid 15-hydroxyeicosatetranoic acid (15-HETE) and DHA. Several relationships remained significant when potential confounders were considered. DE/MGD signs relate more to tear PUFAs and eicosanoids than symptoms. Understanding the impact of PUFA-related metabolic pathways in DE/MGD may provide targets for new therapeutic interventions.
Collapse
Affiliation(s)
- Simran Mangwani-Mordani
- Surgical Services, Department of Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 17th Street, Miami, FL 33125, USA;
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami, 900 NW 17th Street, Miami, FL 33136, USA
| | - Amanda Prislovsky
- Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104, USA
| | - Daniel Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Charles E. Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond VA 23298, USA
| | - Anat Galor
- Surgical Services, Department of Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 17th Street, Miami, FL 33125, USA;
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami, 900 NW 17th Street, Miami, FL 33136, USA
| | - Nawajes Mandal
- Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104, USA
- Hamilton Eye Institute, Department of Ophthalmology, Anatomy and Neurobiology, The University of Tennessee Health Science Center, 930 Madison Ave, Memphis, TN 38163, USA
| |
Collapse
|
19
|
Bao HN, Yin J, Wang LY, Wang RH, Huang LQ, Chen YL, Wu JX, Sun JQ, Liu WW, Yao N, Li J. Aberrant accumulation of ceramides in mitochondria triggers cell death by inducing autophagy in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1314-1330. [PMID: 38069660 DOI: 10.1093/jxb/erad456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 02/29/2024]
Abstract
Sphingolipids are membrane lipids and play critical roles in signal transduction. Ceramides are central components of sphingolipid metabolism that are involved in cell death. However, the mechanism of ceramides regulating cell death in plants remains unclear. Here, we found that ceramides accumulated in mitochondria of accelerated cell death 5 mutant (acd5), and expression of mitochondrion-localized ceramide kinase (ACD5) suppressed mitochondrial ceramide accumulation and the acd5 cell death phenotype. Using immuno-electron microscopy, we observed hyperaccumulation of ceramides in acer acd5 double mutants, which are characterized by mutations in both ACER (alkaline ceramidase) and ACD5 genes. The results confirmed that plants with specific ceramide accumulation exhibited localization of ceramides to mitochondria, resulting in an increase in mitochondrial reactive oxygen species production. Interestingly, when compared with the wild type, autophagy-deficient mutants showed stronger resistance to ceramide-induced cell death. Lipid profiling analysis demonstrated that plants with ceramide accumulation exhibited a significant increase in phosphatidylethanolamine levels. Furthermore, exogenous ceramide treatment or endogenous ceramide accumulation induces autophagy. When exposed to exogenous ceramides, an increase in the level of the autophagy-specific ubiquitin-like protein, ATG8e, associated with mitochondria, where it directly bound to ceramides. Taken together, we propose that the accumulation of ceramides in mitochondria can induce cell death by regulating autophagy.
Collapse
Affiliation(s)
- He-Nan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- College of JunCao Science and Ecology and Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - Ling-Yan Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Rui-Hua Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jia-Qi Sun
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wei-Wei Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
20
|
Rother N, Yanginlar C, Prévot G, Jonkman I, Jacobs M, van Leent MMT, van Heck J, Matzaraki V, Azzun A, Morla-Folch J, Ranzenigo A, Wang W, van der Meel R, Fayad ZA, Riksen NP, Hilbrands LB, Lindeboom RGH, Martens JHA, Vermeulen M, Joosten LAB, Netea MG, Mulder WJM, van der Vlag J, Teunissen AJP, Duivenvoorden R. Acid ceramidase regulates innate immune memory. Cell Rep 2023; 42:113458. [PMID: 37995184 PMCID: PMC11907240 DOI: 10.1016/j.celrep.2023.113458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/04/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Innate immune memory, also called "trained immunity," is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.
Collapse
Affiliation(s)
- Nils Rother
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geoffrey Prévot
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inge Jonkman
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maaike Jacobs
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mandy M T van Leent
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Julia van Heck
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anthony Azzun
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judit Morla-Folch
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Ranzenigo
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Wang
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Zahi A Fayad
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rik G H Lindeboom
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Abraham J P Teunissen
- Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Duivenvoorden
- Department of Nephrology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands; Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Shi W, Han Y. An untargeted serum and urine lipidomics research based on UPLC-MS revealed the lipid alterations on adjuvant-induced arthritis rats. Biomed Chromatogr 2023; 37:e5736. [PMID: 37668238 DOI: 10.1002/bmc.5736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/20/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease dominated by chronic inflammatory lesions of peripheral synovial joints. Growing evidence suggests that abnormal lipid metabolism levels contribute to the progression of RA. Although several metabolomics studies have shown abnormality in the RA lipidome, the relationship between the overall lipid metabolites and RA has not been systematically evaluated. In this study, an untargeted lipidomics method based on ultra performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the serum and urine lipidomes of adjuvant-induced arthritis rats to study the characteristics of lipid metabolism changes in the rats and search lipid markers for diagnosing RA. By combining with orthogonal partial least squares discriminant analysis, a total of 52 potential lipid markers were identified, mainly involved in sphingolipid metabolism, glycerophospholipid metabolism, sterol lipid metabolism, glycerolipid metabolism and fatty acid metabolism, which provided crucial insight into lipid metabolism disturbances in RA. Further receiver operating characteristic analysis revealed that the areas under the curve of PC(22:4/16:0), PI(18:1/16:0) and LacCer(d18:1/12:0) from serum and 25-hydroxycholesterol from urine were 0.94, 1.00, 1.00 and 1.00, respectively, indicating the high predictive ability of this method for RA. In this study, our results indicated that a combination of serum and urine analysis can provide a more comprehensive and reliable assessment of RA, and a UPLC-MS-based lipidomics strategy is a powerful tool to search for potential lipid markers associated with RA and explore the pathogenesis of RA.
Collapse
Affiliation(s)
- Wei Shi
- Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yue Han
- Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
22
|
Hempelmann P, Lolicato F, Graziadei A, Brown RDR, Spiegel S, Rappsilber J, Nickel W, Höglinger D, Jamecna D. The sterol transporter STARD3 transports sphingosine at ER-lysosome contact sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.557036. [PMID: 37790546 PMCID: PMC10542139 DOI: 10.1101/2023.09.18.557036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Sphingolipids are important structural components of membranes. Additionally, simple sphingolipids such as sphingosine are highly bioactive and participate in complex subcellular signaling. Sphingolipid deregulation is associated with many severe diseases including diabetes, Parkinson's and cancer. Here, we focus on how sphingosine, generated from sphingolipid catabolism in late endosomes/lysosomes, is reintegrated into the biosynthetic machinery at the endoplasmic reticulum (ER). We characterized the sterol transporter STARD3 as a sphingosine transporter acting at lysosome-ER contact sites. Experiments featuring crosslinkable sphingosine probes, supported by unbiased molecular dynamics simulations, exposed how sphingosine binds to the lipid-binding domain of STARD3. Following the metabolic fate of pre-localized lysosomal sphingosine showed the importance of STARD3 and its actions at contact sites for the integration of sphingosine into ceramide in a cellular context. Our findings provide the first example of interorganellar sphingosine transfer and pave the way for a better understanding of sphingolipid - sterol co-regulation.
