1
|
Yu S, Xue Y, Chen Y, Cao Y, Yang Y, Ge X, Cai X. The multifaceted roles of aldolase A in cancer: glycolysis, cytoskeleton, translation and beyond. Hum Cell 2025; 38:45. [PMID: 39808355 DOI: 10.1007/s13577-025-01172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Cancer, a complicated disease characterized by aberrant cellular metabolism, has emerged as a formidable global health challenge. Since the discovery of abnormal aldolase A (ALDOA) expression in liver cancer for the first time, its overexpression has been identified in numerous cancers, including colorectal cancer (CRC), breast cancer (BC), cervical adenocarcinoma (CAC), non-small cell lung cancer (NSCLC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic cancer adenocarcinoma (PDAC), and clear cell renal cell carcinoma (ccRCC). Moreover, ALDOA overexpression promotes cancer cell proliferation, invasion, migration, and drug resistance, and is closely related to poor prognosis of patients with cancer. Although originally discovered to promote cancer initiation and progression by accelerating glycolysis, recent studies have revealed its atypical roles in cancer, e.g., adjusting cytoskeleton, regulating mRNA translation, cell signaling pathways, and DNA repair. These aforementioned findings challenge our traditional understanding of ALDOA function and prompt deep exploration of its novel roles in tumor biology. The present review summarizes the latest insights into ALDOA as a potential cancer biomarker and therapeutic target.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China.
| | - Yaji Xue
- Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
| | - Yongli Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
| | - Yuanye Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
| | - Yawen Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
| | - Xiaoyu Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
| | - Xinting Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China
| |
Collapse
|
2
|
Smith C, Asnafi V, Touzart A. Neo-enhancers in T-cell acute lymphoblastic Leukaemia (T-ALL) and beyond. Int J Cancer 2025. [PMID: 39749749 DOI: 10.1002/ijc.35315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a rare aggressive haematological malignancy characterised by the clonal expansion of immature T-cell precursors. It accounts for 15% of paediatric and 25% of adult ALL. T-ALL is associated with the overexpression of major transcription factors (TLX1/3, TAL1, HOXA) that drive specific transcriptional programmes and constitute the molecular classifying subgroups of T-ALL. Although the dysregulation of transcription factor oncogenes is frequently associated with chromosomal translocations in T-ALL, epigenetic dysregulation resulting in changes to post-translational modifications of histones has also been reported. This includes non-coding intergenic mutations that form oncogenic neo-enhancers. This review will focus on the known epigenetically activating intergenic mutations reported in T-ALL, and will discuss the wider implications of neo-enhancer mutations in cancer.
Collapse
Affiliation(s)
- Charlotte Smith
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants-Malades (INEM), Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants-Malades (INEM), Paris, France
| | - Aurore Touzart
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants-Malades (INEM), Paris, France
| |
Collapse
|
3
|
Goglia AG, Alshalalfa M, Khan A, Isakov DR, Hougen HY, Swami N, Kannikal J, Mcbride SM, Gomez DR, Punnen S, Nguyen PL, Iyengar P, Antonarakis ES, Mahal BA, Dee EC. Pan-cancer genomic analysis reveals FOXA1 amplification is associated with adverse outcomes in non-small cell lung, prostate, and breast cancers. J Natl Cancer Inst 2025; 117:188-197. [PMID: 39254651 PMCID: PMC11717412 DOI: 10.1093/jnci/djae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Alterations in forkhead box A1 (FOXA1), a pioneer transcription factor, are associated with poor prognosis in breast cancer and prostate cancer. We characterized FOXA1 genomic alterations and their clinical impacts in a large pan-cancer cohort from the American Association for Cancer Research Genomics, Evidence, Neoplasia, Information, Exchange database. METHODS FOXA1 alterations were characterized across more than 87 000 samples from more than 30 cancer types for primary and metastatic tumors alongside patient characteristics and clinical outcomes. FOXA1 alterations were queried in the Memorial Sloan Kettering - Metastatic Events and Tropisms (MSK-MET) cohort (a GENIE subset), allowing definition of hazard ratios (HRs) and survival estimates based on Cox proportional hazard models. RESULTS FOXA1 was altered in 1869 (2.1%) samples, with distinct patterns across different cancers: prostate cancer enriched with indel-inframe alterations, breast cancer with missense mutations, and lung cancers with copy number amplifications. Of 74 715 samples with FOXA1 copy number profiles, amplification was detected in 834 (1.1%). Amplification was most common in non-small cell lung cancer (NSCLC; 3% in primary; 6% in metastatic) and small cell lung cancer (4.1% primary; 3.5% metastatic), followed by breast cancer (2% primary; 1.6% metastatic) and prostate cancer (2.2% primary; 1.6% metastatic). Copy number amplifications were associated with decreased overall survival in NSCLC (HR = 1.45, 95% confidence interval [CI] = 1.06 to 1.99; P = .02), breast cancer (HR = 3.04, 95% CI = 1.89 to 4.89; P = 4e-6), and prostate cancer (HR = 1.94, 95% CI = 1.03 to 3.68; P = .04). Amplifications were associated with widespread metastases in NSCLC, breast cancer, and prostate cancer. CONCLUSIONS FOXA1 demonstrates distinct alteration profiles across cancer sites. Our findings suggest an association between FOXA1 amplification and enhanced metastatic potential and decreased survival, highlighting prognostic and therapeutic potential in breast cancer, prostate cancer, and NSCLC.
Collapse
Affiliation(s)
- Alexander G Goglia
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Anwar Khan
- The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Danielle R Isakov
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen Y Hougen
- Department of Urology, University of Iowa, Iowa City, IA, USA
| | - Nishwant Swami
- Division of Internal Medicine, University of Pennsylvania Health System, Pennsylvania, PA, USA
| | - Jasmine Kannikal
- The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sean M Mcbride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanoj Punnen
- Desai and Sethi Institute of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Brandon A Mahal
- Department of Radiation Oncology, University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Hu G, Xue J, Yu J, Dou Q, Sang Y, Han A, Lv W, Li J, Liu R. High Prevalence of TBC1D12 5'UTR Mutations in Anaplastic Thyroid Cancer. Thyroid 2025; 35:115-119. [PMID: 39682039 DOI: 10.1089/thy.2024.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Background: Anaplastic thyroid cancer (ATC) is a rare but one of the most lethal types of human cancer. Although increasing evidence demonstrated that ATC tumors had a high mutation burden, little is known about the aberrancy of the noncoding genome of ATC except the well-investigated telomerase reverse transcriptase (TERT) promoter mutations. Methods: The mutational statuses of TBC1D12 5' untranslated region (5'UTR), GPR126 intron 6, SDHD and PLEKHS1 promoters, as well as the TERT promoter and BRAFV600E mutations were determined using Sanger sequencing in 28 patients with ATC (19 women and 9 men) with a median (interquartile range) age of 64 (55-71) years, 14 thyroid cancer cell lines and a normal thyroid cell line. The prevalence of TBC1D12 5'UTR mutations in papillary thyroid cancer (PTC) and their association with clinicopathologic characteristics were explored by analyzing The Cancer Genome Atlas thyroid cancer dataset. Results: The noncoding mutations in TERT, SDHD and PLEKHS1 promoters, TBC1D12 5'UTR, and GPR126 intron 6 were collectively found in 82.1% (23/28) of ATC samples. Specifically, TERT promoter mutations were detected in 22 (78.6%) samples; GPR126 intron mutations were detected in 2 (7.1%) samples; and both SDHD and PLEKHS1 promoter mutations were detected in 1 (3.6%) ATC sample. Two hotspot mutations in TBC1D12 5'UTR were observed in 14 of 28 (50%) ATCs, 7 of 492 (1.4%) PTCs, and 1 cell line derived from ATC. TBC1D12 5'UTR mutations were significantly associated with older age at diagnosis (60 vs. 46 for wild type, p = 0.003), pathological T3/T4 stage (85.7% vs. 37.7%, p = 0.010), and advanced tumor stages (85.7% vs. 32.5%, p = 0.006) in PTC. Conclusions: This preliminary study for the first time showed a high prevalence of TBC1D12 5'UTR mutations in ATC and indicated an association between TBC1D12 mutation and aggressive characteristics of PTC, which needs to be confirmed in large cohort studies.
