1
|
Sun Z, Zhao F, Zeng H, Erwin DH, Zhu M. Episodic body size variations of early Paleozoic trilobites associated with marine redox changes. SCIENCE ADVANCES 2025; 11:eadt7572. [PMID: 40315312 PMCID: PMC12047424 DOI: 10.1126/sciadv.adt7572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/28/2025] [Indexed: 05/04/2025]
Abstract
Body size greatly affects how organisms interact with their environments. However, the macroevolutionary patterns of body size across many major metazoan clades and their constraining mechanisms remain elusive. A new high-resolution body size dataset covering 2435 species from 1091 genera of Cambrian and Ordovician trilobites reveals that body size evolution changes episodically, with three marked reductions in size. Such a pattern rules out a persistent Cope's rule dynamic. Rather, we find a strong temporal link between body size changes and major fluctuations in marine redox, supporting the hypothesis that marine oxygen levels exerted a primary control on the tempo and mode of trilobite body size evolution. These further imply a dominant role for marine oxygen in early animal evolution.
Collapse
Affiliation(s)
- Zhixin Sun
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangchen Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Zeng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Douglas H. Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501-8943, USA
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wiens JJ, Saban KE. Questioning the sixth mass extinction. Trends Ecol Evol 2025; 40:375-384. [PMID: 39955198 DOI: 10.1016/j.tree.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025]
Abstract
The idea that Earth is currently experiencing a sixth mass extinction is widespread. We critically evaluate this claim. Very few studies have tested this idea. Some studies showed that recent extinction rates are faster than fossil background rates, but extinction rates can exceed background rates outside mass extinctions. Other studies extrapolated from recent extinctions to project 75% global species loss. But these recent extinctions were mostly of island species. No cause was specified for these future extinctions, and >50% of assessed species are considered non-threatened. We find numerous other issues. Proponents of the sixth mass extinction have made invaluable contributions by highlighting recent extinctions, but these extinctions may not be equivalent to past mass extinctions or relevant to current threats.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA.
| | - Kristen E Saban
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA
| |
Collapse
|
3
|
Woodhouse A, Swain A, Smith J, Sibert E, Lam A, Dunne J, Auderset A. The Micropaleoecology Framework: Evaluating Biotic Responses to Global Change Through Paleoproxy, Microfossil, and Ecological Data Integration. Ecol Evol 2024; 14:e70470. [PMID: 39493613 PMCID: PMC11525056 DOI: 10.1002/ece3.70470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
The microfossil record contains abundant, diverse, and well-preserved fossils spanning multiple trophic levels from primary producers to apex predators. In addition, microfossils often constitute and are preserved in high abundances alongside continuous high-resolution geochemical proxy records. These characteristics mean that microfossils can provide valuable context for understanding the modern climate and biodiversity crises by allowing for the interrogation of spatiotemporal scales well beyond what is available in neo-ecological research. Here, we formalize a research framework of "micropaleoecology," which builds on a holistic understanding of global change from the environment to ecosystem level. Location: Global. Time period: Neoproterozoic-Phanerozoic. Taxa studied: Fossilizing organisms/molecules. Our framework seeks to integrate geochemical proxy records with microfossil records and metrics, and draws on mechanistic models and systems-level statistical analyses to integrate disparate records. Using multiple proxies and mechanistic mathematical frameworks extends analysis beyond traditional correlation-based studies of paleoecological associations and builds a greater understanding of past ecosystem dynamics. The goal of micropaleoecology is to investigate how environmental changes impact the component and emergent properties of ecosystems through the integration of multi-trophic level body fossil records (primarily using microfossils, and incorporating additional macrofossil data where possible) with contemporaneous environmental (biogeochemical, geochemical, and sedimentological) records. Micropaleoecology, with its focus on integrating ecological metrics within the context of paleontological records, facilitates a deeper understanding of the response of ecosystems across time and space to better prepare for a future Earth under threat from anthropogenic climate change.
Collapse
Affiliation(s)
- Adam Woodhouse
- School of Earth SciencesUniversity of BristolBristolUK
- University of Texas Institute for GeophysicsUniversity of Texas at AustinAustinTexasUSA
| | - Anshuman Swain
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Jansen A. Smith
- Department of Earth and Environmental SciencesUniversity of Minnesota DuluthDuluthMinnesotaUSA
| | - Elizabeth C. Sibert
- Department of Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Adriane R. Lam
- Department of Earth SciencesBinghamton UniversityBinghamtonNew YorkUSA
| | | | | |
Collapse
|
4
|
Wilson JD, Huang EJ, Lyson TR, Bever GS. Freshwater fish and the Cretaceous/Palaeogene boundary: a critical assessment of survivorship patterns. Proc Biol Sci 2024; 291:20241025. [PMID: 39196282 DOI: 10.1098/rspb.2024.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Mass extinctions are major influences on both the phylogenetic structure of the modern biota and our ability to reconstruct broad-based patterns of evolutionary history. The most recent mass extinction is also the most famous-that which implicates a bolide impact in defining the Cretaceous/Palaeogene boundary (K/Pg). Although the biotic effects of this event receive intensive scrutiny, certain ecologically important and diverse groups remain woefully understudied. One such group is the freshwater ray-finned fishes (Actinopterygii). These fish represent 25% of modern vertebrate diversity, yet the isolated and fragmentary nature of their K/Pg fossil record limits our understanding of their diversity dynamics across this event. Here, we address this problem using diversification analysis of molecular-based phylogenies alongside a morphotype analysis of fossils recovered from a unique site in the Denver Basin of western North America that provides unprecedented K/Pg resolution. Our results reveal previously unrecognized signals of post-K/Pg diversification in freshwater clades and suggest that the change was driven by localized and sporadic patterns of extinction. Supported inferences regarding the effects of the K/Pg event on freshwater fish also inform our expectations of how freshwater faunas might recover from the current biodiversity crisis.
Collapse
Affiliation(s)
- Jacob D Wilson
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 Monument Street , Baltimore, MD 21205, USA
| | - E J Huang
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 Monument Street , Baltimore, MD 21205, USA
| | - Tyler R Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard , Denver, CO 80205, USA
| | - Gabriel S Bever
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 Monument Street , Baltimore, MD 21205, USA
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard , Denver, CO 80205, USA
- Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 North Charles Street , Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Zhao L, Li J, Barrett RL, Liu B, Hu H, Lu L, Chen Z. Spatial heterogeneity of extinction risk for flowering plants in China. Nat Commun 2024; 15:6352. [PMID: 39069525 PMCID: PMC11284212 DOI: 10.1038/s41467-024-50704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Understanding the variability of extinction risk and its potential drivers across different spatial extents is crucial to revealing the underlying processes of biodiversity loss and sustainability. However, in countries with high climatic and topographic heterogeneity, studies on extinction risk are often challenged by complexities associated with extent effects. Here, using 2.02 million fine-grained distribution records and a phylogeny including 27,185 species, we find that the extinction risk of flowering plants in China is spatially concentrated in southwestern China. Our analyses suggest that spatial extinction risks of flowering plants in China may be caused by multiple drivers and are extent dependent. Vegetation structure based on proportion of growth forms is likely the dominant extinction driver at the national extent, followed by climatic and evolutionary drivers. Finer extent analyses indicate that the potential dominant extinction drivers vary across zones and vegetation regions. Despite regional heterogeneity, we detect a geographical continuity potential in extinction drivers, with variation in West China dominated by vegetation structure, South China by climate, and North China by evolution. Our findings highlight that identification of potential extent-dependent drivers of extinction risk is crucial for targeted conservation practice in countries like China.
Collapse
Affiliation(s)
- Lina Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Jinya Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, 2567, NSW, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Bing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haihua Hu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Limin Lu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
6
|
Liu X, Liu M, Zhao D, Xiao R, Sun Y. Control of ecological networks: Abundance control or ecological regulation? CHAOS (WOODBURY, N.Y.) 2024; 34:073115. [PMID: 38980382 DOI: 10.1063/5.0189874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Complex ecosystems often exhibit a tipping point around which a small perturbation can lead to the loss of the basic functionality of ecosystems. It is challenging to develop a control strategy to bring ecosystems to the desired stable states. Typically, two methods are employed to restore the functionality of ecosystems: abundance control and ecological regulation. Abundance control involves directly managing species abundance through methods such as trapping, shooting, or poisoning. On the other hand, ecological regulation is a strategy for ecosystems to self-regulate through environment improvement. To enhance the effectiveness of ecosystem recovery, we propose adaptive regulation by combining the two control strategies from mathematical and network science perspectives. Criteria for controlling ecosystems to reach equilibrium with or without noise perturbation are established. The time and energy costs of restoring an ecosystem to equilibrium often determine the choice of control strategy, thus, we estimate the control costs. Furthermore, we observe that the regulation parameter in adaptive regulation affects both time and energy costs, with a trade-off existing between them. By optimizing the regulation parameter based on a performance index with fixed weights for time and energy costs, we can minimize the total cost. Moreover, we discuss the impact of the complexity of ecological networks on control costs, where the more complex the networks, the higher the costs. We provide corresponding theoretical analyses for random networks, predator-prey networks, and mixture networks.
Collapse
Affiliation(s)
- Xiaoting Liu
- School of Mathematics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Maoxing Liu
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing 102616, People's Republic of China
| | - Donghua Zhao
- School of Mathematical Sciences, Research Center for Nonlinear Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Rui Xiao
- School of Mathematics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Yongzheng Sun
- School of Mathematics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| |
Collapse
|
7
|
Cazabonne J, Walker AK, Lesven J, Haelewaters D. Singleton-based species names and fungal rarity: Does the number really matter? IMA Fungus 2024; 15:7. [PMID: 38504339 PMCID: PMC10953280 DOI: 10.1186/s43008-023-00137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/13/2023] [Indexed: 03/21/2024] Open
Abstract
Fungi are among the least known organisms on earth, with an estimated number of species between 1.5 and 10 million. This number is expected to be refined, especially with increasing knowledge about microfungi in undersampled habitats and increasing amounts of data derived from environmental DNA sequencing. A significant proportion of newly generated sequences fail to match with already named species, and thus represent what has been referred to as fungal "dark taxa". Due to the challenges associated with observing, identifying, and preserving sporophores, many macro- and microfungal species are only known from a single collection, specimen, isolate, and/or sequence-a singleton. Mycologists are consequently used to working with "rare" sequences and specimens. However, rarity and singleton phenomena lack consideration and valorization in fungal studies. In particular, the practice of publishing new fungal species names based on a single specimen remains a cause of debate. Here, we provide some elements of reflection on this issue in the light of the specificities of the fungal kingdom and global change context. If multiple independent sources of data support the existence of a new taxon, we encourage mycologists to proceed with formal description, irrespective of the number of specimens at hand. Although the description of singleton-based species may not be considered best practice, it does represent responsible science in the light of closing the Linnean biodiversity shortfall.
Collapse
Affiliation(s)
- Jonathan Cazabonne
- Ecology Research Group of Abitibi RCM, Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Amos, QC, J9T 2L8, Canada.
- Centre for Forest Research, Université du Québec à Montréal, Montreal, QC, H3C 3P8, Canada.
| | - Allison K Walker
- Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Jonathan Lesven
- Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Bourgogne Franche-Comté, 25000, Besançon, France
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, 9000, Ghent, Belgium.
- Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic.
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, Ceske Budejovice, Czech Republic.
| |
Collapse
|
8
|
Bhatia U, Dubey S, Gouhier TC, Ganguly AR. Network-based restoration strategies maximize ecosystem recovery. Commun Biol 2023; 6:1256. [PMID: 38086885 PMCID: PMC10716433 DOI: 10.1038/s42003-023-05622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Redressing global patterns of biodiversity loss requires quantitative frameworks that can predict ecosystem collapse and inform restoration strategies. By applying a network-based dynamical approach to synthetic and real-world mutualistic ecosystems, we show that biodiversity recovery following collapse is maximized when extirpated species are reintroduced based solely on their total number of connections in the original interaction network. More complex network-based strategies that prioritize the reintroduction of species that improve 'higher order' topological features such as compartmentalization do not provide meaningful performance improvements. These results suggest that it is possible to design nearly optimal restoration strategies that maximize biodiversity recovery for data-poor ecosystems in order to ensure the delivery of critical natural services that fuel economic development, food security, and human health around the globe.
Collapse
Affiliation(s)
- Udit Bhatia
- Discipline of Civil Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
- Sustainability and Data Sciences Lab, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Sarth Dubey
- Discipline of Computer Science and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India
| | - Tarik C Gouhier
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| | - Auroop R Ganguly
- Sustainability and Data Sciences Lab, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Kowalewski M, Nawrot R, Scarponi D, Tomašových A, Zuschin M. Marine conservation palaeobiology: What does the late Quaternary fossil record tell us about modern-day extinctions and biodiversity threats? CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e24. [PMID: 40078671 PMCID: PMC11895752 DOI: 10.1017/ext.2023.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 03/14/2025]
Abstract
Near-time conservation palaeobiology uses palaeontological, archaeological and other geohistorical records to study the late Quaternary transition of the biosphere from its pristine past to its present-day, human-altered state. Given the scarcity of data on recent extinctions in the oceans, geohistorical records are critical for documenting human-driven extinctions and extinction threats in the marine realm. The historical perspective can provide two key insights. First, geohistorical records archive the state of pre-industrial oceans at local, regional and global scales, thus enabling the detection of recent extinctions and extirpations as well as shifts in species distribution, abundance, body size and ecosystem function. Second, we can untangle the contributions of natural and anthropogenic processes by documenting centennial-to-millennial changes in the composition and diversity of marine ecosystems before and after the onset of major human impacts. This long-term perspective identifies recently emerging patterns and processes that are unprecedented, thus allowing us to better assess human threats to marine biodiversity. Although global-scale extinctions are not well documented for brackish and marine invertebrates, geohistorical studies point to numerous extirpations, declines in ecosystem functions, increases in range fragmentation and dwindling abundance of previously widespread species, indicating that marine ecosystems are accumulating a human-driven extinction debt.
Collapse
Affiliation(s)
- Michał Kowalewski
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Rafał Nawrot
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Daniele Scarponi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Bologna, Italy
| | - Adam Tomašových
- Earth Science Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
del Monte-Luna P, Nakamura M, Vicente A, Pérez-Sosa LB, Yáñez-Arenas A, Trites AW, Lluch-Cota SE. A review of recent and future marine extinctions. CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e13. [PMID: 40078682 PMCID: PMC11895723 DOI: 10.1017/ext.2023.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 03/14/2025]
Abstract
Between 20 and 24 marine extinctions, ranging from algal to mammal species, have occurred over the past 500 years. These relatively low numbers question whether the sixth mass extinction that is underway on land is also occurring in the ocean. There is, however, increasing evidence of worldwide losses of marine populations that may foretell a wave of oncoming marine extinctions. A review of current methods being used to determine the loss of biodiversity from the world's oceans reveals the need to develop and apply new assessment methodologies that incorporate standardized metrics that allow comparisons to be made among different regions and taxonomic groups, and between current extinctions and past mass extinction events. Such efforts will contribute to a better understanding of extinction risk facing marine flora and fauna, as well as the ways in which it can be mitigated.