Collapse
Affiliation(s)
- Pia Hempelmann
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Andrea Graziadei
- Institute for Biotechnology, Technical University Berlin, Gustav Mayer Allee 25, 13355 Berlin
| | - Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Juri Rappsilber
- Institute for Biotechnology, Technical University Berlin, Gustav Mayer Allee 25, 13355 Berlin
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg
| | - Denisa Jamecna
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg
| |
Collapse
|
23
|
Maus KD, Stephenson DJ, Macknight HP, Vu NT, Hoeferlin LA, Kim M, Diegelmann RF, Xie X, Chalfant CE. Skewing cPLA 2α activity toward oxoeicosanoid production promotes neutrophil N2 polarization, wound healing, and the response to sepsis. Sci Signal 2023; 16:eadd6527. [PMID: 37433004 PMCID: PMC10565596 DOI: 10.1126/scisignal.add6527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
Uncontrolled inflammation is linked to poor outcomes in sepsis and wound healing, both of which proceed through distinct inflammatory and resolution phases. Eicosanoids are a class of bioactive lipids that recruit neutrophils and other innate immune cells. The interaction of ceramide 1-phosphate (C1P) with the eicosanoid biosynthetic enzyme cytosolic phospholipase A2 (cPLA2) reduces the production of a subtype of eicosanoids called oxoeicosanoids. We investigated the effect of shifting the balance in eicosanoid biosynthesis on neutrophil polarization and function. Knockin mice expressing a cPLA2 mutant lacking the C1P binding site (cPLA2αKI/KI mice) showed enhanced and sustained neutrophil infiltration into wounds and the peritoneum during the inflammatory phase of wound healing and sepsis, respectively. The mice exhibited improved wound healing and reduced susceptibility to sepsis, which was associated with an increase in anti-inflammatory N2-type neutrophils demonstrating proresolution behaviors and a decrease in proinflammatory N1-type neutrophils. The N2 polarization of cPLA2αKI/KI neutrophils resulted from increased oxoeicosanoid biosynthesis and autocrine signaling through the oxoeicosanoid receptor OXER1 and partially depended on OXER1-dependent inhibition of the pentose phosphate pathway (PPP). Thus, C1P binding to cPLA2α suppresses neutrophil N2 polarization, thereby impairing wound healing and the response to sepsis.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J Stephenson
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - H Patrick Macknight
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ngoc T Vu
- Department of Applied Biochemistry, School of Biotechnology, International University-VNU HCM, Ho Chi Minh City, Vietnam
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Xiujie Xie
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Charles E Chalfant
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298, USA
| |
Collapse
|
24
|
Stephenson DJ, MacKnight HP, Hoeferlin LA, Washington SL, Sawyers C, Archer KJ, Strauss JF, Walsh SW, Chalfant CE. Bioactive lipid mediators in plasma are predictors of preeclampsia irrespective of aspirin therapy. J Lipid Res 2023; 64:100377. [PMID: 37119922 PMCID: PMC10230265 DOI: 10.1016/j.jlr.2023.100377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
There are few early biomarkers to identify pregnancies at risk of preeclampsia (PE) and abnormal placental function. In this cross-sectional study, we utilized targeted ultra-performance liquid chromatography-ESI MS/MS and a linear regression model to identify specific bioactive lipids that serve as early predictors of PE. Plasma samples were collected from 57 pregnant women prior to 24-weeks of gestation with outcomes of either PE (n = 26) or uncomplicated term pregnancies (n = 31), and the profiles of eicosanoids and sphingolipids were evaluated. Significant differences were revealed in the eicosanoid, (±)11,12 DHET, as well as multiple classes of sphingolipids; ceramides, ceramide-1-phosphate, sphingomyelin, and monohexosylceramides; all of which were associated with the subsequent development of PE regardless of aspirin therapy. Profiles of these bioactive lipids were found to vary based on self-designated race. Additional analyses demonstrated that PE patients can be stratified based on the lipid profile as to PE with a preterm birth linked to significant differences in the levels of 12-HETE, 15-HETE, and resolvin D1. Furthermore, subjects referred to a high-risk OB/GYN clinic had higher levels of 20-HETE, arachidonic acid, and Resolvin D1 versus subjects recruited from a routine, general OB/GYN clinic. Overall, this study shows that quantitative changes in plasma bioactive lipids detected by ultra-performance liquid chromatography-ESI-MS/MS can serve as an early predictor of PE and stratify pregnant people for PE type and risk.
Collapse
Affiliation(s)
- Daniel J Stephenson
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - H Patrick MacKnight
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Sonya L Washington
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Chelsea Sawyers
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kellie J Archer
- Division of Biostatistics, The Ohio State University College of Public Health, Columbus, OH, USA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Scott W Walsh
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Charles E Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA; Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, USA.
| |
Collapse
|
25
|
Rogers JR, Geissler PL. Ceramide-1-phosphate transfer protein enhances lipid transport by disrupting hydrophobic lipid-membrane contacts. PLoS Comput Biol 2023; 19:e1010992. [PMID: 37036851 PMCID: PMC10085062 DOI: 10.1371/journal.pcbi.1010992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Cellular distributions of the sphingolipid ceramide-1-phosphate (C1P) impact essential biological processes. C1P levels are spatiotemporally regulated by ceramide-1-phosphate transfer protein (CPTP), which efficiently shuttles C1P between organelle membranes. Yet, how CPTP rapidly extracts and inserts C1P into a membrane remains unknown. Here, we devise a multiscale simulation approach to elucidate biophysical details of CPTP-mediated C1P transport. We find that CPTP binds a membrane poised to extract and insert C1P and that membrane binding promotes conformational changes in CPTP that facilitate C1P uptake and release. By significantly disrupting a lipid's local hydrophobic environment in the membrane, CPTP lowers the activation free energy barrier for passive C1P desorption and enhances C1P extraction from the membrane. Upon uptake of C1P, further conformational changes may aid membrane unbinding in a manner reminiscent of the electrostatic switching mechanism used by other lipid transfer proteins. Insertion of C1P into an acceptor membrane, eased by a decrease in membrane order by CPTP, restarts the transfer cycle. Most notably, we provide molecular evidence for CPTP's ability to catalyze C1P extraction by breaking hydrophobic C1P-membrane contacts with compensatory hydrophobic lipid-protein contacts. Our work, thus, provides biophysical insights into how CPTP efficiently traffics C1P between membranes to maintain sphingolipid homeostasis and, additionally, presents a simulation method aptly suited for uncovering the catalytic mechanisms of other lipid transfer proteins.