Collapse
Affiliation(s)
- Guanghui Hu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junyu Xue
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ju Yu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianyi Dou
- Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ye Sang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Mitsiades IR, Onozato M, Iafrate AJ, Hicks D, Gülhan DC, Sgroi DC, Rheinbay E. ERBB2/HOXB13 co-amplification with interstitial loss of BRCA1 defines a unique subset of breast cancers. Breast Cancer Res 2024; 26:185. [PMID: 39695741 DOI: 10.1186/s13058-024-01943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The HOXB13/IL17RB gene expression biomarker has been shown to predict response to adjuvant and extended endocrine therapy in patients with early-stage ER+ HER2- breast tumors. HOXB13 gene expression is the primary determinant driving the prognostic and endocrine treatment-predictive performance of the biomarker. Currently, there is limited data on HOXB13 expression in HER2+ and ER- breast cancers. Herein, we studied the expression of HOXB13 in large cohorts of HER2+ and ER- breast cancers. METHODS We investigated gene expression, genomic copy number, mutational signatures, and clinical outcome data in the TGGA and METABRIC breast cancer cohorts. Genomic-based gene amplification data was validated with tri-colored fluorescence in situ hybridization. RESULTS In the TCGA breast cancer cohort, HOXB13 gene expression was significantly higher in HER2+ versus HER2- breast cancers, and its expression was also significantly higher in the ER- versus ER+ breast cancers. HOXB13 is frequently co-gained or co-amplified with ERBB2. Joint copy gains of HOXB13 and ERBB2 occurred with low-level co-gains or high-level co-amplifications (co-amp), the latter of which is associated with an interstitial loss that includes the tumor suppressor BRCA1. ERBB2/HOXB13 co-amp tumors with interstitial BRCA1 loss exhibit a mutational signature associated with APOBEC deaminase activity and copy number signatures associated with chromothripsis and genomic instability. Among ERBB2-amplified tumors of different tissue origins, ERBB2/HOXB13 co-amp with a BRCA1 loss appeared to be enriched in breast cancer compared to other tumor types. Lastly, patients with ERBB2/HOXB13 co-amplified and BRCA1 lost tumors displayed a significantly shorter progression-free survival (PFS) than those with ERBB2-only amplifications. The difference in PFS was restricted to the ER- subset patients and this difference in PFS was not solely driven by HOXB13 gene expression. CONCLUSIONS HOXB13 is frequently co-gained with ERBB2 at both low-copy number level or as complex high-level amplification with relative BRCA1 loss. ERBB2/HOXB13 amplified, BRCA1-lost tumors are strongly enriched in breast cancer, and patients with such breast tumors experience a shortened PFS.
Collapse
Affiliation(s)
- Irene Rin Mitsiades
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
| | - Maristela Onozato
- Vertex Pharmaceuticals, Preclinical Safety Assessment, Pathology, 316 Northern Ave, Boston, MA, 02210, USA
| | - A John Iafrate
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Hicks
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Doğa C Gülhan
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
- The Broad Institute or MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis C Sgroi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Esther Rheinbay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA.
- The Broad Institute or MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Gervas P, Molokov A, Babyshkina N, Zherebnova A, Choynzonov E, Cherdyntseva N. The frequency of known germline LGR4 missense variant in the ethnic groups of West Siberia. Mol Biol Rep 2024; 52:42. [PMID: 39644398 DOI: 10.1007/s11033-024-10133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Hereditary breast cancer is an autosomal dominant disease caused by variants in genes such as BRCA1/2, RAD51, ATM, BRIP1, and others. In a previous study using whole exome sequencing, we identified a germline variant of the LGR4 gene (rs34804482, NM_018490.5(LGR4):c.2531 A > G (p.Asp844Gly)) in a young Tuvan breast cancer patient (belonging to the Turkic-speaking tribes of Central Asia). The aim of this study was to determine the frequency of the variant of the LGR4 gene NM_018490.5(LGR4):c.2531 A > G (p.Asp844Gly) in ethnic groups of West Siberia using the PCR-RT method. METHODS The study involved 735 breast cancer patients from ethnic groups in Siberia, median age at diagnosis of 43 ± 15.6 years. The control group consisted of 727 healthy women from Siberia, median age of 43.05 ± 13.5 years. RESULTS The frequency of this variant (rs34804482) was 0.015 in Russian, 0.022 in Buryat, and 0.069 in Tuvan breast cancer patients. In Tuvan women with breast cancer, the frequency of the LGR4 gene variant was significantly higher than in Russian BC patients (0.069 versus 0.015, X2 = 8.153, p = 0.005). The frequency of the LGR4 gene variant (rs34804482) in healthy Tuvan women was significantly higher than in healthy Russian women (0.066 versus 0.016, X2 = 6.368, p = 0.012). The variant frequency in healthy Russians was close to that in Europeans (0.016 versus 0.0219). CONCLUSIONS We found no statistically significant differences in the rs34804482 frequency between breast cancer patients and healthy individuals in the ethnic groups studied. The highest frequency of this missense germline variant was observed among Tuvans.
Collapse
Affiliation(s)
- Polina Gervas
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia.
- National Tomsk State University, Tomsk, Russia.
| | - Aleksey Molokov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nataliya Babyshkina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | | | - Evgeny Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
- National Tomsk State University, Tomsk, Russia
| | - Nadezda Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
- National Tomsk State University, Tomsk, Russia
| |
Collapse
|
7
|
Rahman S, Bloye G, Farah N, Demeulemeester J, Costa JR, O'Connor D, Pocock R, Rapoz-D'Silva T, Turna A, Wang L, Lee S, Fielding AK, Roels J, Jaksik R, Dawidowska M, Van Vlierberghe P, Hadjur S, Hughes JR, Davies JOJ, Gutierrez A, Kelliher MA, Van Loo P, Dawson MA, Mansour MR. Focal deletions of a promoter tether activate the IRX3 oncogene in T-cell acute lymphoblastic leukemia. Blood 2024; 144:2319-2326. [PMID: 39316719 DOI: 10.1182/blood.2024024300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
ABSTRACT Oncogenes can be activated in cis through multiple mechanisms including enhancer hijacking events and noncoding mutations that create enhancers or promoters de novo. These paradigms have helped parse somatic variation of noncoding cancer genomes, thereby providing a rationale to identify noncanonical mechanisms of gene activation. Here we describe a novel mechanism of oncogene activation whereby focal copy number loss of an intronic element within the FTO gene leads to aberrant expression of IRX3, an oncogene in T-cell acute lymphoblastic leukemia (T-ALL). Loss of this CTCF-bound element downstream to IRX3 (+224 kb) leads to enhancer hijack of an upstream developmentally active super-enhancer of the CRNDE long noncoding RNA (-644 kb). Unexpectedly, the CRNDE super-enhancer interacts with the IRX3 promoter with no transcriptional output until it is untethered from the FTO intronic site. We propose that "promoter tethering" of oncogenes to inert regions of the genome is a previously unappreciated biological mechanism preventing tumorigenesis.