Collapse
Affiliation(s)
- Pablo del Monte-Luna
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional (IPN), La Paz, Mexico
| | - Miguel Nakamura
- Departamento de Probabilidad y Estadística, Centro de Investigación en Matemáticas A.C. (CIMAT), Guanajuato, Mexico
| | - Alba Vicente
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional (IPN), La Paz, Mexico
- Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona-UB, BarcelonaSpain
| | - Lilian B. Pérez-Sosa
- Departamento de Probabilidad y Estadística, Centro de Investigación en Matemáticas A.C. (CIMAT), Guanajuato, Mexico
| | - Arturo Yáñez-Arenas
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional (IPN), La Paz, Mexico
| | - Andrew W. Trites
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Salvador E. Lluch-Cota
- Programa de Ecología Pesquera, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| |
Collapse
|
11
|
Blanchard G, Munoz F. Revisiting extinction debt through the lens of multitrophic networks and meta‐ecosystems. OIKOS 2022. [DOI: 10.1111/oik.09435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Grégoire Blanchard
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier France
- AMAP, IRD, Herbier de Nouvelle Calédonie Nouméa Nouvelle Calédonie
| | | |
Collapse
|
12
|
Colares LF, de Assis Montag LF, Dunck B. Habitat loss predicts the functional extinction of fish from Amazonian streams during the Anthropocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156210. [PMID: 35618116 DOI: 10.1016/j.scitotenv.2022.156210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The evaluation of extinction risk has typically focused on individual species, although a shift to a focus on ecosystem functioning would appear to be an urgent priority for conservation planning, especially considering that a sixth mass extinction event has already begun. In the present study, we investigated how fish extinction driven by habitat loss may modify the functioning of freshwater Amazonian ecosystems. We sampled the fish and environmental conditions of 63 streams in the eastern Amazon and simulated extinction based on the vulnerability of the species to habitat loss, which is the principal threat to tropical biodiversity. The simulated extinction of vulnerable species led to a decrease in both the mean body size of the community and functional rarity and culminated in abrupt losses of ecosystem functions after 5% and 10% of extinction at local and regional scales. Our functional approach demonstrated the progressive loss of ecological functions in Amazon streams, which may collapse altogether following the extinction of functions related to protection against biological invasions, and associated alterations in nutrient cycling and water quality. We provide robust predictions on the modification of the ecosystem following the extinction of fish species, which is a major step toward the development of effective conservation measures that ensure the avoidance of the predicted processes, and help to prevent the loss of biodiversity and the potentially irreversible modifications to ecosystem functioning.
Collapse
Affiliation(s)
- Lucas Ferreira Colares
- Programa de Pós-Graduação em Biodiversidade Animal, Laboratório de Ecologia Teórica e Aplicada, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 1000 - Camobi, Santa Maria, RS 97105-900, Brazil; Programa de Pós-Graduação em Ecologia, Laboratório de Ecologia de Produtores, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA, 66077-530, Brazil; Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA 66077-530, Brazil.
| | - Luciano Fogaça de Assis Montag
- Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA 66077-530, Brazil
| | - Bárbara Dunck
- Programa de Pós-Graduação em Ecologia, Laboratório de Ecologia de Produtores, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA, 66077-530, Brazil; Universidade Federal Rural da Amazônia, Instituto Socioambiental e dos Recursos Hídricos, Avenida Perimetral, 660778-30 Belém, PA, Brazil
| |
Collapse
|
13
|
Griffith P, Lang JW, Turvey ST, Gumbs R. Using functional traits to identify conservation priorities for the world's crocodylians. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Phoebe Griffith
- Institute of Zoology Zoological Society of London London UK
- Wildlife Conservation Research Unit The Recanati‐Kaplan Centre, Department of Zoology, University of Oxford Oxford UK
| | - Jeffrey W. Lang
- Gharial Ecology Project Madras Crocodile Bank Trust Mamallapuram Tamil Nadu India
| | | | - Rikki Gumbs
- EDGE of Existence Programme Conservation and Policy, Zoological Society of London London UK
| |
Collapse
|
14
|
Cowie RH, Bouchet P, Fontaine B. The Sixth Mass Extinction: fact, fiction or speculation? Biol Rev Camb Philos Soc 2022; 97:640-663. [PMID: 35014169 PMCID: PMC9786292 DOI: 10.1111/brv.12816] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
Abstract
There have been five Mass Extinction events in the history of Earth's biodiversity, all caused by dramatic but natural phenomena. It has been claimed that the Sixth Mass Extinction may be underway, this time caused entirely by humans. Although considerable evidence indicates that there is a biodiversity crisis of increasing extinctions and plummeting abundances, some do not accept that this amounts to a Sixth Mass Extinction. Often, they use the IUCN Red List to support their stance, arguing that the rate of species loss does not differ from the background rate. However, the Red List is heavily biased: almost all birds and mammals but only a minute fraction of invertebrates have been evaluated against conservation criteria. Incorporating estimates of the true number of invertebrate extinctions leads to the conclusion that the rate vastly exceeds the background rate and that we may indeed be witnessing the start of the Sixth Mass Extinction. As an example, we focus on molluscs, the second largest phylum in numbers of known species, and, extrapolating boldly, estimate that, since around AD 1500, possibly as many as 7.5-13% (150,000-260,000) of all ~2 million known species have already gone extinct, orders of magnitude greater than the 882 (0.04%) on the Red List. We review differences in extinction rates according to realms: marine species face significant threats but, although previous mass extinctions were largely defined by marine invertebrates, there is no evidence that the marine biota has reached the same crisis as the non-marine biota. Island species have suffered far greater rates than continental ones. Plants face similar conservation biases as do invertebrates, although there are hints they may have suffered lower extinction rates. There are also those who do not deny an extinction crisis but accept it as a new trajectory of evolution, because humans are part of the natural world; some even embrace it, with a desire to manipulate it for human benefit. We take issue with these stances. Humans are the only species able to manipulate the Earth on a grand scale, and they have allowed the current crisis to happen. Despite multiple conservation initiatives at various levels, most are not species oriented (certain charismatic vertebrates excepted) and specific actions to protect every living species individually are simply unfeasible because of the tyranny of numbers. As systematic biologists, we encourage the nurturing of the innate human appreciation of biodiversity, but we reaffirm the message that the biodiversity that makes our world so fascinating, beautiful and functional is vanishing unnoticed at an unprecedented rate. In the face of a mounting crisis, scientists must adopt the practices of preventive archaeology, and collect and document as many species as possible before they disappear. All this depends on reviving the venerable study of natural history and taxonomy. Denying the crisis, simply accepting it and doing nothing, or even embracing it for the ostensible benefit of humanity, are not appropriate options and pave the way for the Earth to continue on its sad trajectory towards a Sixth Mass Extinction.
Collapse
Affiliation(s)
- Robert H. Cowie
- Pacific Biosciences Research CenterUniversity of HawaiiHonoluluHawaii96822U.S.A.
| | - Philippe Bouchet
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHEUniversité des Antilles57 rue Cuvier CP 5175005 ParisFrance
| | - Benoît Fontaine
- UMS 2006 Patrinat (OFB, CNRS, MNHN), Centre d'Écologie et des Sciences de la Conservation (UMR 7204), Muséum National d'Histoire Naturelle43 rue Buffon CP 13575005 ParisFrance
| |
Collapse
|
15
|
Cepic M, Bechtold U, Wilfing H. Modelling human influences on biodiversity at a global scale–A human ecology perspective. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Cantasano N. Ecological Networks and Fluvial Corridors in Calabria (Southern Italy). JOURNAL OF BIOMEDICAL RESEARCH & ENVIRONMENTAL SCIENCES 2021; 2:1296-1297. [DOI: 10.37871/jbres1385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The anthropic pressure on natural systems is the main cause for the present process of biodiversity loss in terrestrial biosphere [1]. Really, the human disturbance on Earth affects the 74.1% of terrestrial and marine habitats, including 22.4% completely modified, 51.7% partially disturbed and just the 25.9% in natural and pristine conditions [2]. At the beginning of third millenium, in the middle of a post-industrial era, named “Anthropocene” [3], mankind is causing the greatest mass extinction of wildlife in terrestrial biosphere [4-6].
Collapse
|
17
|
Emary C, Evans D. Can a complex ecosystem survive the loss of a large fraction of its species? A random matrix theory of secondary extinction. OIKOS 2021. [DOI: 10.1111/oik.08286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Clive Emary
- School of Mathematics, Statistics and Physics, Newcastle Univ. Newcastle‐upon‐Tyne UK
| | - Darren Evans
- School of Natural and Environmental Sciences, Newcastle Univ. Newcastle‐upon‐Tyne UK
| |
Collapse
|
18
|
Evensen NR, Bozec YM, Edmunds PJ, Mumby PJ. Scaling the effects of ocean acidification on coral growth and coral-coral competition on coral community recovery. PeerJ 2021; 9:e11608. [PMID: 34306826 PMCID: PMC8284307 DOI: 10.7717/peerj.11608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 01/29/2023] Open
Abstract
Ocean acidification (OA) is negatively affecting calcification in a wide variety of marine organisms. These effects are acute for many tropical scleractinian corals under short-term experimental conditions, but it is unclear how these effects interact with ecological processes, such as competition for space, to impact coral communities over multiple years. This study sought to test the use of individual-based models (IBMs) as a tool to scale up the effects of OA recorded in short-term studies to community-scale impacts, combining data from field surveys and mesocosm experiments to parameterize an IBM of coral community recovery on the fore reef of Moorea, French Polynesia. Focusing on the dominant coral genera from the fore reef, Pocillopora, Acropora, Montipora and Porites, model efficacy first was evaluated through the comparison of simulated and empirical dynamics from 2010-2016, when the reef was recovering from sequential acute disturbances (a crown-of-thorns seastar outbreak followed by a cyclone) that reduced coral cover to ~0% by 2010. The model then was used to evaluate how the effects of OA (1,100-1,200 µatm pCO2) on coral growth and competition among corals affected recovery rates (as assessed by changes in % cover y-1) of each coral population between 2010-2016. The model indicated that recovery rates for the fore reef community was halved by OA over 7 years, with cover increasing at 11% y-1 under ambient conditions and 4.8% y-1 under OA conditions. However, when OA was implemented to affect coral growth and not competition among corals, coral community recovery increased to 7.2% y-1, highlighting mechanisms other than growth suppression (i.e., competition), through which OA can impact recovery. Our study reveals the potential for IBMs to assess the impacts of OA on coral communities at temporal and spatial scales beyond the capabilities of experimental studies, but this potential will not be realized unless empirical analyses address a wider variety of response variables representing ecological, physiological and functional domains.
Collapse
Affiliation(s)
- Nicolas R Evensen
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States.,Marine Spatial Ecology Lab, ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia.,Department of Biology, California State University, Northridge, Northridge, CA, United States
| | - Yves-Marie Bozec
- Department of Biology, California State University, Northridge, Northridge, CA, United States
| | - Peter J Edmunds
- Marine Spatial Ecology Lab, ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Peter J Mumby
- Department of Biology, California State University, Northridge, Northridge, CA, United States
| |
Collapse
|
19
|
Dietzel A, Bode M, Connolly SR, Hughes TP. The population sizes and global extinction risk of reef-building coral species at biogeographic scales. Nat Ecol Evol 2021; 5:663-669. [PMID: 33649542 DOI: 10.1038/s41559-021-01393-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023]
Abstract
Knowledge of a species' abundance is critically important for assessing its risk of extinction, but for the vast majority of wild animal and plant species such data are scarce at biogeographic scales. Here, we estimate the total number of reef-building corals and the population sizes of more than 300 individual species on reefs spanning the Pacific Ocean biodiversity gradient, from Indonesia to French Polynesia. Our analysis suggests that approximately half a trillion corals (0.3 × 1012-0.8 × 1012) inhabit these coral reefs, similar to the number of trees in the Amazon. Two-thirds of the examined species have population sizes exceeding 100 million colonies, and one-fifth of the species even have population sizes greater than 1 billion colonies. Our findings suggest that, while local depletions pose imminent threats that can have ecologically devastating impacts to coral reefs, the global extinction risk of most coral species is lower than previously estimated.
Collapse
Affiliation(s)
- Andreas Dietzel
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.
| | - Michael Bode
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sean R Connolly
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.,Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Terry P Hughes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
20
|
Spalding C, Hull PM. Towards quantifying the mass extinction debt of the Anthropocene. Proc Biol Sci 2021; 288:20202332. [PMID: 33906410 PMCID: PMC8080006 DOI: 10.1098/rspb.2020.2332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/06/2021] [Indexed: 11/12/2022] Open
Abstract
To make sense of our present biodiversity crises, the modern rate of species extinctions is commonly compared to a benchmark, or 'background,' rate derived from the fossil record. These estimates are critical for bounding the scale of modern diversity loss, but are yet to fully account for the fundamental structure of extinction rates through time. Namely, a substantial fraction of extinctions within the fossil record occurs within relatively short-lived extinction pulses, and not during intervals characterized by background rates of extinction. Accordingly, it is more appropriate to compare the modern event to these pulses than to the long-term average rate. Unfortunately, neither the duration of extinction pulses in the geological record nor the ultimate magnitude of the extinction pulse today is resolved, making assessments of their relative sizes difficult. In addition, the common metric used to compare current and past extinction rates does not correct for large differences in observation duration. Here, we propose a new predictive metric that may be used to ascertain the ultimate extent of the ongoing extinction threat, building on the observation that extinction magnitude in the marine fossil record is correlated to the magnitude of sedimentary turnover. Thus, we propose that the ultimate number of species destined for extinction today can be predicted by way of a quantitative appraisal of humanity's modification of ecosystems as recorded in sediments-that is, by comparing our future rock record with that of the past. The ubiquity of habitat disruption worldwide suggests that a profound mass extinction debt exists today, but one that might yet be averted by preserving and restoring ecosystems and their geological traces.
Collapse
Affiliation(s)
- Christopher Spalding
- Department of Astronomy, Yale University, New Haven, CT 06511, USA
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
| | - Pincelli M. Hull
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
21
|
Evidence from South Africa for a protracted end-Permian extinction on land. Proc Natl Acad Sci U S A 2021; 118:2017045118. [PMID: 33875588 DOI: 10.1073/pnas.2017045118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Earth's largest biotic crisis occurred during the Permo-Triassic Transition (PTT). On land, this event witnessed a turnover from synapsid- to archosauromorph-dominated assemblages and a restructuring of terrestrial ecosystems. However, understanding extinction patterns has been limited by a lack of high-precision fossil occurrence data to resolve events on submillion-year timescales. We analyzed a unique database of 588 fossil tetrapod specimens from South Africa's Karoo Basin, spanning ∼4 My, and 13 stratigraphic bin intervals averaging 300,000 y each. Using sample-standardized methods, we characterized faunal assemblage dynamics during the PTT. High regional extinction rates occurred through a protracted interval of ∼1 Ma, initially co-occurring with low origination rates. This resulted in declining diversity up to the acme of extinction near the Daptocephalus-Lystrosaurus declivis Assemblage Zone boundary. Regional origination rates increased abruptly above this boundary, co-occurring with high extinction rates to drive rapid turnover and an assemblage of short-lived species symptomatic of ecosystem instability. The "disaster taxon" Lystrosaurus shows a long-term trend of increasing abundance initiated in the latest Permian. Lystrosaurus comprised 54% of all specimens by the onset of mass extinction and 70% in the extinction aftermath. This early Lystrosaurus abundance suggests its expansion was facilitated by environmental changes rather than by ecological opportunity following the extinctions of other species as commonly assumed for disaster taxa. Our findings conservatively place the Karoo extinction interval closer in time, but not coeval with, the more rapid marine event and reveal key differences between the PTT extinctions on land and in the oceans.
Collapse
|
22
|
Abstract
D. Jablonski [Proc. Natl. Acad. Sci. U.S.A. 99, 8139-8144 (2002)] coined the term "dead clades walking" (DCWs) to describe marine fossil orders that experience significant drops in genus richness during mass extinction events and never rediversify to previous levels. This phenomenon is generally interpreted as further evidence that the macroevolutionary consequences of mass extinctions can continue well past the formal boundary. It is unclear, however, exactly how long DCWs are expected to persist after extinction events and to what degree they impact broader trends in Phanerozoic biodiversity. Here we analyze the fossil occurrences of 134 skeletonized marine invertebrate orders in the Paleobiology Database (paleobiodb.org) using a Bayesian method to identify significant change points in genus richness. Our analysis identifies 70 orders that experience major diversity losses without recovery. Most of these taxa, however, do not fit the popular conception of DCWs as clades that narrowly survive a mass extinction event and linger for only a few stages before succumbing to extinction. The median postdrop duration of these DCW orders is long (>30 Myr), suggesting that previous studies may have underestimated the long-term taxonomic impact of mass extinction events. More importantly, many drops in diversity without recovery are not associated with mass extinction events and occur during background extinction stages. The prevalence of DCW orders throughout both mass and background extinction intervals and across phyla (>50% of all marine invertebrate orders) suggests that the DCW pattern is a major component of macroevolutionary turnover.