Collapse
Affiliation(s)
- Julia R Rogers
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Phillip L Geissler
- Department of Chemistry, University of California, Berkeley, California, United States of America
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
26
|
Paranjpe V, Galor A, Grambergs R, Mandal N. The role of sphingolipids in meibomian gland dysfunction and ocular surface inflammation. Ocul Surf 2022; 26:100-110. [PMID: 35973562 PMCID: PMC10259413 DOI: 10.1016/j.jtos.2022.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Inflammation occurs in response to tissue injury and invasion of microorganisms and is carried out by the innate and adaptive immune systems, which are regulated by numerous chemokines, cytokines, and lipid mediators. There are four major families of bioactive lipid mediators that play an integral role in inflammation - eicosanoids, sphingolipids (SPL), specialized pro-resolving mediators (SPM), and endocannabinoids. SPL have been historically recognized as important structural components of cellular membranes; their roles as bioactive lipids and inflammatory mediators are recent additions. Major SPL metabolites, including sphingomyelin, ceramide, ceramide 1-phosphate (C1P), sphingosine, sphingosine 1-phosphate (S1P), and their respective enzymes have been studied extensively, primarily in cell-culture and animal models, for their roles in cellular signaling and regulating inflammation and apoptosis. Less focus has been given to the involvement of SPL in eye diseases. As such, the aim of this review was to examine relationships between the SPL family and ocular surface diseases, focusing on their role in disease pathophysiology and discussing the potential of therapeutics that disrupt SPL pathways.
Collapse
Affiliation(s)
- Vikram Paranjpe
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA.
| | - Richard Grambergs
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
27
|
Vu NT, Kim M, Stephenson DJ, MacKnight HP, Chalfant CE. Ceramide Kinase Inhibition Drives Ferroptosis and Sensitivity to Cisplatin in Mutant KRAS Lung Cancer by Dysregulating VDAC-Mediated Mitochondria Function. Mol Cancer Res 2022; 20:1429-1442. [PMID: 35560154 PMCID: PMC9444881 DOI: 10.1158/1541-7786.mcr-22-0085] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Ceramide kinase (CERK) is the mammalian lipid kinase from which the bioactive sphingolipid, ceramide-1-phosphate (C1P), is derived. CERK has been implicated in several promalignant phenotypes with little known as to mechanistic underpinnings. In this study, the mechanism of how CERK inhibition decreases cell survival in mutant (Mut) KRAS non-small cell lung cancer (NSCLC), a major lung cancer subtype, was revealed. Specifically, NSCLC cells possessing a KRAS mutation were more responsive to inhibition, downregulation, and genetic ablation of CERK compared with those with wild-type (WT) KRAS regarding a reduction in cell survival. Inhibition of CERK induced ferroptosis in Mut KRAS NSCLC cells, which required elevating VDAC-regulated mitochondria membrane potential (MMP) and the generation of cellular reactive oxygen species (ROS). Importantly, through modulation of VDAC, CERK inhibition synergized with the first-line NSCLC treatment, cisplatin, in reducing cell survival and in vivo tumor growth. Further mechanistic studies indicated that CERK inhibition affected MMP and cell survival by limiting AKT activation and translocation to mitochondria, and thus, blocking VDAC phosphorylation and tubulin recruitment. IMPLICATIONS Our findings depict how CERK inhibition may serve as a new key point in combination therapeutic strategy for NSCLC, specifically precision therapeutics targeting NSCLC possessing a KRAS mutation.
Collapse
Affiliation(s)
- Ngoc T. Vu
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Vietnam
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J. Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903
| | - H. Patrick MacKnight
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903,Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903,Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, 22903,Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298,To whom correspondence should be addressed: Charles E. Chalfant, Professor, Department of Medicine, Division of Hematology & Oncology, P.O. Box 801398, University of Virginia, Charlottesville, VA, 22903, or
| |
Collapse
|
28
|
Simón MV, Vera MS, Tenconi PE, Soto T, Prado Spalm FH, Torlaschi C, Mateos MV, Rotstein NP. Sphingosine-1-phosphate and ceramide-1-phosphate promote migration, pro-inflammatory and pro-fibrotic responses in retinal pigment epithelium cells. Exp Eye Res 2022; 224:109222. [PMID: 36041511 DOI: 10.1016/j.exer.2022.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Retinal pigment epithelium (RPE) cells, essential for preserving retina homeostasis, also contribute to the development of retina proliferative diseases, through their exacerbated migration, epithelial to mesenchymal transition (EMT) and inflammatory response. Uncovering the mechanisms inducing these changes is crucial for designing effective treatments for these pathologies. Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) are bioactive sphingolipids that promote migration and inflammation in several cell types; we recently established that they stimulate the migration of retina Müller glial cells (Simón et al., 2015; Vera et al., 2021). We here analyzed whether S1P and C1P regulate migration, inflammation and EMT in RPE cells. We cultured two human RPE cell lines, ARPE-19 and D407 cells, and supplemented them with either 5 μM S1P or 10 μM C1P, or their vehicles, for 24 h. Analysis of cell migration by the scratch wound assay showed that S1P addition significantly enhanced migration in both cell lines. Pre-treatment with W146 and BML-241, antagonists for S1P receptor 1 (S1P1) and 3 (S1P3), respectively, blocked exogenous S1P-induced migration. Inhibiting sphingosine kinase 1 (SphK1), the enzyme involved in S1P synthesis, significantly reduced cell migration and exogenous S1P only partially restored it. Addition of C1P markedly stimulated cell migration. Whereas inhibiting C1P synthesis did not affect C1P-induced migration, inhibiting S1P synthesis strikingly decreased it; noteworthy, addition of C1P promoted the transcription of SphK1. These results suggest that S1P and C1P stimulate RPE cell migration and their effect requires S1P endogenous synthesis. Both S1P and C1P increase the transcription of pro-inflammatory cytokines IL-6 and IL-8, and of EMT marker α-smooth muscle actin (α-SMA) in ARPE-19 cells. Collectively, our results suggest new roles for S1P and C1P in the regulation of RPE cell migration and inflammation; since the deregulation of sphingolipid metabolism is involved in several proliferative retinopathies, targeting their metabolism might provide new tools for treating these pathologies.