Collapse
Affiliation(s)
- Sunniyat Rahman
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gianna Bloye
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Nadine Farah
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | | | - Joana R Costa
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - David O'Connor
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Rachael Pocock
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Tanya Rapoz-D'Silva
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Adam Turna
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Lingyi Wang
- Department of Developmental Biology and Cancer, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - SooWah Lee
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Adele K Fielding
- Department of Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Małgorzata Dawidowska
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Suzana Hadjur
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Jim R Hughes
- Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine Centre for Computational Biology, University of Oxford, Oxford, United Kingdom
| | - James O J Davies
- Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine Centre for Computational Biology, University of Oxford, Oxford, United Kingdom
| | - Alejandro Gutierrez
- Department of Pediatric Oncology, Dana-Farber/Harvard Cancer Center, Boston, MA
| | - Michelle A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Peter Van Loo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marc R Mansour
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Department of Developmental Biology and Cancer, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
8
|
Yayli G, Tokofsky A, Nayar U. The intersection of the HER2-low subtype with endocrine resistance: the role of interconnected signaling pathways. Front Oncol 2024; 14:1461190. [PMID: 39650068 PMCID: PMC11621065 DOI: 10.3389/fonc.2024.1461190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Since its introduction in the 1970s, endocrine therapy that targets the estrogen receptor alpha (ERα) signaling pathway has had tremendous success in the clinic in estrogen receptor positive (ER+) breast cancer. However, resistance to endocrine therapy eventually develops in virtually all patients with metastatic disease. Endocrine resistance is a primary unaddressed medical need for ER+ metastatic breast cancer patients. It has been shown that tumors become resistant through various mechanisms, converging on the acquisition of genetic alterations of ER, components of the MAP kinase pathway, or transcription factors (TFs). For instance, mutations in the human epidermal growth factor receptor-2 (HER2) lead to complete resistance to all current endocrine therapies including aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor degraders, as well as cross-resistance to CDK4/6 inhibitors (CDK4/6is). Emerging evidence points to an intriguing connection between endocrine-resistant tumors and the HER2-low subtype. Specifically, recent studies and our analysis of a publicly available breast cancer dataset both indicate that metastatic ER+ breast cancer with endocrine resistance conferred through acquired genetic alterations can often be classified as HER2-low rather than HER2-0/HER2-negative. Limited data suggest that acquired endocrine resistance can also be accompanied by a subtype switch. Therefore, we suggest that there is an underappreciated association between the HER2-low subtype and endocrine resistance. In this perspective piece, we explore the evidence linking the HER2-low subtype with the various pathways to endocrine resistance and suggest that there are signaling networks in HER2-low tumors that intersect endocrine resistance and can be effectively targeted.
Collapse
Affiliation(s)
- Gizem Yayli
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Alexa Tokofsky
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Utthara Nayar
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
9
|
Lin NC, Hsia SM, Vu Nguyen TH, Wang TH, Sun KT, Chiu KC, Shih YH, Shieh TM. The association between the expression level of nuclear paraspeckle assembly transcript 1 and the survival rate of head and neck cancer patients after treatment. J Dent Sci 2024; 19:2074-2081. [PMID: 39347098 PMCID: PMC11437243 DOI: 10.1016/j.jds.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose The long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) exhibits diverse and complicated functions in cancer progression. Despite reports suggesting both tumor-suppressive and oncogenic effects in various cancers, its specific role in head and neck squamous cell carcinoma (HNSCC) remains unclear. This study aimed to investigate the association between NEAT1 expression levels and survival outcomes in HNSCC patients. Materials and methods Paired tissue samples of tumor and non-cancerous matching tissues (NCMT) from 92 HNSCC patients were collected. NEAT1 expression was analyzed using RT-qPCR. Clinical characteristics, treatment received, and survival rates of the patients were assessed to determine the correlation with NEAT1 expression and explore its association with alcohol, betel quid, and cigarette use. Additionally, we examined the effect of arecoline on NEAT1 expression in normal human oral keratinocytes (NHOK) and fibroblasts (NHOF). Results The study revealed a significant downregulation of NEAT1 expression in oral cancer tissues compared to NCMT. Meanwhile, arecoline increased NEAT1 expression in NHOK and NHOF cells. However, patients with downregulated NEAT1 expression exhibited higher overall survival rates, particularly in those who did not receive chemotherapy or radiotherapy. Conclusion NEAT1 expression levels are associated with survival outcomes in HNSCC patients, with upregulated expression indicating a worse prognosis, suggesting this lncRNA might contribute to cancer aggressiveness, especially in the absence of active treatment. These findings indicate NEAT1 may serve as a potential prognostic biomarker in HNSCC, but further research is required to elucidate its role in cancer progression and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Nan-Chin Lin
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Thanh-Hien Vu Nguyen
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Ting Sun
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Kuo-Chou Chiu
- Division of General Dentistry, Taichung Armed Forces General Hospital, Taichung, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Di Grazia G, Conti C, Nucera S, Motta G, Martorana F, Stella S, Massimino M, Giuliano M, Vigneri P. REThinking the role of the RET oncogene in breast cancer. Front Oncol 2024; 14:1427228. [PMID: 39211557 PMCID: PMC11358597 DOI: 10.3389/fonc.2024.1427228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The REarranged during Transfection (RET) receptor tyrosine kinase plays a crucial role in the development of various anatomical structures during embryogenesis and it is involved in many physiological cellular processes. This protein is also associated with the initiation of various cancer types, such as thyroid cancer, non-small cell lung cancer, and multiple endocrine neoplasms. In breast cancer, and especially in the estrogen receptor-positive (ER+) subtype, the activity of RET is of notable importance. Indeed, RET seems to be involved in tumor progression, resistance to therapies, and cellular proliferation. Nevertheless, the ways RET alterations could impact the prognosis of breast cancer and its response to treatment remain only partially elucidated. Several inhibitors of RET kinase have been developed thus far, with various degrees of selectivity toward RET inhibition. These molecules showed notable efficacy in the treatment of RET-driven tumors, including some breast cancer cases. Despite these encouraging results, further investigation is needed to fully understand the potential role RET inhibition in breast cancer. This review aims to recapitulate the existing evidence about the role of RET oncogene in breast cancer, from its pathogenic and potentially prognostic role, to the clinical applications of RET inhibitors.
Collapse
Affiliation(s)
- Giuseppe Di Grazia
- Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Chiara Conti
- Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Sabrina Nucera
- Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Gianmarco Motta
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - S. Marco”, Catania, Italy
| | - Michele Massimino
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - S. Marco”, Catania, Italy
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| |
Collapse
|
11
|
Iñiguez-Muñoz S, Llinàs-Arias P, Ensenyat-Mendez M, Bedoya-López AF, Orozco JIJ, Cortés J, Roy A, Forsberg-Nilsson K, DiNome ML, Marzese DM. Hidden secrets of the cancer genome: unlocking the impact of non-coding mutations in gene regulatory elements. Cell Mol Life Sci 2024; 81:274. [PMID: 38902506 PMCID: PMC11335195 DOI: 10.1007/s00018-024-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/07/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.