Collapse
|
23
|
Impacts of speciation and extinction measured by an evolutionary decay clock. Nature 2020; 588:636-641. [PMID: 33299185 DOI: 10.1038/s41586-020-3003-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 02/03/2023]
Abstract
The hypothesis that destructive mass extinctions enable creative evolutionary radiations (creative destruction) is central to classic concepts of macroevolution1,2. However, the relative impacts of extinction and radiation on the co-occurrence of species have not been directly quantitatively compared across the Phanerozoic eon. Here we apply machine learning to generate a spatial embedding (multidimensional ordination) of the temporal co-occurrence structure of the Phanerozoic fossil record, covering 1,273,254 occurrences in the Paleobiology Database for 171,231 embedded species. This facilitates the simultaneous comparison of macroevolutionary disruptions, using measures independent of secular diversity trends. Among the 5% most significant periods of disruption, we identify the 'big five' mass extinction events2, seven additional mass extinctions, two combined mass extinction-radiation events and 15 mass radiations. In contrast to narratives that emphasize post-extinction radiations1,3, we find that the proportionally most comparable mass radiations and extinctions (such as the Cambrian explosion and the end-Permian mass extinction) are typically decoupled in time, refuting any direct causal relationship between them. Moreover, in addition to extinctions4, evolutionary radiations themselves cause evolutionary decay (modelled co-occurrence probability and shared fraction of species between times approaching zero), a concept that we describe as destructive creation. A direct test of the time to over-threshold macroevolutionary decay4 (shared fraction of species between two times ≤ 0.1), counted by the decay clock, reveals saw-toothed fluctuations around a Phanerozoic mean of 18.6 million years. As the Quaternary period began at a below-average decay-clock time of 11 million years, modern extinctions further increase life's decay-clock debt.
Collapse
|
24
|
Darroch SAF, Casey MM, Antell GS, Sweeney A, Saupe EE. High Preservation Potential of Paleogeographic Range Size Distributions in Deep Time. Am Nat 2020; 196:454-471. [PMID: 32970459 DOI: 10.1086/710176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractReconstructing geographic range sizes from fossil data is a crucial tool in paleoecology, elucidating macroecological and macroevolutionary processes. Studies examining links between range size and extinction risk may also offer a predictive tool for identifying species most vulnerable in the "sixth mass extinction." However, the extent to which paleogeographic ranges can be recorded reliably in the fossil record is unknown. We perform simulation-based extinction experiments to examine (1) the fidelity of paleogeographic range size preservation in deep time, (2) the relative performance of different methods for reconstructing range size, and (3) the reliability of detecting patterns of extinction "selectivity" on range size. Our results suggest both that relative paleogeographic range size can be consistently reconstructed and that selectivity patterns on range size can be preserved under many extinction intensities, even when sedimentary rocks are scarce. By identifying patterns of selectivity across Earth's history, paleontologists can thus augment neontological work that aims to predict and prevent extinctions of living species. Last, we find that introducing "false extinctions" in the fossil record can produce spurious range-selectivity signals. Errors in the temporal ranges of species may pose a larger barrier to reconstructing range size-extinction risk signals than the spatial distribution of fossiliferous sediments.
Collapse
|
25
|
|
26
|
Lortie CJ, Braun J, Westphal M, Noble T, Zuliani M, Nix E, Ghazian N, Owen M, Scott Butterfield H. Shrub and vegetation cover predict resource selection use by an endangered species of desert lizard. Sci Rep 2020; 10:4884. [PMID: 32184467 PMCID: PMC7078218 DOI: 10.1038/s41598-020-61880-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/03/2020] [Indexed: 11/26/2022] Open
Abstract
Globally, no species is exempt from the constraints associated with limited available habitat or resources, and endangered species in particular warrant critical examination. In most cases, these species are restricted to limited locations, and the relative likelihood of resource use within the space they can access is important. Using Gambelia sila, one of the first vertebrate species listed as endangered, we used resource selection function analysis of telemetry and remotely sensed data to identity key drivers of selected versus available locations for this species in Carrizo Plain National Monument, USA. We examined the probability of selection given different resource types. Increasing shrub cover, lower and relatively more flat sites, increasing normalized difference vegetation index, and solar radiation all significantly predicted likelihood of observed selection within the area sampled. Imagery data were also validated with fine-scale field data showing that large-scale contrasts of selection relative to available location patterns for animal species are a useful lens for potential habitat. Key environmental infrastructure such as foundation plant species including shrubs or local differences in the physical attributes were relevant to this endangered species.
Collapse
Affiliation(s)
- Christopher J Lortie
- Department of Biology, York University, Toronto, ON, Canada.
- The National Center for Ecological Analysis and Synthesis, UCSB, Santa Barbara, CA, USA.
| | - Jenna Braun
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Taylor Noble
- Department of Biology, York University, Toronto, ON, Canada
| | - Mario Zuliani
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Nargol Ghazian
- Department of Biology, York University, Toronto, ON, Canada
| | - Malory Owen
- Department of Biology, York University, Toronto, ON, Canada
| | | |
Collapse
|
27
|
Penny A, Kröger B. Impacts of spatial and environmental differentiation on early Palaeozoic marine biodiversity. Nat Ecol Evol 2019; 3:1655-1660. [PMID: 31740841 DOI: 10.1038/s41559-019-1035-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/10/2019] [Indexed: 11/09/2022]
Abstract
The unprecedented diversifications in the fossil record of the early Palaeozoic (541-419 million years ago) increased both within-sample (α) and global (γ) diversity, generating considerable ecological complexity. Faunal difference (β diversity), including spatial heterogeneity, is thought to have played a major role in early Palaeozoic marine diversification, although α diversity is the major determinant of γ diversity through the Phanerozoic. Drivers for this Phanerozoic shift from β to α diversity are not yet resolved. Here, we evaluate the impacts of environmental and faunal heterogeneity on diversity patterns using a global spatial grid. We present early Palaeozoic genus-level α, β and γ diversity curves for molluscs, brachiopods, trilobites and echinoderms and compare them with measures of spatial lithological heterogeneity, which is our proxy for environmental heterogeneity. We find that α and β diversity are associated with increased lithological heterogeneity, and that β diversity declines over time while α increases. We suggest that the enhanced dispersal of marine taxa from the Middle Ordovician onwards facilitated increases in α diversity by encouraging the occupation of narrow niches and increasing the prevalence of transient species, simultaneously reducing spatial β diversity. This may have contributed to a shift from β to α diversity as the major determinant of γ diversity increase over this critical evolutionary interval.
Collapse
Affiliation(s)
- Amelia Penny
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| | - Björn Kröger
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
He X, Liang J, Zeng G, Yuan Y, Li X. The Effects of Interaction between Climate Change and Land-Use/Cover Change on Biodiversity-Related Ecosystem Services. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800095. [PMID: 31565394 PMCID: PMC6733396 DOI: 10.1002/gch2.201800095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/20/2019] [Indexed: 05/13/2023]
Abstract
Climate change and land-use/cover change (LUCC) are two major types of global environmental change. They are increasingly challenging the main objectives of ecosystem management, which are to provide ecosystem services sustainably to society and maintain biodiversity. However, a comprehensive understanding of how climate-land-use change affects these primary goals of ecosystem management is still lacking. Here, a global literature review on the impacts of climate change and LUCC on ecosystem services related to biodiversity is presented. In this review, possible ecological responses at species, community, and ecosystem levels, and the effects of interaction mechanisms between climate change and LUCC on biodiversity-related ecosystem services are identified. The results show possible effects on species facing climate change challenges through affecting distribution/range shifts, interspecific relations, richness, and abundance, and the impacts on biodiversity through increasing extinction rates, nutrient deposition, and habitat fragmentation under LUCC. Climate change may hinder the ability of species to deal with LUCC, and in turn LUCC could reduce resilience to climate change. Understanding of these interactions is necessary to address the increasing pressure on sustainable provisioning of ecosystem services under different climate and land-use scenarios in the future.
Collapse
Affiliation(s)
- Xinyue He
- College of Environmental Science and EngineeringHunan UniversityChangsha410082P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)Ministry of EducationChangsha410082P. R. China
| | - Jie Liang
- College of Environmental Science and EngineeringHunan UniversityChangsha410082P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)Ministry of EducationChangsha410082P. R. China
| | - Guangming Zeng
- College of Environmental Science and EngineeringHunan UniversityChangsha410082P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)Ministry of EducationChangsha410082P. R. China
| | - Yujie Yuan
- Key Laboratory of Ecological Impacts of Hydraulic‐Projects and Restoration of Aquatic Ecosystem of Ministry of Water ResourcesInstitute of HydroecologyMinistry of Water Resources and Chinese Academy of SciencesWuhan430079P. R. China
| | - Xiaodong Li
- College of Environmental Science and EngineeringHunan UniversityChangsha410082P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)Ministry of EducationChangsha410082P. R. China
| |
Collapse
|
29
|
Reconciling cooperation, biodiversity and stability in complex ecological communities. Sci Rep 2019; 9:5580. [PMID: 30944345 PMCID: PMC6447617 DOI: 10.1038/s41598-019-41614-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/11/2019] [Indexed: 11/12/2022] Open
Abstract
Empirical evidences show that ecosystems with high biodiversity can persist in time even in the presence of few types of resources and are more stable than low biodiverse communities. This evidence is contrasted by the conventional mathematical modeling, which predicts that the presence of many species and/or cooperative interactions are detrimental for ecological stability and persistence. Here we propose a modelling framework for population dynamics, which also include indirect cooperative interactions mediated by other species (e.g. habitat modification). We show that in the large system size limit, any number of species can coexist and stability increases as the number of species grows, if mediated cooperation is present, even in presence of exploitative or harmful interactions (e.g. antibiotics). Our theoretical approach thus shows that appropriate models of mediated cooperation naturally lead to a solution of the long-standing question about complexity-stability paradox and on how highly biodiverse communities can coexist.
Collapse
|
30
|
Edmunds PJ. Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology 2019; 100:e02587. [DOI: 10.1002/ecy.2587] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/18/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Peter J. Edmunds
- Department of Biology California State University Northridge California 91330‐8303 USA
| |
Collapse
|
31
|
Mazel F, Pennell MW, Cadotte MW, Diaz S, Dalla Riva GV, Grenyer R, Leprieur F, Mooers AO, Mouillot D, Tucker CM, Pearse WD. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat Commun 2018; 9:2888. [PMID: 30038259 PMCID: PMC6056549 DOI: 10.1038/s41467-018-05126-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 12/05/2022] Open
Abstract
In the face of the biodiversity crisis, it is argued that we should prioritize species in order to capture high functional diversity (FD). Because species traits often reflect shared evolutionary history, many researchers have assumed that maximizing phylogenetic diversity (PD) should indirectly capture FD, a hypothesis that we name the “phylogenetic gambit”. Here, we empirically test this gambit using data on ecologically relevant traits from >15,000 vertebrate species. Specifically, we estimate a measure of surrogacy of PD for FD. We find that maximizing PD results in an average gain of 18% of FD relative to random choice. However, this average gain obscures the fact that in over one-third of the comparisons, maximum PD sets contain less FD than randomly chosen sets of species. These results suggest that, while maximizing PD protection can help to protect FD, it represents a risky conservation strategy. An ongoing conservation question is if we can maintain functional diversity by optimizing for preservation of phylogenetic diversity. Here, Mazel et al. show that functional diversity increases with phylogenetic diversity in some clades but not others, and thus could be a risky conservation strategy.
Collapse
Affiliation(s)
- Florent Mazel
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. .,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Matthew W Pennell
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Marc W Cadotte
- Biological Sciences, University of Toronto-Scarborough, Scarborough, M1C 1A4, Canada.,Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Sandra Diaz
- Instituto Multidisciplinario de Biología Vegetal, CONICET and FECFyN - Universidad Nacional de Córdoba, Casilla de Correo 495, 5000, Córdoba, Argentina
| | | | - Richard Grenyer
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Fabien Leprieur
- Marine Biodiversity, Exploitation, and Conservation (MARBEC), UMR 9190, Université de Montpellier, Montpellier, 34095, France
| | - Arne O Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - David Mouillot
- Marine Biodiversity, Exploitation, and Conservation (MARBEC), UMR 9190, Université de Montpellier, Montpellier, 34095, France.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Caroline M Tucker
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - William D Pearse
- Ecology Center and Department of Biology, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
32
|
Darroch SAF, Smith EF, Laflamme M, Erwin DH. Ediacaran Extinction and Cambrian Explosion. Trends Ecol Evol 2018; 33:653-663. [PMID: 30007844 DOI: 10.1016/j.tree.2018.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 11/25/2022]
Abstract
The Ediacaran-Cambrian (E-C) transition marks the most important geobiological revolution of the past billion years, including the Earth's first crisis of macroscopic eukaryotic life, and its most spectacular evolutionary diversification. Here, we describe competing models for late Ediacaran extinction, summarize evidence for these models, and outline key questions which will drive research on this interval. We argue that the paleontological data suggest two pulses of extinction - one at the White Sea-Nama transition, which ushers in a recognizably metazoan fauna (the 'Wormworld'), and a second pulse at the E-C boundary itself. We argue that this latest Ediacaran fauna has more in common with the Cambrian than the earlier Ediacaran, and thus may represent the earliest phase of the Cambrian Explosion.
Collapse
Affiliation(s)
| | - Emily F Smith
- Johns Hopkins University, Baltimore, MD 21218-2683, USA
| | - Marc Laflamme
- University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Douglas H Erwin
- Smithsonian Institution, PO Box 37012, MRC 121, Washington, DC 20013-7012, USA
| |
Collapse
|
33
|
Ramos-Robles M, Andresen E, Díaz-Castelazo C. Modularity and robustness of a plant-frugivore interaction network in a disturbed tropical forest. ECOSCIENCE 2018. [DOI: 10.1080/11956860.2018.1446284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Ellen Andresen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | | |
Collapse
|
34
|
Berv JS, Field DJ. Genomic Signature of an Avian Lilliput Effect across the K-Pg Extinction. Syst Biol 2018; 67:1-13. [PMID: 28973546 DOI: 10.1093/sysbio/syx064] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/05/2017] [Indexed: 11/12/2022] Open
Abstract
Survivorship following major mass extinctions may be associated with a decrease in body size-a phenomenon called the Lilliput Effect. Body size is a strong predictor of many life history traits (LHTs), and is known to influence demography and intrinsic biological processes. Pronounced changes in organismal size throughout Earth history are therefore likely to be associated with concomitant genome-wide changes in evolutionary rates. Here, we report pronounced heterogeneity in rates of molecular evolution (varying up to $\sim$20-fold) across a large-scale avian phylogenomic data set and show that nucleotide substitution rates are strongly correlated with body size and metabolic rate. We also identify potential body size reductions associated with the Cretaceous-Paleogene (K-Pg) transition, consistent with a Lilliput Effect in the wake of that mass extinction event. We posit that selection for reduced body size across the K-Pg extinction horizon may have resulted in transient increases in substitution rate along the deepest branches of the extant avian tree of life. This "hidden" rate acceleration may result in both strict and relaxed molecular clocks over-estimating the age of the avian crown group through the relationship between life history and demographic parameters that scale with molecular substitution rate. If reductions in body size (and/or selection for related demographic parameters like short generation times) are a common property of lineages surviving mass extinctions, this phenomenon may help resolve persistent divergence time debates across the tree of life. Furthermore, our results suggest that selection for certain LHTs may be associated with deterministic molecular evolutionary outcomes.