Collapse
Affiliation(s)
- M Victoria Simón
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina.
| | - Marcela S Vera
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Tamara Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Facundo H Prado Spalm
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Camila Torlaschi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Targeting the Sphingolipid Rheostat in Gliomas. Int J Mol Sci 2022; 23:ijms23169255. [PMID: 36012521 PMCID: PMC9408832 DOI: 10.3390/ijms23169255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022] Open
Abstract
Gliomas are highly aggressive cancer types that are in urgent need of novel drugs and targeted therapies. Treatment protocols have not improved in over a decade, and glioma patient survival remains among the worst of all cancer types. As a result, cancer metabolism research has served as an innovative approach to identifying novel glioma targets and improving our understanding of brain tumors. Recent research has uncovered a unique metabolic vulnerability in the sphingolipid pathways of gliomas that possess the IDH1 mutation. Sphingolipids are a family of lipid signaling molecules that play a variety of second messenger functions in cellular regulation. The two primary metabolites, sphingosine-1-phosphate (S1P) and ceramide, maintain a rheostat balance and play opposing roles in cell survival and proliferation. Altering the rheostat such that the pro-apoptotic signaling of the ceramides outweighs the pro-survival S1P signaling in glioma cells diminishes the hallmarks of cancer and enhances tumor cell death. Throughout this review, we discuss the sphingolipid pathway and identify the enzymes that can be most effectively targeted to alter the sphingolipid rheostat and enhance apoptosis in gliomas. We discuss each pathway’s steps based on their site of occurrence in the organelles and postulate novel targets that can effectively exploit this vulnerability.
Collapse
|
30
|
Leal AF, Suarez DA, Echeverri-Peña OY, Albarracín SL, Alméciga-Díaz CJ, Espejo-Mojica ÁJ. Sphingolipids and their role in health and disease in the central nervous system. Adv Biol Regul 2022; 85:100900. [PMID: 35870382 DOI: 10.1016/j.jbior.2022.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/22/2022]
Abstract
Sphingolipids (SLs) are lipids derived from sphingosine, and their metabolism involves a broad and complex network of reactions. Although SLs are widely distributed in the body, it is well known that they are present in high concentrations within the central nervous system (CNS). Under physiological conditions, their abundance and distribution in the CNS depend on brain development and cell type. Consequently, SLs metabolism impairment may have a significant impact on the normal CNS function, and has been associated with several disorders, including sphingolipidoses, Parkinson's, and Alzheimer's. This review summarizes the main SLs characteristics and current knowledge about synthesis, catabolism, regulatory pathways, and their role in physiological and pathological scenarios in the CNS.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Olga Yaneth Echeverri-Peña
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Sonia Luz Albarracín
- Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| | - Ángela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| |
Collapse
|
31
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
32
|
Schultz D, Cuypers F, Skorka SB, Rockstroh J, Gesell Salazar M, Krieger J, Albrecht D, Völker U, Hammerschmidt S, Lalk M, Siemens N, Methling K. Bioactive lipid screening during respiratory tract infections with bacterial and viral pathogens in mice. Metabolomics 2022; 18:39. [PMID: 35687250 PMCID: PMC9185708 DOI: 10.1007/s11306-022-01898-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/22/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Respiratory tract infections are a worldwide health problem for humans and animals. Different cell types produce lipid mediators in response to infections, which consist of eicosanoids like hydroxyeicosatetraenoic acids (HETEs) or oxylipins like hydroxydocosahexaenoic acids (HDHAs). Both substance classes possess immunomodulatory functions. However, little is known about their role in respiratory infections. OBJECTIVES Here, we aimed to analyze the lipid mediator imprint of different organs of C57BL/6J mice after intranasal mono-infections with Streptococcus pneumoniae (pneumococcus), Staphylococcus aureus or Influenza A virus (IAV) as wells as pneumococcal-IAV co-infection. METHODS C57BL/6J mice were infected with different pathogens and lungs, spleen, and plasma were collected. Lipid mediators were analyzed using HPLC-MS/MS. In addition, spatial-distribution of sphingosine 1-phosphate (S1P) and ceramide 1-phosphates (C1P) in tissue samples was examined using MALDI-MS-Imaging. The presence of bacterial pathogens in the lung was confirmed via immunofluorescence staining. RESULTS We found IAV specific changes for different HDHAs and HETEs in mouse lungs as well as enhanced levels of 20-HETE in severe S. aureus infection. Moreover, MALDI-MS-Imaging analysis showed an accumulation of C1P and a decrease of S1P during co-infection in lung and spleen. Long chain C1P was enriched in the red and not in the white pulp of the spleen. CONCLUSIONS Lipid mediator analysis showed that host synthesis of bioactive lipids is in part specific for a certain pathogen, in particular for IAV infection. Furthermore, MS-Imaging displayed great potential to study infections and revealed changes of S1P and C1P in lungs and spleen of co-infected animals, which was not described before.
Collapse
Affiliation(s)
- Daniel Schultz
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Fabian Cuypers
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Sebastian B Skorka
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Jan Rockstroh
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | | | - Jakob Krieger
- Zoological Institute and Museum, Cytology and Evolutionary Biology, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
33
|
Díaz-Perales A, Escribese MM, Garrido-Arandia M, Obeso D, Izquierdo-Alvarez E, Tome-Amat J, Barber D. The Role of Sphingolipids in Allergic Disorders. FRONTIERS IN ALLERGY 2022; 2:675557. [PMID: 35386967 PMCID: PMC8974723 DOI: 10.3389/falgy.2021.675557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Allergy is defined as a complex chronic inflammatory condition in which genetic and environmental factors are implicated. Sphingolipids are involved in multiple biological functions, from cell membrane components to critical signaling molecules. To date, sphingolipids have been studied in different human pathologies such as neurological disorders, cancer, autoimmunity, and infections. Sphingolipid metabolites, in particular, ceramide and sphingosine-1-phosphate (S1P), regulate a diverse range of cellular processes that are important in immunity and inflammation. Moreover, variations in the sphingolipid concentrations have been strongly associated with allergic diseases. This review will focus on the role of sphingolipids in the development of allergic sensitization and allergic inflammation through the activation of immune cells resident in tissues, as well as their role in barrier remodeling and anaphylaxis. The knowledge gained in this emerging field will help to develop new therapeutic options for allergic disorders.