Collapse
Affiliation(s)
- Sandra Iñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Andrés F Bedoya-López
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, 08017, Barcelona, Spain
- Medica Scientia Innovation Research SL (MEDSIR), 08018, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670, Madrid, Spain
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
12
|
Toska E. Epigenetic mechanisms of cancer progression and therapy resistance in estrogen-receptor (ER+) breast cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189097. [PMID: 38518961 DOI: 10.1016/j.bbcan.2024.189097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most frequent breast cancer subtype. Agents targeting the ER signaling pathway have been successful in reducing mortality from breast cancer for decades. However, mechanisms of resistance to these treatments arise, especially in the metastatic setting. Recently, it has been recognized that epigenetic dysregulation is a common feature that facilitates the acquisition of cancer hallmarks across cancer types, including ER+ breast cancer. Alterations in epigenetic regulators and transcription factors (TF) coupled with changes to the chromatin landscape have been found to orchestrate breast oncogenesis, metastasis, and the development of a resistant phenotype. Here, we review recent advances in our understanding of how the epigenome dictates breast cancer tumorigenesis and resistance to targeted therapies and discuss novel therapeutic interventions for overcoming resistance.
Collapse
Affiliation(s)
- Eneda Toska
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Sizer RE, Butterfield SP, Hancocks LA, Gato De Sousa L, White RJ. Selective Occupation by E2F and RB of Loci Expressed by RNA Polymerase III. Cancers (Basel) 2024; 16:481. [PMID: 38339234 PMCID: PMC10854548 DOI: 10.3390/cancers16030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
In all cases tested, TFIIIB is responsible for recruiting pol III to its genetic templates. In mammalian cells, RB binds TFIIIB and prevents its interactions with both promoter DNA and pol III, thereby suppressing transcription. As TFIIIB is not recruited to its target genes when bound by RB, the mechanism predicts that pol III-dependent templates will not be occupied by RB; this contrasts with the situation at most genes controlled by RB, where it can be tethered by promoter-bound sequence-specific DNA-binding factors such as E2F. Contrary to this prediction, however, ChIP-seq data reveal the presence of RB in multiple cell types and the related protein p130 at many loci that rely on pol III for their expression, including RMRP, RN7SL, and a variety of tRNA genes. The sets of genes targeted varies according to cell type and growth state. In such cases, recruitment of RB and p130 can be explained by binding of E2F1, E2F4 and/or E2F5. Genes transcribed by pol III had not previously been identified as common targets of E2F family members. The data provide evidence that E2F may allow for the selective regulation of specific non-coding RNAs by RB, in addition to its influence on overall pol III output through its interaction with TFIIIB.
Collapse
Affiliation(s)
| | | | | | | | - Robert J. White
- Department of Biology, University of York, York YO10 5DD, UK; (R.E.S.)
| |
Collapse
|
14
|
Nunney L. The effect of body size and inbreeding on cancer mortality in breeds of the domestic dog: a test of the multi-stage model of carcinogenesis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231356. [PMID: 38298404 PMCID: PMC10827441 DOI: 10.1098/rsos.231356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Cancer is a leading cause of death in domestic dogs. Deaths due to cancer vary widely among breeds, providing an opportunity for testing the multi-stage model of carcinogenesis. This model underpins evolutionary and basic studies of cancer suppression and predicts a linear increase in cancer with breed size, an expectation complicated by bigger breeds having a shorter lifespan (decreasing risk). Using three independent datasets, the weight and lifespan of breeds provided a good fit of lifetime cancer mortality to the multi-stage model, the fit suggesting many canine cancers are initiated by four driver mutations. Of 85 breeds in more than one dataset, only flat-coated retriever showed significantly elevated cancer mortality, with Scottish terrier, Bernese mountain dog and bullmastiff also showing notable risk (greater than 50% over expected). Analysis of breed clades suggested terriers experience elevated cancer mortality. There was no evidence that the lower mass-specific metabolic rate of larger breeds reduced cancer risk. Residuals indicated increased breed inbreeding shortened expected lifespan, but had no overall effect on cancer mortality. The results provide a baseline for identifying increased breed risk for specific cancers and demonstrate that, unless selection promotes increased cancer suppression, the evolution of larger longer-lived animals leads to a predictable increased cancer risk.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
15
|
Salido-Guadarrama I, Romero-Cordoba SL, Rueda-Zarazua B. Multi-Omics Mining of lncRNAs with Biological and Clinical Relevance in Cancer. Int J Mol Sci 2023; 24:16600. [PMID: 38068923 PMCID: PMC10706612 DOI: 10.3390/ijms242316600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
In this review, we provide a general overview of the current panorama of mining strategies for multi-omics data to investigate lncRNAs with an actual or potential role as biological markers in cancer. Several multi-omics studies focusing on lncRNAs have been performed in the past with varying scopes. Nevertheless, many questions remain regarding the pragmatic application of different molecular technologies and bioinformatics algorithms for mining multi-omics data. Here, we attempt to address some of the less discussed aspects of the practical applications using different study designs for incorporating bioinformatics and statistical analyses of multi-omics data. Finally, we discuss the potential improvements and new paradigms aimed at unraveling the role and utility of lncRNAs in cancer and their potential use as molecular markers for cancer diagnosis and outcome prediction.
Collapse
Affiliation(s)
- Ivan Salido-Guadarrama
- Departamento de Bioinformatìca y Análisis Estadísticos, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Sandra L. Romero-Cordoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Biochemistry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Bertha Rueda-Zarazua
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
16
|
Zeng X, Zhao F, Jia J, Ma X, Jiang Q, Zhang R, Li C, Wang T, Liu W, Hao Y, Tao K, Lou Z, Zhang P. Targeting BCL6 in Gastrointestinal Stromal Tumor Promotes p53-Mediated Apoptosis to Enhance the Antitumor Activity of Imatinib. Cancer Res 2023; 83:3624-3635. [PMID: 37556508 DOI: 10.1158/0008-5472.can-23-0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/21/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Imatinib mesylate (IM) has revolutionized the treatment of gastrointestinal stromal tumor (GIST). However, most patients inevitably acquire IM resistance. Second- and third-line treatments exhibit modest clinical benefits with a median time to disease progression of 4 to 6 months, highlighting the urgency for novel therapeutic approaches. Here, we report that the expression of BCL6, a known oncogenic driver and transcriptional repressor, was significantly induced in GIST cells following IM treatment. Elevated BCL6 levels suppressed apoptosis and contributed to IM resistance. Mechanistically, BCL6 recruited SIRT1 to the TP53 promoter to modulate histone acetylation and transcriptionally repress TP53 expression. The reduction in p53 subsequently attenuated cell apoptosis and promoted tolerance of GIST cells to IM. Concordantly, treatment of GIST cells showing high BCL6 expression with a BCL6 inhibitor, BI-3802, conferred IM sensitivity. Furthermore, BI-3802 showed striking synergy with IM in IM-responsive and IM-resistant GIST cells in vitro and in vivo. Thus, these findings reveal a role for BCL6 in IM resistance and suggest that a combination of BCL6 inhibitors and IM could be a potentially effective treatment for GIST. SIGNIFICANCE BCL6 drives resistance to imatinib by inhibiting p53-mediated apoptosis and can be targeted in combination with imatinib to synergistically suppress tumor growth, providing a therapeutic strategy for treating gastrointestinal stromal tumor.