Collapse
Affiliation(s)
- Jacob S Berv
- Department of Ecology & Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca NY, 14853, USA
| | - Daniel J Field
- Department of Geology & Geophysics, Yale University, 210 Whitney Avenue New Haven, CT, 06511, USA.,Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
35
|
Thompson JR, Hu SX, Zhang QY, Petsios E, Cotton LJ, Huang JY, Zhou CY, Wen W, Bottjer DJ. A new stem group echinoid from the Triassic of China leads to a revised macroevolutionary history of echinoids during the end-Permian mass extinction. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171548. [PMID: 29410858 PMCID: PMC5792935 DOI: 10.1098/rsos.171548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/21/2017] [Indexed: 06/08/2023]
Abstract
The Permian-Triassic bottleneck has long been thought to have drastically altered the course of echinoid evolution, with the extinction of the entire echinoid stem group having taken place during the end-Permian mass extinction. The Early Triassic fossil record of echinoids is, however, sparse, and new fossils are paving the way for a revised interpretation of the evolutionary history of echinoids during the Permian-Triassic crisis and Early Mesozoic. A new species of echinoid, Yunnanechinus luopingensis n. sp. recovered from the Middle Triassic (Anisian) Luoping Biota fossil Lagerstätte of South China, displays morphologies that are not characteristic of the echinoid crown group. We have used phylogenetic analyses to further demonstrate that Yunnanechinus is not a member of the echinoid crown group. Thus a clade of stem group echinoids survived into the Middle Triassic, enduring the global crisis that characterized the end-Permian and Early Triassic. Therefore, stem group echinoids did not go extinct during the Palaeozoic, as previously thought, and appear to have coexisted with the echinoid crown group for at least 23 million years. Stem group echinoids thus exhibited the Lazarus effect during the latest Permian and Early Triassic, while crown group echinoids did not.
Collapse
Affiliation(s)
- Jeffrey R. Thompson
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, 3651 Trousdale Pkwy, Los Angeles, CA 90089-0740, USA
| | - Shi-xue Hu
- Chengdu Institute of Geology and Mineral Resources, Chengdu 610081, People's Republic of China
- Chengdu Center of China Geological Survey, Chengdu 610081, People's Republic of China
| | - Qi-Yue Zhang
- Chengdu Institute of Geology and Mineral Resources, Chengdu 610081, People's Republic of China
- Chengdu Center of China Geological Survey, Chengdu 610081, People's Republic of China
| | - Elizabeth Petsios
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, 3651 Trousdale Pkwy, Los Angeles, CA 90089-0740, USA
| | - Laura J. Cotton
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 117800, Gainesville, FL 32611, USA
- Department of Geological Sciences, University of Florida, 241 Williamson Hall, PO Box 112120, Gainesville, FL 32611-2120, USA
| | - Jin-Yuan Huang
- Chengdu Institute of Geology and Mineral Resources, Chengdu 610081, People's Republic of China
- Chengdu Center of China Geological Survey, Chengdu 610081, People's Republic of China
| | - Chang-yong Zhou
- Chengdu Institute of Geology and Mineral Resources, Chengdu 610081, People's Republic of China
- Chengdu Center of China Geological Survey, Chengdu 610081, People's Republic of China
| | - Wen Wen
- Chengdu Institute of Geology and Mineral Resources, Chengdu 610081, People's Republic of China
- Chengdu Center of China Geological Survey, Chengdu 610081, People's Republic of China
| | - David J. Bottjer
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, 3651 Trousdale Pkwy, Los Angeles, CA 90089-0740, USA
| |
Collapse
|
36
|
Spaak JW, Baert JM, Baird DJ, Eisenhauer N, Maltby L, Pomati F, Radchuk V, Rohr JR, Van den Brink PJ, De Laender F. Shifts of community composition and population density substantially affect ecosystem function despite invariant richness. Ecol Lett 2017; 20:1315-1324. [PMID: 28921860 DOI: 10.1111/ele.12828] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/27/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023]
Abstract
There has been considerable focus on the impacts of environmental change on ecosystem function arising from changes in species richness. However, environmental change may affect ecosystem function without affecting richness, most notably by affecting population densities and community composition. Using a theoretical model, we find that, despite invariant richness, (1) small environmental effects may already lead to a collapse of function; (2) competitive strength may be a less important determinant of ecosystem function change than the selectivity of the environmental change driver and (3) effects on ecosystem function increase when effects on composition are larger. We also present a complementary statistical analysis of 13 data sets of phytoplankton and periphyton communities exposed to chemical stressors and show that effects on primary production under invariant richness ranged from -75% to +10%. We conclude that environmental protection goals relying on measures of richness could underestimate ecological impacts of environmental change.
Collapse
Affiliation(s)
- Jurg W Spaak
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jan M Baert
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Antwerp, Belgium.,Terrestrial Ecology Unit, Department of Biology, University of Ghent, Ghent, Belgium
| | - Donald J Baird
- Department of Biology, Environment & Climate Change Canada @ Canadian Rivers Institute, University of New Brunswick, New Brunswick, Canada
| | - Nico Eisenhauer
- Institute of Biology, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | - Francesco Pomati
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Viktoriia Radchuk
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Strasse 17, 10315, Berlin, Germany
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Paul J Van den Brink
- Alterra, Wageningen University and Research centre, Wageningen, The Netherlands.,Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen, The Netherlands
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| |
Collapse
|
37
|
Žliobaitė I, Fortelius M, Stenseth NC. Reconciling taxon senescence with the Red Queen’s hypothesis. Nature 2017; 552:92-95. [DOI: 10.1038/nature24656] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 10/27/2017] [Indexed: 11/09/2022]
|
38
|
Vermeij GJ, Grosberg RK. Rarity and persistence. Ecol Lett 2017; 21:3-8. [PMID: 29110416 DOI: 10.1111/ele.12872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 09/19/2017] [Indexed: 01/09/2023]
Abstract
Rarity is a population characteristic that is usually associated with a high risk of extinction. We argue here, however, that chronically rare species (those with low population densities over many generations across their entire ranges) may have individual-level traits that make populations more resistant to extinction. The major obstacle to persistence at low density is successful fertilisation (union between egg and sperm), and chronically rare species are more likely to survive when (1) fertilisation occurs inside or close to an adult, (2) mate choice involves long-distance signals, (3) adults or their surrogate gamete dispersers are highly mobile, or (4) the two sexes are combined in a single individual. In contrast, external fertilisation and wind- or water-driven passive dispersal of gametes, or sluggish or sedentary adult life habits in the absence of gamete vectors, appear to be incompatible with sustained rarity. We suggest that the documented increase in frequency of these traits among marine genera over geological time could explain observed secular decreases in rates of background extinction. Unanswered questions remain about how common chronic rarity actually is, which traits are consistently associated with chronic rarity, and how chronically rare species are distributed among taxa, and among the world's ecosystems and regions.
Collapse
Affiliation(s)
- Geerat J Vermeij
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Richard K Grosberg
- Department of Evolution and Ecology, Coastal and Marine Sciences Institute, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
39
|
Wood R, Erwin DH. Innovation not recovery: dynamic redox promotes metazoan radiations. Biol Rev Camb Philos Soc 2017; 93:863-873. [PMID: 29034568 DOI: 10.1111/brv.12375] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 11/29/2022]
Abstract
Environmental fluctuations in redox may reinforce rather than hinder evolutionary transitions, such that variability in near-surface oceanic oxygenation can promote morphological evolution and novelty. Modern, low-oxygen regions are heterogeneous and dynamic habitats that support low diversity and are inhabited by opportunistic and non-skeletal metazoans. We note that several major radiation episodes follow protracted or repeating intervals (>1 million years) of persistent and dynamic shallow marine redox (oceanic anoxic events). These are also often associated with short-lived mass-extinction events (<0.5 million years) where skeletal benthic incumbents are removed, and surviving or newly evolved benthos initially inhabit transient oxic habitats. We argue that such intervals create critical opportunities for the generation of evolutionary novelty, followed by innovation and diversification. We develop a general model for redox controls on the distribution and structure of the shallow marine benthos in a dominantly anoxic world, and compile data from the terminal Ediacaran-mid-Cambrian (∼560-509 Ma), late Cambrian-Ordovician (∼500-445 Ma), and Permo-Triassic (∼255-205 Ma) to test these predictions. Assembly of phylogenetic data shows that prolonged and widespread anoxic intervals indeed promoted morphological novelty in soft-bodied benthos, providing the ancestral stock for subsequently skeletonized lineages to appear as innovations once oxic conditions became widespread and stable, in turn promoting major evolutionary diversification. As a result, we propose that so-called 'recovery' intervals after mass extinctions might be better considered as 'innovation' intervals.
Collapse
Affiliation(s)
- Rachel Wood
- School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE, U.K
| | - Douglas H Erwin
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20013-7012, U.S.A
| |
Collapse
|
40
|
Tovo A, Suweis S, Formentin M, Favretti M, Volkov I, Banavar JR, Azaele S, Maritan A. Upscaling species richness and abundances in tropical forests. SCIENCE ADVANCES 2017; 3:e1701438. [PMID: 29057324 PMCID: PMC5647133 DOI: 10.1126/sciadv.1701438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The quantification of tropical tree biodiversity worldwide remains an open and challenging problem. More than two-fifths of the number of worldwide trees can be found either in tropical or in subtropical forests, but only ≈0.000067% of species identities are known. We introduce an analytical framework that provides robust and accurate estimates of species richness and abundances in biodiversity-rich ecosystems, as confirmed by tests performed on both in silico-generated and real forests. Our analysis shows that the approach outperforms other methods. In particular, we find that upscaling methods based on the log-series species distribution systematically overestimate the number of species and abundances of the rare species. We finally apply our new framework on 15 empirical tropical forest plots and quantify the minimum percentage cover that should be sampled to achieve a given average confidence interval in the upscaled estimate of biodiversity. Our theoretical framework confirms that the forests studied are comprised of a large number of rare or hyper-rare species. This is a signature of critical-like behavior of species-rich ecosystems and can provide a buffer against extinction.
Collapse
Affiliation(s)
- Anna Tovo
- Dipartimento di Matematica “Tullio Levi-Civita,” Università di Padova, Via Trieste 63, 35121 Padova, Italy
| | - Samir Suweis
- Dipartimento di Fisica e Astronomia, “Galileo Galilei,” Istituto Nazionale di Fisica Nucleare, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Marco Formentin
- Dipartimento di Matematica “Tullio Levi-Civita,” Università di Padova, Via Trieste 63, 35121 Padova, Italy
| | - Marco Favretti
- Dipartimento di Matematica “Tullio Levi-Civita,” Università di Padova, Via Trieste 63, 35121 Padova, Italy
| | - Igor Volkov
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Jayanth R. Banavar
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
| | - Sandro Azaele
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Amos Maritan
- Dipartimento di Fisica e Astronomia, “Galileo Galilei,” Istituto Nazionale di Fisica Nucleare, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| |
Collapse
|
41
|
Vago JL, Westall F. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. ASTROBIOLOGY 2017; 17:471-510. [PMID: 31067287 PMCID: PMC5685153 DOI: 10.1089/ast.2016.1533] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/05/2017] [Indexed: 05/19/2023]
Abstract
The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures-ExoMars-Landing sites-Mars rover-Search for life. Astrobiology 17, 471-510.
Collapse
|
42
|
Phylogenetic Paleoecology: Tree-Thinking and Ecology in Deep Time. Trends Ecol Evol 2017; 32:452-463. [DOI: 10.1016/j.tree.2017.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 01/26/2023]
|
43
|
Abstract
Observational studies and experimental evidence agree that rising global temperatures have altered plant phenology-the timing of life events, such as flowering, germination, and leaf-out. Other large-scale global environmental changes, such as nitrogen deposition and altered precipitation regimes, have also been linked to changes in flowering times. Despite our increased understanding of how abiotic factors influence plant phenology, we know very little about how biotic interactions can affect flowering times, a significant knowledge gap given ongoing human-caused alteration of biodiversity and plant community structure at the global scale. We experimentally manipulated plant diversity in a California serpentine grassland and found that many plant species flowered earlier in response to reductions in diversity, with peak flowering date advancing an average of 0.6 days per species lost. These changes in phenology were mediated by the effects of plant diversity on soil surface temperature, available soil N, and soil moisture. Peak flowering dates were also more dispersed among species in high-diversity plots than expected based on monocultures. Our findings illustrate that shifts in plant species composition and diversity can alter the timing and distribution of flowering events, and that these changes to phenology are similar in magnitude to effects induced by climate change. Declining diversity could thus contribute to or exacerbate phenological changes attributed to rising global temperatures.
Collapse
|
44
|
Consequences of biodiversity loss diverge from expectation due to post-extinction compensatory responses. Sci Rep 2017; 7:43695. [PMID: 28255165 PMCID: PMC5334654 DOI: 10.1038/srep43695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Consensus has been reached that global biodiversity loss impairs ecosystem functioning and the sustainability of services beneficial to humanity. However, the ecosystem consequences of extinction in natural communities are moderated by compensatory species dynamics, yet these processes are rarely accounted for in impact assessments and seldom considered in conservation programmes. Here, we use marine invertebrate communities to parameterise numerical models of sediment bioturbation – a key mediator of biogeochemical cycling – to determine whether post-extinction compensatory mechanisms alter biodiversity-ecosystem function relations following non-random extinctions. We find that compensatory dynamics lead to trajectories of sediment mixing that diverge from those without compensation, and that the form, magnitude and variance of each probabilistic distribution is highly influenced by the type of compensation and the functional composition of surviving species. Our findings indicate that the generalized biodiversity-function relation curve, as derived from multiple empirical investigations of random species loss, is unlikely to yield representative predictions for ecosystem properties in natural systems because the influence of post-extinction community dynamics are under-represented. Recognition of this problem is fundamental to management and conservation efforts, and will be necessary to ensure future plans and adaptation strategies minimize the adverse impacts of the biodiversity crisis.