Collapse
Affiliation(s)
- Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Maria M Escribese
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - David Obeso
- Centro de Excelencia en Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Elena Izquierdo-Alvarez
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Domingo Barber
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
34
|
Maus KD, Stephenson DJ, Ali AN, MacKnight HP, Huang HJ, Serrats J, Kim M, Diegelmann RF, Chalfant CE. Ceramide kinase regulates acute wound healing by suppressing 5-oxo-ETE biosynthesis and signaling via its receptor OXER1. J Lipid Res 2022; 63:100187. [PMID: 35219746 PMCID: PMC8980959 DOI: 10.1016/j.jlr.2022.100187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The sphingolipid, ceramide-1-phosphate (C1P), has been shown to promote the inflammatory phase and inhibit the proliferation and remodeling stages of wound repair via direct interaction with group IVA cytosolic phospholipase A2, a regulator of eicosanoid biosynthesis that fine-tunes the behaviors of various cell types during wound healing. However, the anabolic enzyme responsible for the production of C1P that suppresses wound healing as well as bioactive eicosanoids and target receptors that drive enhanced wound remodeling have not been characterized. Herein, we determined that decreasing C1P activity via inhibitors or genetic ablation of the anabolic enzyme ceramide kinase (CERK) significantly enhanced wound healing phenotypes. Importantly, postwounding inhibition of CERK enhanced the closure rate of acute wounds, improved the quality of healing, and increased fibroblast migration via a "class switch" in the eicosanoid profile. This switch reduced pro-inflammatory prostaglandins (e.g., prostaglandin E2) and increased levels of 5-hydroxyeicosatetraenoic acid and the downstream metabolite 5-oxo-eicosatetraenoic acid (5-oxo-ETE). Moreover, dermal fibroblasts from mice with genetically ablated CERK showed enhanced wound healing markers, while blockage of the murine 5-oxo-ETE receptor (oxoeicosanoid receptor 1) inhibited the enhanced migration phenotype of these cell models. Together, these studies reinforce the vital roles eicosanoids play in the wound healing process and demonstrate a novel role for CERK-derived C1P as a negative regulator of 5-oxo-ETE biosynthesis and the activation of oxoeicosanoid receptor 1 in wound healing. These findings provide foundational preclinical results for the use of CERK inhibitors to shift the balance from inflammation to resolution and increase the wound healing rate.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Anika N Ali
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Henry Patrick MacKnight
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Huey-Jing Huang
- Neuroscience Drug Discovery Unit, Takeda California, San Diego, CA, USA
| | - Jordi Serrats
- Neuroscience Drug Discovery Unit, Takeda California, San Diego, CA, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, VA, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA; Cancer Biology and Evolution Program, The Moffitt Cancer Center, Tampa, FL, USA; Research Service, James A. Haley Veterans Hospital, Tampa, FL, USA; Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA; Research Service, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA.
| |
Collapse
|
35
|
Yang F, Jia G, Guo J, Liu Y, Wang C. Quantitative Chemoproteomic Profiling with Data-Independent Acquisition-Based Mass Spectrometry. J Am Chem Soc 2022; 144:901-911. [PMID: 34986311 DOI: 10.1021/jacs.1c11053] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activity-based protein profiling (ABPP) has emerged as a powerful and versatile tool to enable annotation of protein functions and discovery of targets of bioactive ligands in complex biological systems. It utilizes chemical probes to covalently label functional sites in proteins so that they can be enriched for mass spectrometry (MS)-based quantitative proteomics analysis. However, the semistochastic nature of data-dependent acquisition and high cost associated with isotopically encoded quantification reagents compromise the power of ABPP in multidimensional analysis and high-throughput screening, when a large number of samples need to be quantified in parallel. Here, we combine the data-independent acquisition (DIA) MS with ABPP to develop an efficient label-free quantitative chemical proteomic method, DIA-ABPP, with good reproducibility and high accuracy for high-throughput quantification. We demonstrated the power of DIA-ABPP for comprehensive profiling of functional cysteineome in three distinct applications, including dose-dependent quantification of cysteines' sensitivity toward a reactive metabolite, screening of ligandable cysteines with a covalent fragment library, and profiling of cysteinome fluctuation in circadian clock cycles. DIA-ABPP will open new opportunities for in-depth and multidimensional profiling of functional proteomes and interactions with bioactive small molecules in complex biological systems.
Collapse
Affiliation(s)
- Fan Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guogeng Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiuzhou Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
36
|
Implication of Ceramide Kinase/C1P in Cancer Development and Progression. Cancers (Basel) 2022; 14:cancers14010227. [PMID: 35008391 PMCID: PMC8750078 DOI: 10.3390/cancers14010227] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer cells rewire their metabolic programs to favor biological processes that promote cell survival, proliferation, and dissemination. Among this relevant reprogramming, sphingolipid metabolism provides metabolites that can favor or oppose these hallmarks of cancer. The sphingolipid ceramide 1-phosphate (C1P) and the enzyme responsible for its biosynthesis, ceramide kinase (CERK), are well established regulators of cell growth and survival in normal, as well as malignant cells through stress-regulated signaling pathways. This metabolite also promotes cell survival, which has been associated with the feedback regulation of other antitumoral sphingolipids or second messengers. C1P also regulates cancer cell invasion and migration of different types of cancer, including lung, breast, pancreas, prostate, or leukemia cells. More recently, CERK and C1P have been implicated in the control of inflammatory responses. The present review provides an updated view on the important role of CERK/C1P in the regulation of cancer cell growth, survival, and dissemination.
Collapse
|
37
|
McGlone CL, Christian L, Schmeusser B, Liu L, Chalfant CE, Stephensen DJ, Sherwin CM, Rapp CM, Sattouf Z, Rohan CA, Morris C, Chen Y, Travers JB. Evidence for Systemic Reactive Oxygen Species in UVB-mediated Microvesicle Formation. Photochem Photobiol 2022; 98:242-247. [PMID: 34324712 PMCID: PMC8799769 DOI: 10.1111/php.13494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023]
Abstract
Recent studies have implicated subcellular microvesicle particles (MVP) in the ability of ultraviolet B radiation to exert both local and systemic effects. Indeed, UVB generates MVP (UVB-MVP) in human skin and systemically following phototherapy. The current studies were designed to test the hypothesis that the ability of UVB to generate MVP was dependent upon reactive oxygen species (ROS). To that end, we tested urine samples from subjects undergoing UVB phototherapy for the presence of isoprostanes as well as the oxidized guanosine derivative 8OHdG. We also conducted a clinical study in which volar forearms of subjects were treated with localized UVB and erythema/MVP measured. The same cohort was then treated with 7 days of vitamin C (2 g day-1 ) and vitamin E (1000 IU day-1 ), and UVB-induced MVPs tested on the contralateral forearm. Urine specimens from subjects undergoing phototherapy were found to have increased levels of isoprostanes and 8OHdG, with maximal levels noted 8-16 h post-treatment. Treatment with antioxidant vitamins resulted in diminished UVB-generated skin MVP to baseline levels. These studies suggest that whole-body UVB generates a systemic pro-oxidative response, and that antioxidants can attenuate localized skin UVB-MVPs.