Collapse
Affiliation(s)
- Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha, China
| | - Jie Jia
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Zhou H, Hao X, Zhang P, He S. Noncoding RNA mutations in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1812. [PMID: 37544928 DOI: 10.1002/wrna.1812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Cancer is driven by both germline and somatic genetic changes. Efforts have been devoted to characterizing essential genetic variations in cancer initiation and development. Most attention has been given to mutations in protein-coding genes and associated regulatory elements such as promoters and enhancers. The development of sequencing technologies and in silico and experimental methods has allowed further exploration of cancer predisposition variants and important somatic mutations in noncoding RNAs, mainly for long noncoding RNAs and microRNAs. Association studies including GWAS have revealed hereditary variations including SNPs and indels in lncRNA or miRNA genes and regulatory regions. These mutations altered RNA secondary structures, expression levels, and target recognition and then conferred cancer predisposition to carriers. Whole-exome/genome sequencing comparing cancer and normal tissues has revealed important somatic mutations in noncoding RNA genes. Mutation hotspots and somatic copy number alterations have been identified in various tumor-associated noncoding RNAs. Increasing focus and effort have been devoted to studying the noncoding region of the genome. The complex genetic network of cancer initiation is being unveiled. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xinpei Hao
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Fu X, Pereira R, Liu CC, De Angelis C, Shea MJ, Nanda S, Qin L, Mitchell T, Cataldo ML, Veeraraghavan J, Sethunath V, Giuliano M, Gutierrez C, Győrffy B, Trivedi MV, Cohen O, Wagle N, Nardone A, Jeselsohn R, Rimawi MF, Osborne CK, Schiff R. High FOXA1 levels induce ER transcriptional reprogramming, a pro-metastatic secretome, and metastasis in endocrine-resistant breast cancer. Cell Rep 2023; 42:112821. [PMID: 37467106 DOI: 10.1016/j.celrep.2023.112821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/03/2022] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Aberrant activation of the forkhead protein FOXA1 is observed in advanced hormone-related cancers. However, the key mediators of high FOXA1 signaling remain elusive. We demonstrate that ectopic high FOXA1 (H-FOXA1) expression promotes estrogen receptor-positive (ER+) breast cancer (BC) metastasis in a xenograft mouse model. Mechanistically, H-FOXA1 reprograms ER-chromatin binding to elicit a core gene signature (CGS) enriched in ER+ endocrine-resistant (EndoR) cells. We identify Secretome14, a CGS subset encoding ER-dependent cancer secretory proteins, as a strong predictor for poor outcomes of ER+ BC. It is elevated in ER+ metastases vs. primary tumors, irrespective of ESR1 mutations. Genomic ER binding near Secretome14 genes is also increased in mutant ER-expressing or mitogen-treated ER+ BC cells and in ER+ metastatic vs. primary tumors, suggesting a convergent pathway including high growth factor receptor signaling in activating pro-metastatic secretome genes. Our findings uncover H-FOXA1-induced ER reprogramming that drives EndoR and metastasis partly via an H-FOXA1/ER-dependent secretome.
Collapse
Affiliation(s)
- Xiaoyong Fu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Resel Pereira
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chia-Chia Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Martin J Shea
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarmistha Nanda
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lanfang Qin
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamika Mitchell
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria L Cataldo
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Jamunarani Veeraraghavan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vidyalakshmi Sethunath
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mario Giuliano
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carolina Gutierrez
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1085 Budapest, Hungary; RCNS Cancer Biomarker Research Group, Institute of Enzymology, Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| | - Meghana V Trivedi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacy Practice and Translational Research, University of Houston, Houston, TX 77204, USA; Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | - Ofir Cohen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02210, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Nikhil Wagle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02210, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Agostina Nardone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02210, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02210, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02210, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02210, USA
| | - Mothaffar F Rimawi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - C Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Woo BJ, Moussavi-Baygi R, Karner H, Karimzadeh M, Garcia K, Joshi T, Yin K, Navickas A, Gilbert LA, Wang B, Asgharian H, Feng FY, Goodarzi H. Integrative identification of non-coding regulatory regions driving metastatic prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.535921. [PMID: 37398273 PMCID: PMC10312451 DOI: 10.1101/2023.04.14.535921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Large-scale sequencing efforts of thousands of tumor samples have been undertaken to understand the mutational landscape of the coding genome. However, the vast majority of germline and somatic variants occur within non-coding portions of the genome. These genomic regions do not directly encode for specific proteins, but can play key roles in cancer progression, for example by driving aberrant gene expression control. Here, we designed an integrative computational and experimental framework to identify recurrently mutated non-coding regulatory regions that drive tumor progression. Application of this approach to whole-genome sequencing (WGS) data from a large cohort of metastatic castration-resistant prostate cancer (mCRPC) revealed a large set of recurrently mutated regions. We used (i) in silico prioritization of functional non-coding mutations, (ii) massively parallel reporter assays, and (iii) in vivo CRISPR-interference (CRISPRi) screens in xenografted mice to systematically identify and validate driver regulatory regions that drive mCRPC. We discovered that one of these enhancer regions, GH22I030351, acts on a bidirectional promoter to simultaneously modulate expression of U2-associated splicing factor SF3A1 and chromosomal protein CCDC157. We found that both SF3A1 and CCDC157 are promoters of tumor growth in xenograft models of prostate cancer. We nominated a number of transcription factors, including SOX6, to be responsible for higher expression of SF3A1 and CCDC157. Collectively, we have established and confirmed an integrative computational and experimental approach that enables the systematic detection of non-coding regulatory regions that drive the progression of human cancers.
Collapse
Affiliation(s)
- Brian J Woo
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Ruhollah Moussavi-Baygi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Heather Karner
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Mehran Karimzadeh
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Arc Institute, Palo Alto 94305, USA
| | - Kristle Garcia
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Tanvi Joshi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Keyi Yin
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Albertas Navickas
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Luke A. Gilbert
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Arc Institute, Palo Alto 94305, USA
| | - Bo Wang
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Hosseinali Asgharian
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US
| | - Felix Y. Feng
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US
| |
Collapse
|
20
|
Ferro A, Generali D, Caffo O, Caldara A, De Lisi D, Dipasquale M, Lorenzi M, Monteverdi S, Fedele P, Ciribilli Y. Oral selective estrogen receptor degraders (SERDs): The new emperors in breast cancer clinical practice? Semin Oncol 2023; 50:90-101. [PMID: 37673696 DOI: 10.1053/j.seminoncol.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Endocrine therapy (ET) targeting estrogen receptor (ER) signaling is still the mainstay treatment option for early or advanced ER-positive breast cancer (BC) and may involve suppressing estrogen production by means of aromatase inhibitors or directly blocking the ER pathway through selective estrogen receptor modulators such as tamoxifen or selective estrogen receptor degraders such as fulvestrant. However, despite the availability of this armamentarium in clinical practice, de novo or acquired resistance to ET is the main cause of endocrine-based treatment failure leading to the progression of the BC. Recent advances in targeting, modulating, and degrading ERs have led to the development of new drugs capable of overcoming intrinsic or acquired ET resistance related to alterations in the ESR1 gene. The new oral selective estrogen receptor degraders, which are capable of reducing ER protein expression and blocking estrogen-dependent and -independent ER signaling, have a broader spectrum of activity against ESR1 mutations and seem to be a promising means of overcoming the failure of standard ET. The aim of this review is to summarize the development of oral selective estrogen receptor degraders, their current status, and their future perspectives.