Collapse
|
45
|
Hudson LN, Newbold T, Contu S, Hill SLL, Lysenko I, De Palma A, Phillips HRP, Alhusseini TI, Bedford FE, Bennett DJ, Booth H, Burton VJ, Chng CWT, Choimes A, Correia DLP, Day J, Echeverría‐Londoño S, Emerson SR, Gao D, Garon M, Harrison MLK, Ingram DJ, Jung M, Kemp V, Kirkpatrick L, Martin CD, Pan Y, Pask‐Hale GD, Pynegar EL, Robinson AN, Sanchez‐Ortiz K, Senior RA, Simmons BI, White HJ, Zhang H, Aben J, Abrahamczyk S, Adum GB, Aguilar‐Barquero V, Aizen MA, Albertos B, Alcala EL, del Mar Alguacil M, Alignier A, Ancrenaz M, Andersen AN, Arbeláez‐Cortés E, Armbrecht I, Arroyo‐Rodríguez V, Aumann T, Axmacher JC, Azhar B, Azpiroz AB, Baeten L, Bakayoko A, Báldi A, Banks JE, Baral SK, Barlow J, Barratt BIP, Barrico L, Bartolommei P, Barton DM, Basset Y, Batáry P, Bates AJ, Baur B, Bayne EM, Beja P, Benedick S, Berg Å, Bernard H, Berry NJ, Bhatt D, Bicknell JE, Bihn JH, Blake RJ, Bobo KS, Bóçon R, Boekhout T, Böhning‐Gaese K, Bonham KJ, Borges PAV, Borges SH, Boutin C, Bouyer J, Bragagnolo C, Brandt JS, Brearley FQ, Brito I, Bros V, Brunet J, Buczkowski G, Buddle CM, Bugter R, Buscardo E, Buse J, Cabra‐García J, Cáceres NC, Cagle NL, et alHudson LN, Newbold T, Contu S, Hill SLL, Lysenko I, De Palma A, Phillips HRP, Alhusseini TI, Bedford FE, Bennett DJ, Booth H, Burton VJ, Chng CWT, Choimes A, Correia DLP, Day J, Echeverría‐Londoño S, Emerson SR, Gao D, Garon M, Harrison MLK, Ingram DJ, Jung M, Kemp V, Kirkpatrick L, Martin CD, Pan Y, Pask‐Hale GD, Pynegar EL, Robinson AN, Sanchez‐Ortiz K, Senior RA, Simmons BI, White HJ, Zhang H, Aben J, Abrahamczyk S, Adum GB, Aguilar‐Barquero V, Aizen MA, Albertos B, Alcala EL, del Mar Alguacil M, Alignier A, Ancrenaz M, Andersen AN, Arbeláez‐Cortés E, Armbrecht I, Arroyo‐Rodríguez V, Aumann T, Axmacher JC, Azhar B, Azpiroz AB, Baeten L, Bakayoko A, Báldi A, Banks JE, Baral SK, Barlow J, Barratt BIP, Barrico L, Bartolommei P, Barton DM, Basset Y, Batáry P, Bates AJ, Baur B, Bayne EM, Beja P, Benedick S, Berg Å, Bernard H, Berry NJ, Bhatt D, Bicknell JE, Bihn JH, Blake RJ, Bobo KS, Bóçon R, Boekhout T, Böhning‐Gaese K, Bonham KJ, Borges PAV, Borges SH, Boutin C, Bouyer J, Bragagnolo C, Brandt JS, Brearley FQ, Brito I, Bros V, Brunet J, Buczkowski G, Buddle CM, Bugter R, Buscardo E, Buse J, Cabra‐García J, Cáceres NC, Cagle NL, Calviño‐Cancela M, Cameron SA, Cancello EM, Caparrós R, Cardoso P, Carpenter D, Carrijo TF, Carvalho AL, Cassano CR, Castro H, Castro‐Luna AA, Rolando CB, Cerezo A, Chapman KA, Chauvat M, Christensen M, Clarke FM, Cleary DF, Colombo G, Connop SP, Craig MD, Cruz‐López L, Cunningham SA, D'Aniello B, D'Cruze N, da Silva PG, Dallimer M, Danquah E, Darvill B, Dauber J, Davis ALV, Dawson J, de Sassi C, de Thoisy B, Deheuvels O, Dejean A, Devineau J, Diekötter T, Dolia JV, Domínguez E, Dominguez‐Haydar Y, Dorn S, Draper I, Dreber N, Dumont B, Dures SG, Dynesius M, Edenius L, Eggleton P, Eigenbrod F, Elek Z, Entling MH, Esler KJ, de Lima RF, Faruk A, Farwig N, Fayle TM, Felicioli A, Felton AM, Fensham RJ, Fernandez IC, Ferreira CC, Ficetola GF, Fiera C, Filgueiras BKC, Fırıncıoğlu HK, Flaspohler D, Floren A, Fonte SJ, Fournier A, Fowler RE, Franzén M, Fraser LH, Fredriksson GM, Freire GB, Frizzo TLM, Fukuda D, Furlani D, Gaigher R, Ganzhorn JU, García KP, Garcia‐R JC, Garden JG, Garilleti R, Ge B, Gendreau‐Berthiaume B, Gerard PJ, Gheler‐Costa C, Gilbert B, Giordani P, Giordano S, Golodets C, Gomes LGL, Gould RK, Goulson D, Gove AD, Granjon L, Grass I, Gray CL, Grogan J, Gu W, Guardiola M, Gunawardene NR, Gutierrez AG, Gutiérrez‐Lamus DL, Haarmeyer DH, Hanley ME, Hanson T, Hashim NR, Hassan SN, Hatfield RG, Hawes JE, Hayward MW, Hébert C, Helden AJ, Henden J, Henschel P, Hernández L, Herrera JP, Herrmann F, Herzog F, Higuera‐Diaz D, Hilje B, Höfer H, Hoffmann A, Horgan FG, Hornung E, Horváth R, Hylander K, Isaacs‐Cubides P, Ishida H, Ishitani M, Jacobs CT, Jaramillo VJ, Jauker B, Hernández FJ, Johnson MF, Jolli V, Jonsell M, Juliani SN, Jung TS, Kapoor V, Kappes H, Kati V, Katovai E, Kellner K, Kessler M, Kirby KR, Kittle AM, Knight ME, Knop E, Kohler F, Koivula M, Kolb A, Kone M, Kőrösi Á, Krauss J, Kumar A, Kumar R, Kurz DJ, Kutt AS, Lachat T, Lantschner V, Lara F, Lasky JR, Latta SC, Laurance WF, Lavelle P, Le Féon V, LeBuhn G, Légaré J, Lehouck V, Lencinas MV, Lentini PE, Letcher SG, Li Q, Litchwark SA, Littlewood NA, Liu Y, Lo‐Man‐Hung N, López‐Quintero CA, Louhaichi M, Lövei GL, Lucas‐Borja ME, Luja VH, Luskin MS, MacSwiney G MC, Maeto K, Magura T, Mallari NA, Malone LA, Malonza PK, Malumbres‐Olarte J, Mandujano S, Måren IE, Marin‐Spiotta E, Marsh CJ, Marshall EJP, Martínez E, Martínez Pastur G, Moreno Mateos D, Mayfield MM, Mazimpaka V, McCarthy JL, McCarthy KP, McFrederick QS, McNamara S, Medina NG, Medina R, Mena JL, Mico E, Mikusinski G, Milder JC, Miller JR, Miranda‐Esquivel DR, Moir ML, Morales CL, Muchane MN, Muchane M, Mudri‐Stojnic S, Munira AN, Muoñz‐Alonso A, Munyekenye BF, Naidoo R, Naithani A, Nakagawa M, Nakamura A, Nakashima Y, Naoe S, Nates‐Parra G, Navarrete Gutierrez DA, Navarro‐Iriarte L, Ndang'ang'a PK, Neuschulz EL, Ngai JT, Nicolas V, Nilsson SG, Noreika N, Norfolk O, Noriega JA, Norton DA, Nöske NM, Nowakowski AJ, Numa C, O'Dea N, O'Farrell PJ, Oduro W, Oertli S, Ofori‐Boateng C, Oke CO, Oostra V, Osgathorpe LM, Otavo SE, Page NV, Paritsis J, Parra‐H A, Parry L, Pe'er G, Pearman PB, Pelegrin N, Pélissier R, Peres CA, Peri PL, Persson AS, Petanidou T, Peters MK, Pethiyagoda RS, Phalan B, Philips TK, Pillsbury FC, Pincheira‐Ulbrich J, Pineda E, Pino J, Pizarro‐Araya J, Plumptre AJ, Poggio SL, Politi N, Pons P, Poveda K, Power EF, Presley SJ, Proença V, Quaranta M, Quintero C, Rader R, Ramesh BR, Ramirez‐Pinilla MP, Ranganathan J, Rasmussen C, Redpath‐Downing NA, Reid JL, Reis YT, Rey Benayas JM, Rey‐Velasco JC, Reynolds C, Ribeiro DB, Richards MH, Richardson BA, Richardson MJ, Ríos RM, Robinson R, Robles CA, Römbke J, Romero‐Duque LP, Rös M, Rosselli L, Rossiter SJ, Roth DS, Roulston TH, Rousseau L, Rubio AV, Ruel J, Sadler JP, Sáfián S, Saldaña‐Vázquez RA, Sam K, Samnegård U, Santana J, Santos X, Savage J, Schellhorn NA, Schilthuizen M, Schmiedel U, Schmitt CB, Schon NL, Schüepp C, Schumann K, Schweiger O, Scott DM, Scott KA, Sedlock JL, Seefeldt SS, Shahabuddin G, Shannon G, Sheil D, Sheldon FH, Shochat E, Siebert SJ, Silva FAB, Simonetti JA, Slade EM, Smith J, Smith‐Pardo AH, Sodhi NS, Somarriba EJ, Sosa RA, Soto Quiroga G, St‐Laurent M, Starzomski BM, Stefanescu C, Steffan‐Dewenter I, Stouffer PC, Stout JC, Strauch AM, Struebig MJ, Su Z, Suarez‐Rubio M, Sugiura S, Summerville KS, Sung Y, Sutrisno H, Svenning J, Teder T, Threlfall CG, Tiitsaar A, Todd JH, Tonietto RK, Torre I, Tóthmérész B, Tscharntke T, Turner EC, Tylianakis JM, Uehara‐Prado M, Urbina‐Cardona N, Vallan D, Vanbergen AJ, Vasconcelos HL, Vassilev K, Verboven HAF, Verdasca MJ, Verdú JR, Vergara CH, Vergara PM, Verhulst J, Virgilio M, Vu LV, Waite EM, Walker TR, Wang H, Wang Y, Watling JI, Weller B, Wells K, Westphal C, Wiafe ED, Williams CD, Willig MR, Woinarski JCZ, Wolf JHD, Wolters V, Woodcock BA, Wu J, Wunderle JM, Yamaura Y, Yoshikura S, Yu DW, Zaitsev AS, Zeidler J, Zou F, Collen B, Ewers RM, Mace GM, Purves DW, Scharlemann JPW, Purvis A. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol Evol 2017; 7:145-188. [PMID: 28070282 PMCID: PMC5215197 DOI: 10.1002/ece3.2579] [Show More Authors] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/10/2016] [Accepted: 09/22/2016] [Indexed: 11/29/2022] Open
Abstract
The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
Collapse
Affiliation(s)
| | - Tim Newbold
- United Nations Environment Programme World Conservation Monitoring CentreCambridgeUK
- Department of Genetics, Evolution and EnvironmentCentre for Biodiversity and EnvironmentResearchUniversity College LondonLondonUK
| | - Sara Contu
- Department of Life SciencesNatural History MuseumLondonUK
| | - Samantha L. L. Hill
- Department of Life SciencesNatural History MuseumLondonUK
- United Nations Environment Programme World Conservation Monitoring CentreCambridgeUK
| | - Igor Lysenko
- Department of Life SciencesImperial College LondonAscotUK
| | - Adriana De Palma
- Department of Life SciencesNatural History MuseumLondonUK
- Department of Life SciencesImperial College LondonAscotUK
| | - Helen R. P. Phillips
- Department of Life SciencesNatural History MuseumLondonUK
- Department of Life SciencesImperial College LondonAscotUK
| | | | | | | | - Hollie Booth
- United Nations Environment Programme World Conservation Monitoring CentreCambridgeUK
- Frankfurt Zoological SocietyAfrica Regional OfficeArushaTanzania
| | - Victoria J. Burton
- Department of Life SciencesNatural History MuseumLondonUK
- Science and Solutions for a Changing Planet DTP and the Department of Life SciencesImperial College LondonSouth KensingtonLondonUK
| | | | - Argyrios Choimes
- Department of Life SciencesNatural History MuseumLondonUK
- Department of Life SciencesImperial College LondonAscotUK
| | | | - Julie Day
- Department of Life SciencesImperial College LondonAscotUK
| | - Susy Echeverría‐Londoño
- Department of Life SciencesNatural History MuseumLondonUK
- Department of Life SciencesImperial College LondonAscotUK
| | | | - Di Gao
- Department of Life SciencesNatural History MuseumLondonUK
| | - Morgan Garon
- Department of Life SciencesImperial College LondonAscotUK
| | | | | | - Martin Jung
- School of Life SciencesUniversity of SussexBrightonUK
| | - Victoria Kemp
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Lucinda Kirkpatrick
- School of Biological and Ecological SciencesUniversity of StirlingStirlingUK
| | - Callum D. Martin
- School of Biological SciencesRoyal Holloway University of LondonEgham, SurreyUK
| | - Yuan Pan
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldUK
| | | | - Edwin L. Pynegar
- School of EnvironmentNatural Resources and GeographyBangor UniversityBangorGwyneddUK
| | | | | | - Rebecca A. Senior
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldUK
| | | | - Hannah J. White
- School of Biological SciencesQueen's University BelfastBelfastUK
| | | | - Job Aben
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
- Evolutionary Ecology GroupUniversity of AntwerpAntwerpBelgium
| | | | - Gilbert B. Adum
- Wildlife and Range Management DepartmentFaculty of Renewable Natural Resources (FRNR)College of Agriculture and Natural Resources (CANR)Kwame Nkrumah University of Science and Technology (KNUST)KumasiGhana
- SAVE THE FROGS! GhanaAdum‐KumasiGhana
| | | | - Marcelo A. Aizen
- Laboratorio Ecotono‐CRUBUniversidad Nacional del Comahue and INIBIOMARío NegroArgentina
| | - Belén Albertos
- Departamento de BotánicaFacultad de FarmaciaUniversidad de ValenciaBurjassot, ValenciaSpain
| | - E. L. Alcala
- Marine LaboratorySilliman University‐Angelo King Center for Research and Environmental ManagementSilliman UniversityDumaguete CityPhilippines
| | - Maria del Mar Alguacil
- Department of Soil and Water ConservationCSIC‐Centro de Edafología y Biología Aplicada del SeguraMurciaSpain
| | - Audrey Alignier
- INRAUR 0980 SAD‐PaysageRennes CedexFrance
- INRAUMR 1201 DYNAFORCastanet Tolosan CedexFrance
| | - Marc Ancrenaz
- HUTAN – Kinabatangan Orang‐utan Conservation ProgrammeKota KinabaluMalaysia
- Borneo FuturesKota KinabaluMalaysia
| | | | - Enrique Arbeláez‐Cortés
- Museo de ZoologíaFacultad de CienciasUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
- Colección de TejidosInstituto de Investigación de Recursos Biológicos Alexander von HumboldtValle del CaucaColombia
| | | | - Víctor Arroyo‐Rodríguez
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
| | - Tom Aumann
- College of Science, Engineering & HealthRMIT UniversityMelbourneVic.Australia
| | - Jan C. Axmacher
- UCL Department of GeographyUniversity College LondonLondonUK
| | - Badrul Azhar
- Biodiversity UnitInstitute of BioscienceUniversiti Putra MalaysiaSerdangMalaysia
- Faculty of ForestryUniversiti Putra MalaysiaSerdangMalaysia
| | - Adrián B. Azpiroz
- Departamento de Biodiversidad y GenéticaInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
| | - Lander Baeten
- Forest & Nature LabDepartment of Forest and Water ManagementGhent UniversityGontrodeBelgium
- Terrestrial Ecology UnitDepartment of BiologyGhent UniversityGhentBelgium
| | - Adama Bakayoko
- UFR Science de la NatureUniversité Naangui AbrogouaAbidjanIvory Coast
- Centre Suisse de Recherches Scientifiques en Côte d'IvoireAbidjanIvory Coast
| | - András Báldi
- MTA Centre for Ecological ResearchVácrátótHungary
| | | | | | - Jos Barlow
- Lancaster Environment CentreLancaster UniversityLancasterUK
- MCT/Museu Paraense Emílio GoeldiBelémBrazil
| | | | - Lurdes Barrico
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
| | | | - Diane M. Barton
- AgResearch LimitedInvermay Agricultural CentrePuddle Alley, MosgielNew Zealand
| | - Yves Basset
- Smithsonian Tropical Research InstituteBalboaAnconPanama CityRepublic of Panama
| | - Péter Batáry
- AgroecologyDepartment of Crop SciencesGeorg‐August UniversityGöttingenGermany
| | - Adam J. Bates
- BiosciencesSchool of Science & TechnologyNottingham Trent UniversityClifton, NottinghamUK
- University of BirminghamEdgbaston, BirminghamUK
| | - Bruno Baur
- Section of Conservation BiologyDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Erin M. Bayne
- Department of Biological SciencesUniversity of AlbertaEdmontonABCanada
| | - Pedro Beja
- CIBIO/InBioCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| | - Suzan Benedick
- Faculty of Sustainable AgricultureUniversiti Malaysia SabahSandakanMalaysia
| | - Åke Berg
- The Swedish University of Agricultural SciencesThe Swedish Biodiversity CentreUppsalaSweden
| | - Henry Bernard
- Institute for Tropical Biology and ConservationUniversiti Malaysia Sabah, Jalan UMSKota KinabaluMalaysia
| | | | - Dinesh Bhatt
- Department of Zoology & Environmental ScienceGurukula Kangri UniversityHaridwarIndia
| | - Jake E. Bicknell
- Durrell Institute of Conservation and Ecology (DICE)School of Anthropology and ConservationUniversity of KentCanterburyUK
- Iwokrama International Centre for Rainforest Conservation and DevelopmentGeorgetownGuyana
| | - Jochen H. Bihn
- Department of Ecology‐Animal EcologyFaculty of BiologyPhilipps‐Universität MarburgMarburgGermany
| | - Robin J. Blake
- Compliance Services InternationalPentlands Science ParkPenicuik, EdinburghUK
- Centre for Agri‐Environmental ResearchSchool of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | - Kadiri S. Bobo
- School for the Training of Wildlife Specialists GarouaGarouaCameroon
- Department of ForestryFaculty of Agronomy and Agricultural SciencesUniversity of DschangDschangCameroon
| | - Roberto Bóçon
- Mater Natura – Instituto de Estudos AmbientaisCuritibaBrazil
| | - Teun Boekhout
- CBS Fungal Biodiversity Centre (CBS‐KNAW)UtrechtThe Netherlands
| | - Katrin Böhning‐Gaese
- Senckenberg Biodiversity and Climate Research Centre (BiK‐F)Frankfurt am MainGermany
- Institute for Ecology, Evolution & DiversityGoethe University FrankfurtBiologicum, Frankfurt am MainGermany
| | - Kevin J. Bonham
- School of Land and FoodUniversity of TasmaniaSandy BayTas.Australia
| | - Paulo A. V. Borges