Collapse
Affiliation(s)
- Cameron L. McGlone
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Lea Christian
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Benjamin Schmeusser
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Langni Liu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Daniel J. Stephensen
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Catherine M. Sherwin
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
- Department of Pediatrics, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Christine M. Rapp
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Zafer Sattouf
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Craig A. Rohan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Connor Morris
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Jeffrey B. Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
- The Dayton V.A. Medical Center, Dayton, OH 45428
| |
Collapse
|
38
|
Gao YG, McDonald J, Malinina L, Patel DJ, Brown RE. Ceramide-1-phosphate transfer protein promotes sphingolipid reorientation needed for binding during membrane interaction. J Lipid Res 2022; 63:100151. [PMID: 34808193 PMCID: PMC8953657 DOI: 10.1016/j.jlr.2021.100151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid transfer proteins acquire and release their lipid cargoes by interacting transiently with source and destination biomembranes. In the GlycoLipid Transfer Protein (GLTP) superfamily, the two-layer all-α-helical GLTP-fold defines proteins that specifically target sphingolipids (SLs) containing either sugar or phosphate headgroups via their conserved but evolutionarily-modified SL recognitions centers. Despite comprehensive structural insights provided by X-ray crystallography, the conformational dynamics associated with membrane interaction and SL uptake/release by GLTP superfamily members have remained unknown. Herein, we report insights gained from molecular dynamics (MD) simulations into the conformational dynamics that enable ceramide-1-phosphate transfer proteins (CPTPs) to acquire and deliver ceramide-1-phosphate (C1P) during interaction with 1-palmitoyl-2-oleoyl phosphatidylcholine bilayers. The focus on CPTP reflects this protein's involvement in regulating pro-inflammatory eicosanoid production and autophagy-dependent inflammasome assembly that drives interleukin (IL-1β and IL-18) production and release by surveillance cells. We found that membrane penetration by CPTP involved α-6 helix and the α-2 helix N-terminal region, was confined to one bilayer leaflet, and was relatively shallow. Large-scale dynamic conformational changes were minimal for CPTP during membrane interaction or C1P uptake except for the α-3/α-4 helices connecting loop, which is located near the membrane interface and interacts with certain phosphoinositide headgroups. Apart from functioning as a shallow membrane-docking element, α-6 helix was found to adeptly reorient membrane lipids to help guide C1P hydrocarbon chain insertion into the interior hydrophobic pocket of the SL binding site.These findings support a proposed 'hydrocarbon chain-first' mechanism for C1P uptake, in contrast to the 'lipid polar headgroup-first' uptake used by most lipid-transfer proteins.
Collapse
Affiliation(s)
- Yong-Guang Gao
- Hormel Institute, University of Minnesota, Austin, MN, USA.
| | | | - Lucy Malinina
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
39
|
Molecular Mechanisms of Sphingolipid Transport on Plasma Lipoproteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:57-65. [DOI: 10.1007/978-981-19-0394-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Chung LH, Liu D, Liu XT, Qi Y. Ceramide Transfer Protein (CERT): An Overlooked Molecular Player in Cancer. Int J Mol Sci 2021; 22:13184. [PMID: 34947980 PMCID: PMC8705978 DOI: 10.3390/ijms222413184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingolipids are a class of essential lipids implicated in constructing cellular membranes and regulating nearly all cellular functions. Sphingolipid metabolic network is centered with the ceramide-sphingomyelin axis. Ceramide is well-recognized as a pro-apoptotic signal; while sphingomyelin, as the most abundant type of sphingolipids, is required for cell growth. Therefore, the balance between these two sphingolipids can be critical for cancer cell survival and functioning. Ceramide transfer protein (CERT) dictates the ratio of ceramide to sphingomyelin within the cell. It is the only lipid transfer protein that specifically delivers ceramide from the endoplasmic reticulum to the Golgi apparatus, where ceramide serves as the substrate for sphingomyelin synthesis. In the past two decades, an increasing body of evidence has suggested a critical role of CERT in cancer, but much more intensive efforts are required to draw a definite conclusion. Herein, we review all research findings of CERT, focusing on its molecular structure, cellular functions and implications in cancer. This comprehensive review of CERT will help to better understand the molecular mechanism of cancer and inspire to identify novel druggable targets.
Collapse
Affiliation(s)
- Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| | | | | | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| |
Collapse
|
41
|
Vargas I, Stephenson DJ, Baldwin M, Gaut JP, Chalfant CE, Pan H, Wickline SA. Sustained local inhibition of thrombin preserves renal microarchitecture and function after onset of acute kidney injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 38:102449. [PMID: 34303838 PMCID: PMC8541929 DOI: 10.1016/j.nano.2021.102449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 11/24/2022]
Abstract
Acute kidney injury (AKI) management remains mainly supportive as no specific therapeutic agents directed at singular signaling pathways have succeeded in clinical trials. Here, we report that inhibition of thrombin-driven clotting and inflammatory signaling with use of locally-acting thrombin-targeted perfluorocarbon nanoparticles (PFC NP) protects renal vasculature and broadly modulates diverse inflammatory processes that cause renal ischemia reperfusion injury. Each PFC NP was complexed with ~13,650 copies of the direct thrombin inhibitor, PPACK (proline-phenylalanine-arginine-chloromethyl-ketone). Mice treated after the onset of AKI with PPACK PFC NP exhibited downregulated VCAM-1, ICAM-1, PGD2 prostanoid, M-CSF, IL-6, and mast cell infiltrates. Microvascular architecture, tubular basement membranes, and brush border components were better preserved. Non-reperfusion was reduced as indicated by reduced red blood cell trapping and non-heme iron. Kidney function and tubular necrosis improved at 24 hours versus the untreated control group, suggesting a benefit for dual inhibition of thrombosis and inflammation by PPACK PFC NP.