Collapse
Affiliation(s)
- Antonella Ferro
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy.
| | - Daniele Generali
- UO Patologia Mammaria, Cremona Hospital, ASST Cremona, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Orazio Caffo
- Medical Oncology Unit, Santa Chiara Hospital, APSS Trento, Italy
| | - Alessia Caldara
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy
| | - Delia De Lisi
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy
| | - Mariachiara Dipasquale
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy
| | - Martina Lorenzi
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy
| | - Sara Monteverdi
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy
| | - Palma Fedele
- Oncology Unit, Dario Camberlingo Hospital, ASL Brindisi, Francavilla Fontana, Italy
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo, Italy.
| |
Collapse
|
21
|
Kumar S, Gerstein M. Unified views on variant impact across many diseases. Trends Genet 2023; 39:442-450. [PMID: 36858880 PMCID: PMC10192142 DOI: 10.1016/j.tig.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 03/03/2023]
Abstract
Genomic studies of human disorders are often performed by distinct research communities (i.e., focused on rare diseases, common diseases, or cancer). Despite underlying differences in the mechanistic origin of different disease categories, these studies share the goal of identifying causal genomic events that are critical for the clinical manifestation of the disease phenotype. Moreover, these studies face common challenges, including understanding the complex genetic architecture of the disease, deciphering the impact of variants on multiple scales, and interpreting noncoding mutations. Here, we highlight these challenges in depth and argue that properly addressing them will require a more unified vocabulary and approach across disease communities. Toward this goal, we present a unified perspective on relating variant impact to various genomic disorders.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
Shomali N, Kamrani A, Heris JA, Shahabi P, Nasiri H, Sadeghvand S, Ghahremanzadeh K, Akbari M. Dysregulation of P53 in breast cancer: Causative factors and treatment strategies. Pathol Res Pract 2023; 247:154539. [PMID: 37257244 DOI: 10.1016/j.prp.2023.154539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
One of the most prevalent cancers impacting women worldwide is breast cancer. Although there are several risk factors for breast cancer, the p53 gene's function has recently received much attention. The "gatekeeper" gene, or p53, is sometimes referred to as such since it is crucial in controlling cell proliferation and preventing the development of malignant cells. By identifying DNA damage and initiating cellular repair processes, p53 usually functions as a tumor-suppressor. But p53 gene alterations can result in a lack of function, allowing cells to divide out of control and perhaps triggering the onset of cancer. Various factors, such as mutation genes, signaling pathways, and hormones, can dysregulate P53 proteins and cause breast cancer. A promising strategy for individualized cancer treatment involves focusing on p53 mutations in breast cancer. While numerous techniques, including gene therapy and small compounds, have shown promise, further study is required to create safe and efficient treatments to target p53 mutations in breast cancer successfully.
Collapse
Affiliation(s)
- Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Butler K, Banday AR. APOBEC3-mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential. J Hematol Oncol 2023; 16:31. [PMID: 36978147 PMCID: PMC10044795 DOI: 10.1186/s13045-023-01425-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptides (APOBECs) are cytosine deaminases involved in innate and adaptive immunity. However, some APOBEC family members can also deaminate host genomes to generate oncogenic mutations. The resulting mutations, primarily signatures 2 and 13, occur in many tumor types and are among the most common mutational signatures in cancer. This review summarizes the current evidence implicating APOBEC3s as major mutators and outlines the exogenous and endogenous triggers of APOBEC3 expression and mutational activity. The review also discusses how APOBEC3-mediated mutagenesis impacts tumor evolution through both mutagenic and non-mutagenic pathways, including by inducing driver mutations and modulating the tumor immune microenvironment. Moving from molecular biology to clinical outcomes, the review concludes by summarizing the divergent prognostic significance of APOBEC3s across cancer types and their therapeutic potential in the current and future clinical landscapes.
Collapse
Affiliation(s)
- Kelly Butler
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A Rouf Banday
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Yin H, Chen L, Piao S, Wang Y, Li Z, Lin Y, Tang X, Zhang H, Zhang H, Wang X. M6A RNA methylation-mediated RMRP stability renders proliferation and progression of non-small cell lung cancer through regulating TGFBR1/SMAD2/SMAD3 pathway. Cell Death Differ 2023; 30:605-617. [PMID: 34628486 PMCID: PMC9984538 DOI: 10.1038/s41418-021-00888-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has the highest mortality rate among all malignancies worldwide. The role of long noncoding RNAs (lncRNAs) in the progression of cancers is a contemporary research hotspot. Based on an integrative analysis of The Cancer Genome Atlas database, we identified lncRNA-RNA Component of Mitochondrial RNA Processing Endoribonuclease (RMRP) as one of the most highly upregulated lncRNAs that are associated with poor survival in NSCLC. Furthermore, N(6)-methyladenosine (m6A) was highly enriched within RMRP and enhanced its RNA stability. In vitro and in vivo experiments showed that RMRP promoted NSCLC cell proliferation, invasion, and migration. In terms of mechanism, RMRP recruited YBX1 to the TGFBR1 promotor region, leading to upregulation of the transcription of TGFBR1. The TGFBR1/SMAD2/SMAD3 pathway was also regulated by RMRP. In addition, RMRP promoted the cancer stem cells properties and epithelial mesenchymal transition, which promote the resistance to radiation therapy and cisplatin. Clinical data further confirmed a positive correlation between RMRP and TGFBR1. In short, our work reveals that m6A RNA methylation-mediated RMRP stability renders proliferation and progression of NSCLC through regulating TGFBR1/SMAD2/SMAD3 pathway.