- Departamento de Ciências AgráriascE3c – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos AçoresAngra do Heroísmo, AçoresPortugal
| | | | - Céline Boutin
- Environment and Climate Change Canada, Science & Technology BranchCarleton UniversityOttawaONCanada
| | - Jérémy Bouyer
- Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques et EmergentesCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)MontpellierFrance
- Unité Mixte de Recherche 1309 Contrôle des Maladies Animales Exotiques et EmergentesInstitut national de la recherche agronomique (INRA)MontpellierFrance
| | - Cibele Bragagnolo
- Departamento de ZoologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Jodi S. Brandt
- Human Environment Systems CenterBoise State UniversityBoiseIDUSA
| | - Francis Q. Brearley
- School of Science and the EnvironmentManchester Metropolitan UniversityManchesterUK
| | | | - Vicenç Bros
- Natural Parks Technical OfficeDiputació de BarcelonaBarcelonaSpain
- Natural History Museum of BarcelonaBarcelona, CataloniaSpain
| | - Jörg Brunet
- Swedish University of Agricultural SciencesSouthern Swedish Forest Research CentreAlnarpSweden
| | | | | | - Rob Bugter
- Alterra, part of Wageningen University and ResearchRB WageningenThe Netherlands
| | - Erika Buscardo
- Departamento de Ciências da VidaCentro de Ecologia FuncionalUniversidade de CoimbraCoimbraPortugal
- Departamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
- Department of BotanySchool of Natural SciencesTrinity College DublinDublin 2Ireland
| | - Jörn Buse
- Institute for Environmental SciencesUniversity Koblenz‐LandauLandauGermany
| | - Jimmy Cabra‐García
- Departamento de ZoologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
- Departamento de BiologíaGrupo de investigación en BiologíaEcología y Manejo de HormigasSección de EntomologíaUniversidad del ValleCaliColombia
| | - Nilton C. Cáceres
- Department of BiologyFederal University of Santa Maria, CCNESanta MariaBrazil
| | | | - María Calviño‐Cancela
- Department of Ecology and Animal BiologyFaculty of SciencesUniversity of VigoVigoSpain
| | - Sydney A. Cameron
- Department of EntomologyUniversity of IllinoisUrbanaILUSA
- Program in Ecology, Evolution and Conservation BiologyUniversity of IllinoisUrbanaILUSA
| | | | - Rut Caparrós
- Departamento de BotánicaFacultad de FarmaciaUniversidad de ValenciaBurjassot, ValenciaSpain
- Departamento de Biología (Botánica)Facultad de CienciasUniversidad Autonoma de MadridMadridSpain
| | - Pedro Cardoso
- Departamento de Ciências AgráriascE3c – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos AçoresAngra do Heroísmo, AçoresPortugal
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Dan Carpenter
- Parks and CountrysideBracknell Forest CouncilBracknellUK
- Soil Biodiversity GroupLife Sciences DepartmentNatural History MuseumLondonUK
| | | | | | - Camila R. Cassano
- Laboratório de Ecologia Aplicada à ConservaçãoUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Helena Castro
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
| | | | - Cerda B. Rolando
- Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)Tropical Agricultural Research and Higher Education CenterTurrialbaCosta Rica
| | - Alexis Cerezo
- Department of Quantitative Methods and Information SystemsFaculty of AgronomyUniversity of Buenos AiresBuenos AiresArgentina
| | | | - Matthieu Chauvat
- Normandie UnivEA 1293 ECODIV‐RouenSFR SCALEUFR Sciences et TechniquesMont Saint Aignan CedexFrance
| | | | - Francis M. Clarke
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | | | - Giorgio Colombo
- Dipartimento di BiologiaUniversità degli Studi di MilanoMilanoItaly
| | - Stuart P. Connop
- Sustainability Research InstituteUniversity of East LondonLondonUK
| | - Michael D. Craig
- Centre of Excellence for Environmental DecisionsSchool of Plant BiologyUniversity of Western AustraliaNedlandsWAAustralia
- School of Veterinary and Life SciencesMurdoch UniversityMurdochWAAustralia
| | - Leopoldo Cruz‐López
- Grupo Ecología de Artrópodos y Manejo de PlagasEl Colegio de la Frontera SurTapachulaMexico
| | | | - Biagio D'Aniello
- Dipartimento di BiologiaUniversità di Napoli Federico IINapoliItaly
| | - Neil D'Cruze
- Wildlife Conservation Research UnitDepartment of ZoologyUniversity of OxfordRecanati‐Kaplan CentreTubneyUK
| | - Pedro Giovâni da Silva
- Programa de Pós‐Graduação em EcologiaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
| | - Martin Dallimer
- Sustainability Research InstituteSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Emmanuel Danquah
- Wildlife and Range Management DepartmentFaculty of Renewable Natural Resources (FRNR)College of Agriculture and Natural Resources (CANR)Kwame Nkrumah University of Science and Technology (KNUST)KumasiGhana
| | | | - Jens Dauber
- Thünen Institute of BiodiversityBraunschweigGermany
| | - Adrian L. V. Davis
- Scarab Research GroupDepartment of Zoology & EntomologyUniversity of PretoriaHatfieldSouth Africa
| | - Jeff Dawson
- Durrell Wildlife Conservation TrustTrinityJersey
| | | | | | - Olivier Deheuvels
- CIRADUMR SystemMontpellierFrance
- ICRAFRegional Office for Latin AmericaLimaPeru
| | - Alain Dejean
- UPSINPLaboratoire Écologie Fonctionnelle et EnvironnementUniversité de ToulouseToulouseFrance
- CNRS – UMR 5245EcolabToulouseFrance
- CNRS – UMR 8172Écologie des Forêts de GuyaneKourou cedexFrance
| | | | - Tim Diekötter
- Department of Landscape EcologyInstitute of Natural Resource ConservationKiel UniversityKielGermany
- Department of Biology, Nature ConservationUniversity MarburgMarburgGermany
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Jignasu V. Dolia
- Post Graduate Program in Wildlife Biology and ConservationNational Centre for Biological SciencesBangaloreIndia
- Wildlife Conservation Society (India Program)Centre for Wildlife StudiesBangaloreIndia
| | - Erwin Domínguez
- Instituto de Investigaciones Agropecuarias – INIA – CRI – KampenaikePunta ArenasChile
| | | | - Silvia Dorn
- Applied EntomologyETH ZürichZürichSwitzerland
| | - Isabel Draper
- Departamento de Biología (Botánica)Facultad de CienciasUniversidad Autonoma de MadridMadridSpain
| | - Niels Dreber
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
- Department of Ecosystem ModellingBüsgen‐InstituteGeorg‐August‐University of GöttingenGöttingenGermany
| | | | - Simon G. Dures
- Department of Life SciencesImperial College LondonAscotUK
- Institute of ZoologyZoological Society of London, Regents ParkLondonUK
| | - Mats Dynesius
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | - Lars Edenius
- Department of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural SciencesUmeaSweden
| | - Paul Eggleton
- Department of Life SciencesNatural History MuseumLondonUK
| | - Felix Eigenbrod
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Zoltán Elek
- MTA‐ELTE‐MTM Ecology Research GroupHungarian Academy of Sciencesc/o Biological InstituteEötvös Lóránd UniversityBudapestHungary
- Hungarian Natural History MuseumBudapestHungary
| | - Martin H. Entling
- Institute for Environmental SciencesUniversity of Koblenz‐LandauLandauGermany
| | - Karen J. Esler
- Department of Conservation Ecology and EntomologyStellenbosch UniversityMatielandSouth Africa
- Centre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
| | - Ricardo F. de Lima
- CE3C – Centre for Ecology, Evolution and Environmental ChangesFaculdade de CiênciasUniversidade de LisboaLisboaPortugal
- Associação Monte PicoMonte CaféMé ZóchiSão Tomé and Príncipe
| | - Aisyah Faruk
- Kew GardensWakehurstArdingly, Haywards Heath, SussexUK
- Wild AsiaUpper PenthouseWisma RKTKuala LumpurMalaysia
| | - Nina Farwig
- Conservation EcologyFaculty of BiologyPhilipps‐Universität MarburgMarburgGermany
| | - Tom M. Fayle
- Department of Life SciencesImperial College LondonAscotUK
- Institute of EntomologyBiology Centre of Academy of Sciences Czech RepublicČeské BudějoviceCzech Republic
- Institute for Tropical Biology and ConservationUniversiti Malaysia SabahKota KinabaluMalaysia
| | | | | | - Roderick J. Fensham
- Department of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
- Queensland Herbarium (DSITIA)ToowongQldAustralia
| | | | | | | | - Cristina Fiera
- Institute of Biology Bucharest of Romanian AcademyBucharestRomania
| | | | | | - David Flaspohler
- School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMIUSA
| | - Andreas Floren
- Department of Animal Ecology and Tropical BiologyBiocenterUniversity of WürzburgWürzburgGermany
| | - Steven J. Fonte
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
- Department of Soil and Crop SciencesColorado State UniversityFort CollinsCOUSA
| | | | | | - Markus Franzén
- Department of Community EcologyUFZHelmholtz Centre for Environmental ResearchHalleGermany
| | - Lauchlan H. Fraser
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBCCanada
| | - Gabriella M. Fredriksson
- Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamGE AmsterdamThe Netherlands
- PanEco/Yayasan Ekosistem LestariSumatran Orangutan Conservation ProgrammeMedanIndonesia
| | - Geraldo B. Freire
- Programa de Pós Graduação em EcologiaUniversidade de BrasíliaBrasília, Distrito FederalBrazil
| | - Tiago L. M. Frizzo
- Programa de Pós Graduação em EcologiaUniversidade de BrasíliaBrasília, Distrito FederalBrazil
| | | | - Dario Furlani
- Dipartimento di BiologiaUniversità degli Studi di MilanoMilanoItaly
| | - René Gaigher
- Department of Conservation Ecology and EntomologyStellenbosch UniversityMatielandSouth Africa
| | | | - Karla P. García
- Departamento de ZoologíaFacultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Departamento de Planificación TerritorialFacultad de Ciencias AmbientalesCentro EULA‐ChileUniversidad de ConcepciónConcepciónChile
| | | | - Jenni G. Garden
- Seed Consulting ServicesAdelaideSAAustralia
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
- Barbara Hardy InstituteUniversity of South AustraliaMawson LakesSAAustralia
| | - Ricardo Garilleti
- Departamento de BotánicaFacultad de FarmaciaUniversidad de ValenciaBurjassot, ValenciaSpain
| | - Bao‐Ming Ge
- Jiangsu Key Laboratory for Bioresources of Saline SoilsYancheng Teachers UniversityYanchengChina
| | - Benoit Gendreau‐Berthiaume
- Département des sciences biologiquesCentre d’études de la forêt Université du Québec à Montréal Succursale Centre‐villeMontréalQCCanada
| | | | - Carla Gheler‐Costa
- Ecologia Aplicada/Applied EcologyUniversidade Sagrado Coração (USC)BauruBrazil
| | - Benjamin Gilbert
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | | | | | | | | | - Rachelle K. Gould
- Rubenstein School of Natural ResourcesUniversity of VermontBurlingtonVTUSA
| | - Dave Goulson
- School of Life SciencesUniversity of SussexBrightonUK
| | - Aaron D. Gove
- Astron Environmental ServicesEast PerthWAAustralia
- Department of Environment and AgricultureCurtin UniversityPerthWAAustralia
| | - Laurent Granjon
- Centre de Biologie pour la Gestion des Populations (CBGP)INRAIRDCIRADSUPAGROMontferrier‐sur‐Lez cedexFrance
| | - Ingo Grass
- AgroecologyDepartment of Crop SciencesGeorg‐August UniversityGöttingenGermany
- Conservation EcologyFaculty of BiologyPhilipps‐Universität MarburgMarburgGermany
| | - Claudia L. Gray
- School of Life SciencesUniversity of SussexBrightonUK
- Department of ZoologyUniversity of OxfordOxfordUK
| | - James Grogan
- Department of Biological SciencesMount Holyoke CollegeSouth HadleyMAUSA
| | - Weibin Gu
- China International Engineering Consulting CorporationHaidian DistrictBeijingChina
| | | | | | - Alvaro G. Gutierrez
- Departamento de Ciencias Ambientales y Recursos Naturales RenovablesFacultad de Ciencias AgronómicasUniversidad de ChileLa PintanaChile
| | | | - Daniela H. Haarmeyer
- Biodiversity, Evolution and Ecology of Plants (BEE)Biocentre Klein Flottbek and Botanical GardenUniversity of HamburgHamburgGermany
| | - Mick E. Hanley
- School of Biological ScienceUniversity of PlymouthPlymouthUK
| | | | - Nor R. Hashim
- International University of Malaya‐Wales, Jalan Tun IsmailKuala LumpurMalaysia
| | - Shombe N. Hassan
- Department of Wildlife ManagementSokoine University of AgricultureMorogoroTanzania
| | | | - Joseph E. Hawes
- Animal & Environment Research GroupDepartment of Life SciencesAnglia Ruskin UniversityCambridgeUK
| | - Matt W. Hayward
- Walter Sisulu UniversityMthatha, TranskeiSouth Africa
- Centre for African Conservation EcologyNelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
- College of Natural SciencesBangor UniversityBangor, GwyneddUK
| | - Christian Hébert
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CentreQuébecQCCanada
| | - Alvin J. Helden
- Animal & Environment Research GroupDepartment of Life SciencesAnglia Ruskin UniversityCambridgeUK
| | - John‐André Henden
- Department of Arctic and Marine BiologyUniversity of TromsøTromsøNorway
| | | | - Lionel Hernández
- Universidad Nacional Experimental de GuayanaPuerto OrdazVenezuela
| | - James P. Herrera
- Richard Gilder Graduate SchoolAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Farina Herrmann
- AgroecologyDepartment of Crop SciencesGeorg‐August UniversityGöttingenGermany
| | | | | | - Branko Hilje
- Earth and Atmospheric Sciences DepartmentUniversity of AlbertaEdmontonABCanada
| | - Hubert Höfer
- State Museum of Natural History Karlsruhe (SMNK)BiosciencesKarlsruheGermany
| | - Anke Hoffmann
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Finbarr G. Horgan
- University of Technology SydneySydneyNSWAustralia
- University of New BrunswickFrederictonNBCanada
| | - Elisabeth Hornung
- Department of EcologyFaculty of Veterinary ScienceSZIE UniversityBudapestHungary
| | - Roland Horváth
- Department of EcologyUniversity of DebrecenDebrecenHungary
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Paola Isaacs‐Cubides
- Instituto de Investigaciones y Recursos Biológicos Alexander von HumboldtBogotá, Colombia
| | - Hiroaki Ishida
- Institute of Natural and Environmental SciencesUniversity of HyogoHyogoJapan
| | | | - Carmen T. Jacobs
- Scarab Research GroupDepartment of Zoology & EntomologyUniversity of PretoriaHatfieldSouth Africa
| | - Víctor J. Jaramillo
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMéxico C.P.Mexico
| | - Birgit Jauker
- Department of Animal EcologyJustus‐Liebig‐UniversityGiessenGermany
| | | | | | - Virat Jolli
- Biodiversity and Environmental SustainabilityRohiniIndia
- Department of Environmental StudiesShivaji College (University of Delhi)New DelhiIndia
| | - Mats Jonsell
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - S. Nur Juliani
- School of Biological SciencesUniversiti Sains MalaysiaMindenMalaysia
| | | | | | - Heike Kappes
- Cologne BiocenterZoological InstituteUniversity of CologneKölnGermany
| | - Vassiliki Kati
- Department of Environmental & Natural Resources ManagementUniversity of PatrasAgrinioGreece
| | - Eric Katovai
- Centre for Tropical Environmental and Sustainability Science (TESS) & College of Marine and Environmental SciencesJames Cook UniversityCairnsQldAustralia
- School of Science and TechnologyPacific Adventist UniversityPort MoresbyPapua New Guinea
| | - Klaus Kellner
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Michael Kessler
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZürichSwitzerland
| | - Kathryn R. Kirby
- Department of Ecology and Evolutionary Biology and Department of Geography and PlanningUniversity of TorontoTorontoONCanada
| | | | | | - Eva Knop
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Florian Kohler
- Section EnvironnementDéveloppement durable et TerritoireDivision Environnement et TerritoireBundesamt für StatistikNeuchâtelSwitzerland
| | - Matti Koivula
- School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Annette Kolb
- Institute of Ecology, FB2University of BremenBremenGermany
| | - Mouhamadou Kone
- Université Peleforo Gon CoulibalyKorhogoIvory Coast
- Station d'Ecologie de LamtoN'DouciIvory Coast
| | - Ádám Kőrösi
- MTA‐ELTE‐MTM Ecology Research GroupHungarian Academy of Sciencesc/o Biological InstituteEötvös Lóránd UniversityBudapestHungary
- Theoretical Evolutionary Ecology GroupDepartment of Animal Ecology and Tropical BiologyBiocenterUniversity of WürzburgWürzburgGermany
| | - Jochen Krauss
- Department of Animal Ecology and Tropical BiologyBiocenterUniversity of WürzburgWürzburgGermany
| | - Ajith Kumar
- Wildlife Conservation Society‐IndiaNational Centre for Biological SciencesBangaloreIndia
| | | | - David J. Kurz
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - Alex S. Kutt
- School of BioSciencesUniversity of MelbourneMelbourneVic.Australia
| | - Thibault Lachat
- School of Agricultural, Forest and Food Sciences HAFLBern University of Applied SciencesZollikofenSwitzerland
- Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
| | - Victoria Lantschner
- Instituto Nacional de Tecnología AgropecuariaEEA BarilocheBarilocheArgentina
| | - Francisco Lara
- Departamento de Biología (Botánica)Facultad de CienciasUniversidad Autonoma de MadridMadridSpain
| | - Jesse R. Lasky
- Department of BiologyPennsylvania State UniversityUniversity ParkPAUSA
| | | | - William F. Laurance
- Centre for Tropical Environmental and Sustainability SciencesCollege of Marine and Environmental ScienceJames Cook UniversityCairnsQldAustralia
| | - Patrick Lavelle
- Université Pierre‐et‐Marie‐CurieParisFrance
- Institute of Ecology and Environmental SciencesParisFrance
| | | | - Gretchen LeBuhn
- Department of BiologySan Francisco State UniversitySan FranciscoCAUSA
| | - Jean‐Philippe Légaré
- Laboratoire de diagnostic en phytoprotectionMinistère de l'agriculture, des pêcheries et de l'alimentation du QuébecVille de QuébecQCCanada
| | - Valérie Lehouck
- Research Unit Terrestrial EcologyGhent UniversityGhentBelgium
| | - María V. Lencinas
- Laboratorio de Recursos AgroforestalesCentro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | - Pia E. Lentini
- School of BiosciencesUniversity of MelbourneParkvilleVic.Australia
| | | | - Qi Li
- Institute of Applied EcologyChinese Academy of SciencesShenyangChina
| | - Simon A. Litchwark
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | | | - Yunhui Liu
- College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | | | | | - Mounir Louhaichi
- International Center for Agricultural Research in the Dry Areas (ICARDA)Amman OfficeAmmanJordan
- Animal and Rangeland Sciences DepartmentOregon State UniversityCorvallisORUSA
| | - Gabor L. Lövei
- Department of AgroecologyFlakkebjerg Research CentreAarhus UniversitySlagelseDenmark
| | - Manuel Esteban Lucas‐Borja
- Department of Agroforestry Technology and Science and GeneticsSchool of Advanced Agricultural EngineeringCastilla La Mancha UniversityAlbaceteSpain
| | - Victor H. Luja
- Unidad Académica de TurismoCoordinación de Investigación y PosgradoUniversidad Autónoma de NayaritTepicMexico
| | - Matthew S. Luskin
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | | | - Kaoru Maeto
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | - Tibor Magura
- Department of EcologyUniversity of DebrecenDebrecenHungary
| | - Neil Aldrin Mallari
- Center for Conservation InnovationSan Jose Tagaytay CityPhilippines
- Biology DepartmentDe La Salle UniversityManilaPhilippines
| | - Louise A. Malone
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | | | - Jagoba Malumbres‐Olarte
- Center for Macroecology, Evolution and ClimateNatural History Museum of DenmarkUniversity of CopenhagenCopenhagen ØDenmark
| | - Salvador Mandujano
- Red de Biología y Conservación de VertebradosInstituto de Ecología A.C.XalapaMexico
| | | | | | | | | | - Eliana Martínez
- Universidad Nacional de Colombia, Ciudad UniversitariaBogotáColombia
| | - Guillermo Martínez Pastur
- Laboratorio de Recursos AgroforestalesCentro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | | | | | - Vicente Mazimpaka
- Departamento de Biología (Botánica)Facultad de CienciasUniversidad Autonoma de MadridMadridSpain
| | | | - Kyle P. McCarthy
- Department of Entomology and Wildlife EcologyUniversity of DelawareNewarkDEUSA
| | | | - Sean McNamara
- Centre for Mined Land RehabilitationThe University of QueenslandBrisbaneQldAustralia
| | - Nagore G. Medina
- Departamento de Biología (Botánica)Facultad de CienciasUniversidad Autonoma de MadridMadridSpain
- Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain
| | - Rafael Medina
- Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Jose L. Mena
- Museo de Historia Natural “Vera Alleman Haeghebaert”Universidad Ricardo PalmaLima 33Peru
| | - Estefania Mico
- Centro Iberoamericano de la Biodiversidad (CIBIO)Universidad de AlicanteAlicanteSpain
| | - Grzegorz Mikusinski
- Department of EcologySwedish University of Agricultural Sciences, Grimsö Wildlife Research StationRiddarhyttanSweden
| | - Jeffrey C. Milder
- Rainforest AllianceNew YorkNYUSA
- Department of Natural ResourcesCornell UniversityIthacaNYUSA
| | - James R. Miller
- Department of Natural Resources & Environmental SciencesUniversity of IllinoisUrbanaILUSA
| | | | - Melinda L. Moir
- School of BiosciencesUniversity of MelbourneParkvilleVic.Australia
- School of Plant BiologyUniversity of Western AustraliaCrawleyWAAustralia
| | - Carolina L. Morales
- Lab. EcotonoINIBIOMA (Universidad Nacional del Comahue‐CONICET)BarilocheArgentina
| | | | - Muchai Muchane
- Department of Wildlife ManagementUniversity of EldoretEldoretKenya
| | - Sonja Mudri‐Stojnic
- Department of Biology and EcologyFaculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - A. Nur Munira
- School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
| | - Antonio Muoñz‐Alonso
- El Colegio de la Frontera SurEcología Evolutiva y ConservaciónSan Cristóbal de las CasasMexico
| | | | | | - A. Naithani
- Independent Research ScholarNew DelhiIndia
- Avian Diversity and Bioacoustic LabDepartment of ZoologyGurukula Kangri UniversityHaridwarIndia
| | - Michiko Nakagawa
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Akihiro Nakamura
- Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
- Environmental Futures Research Institute, and Griffith School of EnvironmentGriffith UniversityNathanBrisbaneQldAustralia
| | | | - Shoji Naoe
- Forestry and Forest Products Research InstituteTsukubaJapan
| | - Guiomar Nates‐Parra
- Laboratorio de Investigaciones en Abejas (Departamento de Biología)Universidad Nacional de ColombiaBogotáColombia
| | | | | | - Paul K. Ndang'ang'a
- BirdLife International – Africa Partnership SecretariatNairobiKenya
- Ornithology SectionNational Museums of KenyaNairobiKenya
| | - Eike L. Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (BiK‐F)Frankfurt am MainGermany
| | | | - Violaine Nicolas
- Institut de Systématique, Évolution, BiodiversitéISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHEMuséum national d'Histoire naturelleSorbonne UniversitésParisFrance
| | | | - Norbertas Noreika
- Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
- Department of Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Olivia Norfolk
- School of BiologyThe University of NottinghamUniversity ParkNottinghamUK
| | - Jorge Ari Noriega
- Laboratorio de Zoología y Ecología Acuática – LAZOEAUniversidad de Los AndesBogotáColombia
| | - David A. Norton
- School of ForestryUniversity of CanterburyChristchurchNew Zealand
| | | | - A. Justin Nowakowski
- Department of Wildlife, Fish and Conservation BiologyUniversity of California, DavisDavisCAUSA
| | - Catherine Numa
- IUCN‐Centre for Mediterranean CooperationCampanillas, MálagaSpain
| | - Niall O'Dea
- Oxford University Centre for the EnvironmentUniversity of OxfordOxfordUK
| | - Patrick J. O'Farrell
- Natural Resources and the EnvironmentCSIRStellenboschSouth Africa
- Plant Conservation UnitBiological SciencesUniversity of Cape TownRondeboschSouth Africa
| | - William Oduro
- Wildlife and Range Management DepartmentFaculty of Renewable Natural Resources (FRNR)College of Agriculture and Natural Resources (CANR)Kwame Nkrumah University of Science and Technology (KNUST)KumasiGhana
- International Programme Office (IPO)Vice Chancellor's OfficeKwame Nkrumah University of Science and Technology (KNUST)KumasiGhana
| | - Sabine Oertli
- Naturschutz – Planung und BeratungWiesendangenSwitzerland
| | - Caleb Ofori‐Boateng
- Department of Wildlife and Range ManagementKwame Nkrumah University of Science and TechnologyKumasiGhana
- Forestry Research Institute of GhanaKumasiGhana
| | | | - Vicencio Oostra
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | | | - Samuel Eduardo Otavo
- Laboratorio de Ecología del PaisajeFacultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
| | | | - Juan Paritsis
- Laboratorio EcotonoCONICET–INIBIOMAUniversidad Nacional del ComahueBarilocheArgentina
| | - Alejandro Parra‐H
- Laboratorio de Investigaciones en AbejasLABUNUniversidad Nacional de ColombiaBogotá D.C.Colombia
| | - Luke Parry
- Lancaster Environment CentreLancaster UniversityLancasterUK
- Universidade Federal do Pará (UFPA)Núcleo de Altos Estudos Amazonicos (NAEA)BelémBrazil
| | - Guy Pe'er
- Department of Community EcologyUFZHelmholtz Centre for Environmental ResearchHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigLeipzigGermany
| | - Peter B. Pearman
- Department of Plant Biology and EcologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaSpain
- IKERBASQUE. Basque Foundation for ScienceBilbaoSpain
| | - Nicolás Pelegrin
- Instituto de Diversidad y Ecología Animal (IDEA, CONICET‐UNC) and Centro de Zoología AplicadaFCEFyNUniversidad Nacional de CórdobaCórdobaArgentina
| | - Raphaël Pélissier
- IRDUMR AMAPTA A51/PS2Montpellier cedex 05France
- French Institute of PondicherryUMIFRE 21 CNRS‐MAEEPuducherryIndia
| | - Carlos A. Peres
- School of Environmental SciencesUniversity of East AngliaNorwichUK
| | - Pablo L. Peri
- National Institute of Agricultural Technology (INTA)Río GallegosArgentina
- National University of Southern Patagonia (UNPA)Río GallegosArgentina
- National Commission of Scientist Research and Technology (CONICET)Buenos Aires, Argentina
| | | | - Theodora Petanidou
- Laboratory of Biogeography & EcologyDepartment of GeographyUniversity of the AegeanMytileneGreece
| | - Marcell K. Peters
- Department of Animal Ecology and Tropical BiologyBiocenterUniversity of WürzburgWürzburgGermany
| | | | - Ben Phalan
- Conservation Science GroupDepartment of ZoologyUniversity of CambridgeCambridgeUK
| | - T. Keith Philips
- Systematics and Evolution LaboratoryDepartment of BiologyWestern Kentucky UniversityBowling GreenKYUSA
| | - Finn C. Pillsbury
- Department of Natural Resource Ecology and ManagementIowa State UniversityAmesIAUSA
| | - Jimmy Pincheira‐Ulbrich
- Departamento de ZoologíaFacultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Facultad de Recursos NaturalesEscuela de Ciencias AmbientalesLaboratorio de Planificación TerritorialUniversidad Católica de TemucoTemucoChile
| | - Eduardo Pineda
- Biología y Conservación de VertebradosInstituto de Ecología A.C.El Haya, XalapaMexico
| | - Joan Pino
- CREAFCerdanyola del Vallès, CataloniaSpain
- Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Jaime Pizarro‐Araya
- Laboratorio de Entomología EcológicaDepartamento de BiologíaFacultad de CienciasUniversidad de La SerenaLa SerenaChile
| | - A. J. Plumptre
- Albertine Rift ProgramWildlife Conservation SocietyKampalaUganda
| | - Santiago L. Poggio
- IFEVA/Cátedra de Producción VegetalDepartamento de Producción VegetalFacultad de AgronomíaUniversidad de Buenos Aires/CONICET.Buenos AiresArgentina
| | - Natalia Politi
- Directora del Programa Conservación de Biodiversidad en Bosques SubtropicalesCátedra de Desarrollo Sustentable y BiodiversidadFacultad de Ciencias AgrariasUniversidad Nacional de JujuyCIT‐Jujuy CONICET, Fundaciòn CEBioSan Salvador de Jujuy, Argentina
| | - Pere Pons
- Departament de Ciències AmbientalsUniversitat de GironaGironaSpain
| | | | - Eileen F. Power
- BotanySchool of Natural SciencesTrinity College DublinDublin 2Ireland
| | - Steven J. Presley
- Center for Environmental Sciences and Engineering & Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Vânia Proença
- MARETEC, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| | - Marino Quaranta
- CREA‐ABP, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per l'agrobiologia e la pedologiaFirenzeItaly
| | - Carolina Quintero
- Laboratorio EcotonoCONICET–INIBIOMAUniversidad Nacional del ComahueBarilocheArgentina
| | - Romina Rader
- Ecosystem Management, School of Environment and Rural ScienceUniversity of New EnglandArmidaleNSWAustralia
| | - B. R. Ramesh
- French Institute of PondicherryUMIFRE 21 CNRS‐MAEEPuducherryIndia
| | | | - Jai Ranganathan
- National Center for Ecological Analysis and SynthesisUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| | | | | | - J. Leighton Reid
- Center for Conservation and Sustainable DevelopmentMissouri Botanical GardenSaint LouisMOUSA
| | - Yana T. Reis
- Departamento de BiologiaUniversidade Federal de SergipeSão Cristóvão/SeBrazil
| | | | - Juan Carlos Rey‐Velasco
- Entomology Colletion, Systematics and Biogeography LaboratorySchool of BiologyIndustrial University of SantanderBucaramangaColombia
| | - Chevonne Reynolds
- Percy FitzPatrick Institute of African OrnithologyDST/NRF Centre of ExcellenceUniversity of Cape TownRondeboschCape TownSouth Africa
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandWitsSouth Africa
| | - Danilo Bandini Ribeiro
- Centro de Ciências Biológicas e da SaúdeUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
| | | | - Barbara A. Richardson
- EdinburghUK
- Luquillo LTER, Institute for Tropical Ecosystem Studies, College of Natural SciencesUniversity of Puerto Rico at Rio PiedrasSan JuanPRUSA
| | - Michael J. Richardson
- EdinburghUK
- Luquillo LTER, Institute for Tropical Ecosystem Studies, College of Natural SciencesUniversity of Puerto Rico at Rio PiedrasSan JuanPRUSA
| | - Rodrigo Macip Ríos
- Escuela Nacional de Estudios SuperioresUniversidad Nacional Autónoma de MéxicoMoreliaMexico
| | - Richard Robinson
- Science and Conservation DivisionDepartment of Parks and WildlifeManjimupWAAustralia
| | - Carolina A. Robles
- PROPLAME‐PRHIDEB‐CONICETDepartamento de Biodiversidad y Biología ExperimentalFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad Universitaria(CP1428EHA) Ciudad Autónoma de Buenos AiresArgentina
| | - Jörg Römbke
- ECT Oekotoxikologie GmbHFlörsheim am MainGermany
- LOEWE Biodiversity and Climate Research Centre BiK‐FFrankfurt/MainGermany