Collapse
Affiliation(s)
- Ian Vargas
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Daniel J Stephenson
- Department of Cell biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Margaret Baldwin
- Department of Comparative Medicine, University of South Florida, Tampa, FL, USA
| | - Joseph P Gaut
- Washington University in St. Louis, Department of Pathology and Immunology and Department of Medicine, St Louis, MO, USA
| | - Charles E Chalfant
- Department of Cell biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA; The Moffitt Cancer Center, Tampa, FL; Research Service, James A. Haley Veterans Hospital, Tampa, FL
| | - Hua Pan
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Samuel A Wickline
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
42
|
Ali T, Lei X, Barbour SE, Koizumi A, Chalfant CE, Ramanadham S. Alterations in β-Cell Sphingolipid Profile Associated with ER Stress and iPLA 2β: Another Contributor to β-Cell Apoptosis in Type 1 Diabetes. Molecules 2021; 26:molecules26216361. [PMID: 34770770 PMCID: PMC8587436 DOI: 10.3390/molecules26216361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) development, in part, is due to ER stress-induced β-cell apoptosis. Activation of the Ca2+-independent phospholipase A2 beta (iPLA2β) leads to the generation of pro-inflammatory eicosanoids, which contribute to β-cell death and T1D. ER stress induces iPLA2β-mediated generation of pro-apoptotic ceramides via neutral sphingomyelinase (NSMase). To gain a better understanding of the impact of iPLA2β on sphingolipids (SLs), we characterized their profile in β-cells undergoing ER stress. ESI/MS/MS analyses followed by ANOVA/Student’s t-test were used to assess differences in sphingolipids molecular species in Vector (V) control and iPLA2β-overexpressing (OE) INS-1 and Akita (AK, spontaneous model of ER stress) and WT-littermate (AK-WT) β-cells. As expected, iPLA2β induction was greater in the OE and AK cells in comparison with V and WT cells. We report here that ER stress led to elevations in pro-apoptotic and decreases in pro-survival sphingolipids and that the inactivation of iPLA2β restores the sphingolipid species toward those that promote cell survival. In view of our recent finding that the SL profile in macrophages—the initiators of autoimmune responses leading to T1D—is not significantly altered during T1D development, we posit that the iPLA2β-mediated shift in the β-cell sphingolipid profile is an important contributor to β-cell death associated with T1D.
Collapse
Affiliation(s)
- Tomader Ali
- Research Department, Imperial College London Diabetes Center, Abu Dhabi 51133, United Arab Emirates;
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Suzanne E. Barbour
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto Graduate School of Medicine, Kyoto 606-8501, Japan;
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: ; Tel.: +1-205-996-5973; Fax: +1-205-996-5220
| |
Collapse
|
43
|
Canals D, Clarke CJ. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy. Pharmacol Ther 2021; 232:108005. [PMID: 34582834 DOI: 10.1016/j.pharmthera.2021.108005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SLs) are a family of bioactive lipids implicated in a variety of cellular processes, and whose levels are controlled by an interlinked network of enzymes. While the spatial distribution of SL metabolism throughout the cell has been understood for some time, the implications of this for SL signaling and biological outcomes have only recently begun to be fully explored. In this review, we outline the compartmentalization of SL metabolism and describe advances in tools for investigating and probing compartment-specific SL functions. We also briefly discuss the implications of SL compartmentalization for cell signaling and therapeutic approaches to targeting the SL network.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
44
|
Crosstalk between ORMDL3, serine palmitoyltransferase, and 5-lipoxygenase in the sphingolipid and eicosanoid metabolic pathways. J Lipid Res 2021; 62:100121. [PMID: 34560079 PMCID: PMC8527048 DOI: 10.1016/j.jlr.2021.100121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Leukotrienes (LTs) and sphingolipids are critical lipid mediators participating in numerous cellular signal transduction events and developing various disorders, such as bronchial hyperactivity leading to asthma. Enzymatic reactions initiating production of these lipid mediators involve 5-lipoxygenase (5-LO)-mediated conversion of arachidonic acid to LTs and serine palmitoyltransferase (SPT)-mediated de novo synthesis of sphingolipids. Previous studies have shown that endoplasmic reticulum membrane protein ORM1-like protein 3 (ORMDL3) inhibits the activity of SPT and subsequent sphingolipid synthesis. However, the role of ORMDL3 in the synthesis of LTs is not known. In this study, we used peritoneal-derived mast cells isolated from ORMDL3 KO or control mice and examined their calcium mobilization, degranulation, NF-κB inhibitor-α phosphorylation, and TNF-α production. We found that peritoneal-derived mast cells with ORMDL3 KO exhibited increased responsiveness to antigen. Detailed lipid analysis showed that compared with WT cells, ORMDL3-deficient cells exhibited not only enhanced production of sphingolipids but also of LT signaling mediators LTB4, 6t-LTB4, LTC4, LTB5, and 6t-LTB5. The crosstalk between ORMDL3 and 5-LO metabolic pathways was supported by the finding that endogenous ORMDL3 and 5-LO are localized in similar endoplasmic reticulum domains in human mast cells and that ORMDL3 physically interacts with 5-LO. Further experiments showed that 5-LO also interacts with the long-chain 1 and long-chain 2 subunits of SPT. In agreement with these findings, 5-LO knockdown increased ceramide levels, and silencing of SPTLC1 decreased arachidonic acid metabolism to LTs to levels observed upon 5-LO knockdown. These results demonstrate functional crosstalk between the LT and sphingolipid metabolic pathways, leading to the production of lipid signaling mediators.
Collapse
|
45
|
Zhang Y, Zhang X, Lu M, Zou X. Ceramide-1-phosphate and its transfer proteins in eukaryotes. Chem Phys Lipids 2021; 240:105135. [PMID: 34499882 DOI: 10.1016/j.chemphyslip.2021.105135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/31/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Ceramide-1-phosphate (C1P) is a bioactive phosphorylated sphingolipid (SL), produced through the direct phosphorylation of ceramide by ceramide kinase. It plays important roles in regulating cell survival, migration, apoptosis and autophagy and is involved in inflammasome assembly/activation, which can stimulate group IVA cytosolic phospholipase A2α and subsequently increase the levels of arachidonic acid and pro-inflammatory cytokines. Human C1P transfer protein (CPTP) can selectively transport C1P from the Golgi apparatus to specific cellular sites through a non-vesicular mechanism. Human CPTP also affects specific SL levels, thus regulating cell SL homeostasis. In addition, human CPTP plays a crucial role in the regulation of autophagy, inflammation and cell death; thus, human CPTP is closely associated with autophagy and inflammation-related diseases such as cardiovascular and neurodegenerative diseases, and cancers. Therefore, illustrating the functions and mechanisms of human CPTP is important for providing the research foundations for targeted therapy. The key human CPTP residues for C1P recognition and binding are highly conserved in eukaryotic orthologs, while the human CPTP homolog in Arabidopsis (accelerated cell death 11) also exhibits selective inter-membrane transfer of phyto-C1P. These results demonstrate that C1P transporters play fundamental roles in SL metabolism in cells. The present review summarized novel findings of C1P and its TPs in eukaryotes.