Collapse
Affiliation(s)
- Hang Yin
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Lin Chen
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China
| | - Shiqi Piao
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China
| | - Yiru Wang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China
| | - Zhange Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, PR China
- Department of Pharmacology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China
| | - Yuan Lin
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Xueqing Tang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Huijuan Zhang
- Department of Oncology, Yuhuangding Hospital, Yantai, Shangdong Province, PR China
| | - Haiyang Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Xiaoyuan Wang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
25
|
Akkad N, Kodgule R, Duncavage EJ, Mehta-Shah N, Spencer DH, Watkins M, Shirai C, Myckatyn TM. Evaluation of Breast Implant-Associated Anaplastic Large Cell Lymphoma With Whole Exome and Genome Sequencing. Aesthet Surg J 2023; 43:318-328. [PMID: 36351182 DOI: 10.1093/asj/sjac282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a rare malignancy originating from the periprosthetic capsule of a textured, most often macrotextured, breast implant. Identified in women whose indications for breast implants can be either aesthetic or reconstructive, the genomic underpinnings of this disease are only beginning to be elucidated. OBJECTIVES The aim of this study was to evaluate the exomes, and in some cases the entire genome, of patients with BIA-ALCL. Specific attention was paid to copy number alterations, chromosomal translocations, and other genomic abnormalities overrepresented in patients with BIA-ALCL. METHODS Whole-exome sequencing was performed on 6 patients, and whole-genome sequencing on 3 patients, with the Illumina NovaSeq 6000 sequencer. Data were analyzed with the Illumina DRAGEN Bio-IT Platform and the ChromoSeq pipeline. The Pathseq Genome Analysis Toolkit pipeline was used to detect the presence of microbial genomes in the sequenced samples. RESULTS Two cases with STAT3 mutations and 2 cases with NRAS mutations were noted. A critically deleted 7-Mb region was identified at the 11q22.3 region of chromosome 11, and multiple nonrecurrent chromosomal rearrangements were identified by whole-genome sequencing. Recurrent gene-level rearrangements, however, were not identified. None of the samples showed evidence of potential microbial pathogens. CONCLUSIONS Although no recurrent mutations were identified, this study identified mutations in genes not previously reported with BIA-ALCL or other forms of ALCL. Furthermore, not previously reported with BIA-ALCL, 11q22.3 deletions were consistent across whole-genome sequencing cases and present in some exomes. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Neha Akkad
- Resident of internal medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | - Marcus Watkins
- Research coordinator of medical oncology, Department of Medicine, Division of Hematology and Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Cara Shirai
- Instructor of pathology and immunology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Terence M Myckatyn
- Professor of plastic and reconstructive surgery, Division of Plastic and Reconstruction Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
26
|
Carrasco Pro S, Hook H, Bray D, Berenzy D, Moyer D, Yin M, Labadorf AT, Tewhey R, Siggers T, Fuxman Bass JI. Widespread perturbation of ETS factor binding sites in cancer. Nat Commun 2023; 14:913. [PMID: 36808133 PMCID: PMC9938127 DOI: 10.1038/s41467-023-36535-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Although >90% of somatic mutations reside in non-coding regions, few have been reported as cancer drivers. To predict driver non-coding variants (NCVs), we present a transcription factor (TF)-aware burden test based on a model of coherent TF function in promoters. We apply this test to NCVs from the Pan-Cancer Analysis of Whole Genomes cohort and predict 2555 driver NCVs in the promoters of 813 genes across 20 cancer types. These genes are enriched in cancer-related gene ontologies, essential genes, and genes associated with cancer prognosis. We find that 765 candidate driver NCVs alter transcriptional activity, 510 lead to differential binding of TF-cofactor regulatory complexes, and that they primarily impact the binding of ETS factors. Finally, we show that different NCVs within a promoter often affect transcriptional activity through shared mechanisms. Our integrated computational and experimental approach shows that cancer NCVs are widespread and that ETS factors are commonly disrupted.
Collapse
Affiliation(s)
| | - Heather Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - David Bray
- Bioinformatics Program, Boston University, Boston, MA, USA
| | | | - Devlin Moyer
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Meimei Yin
- Department of Biology, Boston University, Boston, MA, USA
| | - Adam Thomas Labadorf
- Bioinformatics Hub, Boston University, Boston, MA, USA
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA
| | | | - Trevor Siggers
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
| | - Juan Ignacio Fuxman Bass
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
27
|
Baxter L, Gordon NS, Ott S, Wang J, Patel P, Goel A, Piechocki K, Silcock L, Sale C, Zeegers MP, Cheng KK, James ND, Bryan RT, Ward DG. Properties of non-coding mutation hotspots as urinary biomarkers for bladder cancer detection. Sci Rep 2023; 13:1060. [PMID: 36658180 PMCID: PMC9852567 DOI: 10.1038/s41598-023-27675-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Mutations at specific hotspots in non-coding regions of ADGRG6, PLEKHS1, WDR74, TBC1D12 and LEPROTL1 frequently occur in bladder cancer (BC). These mutations could function as biomarkers for the non-invasive detection of BC but this remains largely unexplored. Massively-parallel sequencing of non-coding hotspots was applied to 884 urine cell pellet DNAs: 591 from haematuria clinic patients (165 BCs, 426 non-BCs) and 293 from non-muscle invasive BC surveillance patients (29 with recurrence). Urine samples from 142 non-BC haematuria clinic patients were used to optimise variant calling. Non-coding mutations are readily detectable in the urine of BC patients and undetectable, or present at much lower frequencies, in the absence of BC. The mutations can be used to detect incident BC with 66% sensitivity (95% CI 58-75) at 92% specificity (95% CI 88-95) and recurrent disease with 55% sensitivity (95% CI 36-74) at 85% specificity (95% CI 80-89%) using a 2% variant allele frequency threshold. In the NMIBC surveillance setting, the detection of non-coding mutations in urine in the absence of clinically detectable disease was associated with an increased relative risk of future recurrence (RR = 4.62 (95% CI 3.75-5.48)). As urinary biomarkers, non-coding hotspot mutations behave similarly to driver mutations in BC-associated genes and could be included in biomarker panels for BC detection.
Collapse
Affiliation(s)
- L Baxter
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - N S Gordon
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - S Ott
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
- University of Warwick Medical School, University of Warwick, Coventry, UK
| | - J Wang
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - P Patel
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - A Goel
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - K Piechocki
- Nonacus Ltd, Birmingham Research Park, Birmingham, UK
| | - L Silcock
- Nonacus Ltd, Birmingham Research Park, Birmingham, UK
| | - C Sale
- Nonacus Ltd, Birmingham Research Park, Birmingham, UK
| | - M P Zeegers
- Department of Epidemiology, Care and Public Health Research Institute, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - K K Cheng
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N D James
- Institute of Cancer Research, London, UK
| | - R T Bryan
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - D G Ward
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
28
|
Fukano M, Alzial G, Lambert R, Deblois G. Profiling the Epigenetic Landscape of the Tumor Microenvironment Using Chromatin Immunoprecipitation Sequencing. Methods Mol Biol 2023; 2614:313-348. [PMID: 36587133 DOI: 10.1007/978-1-0716-2914-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer cells within a tumor exhibit phenotypic plasticity that allows adaptation and survival in hostile tumor microenvironments. Reprogramming of epigenetic landscapes can support tumor progression within a specific microenvironment by influencing chromatin accessibility and modulating cell identity. The profiling of epigenetic landscapes within various tumor cell populations has significantly improved our understanding of tumor progression and plasticity. This protocol describes an integrated approach using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) optimized to profile genome-wide post-translational modifications of histone tails in tumors. Essential tools amenable to ChIP-seq to isolate tumor cell populations of interest from the tumor microenvironment are also presented to provide a comprehensive approach to perform heterogeneous epigenetic landscape profiling of the tumor microenvironment.
Collapse
Affiliation(s)
- Marina Fukano
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Gabriel Alzial
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
| | - Raphaëlle Lambert
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada
| | - Geneviève Deblois
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada.
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC, Canada.
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Faculty of Pharmacy, University of Montréal, Montréal, QC, Canada.
| |
Collapse
|
29
|
Zheng X, Li F, Zhao H, Tang Y, Xue K, Zhang X, Liang W, Zhao R, Lv X, Song X, Zhang C, Xu Y, Zhang Y. A novel method to identify and characterize personalized functional driver lncRNAs in cancer samples. Comput Struct Biotechnol J 2023; 21:2471-2482. [PMID: 37077174 PMCID: PMC10106482 DOI: 10.1016/j.csbj.2023.03.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Cancer is a highly heterogeneous disease, and different individuals of the same cancer type can display different therapeutic effects and prognosis. Genetic variation of long non-coding RNA is the key factor driving tumor development, and plays an important role in genetic and biological heterogeneity. Therefore, it is of great significance to identify lncRNA as a driving factor in the non-coding region and explain its function in tumors for revealing the pathogenesis of cancer. In this study, we developed an integrated method to identify Personalized Functional Driver lncRNAs (PFD-lncRNAs) by integrating the DNA copy number data, gene expression data, and the biological subpathways information. Then, we applied the method to identify 2695 PFD-lncRNAs in 5334 samples across 19 cancer types. We performed an analysis of the association between PFD-lncRNAs and drug sensitivity, which provides medication guidance in disease therapy and drug discovery in the individual. Our research is of great significance for elucidating the biological roles of lncRNA genetic variation in cancer, revealing the related mechanism of cancer, and providing novel insights for individualized medicine.