| | - Luz Piedad Romero‐Duque
- Facultad de Ciencias AmbientalesUniversidad de Ciencias Aplicadas y Ambientales U.D.C.ABogotáColombia
| | - Matthias Rös
- Catedras CONACYTCIIDIR, Unidad Oaxaca, IPNSanta Cruz Xoxocotlán, Mexico
| | - Loreta Rosselli
- Universidad de Ciencias Aplicadas y Ambientales U.D.C.A.BogotáColombia
| | - Stephen J. Rossiter
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Dana S. Roth
- School of Natural Resources and EnvironmentUniversity of MichiganAnn ArborMIUSA
| | - T'ai H. Roulston
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
- Blandy Experimental FarmBoyceVAUSA
| | - Laurent Rousseau
- Département des sciences biologiques (SB)Universitédu Québec à Montréal (UQÀM)MontréalQCCanada
| | | | | | - Jonathan P. Sadler
- School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Szabolcs Sáfián
- Institute of Silviculture and Forest ProtectionUniversity of West HungarySopronHungary
| | - Romeo A. Saldaña‐Vázquez
- Red de Ecología FuncionalInstituto de Ecología A.C. Carretera antigua a CoatepecEl Haya, XalapaMexico
| | - Katerina Sam
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
- Biology Centre CASInstitute of EntomologyCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Ulrika Samnegård
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Department of Biology/BiodiversityLund UniversityLundSweden
| | - Joana Santana
- CIBIO/InBioCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| | - Xavier Santos
- CIBIO/InBioCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| | | | | | - Menno Schilthuizen
- Naturalis Biodiversity CenterCR LeidenThe Netherlands
- Institute for Tropical Biology and ConservationUniversiti Malaysia Sabah, Jalan UMSKota KinabaluMalaysia
| | - Ute Schmiedel
- Biocentre Klein Flottbek & Botanical GardenUniversity of HamburgHamburgGermany
| | - Christine B. Schmitt
- Center for Development Research (ZEF)University of BonnBonnGermany
- Chair for Landscape ManagementUniversity of FreiburgFreiburgGermany
| | - Nicole L. Schon
- AgResearch LimitedLincoln Research CentreChristchurchNew Zealand
| | - Christof Schüepp
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Katharina Schumann
- Institute for Ecology, Evolution and DiversityGoethe University FrankfurtFrankfurt am MainGermany
| | - Oliver Schweiger
- Department of Community EcologyUFZHelmholtz Centre for Environmental ResearchHalleGermany
| | - Dawn M. Scott
- Biology and Biomedical Sciences DivisionUniversity of BrightonBrightonUK
| | | | | | - Steven S. Seefeldt
- School of Natural Resources and ExtensionUniversity of Alaska FairbanksFairbanksAKUSA
| | | | - Graeme Shannon
- College of Natural SciencesBangor UniversityBangor, GwyneddUK
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Douglas Sheil
- Department of Ecology and Natural Resource Management (INA)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Frederick H. Sheldon
- Museum of Natural Science and Department of Biological SciencesLouisiana State UniversityBaton RougeLAUSA
- Baton RougeLAUSA
| | - Eyal Shochat
- Department of Life SciencesBen‐Gurion University of the NegevBe'er ShevaIsrael
- The Yerucham Center of Ornithology and EcologyYeruchamIsrael
| | - Stefan J. Siebert
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | | | | | | | - Jo Smith
- Organic Research CentreElm FarmNewburyUK
| | - Allan H. Smith‐Pardo
- United States Department of AgricultureSouth San FranciscoCAUSA
- Universidad Nacional de ColombiaSede MedellinMedellinColombia
| | - Navjot S. Sodhi
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Eduardo J. Somarriba
- Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)Tropical Agricultural Research and Higher Education CenterTurrialbaCosta Rica
| | - Ramón A. Sosa
- Ecología de Comunidades Ãridas y Semiaridas (EComAS)Departamento de RecursosFacultad de Ciencias Exactas y NaturalesUNLPam.Santa rosaLa PampaUruguay
| | - Grimaldo Soto Quiroga
- Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)Tropical Agricultural Research and Higher Education CenterTurrialbaCosta Rica
- Gobierno Autónomo Departamental Santa CruzSanta Cruz de la SierraBolivia
| | - Martin‐Hugues St‐Laurent
- Université du Québec à RimouskiCentre for Northern Research, Centre for Forest StudiesRimouskiQCCanada
| | | | - Constanti Stefanescu
- CREAFCerdanyola del Vallès, CataloniaSpain
- Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
- Museu de Ciències Naturals de GranollersGranollersBarcelonaSpain
| | - Ingolf Steffan‐Dewenter
- Department of Animal Ecology and Tropical BiologyBiocenterUniversity of WürzburgWürzburgGermany
| | - Philip C. Stouffer
- School of Renewable Natural ResourcesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Biological Dynamics of Forest Fragments ProjectInstituto Nacional de Pesquisas da AmazôniaManausBrazil
| | - Jane C. Stout
- BotanySchool of Natural SciencesTrinity College DublinDublin 2Ireland
| | - Ayron M. Strauch
- Department of Natural Resources and Environmental ManagementUniversity of HawaiiManoaHonoluluHIUSA
| | - Matthew J. Struebig
- Durrell Institute of Conservation and Ecology (DICE)School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Zhimin Su
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesChaoyang DistrictBeijingChina
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
| | - Marcela Suarez‐Rubio
- Institute of ZoologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Shinji Sugiura
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | | | - Yik‐Hei Sung
- Department of BiologyHong Kong Baptist UniversityKowloon Tong, Hong Kong SARChina
| | - Hari Sutrisno
- Zoological DivisionResearch Center For BiologyThe Indonesian Institute of SciencesCibinongBogorIndonesia
| | - Jens‐Christian Svenning
- Section for Ecoinformatics & BiodiversityDepartment of BioscienceAarhus UniversityAarhus CDenmark
| | - Tiit Teder
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Caragh G. Threlfall
- School of Ecosystem and Forest Science, Faculty of ScienceThe University of MelbourneRichmondVic.Australia
| | - Anu Tiitsaar
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Jacqui H. Todd
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | | | - Ignasi Torre
- Museu de Ciències Naturals de GranollersGranollersBarcelonaSpain
| | - Béla Tóthmérész
- MTA‐DE Biodiversity and Ecosystem Services Research GroupDebrecenHungary
| | - Teja Tscharntke
- AgroecologyDepartment of Crop SciencesGeorg‐August UniversityGöttingenGermany
| | - Edgar C. Turner
- Insect Ecology GroupDepartment of ZoologyUniversity of CambridgeCambridgeUK
| | - Jason M. Tylianakis
- Department of Life SciencesImperial College LondonAscotUK
- Centre for Integrative Ecology, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | | | - Nicolas Urbina‐Cardona
- Department of Ecology and TerritorySchool of Environmental and Rural StudiesPontificia Universidad JaverianaBogotaColombia
| | - Denis Vallan
- Naturhistorisches Museum BaselLeiter BiowissenschaftenBaselSwitzerland
| | | | | | - Kiril Vassilev
- Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of ScienceSofiaBulgaria
| | - Hans A. F. Verboven
- Division Forest, Nature, and LandscapeDepartment of Earth & Environmental SciencesKU LeuvenLeuvenBelgium
| | - Maria João Verdasca
- Museu Nacional de História Natural e da CiênciaBorboletário – Depart. ZoologiaLisboaPortugal
| | - José R. Verdú
- Centro Iberoamericano de la Biodiversidad (CIBIO)Universidad de AlicanteAlicanteSpain
| | - Carlos H. Vergara
- Departamento de Ciencias Químico‐BiológicasUniversidad de las Américas PueblaCholulaMexico
| | - Pablo M. Vergara
- Departamento de Gestión AgrariaUniversidad de Santiago de ChileSantiagoChile
| | | | | | - Lien Van Vu
- Vietnam National Museum of NatureVietnam Academy of Science and TechnologyCau GiayHanoiVietnam
| | | | - Tony R. Walker
- School of BiologyThe University of NottinghamUniversity ParkNottinghamUK
- School for Resource and Environmental StudiesFaculty of ManagementDalhousie UniversityHalifaxNSCanada
| | - Hua‐Feng Wang
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resource, Ministry of Education, College of Horticulture and Landscape AgricultureHainan UniversityHaikouChina
| | - Yanping Wang
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - James I. Watling
- Department of BiologyJohn Carroll UniversityUniversity HeightsOHUSA
| | - Britta Weller
- Biocentre GrindelUniversity of HamburgHamburgGermany
| | - Konstans Wells
- The Environment Institute and School of Earth and Environmental SciencesThe University of AdelaideAdelaideSAAustralia
- Environmental Futures Research InstituteGriffith UniversityBrisbaneQldAustralia
| | - Catrin Westphal
- AgroecologyDepartment of Crop SciencesGeorg‐August UniversityGöttingenGermany
| | - Edward D. Wiafe
- Department of Environmental and Natural ResourcesPresbyterian University CollegeAkropong AkuapemGhana
| | | | - Michael R. Willig
- Center for Environmental Sciences & EngineeringUniversity of ConnecticutStorrsCTUSA
- Department of Ecology & Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | | | - Jan H. D. Wolf
- Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamGE AmsterdamThe Netherlands
| | - Volkmar Wolters
- Department of Animal EcologyJustus‐Liebig‐UniversityGiessenGermany
| | - Ben A. Woodcock
- NERC Centre for Ecology & HydrologyCrowmarsh GiffordWallingfordUK
| | - Jihua Wu
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Joseph M. Wunderle
- International Institute of Tropical ForestryUSDA Forest Service, Sabana Field Research StationLuquilloPRUSA
| | - Yuichi Yamaura
- Forestry and Forest Products Research InstituteTsukubaJapan
| | | | - Douglas W. Yu
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichUK
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Andrey S. Zaitsev
- Department of Animal EcologyJustus‐Liebig‐UniversityGiessenGermany
- A. N. Severtsov Institute of Ecology and EvolutionMoscowRussia
| | - Juliane Zeidler
- Integrated Environmental Consultants Namibia (IECN)WindhoekNamibia
| | - Fasheng Zou
- Guangdong Entomological Institute/South China Institute of Endangered AnimalsGuangzhouChina
| | - Ben Collen
- Department of Genetics, Evolution and EnvironmentCentre for Biodiversity and EnvironmentResearchUniversity College LondonLondonUK
| | - Rob M. Ewers
- Department of Life SciencesImperial College LondonAscotUK
| | - Georgina M. Mace
- Department of Genetics, Evolution and EnvironmentCentre for Biodiversity and EnvironmentResearchUniversity College LondonLondonUK
| | - Drew W. Purves
- Computational Ecology and Environmental ScienceMicrosoft ResearchCambridgeUK
| | - Jörn P. W. Scharlemann
- United Nations Environment Programme World Conservation Monitoring CentreCambridgeUK
- School of Life SciencesUniversity of SussexBrightonUK
| | - Andy Purvis
- Department of Life SciencesNatural History MuseumLondonUK
- Department of Life SciencesImperial College LondonAscotUK
| |
Collapse
|
46
|
Lamsdell JC, Selden PA. From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis. Evolution 2016; 71:95-110. [PMID: 27783385 DOI: 10.1111/evo.13106] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 10/12/2016] [Accepted: 10/21/2016] [Indexed: 01/03/2023]
Abstract
Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems.
Collapse
Affiliation(s)
- James C Lamsdell
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024.,Department of Geology and Geography, West Virginia University, 98 Beechurst Avenue, Brooks Hall, Morgantown, West Virginia, 26506
| | - Paul A Selden
- Paleontological Institute and Department of Geology, University of Kansas, 1475 Jayhawk Boulevard, Lawrence, Kansas, 66045.,Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
| |
Collapse
|
47
|
Spisak W, Chlebicki A, Kaszczyszyn M. Galvanic microcells as control agent of indoor microorganisms. Sci Rep 2016; 6:35847. [PMID: 27786247 PMCID: PMC5081506 DOI: 10.1038/srep35847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/06/2016] [Indexed: 11/09/2022] Open
Abstract
Today, fungicides are part of the basic tool kit for indoor surface maintenance. However, fungi develop resistance to fungicides, which consequently accelerates the evolution of virulence. Fungicides also carry the risk of adverse effects in humans. Galvanic microcells are a new tool for fungal control on indoor surfaces. We used two types of electrodes, Zn and Cu, with two potential anti-fungal mechanisms: the oligodynamic action of the metal ions themselves and the electricidal effect of the current between the electrodes. The size of the inhibition zone is related to the distance between the electrodes. We hypothesized that the unique geometric properties of the observed inhibition zone could be modelled using multi foci curve Cassini ovals. Moreover, the size of the inhibition zone possessed two maximum values, while the shape of the observed inhibition zones correlated with the shape of the electric field strength. The control activity of the galvanic microcells correlated with decreasing water content in building materials. Thus, this acute antifungal system works the best in damp building environments where the risk of fungal contamination is highest.
Collapse
Affiliation(s)
- Wojciech Spisak
- Research & Development Centre, Alcor Ltd.,Kępska 12, 45-130 Opole, Poland
| | - Andrzej Chlebicki
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | | |
Collapse
|
48
|
Abstract
The vast majority of species that have ever lived went extinct sometime other than during one of the great mass extinction events. In spite of this, mass extinctions are thought to have outsized effects on the evolutionary history of life. While part of this effect is certainly due to the extinction itself, I here consider how the aftermaths of mass extinctions might contribute to the evolutionary importance of such events. Following the mass loss of taxa from the fossil record are prolonged intervals of ecological upheaval that create a selective regime unique to those times. The pacing and duration of ecosystem change during extinction aftermaths suggests strong ties between the biosphere and geosphere, and a previously undescribed macroevolutionary driver - earth system succession. Earth system succession occurs when global environmental or biotic change, as occurs across extinction boundaries, pushes the biosphere and geosphere out of equilibrium. As species and ecosystems re-evolve in the aftermath, they change global biogeochemical cycles - and in turn, species and ecosystems - over timescales typical of the geosphere, often many thousands to millions of years. Earth system succession provides a general explanation for the pattern and timing of ecological and evolutionary change in the fossil record. Importantly, it also suggests that a speed limit might exist for the pace of global biotic change after massive disturbance - a limit set by geosphere-biosphere interactions. For mass extinctions, earth system succession may drive the ever-changing ecological stage on which species evolve, restructuring ecosystems and setting long-term evolutionary trajectories as they do.
Collapse
Affiliation(s)
- Pincelli Hull
- Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, CT 06520-8109, USA.
| |
Collapse
|