Collapse
Affiliation(s)
- Yanqun Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xiangyu Zhang
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China
| | - Mengyun Lu
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China
| | - Xianqiong Zou
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China; College of Biotechnology, Guilin Medical University, Guilin, 541100, PR China.
| |
Collapse
|
46
|
Backman APE, Mattjus P. Who moves the sphinx? An overview of intracellular sphingolipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159021. [PMID: 34339859 DOI: 10.1016/j.bbalip.2021.159021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Lipid bilayers function as boundaries that enclose their content from the surrounding media, and the composition of different membrane types is accurately and dynamically tailored so that they can perform their function. To achieve this balance, lipid biosynthetic machinery and lipid trafficking events are intertwined into an elegant network. In this review, we focus on the intracellular movement of sphingolipids mediated by sphingolipid transfer proteins. Additionally, we will focus on the best characterized and understood mammalian sphingolipid transfer proteins and provide an overview of how they are hypothesized to function. Some are already well understood, while others remain enigmatic. A few are actual lipid transfer proteins, moving lipids from membrane to membrane, while others may have more of a sensor role, possibly reacting to changes in the concentrations of their ligands. Considering the substrates available for cytosolic sphingolipid transfer proteins, one open question that is discussed is whether galactosylceramide is a target. Another question is the exact mechanics by which sphingolipid transfer proteins are targeted to different organelles, such as how four phosphate adapter protein-2, FAPP2 is targeted to the endoplasmic reticulum. The aim of this review is to discuss what is known within the field today and to provide a basic understanding of how these proteins may work.
Collapse
Affiliation(s)
- Anders P E Backman
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
47
|
Ceramide Metabolism Enzymes-Therapeutic Targets against Cancer. ACTA ACUST UNITED AC 2021; 57:medicina57070729. [PMID: 34357010 PMCID: PMC8303233 DOI: 10.3390/medicina57070729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids are both structural molecules that are essential for cell architecture and second messengers that are involved in numerous cell functions. Ceramide is the central hub of sphingolipid metabolism. In addition to being the precursor of complex sphingolipids, ceramides induce cell cycle arrest and promote cell death and inflammation. At least some of the enzymes involved in the regulation of sphingolipid metabolism are altered in carcinogenesis, and some are targets for anticancer drugs. A number of scientific reports have shown how alterations in sphingolipid pools can affect cell proliferation, survival and migration. Determination of sphingolipid levels and the regulation of the enzymes that are implicated in their metabolism is a key factor for developing novel therapeutic strategies or improving conventional therapies. The present review highlights the importance of bioactive sphingolipids and their regulatory enzymes as targets for therapeutic interventions with especial emphasis in carcinogenesis and cancer dissemination.
Collapse
|
48
|
Podbielska M, O’Keeffe J, Pokryszko-Dragan A. New Insights into Multiple Sclerosis Mechanisms: Lipids on the Track to Control Inflammation and Neurodegeneration. Int J Mol Sci 2021; 22:ijms22147319. [PMID: 34298940 PMCID: PMC8303889 DOI: 10.3390/ijms22147319] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system disease with complex pathogenesis, including two main processes: immune-mediated inflammatory demyelination and progressive degeneration with axonal loss. Despite recent progress in our understanding and management of MS, availability of sensitive and specific biomarkers for these both processes, as well as neuroprotective therapeutic options targeted at progressive phase of disease, are still being sought. Given their abundance in the myelin sheath, lipids are believed to play a central role in underlying immunopathogenesis in MS and seem to be a promising subject of investigation in this field. On the basis of our previous research and a review of the literature, we discuss the current understanding of lipid-related mechanisms involved in active relapse, remission, and progression of MS. These insights highlight potential usefulness of lipid markers in prediction or monitoring the course of MS, particularly in its progressive stage, still insufficiently addressed. Furthermore, they raise hope for new, effective, and stage-specific treatment options, involving lipids as targets or carriers of therapeutic agents.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-9912
| | - Joan O’Keeffe
- Department of Analytical, Biopharmaceutical and Medical Sciences, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland;
| | | |
Collapse
|
49
|
Regulation of cell growth, survival and migration by ceramide 1-phosphate - implications in lung cancer progression and inflammation. Cell Signal 2021; 83:109980. [PMID: 33727076 DOI: 10.1016/j.cellsig.2021.109980] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ceramide 1-phosphate (C1P) is a bioactive sphingolipid that is implicated in the regulation of vital cellular functions and plays key roles in a number of inflammation-associated pathologies. C1P was first described as mitogenic for fibroblasts and macrophages and was later found to promote cell survival in different cell types. The mechanisms involved in the mitogenic actions of C1P include activation of MEK/ERK1-2, PI3K/Akt/mTOR, or PKC-α, whereas promotion of cell survival required a substantial reduction of ceramide levels through inhibition of serine palmitoyl transferase or sphingomyelinase activities. C1P and ceramide kinase (CerK), the enzyme responsible for its biosynthesis in mammalian cells, play key roles in tumor promotion and dissemination. CerK-derived C1P can be secreted to the extracellular milieu by different cell types and is also present in extracellular vesicles. In this context, whilst cell proliferation is regulated by intracellularly generated C1P, stimulation of cell migration/invasion requires the intervention of exogenous C1P. Regarding inflammation, C1P was first described as pro-inflammatory in a variety of cell types. However, cigarette smoke- or lipopolysaccharide-induced lung inflammation in mouse or human cells was overcome by pretreatment with natural or synthetic C1P analogs. Both acute and chronic lung inflammation, and the development of lung emphysema were substantially reduced by exogenous C1P applications, pointing to an anti-inflammatory action of C1P in the lungs. The molecular mechanisms involved in the regulation of cell growth, survival and migration with especial emphasis in the control of lung cancer biology are discussed.
Collapse
|
50
|
Kim JL, Mestre B, Shin SH, Futerman AH. Ceramide synthases: Reflections on the impact of Dr. Lina M. Obeid. Cell Signal 2021; 82:109958. [PMID: 33607256 DOI: 10.1016/j.cellsig.2021.109958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sphingolipids are a family of lipids that are critical to cell function and survival. Much of the recent work done on sphingolipids has been performed by a closely-knit family of sphingolipid researchers, which including our colleague, Dr. Lina Obeid, who recently passed away. We now briefly review where the sphingolipid field stands today, focusing in particular on areas of sphingolipid research to which Dr. Obeid made valued contributions. These include the 'many-worlds' view of ceramides and the role of a key enzyme in the sphingolipid biosynthetic pathway, namely the ceramide synthases (CerS). The CerS contain a number of functional domains and also interact with a number of other proteins in lipid metabolic pathways, fulfilling Dr. Obeid's prophecy that ceramides, and the enzymes that generate ceramides, form the critical hub of the sphingolipid metabolic pathway.
Collapse
Affiliation(s)
- Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Beatriz Mestre
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sun-Hye Shin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|