Collapse
|
30
|
Marra A, Trapani D, Ferraro E, Curigliano G. Mechanisms of Endocrine Resistance in Hormone Receptor-Positive Breast Cancer. Cancer Treat Res 2023; 188:219-235. [PMID: 38175348 DOI: 10.1007/978-3-031-33602-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) accounts for approximately 70% of all breast invasive tumors. Endocrine therapy (ET) represents the standard treatment for HR + BC. Most patients, however, eventually develop resistance to ET, which limits their effectiveness and poses a major challenge for the management of HR + BC. Several mechanisms that contribute to ET resistance have been described. One of the most common mechanisms is the upregulation of alternative signaling pathways that can bypass estrogen dependency, such as activation of the PI3K/Akt/mTOR as well as mitogen-activated protein kinase (MAPK) and the insulin-like growth factor 1 receptor (IGF-1R) pathways. Another common mechanism of endocrine resistance is the acquisition of activating mutations of ESR1, which encodes for the estrogen receptor, that lead to structural changes of the receptor, prevent the binding to anti-estrogen drugs and result in constitutive activation of the receptor, even in the absence of estrogens. Epigenetic changes, such as DNA methylation and histone modifications, can also contribute to ET resistance by altering the expression of genes that are involved in estrogen signaling. Understanding the mechanisms of resistance to ET is crucial for the development of new therapies that can overcome resistance and improve outcomes for patients with HR + BC.
Collapse
Affiliation(s)
- Antonio Marra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.
| | - Dario Trapani
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Emanuela Ferraro
- Breast Cancer Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Mouron S, Bueno MJ, Lluch A, Manso L, Calvo I, Cortes J, Garcia-Saenz JA, Gil-Gil M, Martinez-Janez N, Apala JV, Caleiras E, Ximénez-Embún P, Muñoz J, Gonzalez-Cortijo L, Murillo R, Sánchez-Bayona R, Cejalvo JM, Gómez-López G, Fustero-Torre C, Sabroso-Lasa S, Malats N, Martinez M, Moreno A, Megias D, Malumbres M, Colomer R, Quintela-Fandino M. Phosphoproteomic analysis of neoadjuvant breast cancer suggests that increased sensitivity to paclitaxel is driven by CDK4 and filamin A. Nat Commun 2022; 13:7529. [PMID: 36477027 PMCID: PMC9729295 DOI: 10.1038/s41467-022-35065-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Precision oncology research is challenging outside the contexts of oncogenic addiction and/or targeted therapies. We previously showed that phosphoproteomics is a powerful approach to reveal patient subsets of interest characterized by the activity of a few kinases where the underlying genomics is complex. Here, we conduct a phosphoproteomic screening of samples from HER2-negative female breast cancer receiving neoadjuvant paclitaxel (N = 130), aiming to find candidate biomarkers of paclitaxel sensitivity. Filtering 11 candidate biomarkers through 2 independent patient sets (N = 218) allowed the identification of a subgroup of patients characterized by high levels of CDK4 and filamin-A who had a 90% chance of achieving a pCR in response to paclitaxel. Mechanistically, CDK4 regulates filamin-A transcription, which in turn forms a complex with tubulin and CLIP-170, which elicits increased binding of paclitaxel to microtubules, microtubule acetylation and stabilization, and mitotic catastrophe. Thus, phosphoproteomics allows the identification of explainable factors for predicting response to paclitaxel.
Collapse
Affiliation(s)
- S Mouron
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M J Bueno
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - A Lluch
- Medical Oncology Department, Hospital Clínico Universitario, Valencia, Spain
| | - L Manso
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - I Calvo
- Medical Oncology Department MD, Anderson Cancer Center Madrid, Madrid, Spain
| | - J Cortes
- International Breast Cancer Center Quiron Group, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Hospital, Barcelona, Spain
| | - J A Garcia-Saenz
- Medical Oncology Department, Hospital Clinico San Carlos, Madrid, Spain
| | - M Gil-Gil
- Medical Oncoogy Department Institut, Catala d'Oncologia-IDIBELL L'Hospitalet de, Llobregat, Spain
| | - N Martinez-Janez
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - J V Apala
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - E Caleiras
- Histopathology Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - J Muñoz
- Proteomics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - L Gonzalez-Cortijo
- Medical Oncology Department, Hospital Universitario Quironsalud, Madrid, Spain
| | - R Murillo
- Pathology Department, Hospital Universitario Quironsalud, Madrid, Spain
| | - R Sánchez-Bayona
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - J M Cejalvo
- Medical Oncology Department, Hospital Clínico Universitario, Valencia, Spain
| | - G Gómez-López
- Bioinformatics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - C Fustero-Torre
- Bioinformatics Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - S Sabroso-Lasa
- Genetic & Molecular Epidemiology Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - N Malats
- Genetic & Molecular Epidemiology Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M Martinez
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Moreno
- Pathology Department, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - D Megias
- Confocal Microscopy Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - M Malumbres
- Cell Division and Cancer Group Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain
| | - R Colomer
- Medical Oncology Department, Hospital Universitario La Princesa, Madrid, Spain
- Endowed Chair of Personalized Precision Medicine Universidad Autonoma de Madrid (UAM) - Fundacion Instituto Roche, Madrid, Spain
| | - M Quintela-Fandino
- Breast Cancer Clinical Research Unit Centro Nacional de Investigaciones Oncológicas - CNIO, Madrid, Spain.
- Endowed Chair of Personalized Precision Medicine Universidad Autonoma de Madrid (UAM) - Fundacion Instituto Roche, Madrid, Spain.
| |
Collapse
|
32
|
Fonseca-Montaño MA, Blancas S, Herrera-Montalvo LA, Hidalgo-Miranda A. Cancer Genomics. Arch Med Res 2022; 53:723-731. [PMID: 36460546 DOI: 10.1016/j.arcmed.2022.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
In the past decade, genomics has fundamentally changed our view of cancer biology, allowing comprehensive analyses of mutations, copy number alterations, structural variants, gene expression and DNA methylation profiles in large-scale studies across different cancer types. Efforts like The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) have fostered international collaborations for cancer genomic analyses and have generated public databases that give scientists around the world access to thoroughly curated data, which have been extensively used as a tool for further hypothesis driven research on several aspects of cancer biology. In parallel, some of these findings are being translated into specific clinical benefits for cancer patients. In this review, we provide a brief historical description of the evolution of international public cancer genome projects and related databases, as well as we discuss about their impact on general cancer research.
Collapse
Affiliation(s)
- Marco A Fonseca-Montaño
- Instituto Nacional de Medicina Genómica, Ciudad de México, México; Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Susana Blancas
- Instituto Nacional de Medicina Genómica, Ciudad de México, México; Cátedras Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México; Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | - Alfredo Hidalgo-Miranda
- Instituto Nacional de Medicina Genómica, Ciudad de México, México; Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México, México.
| |
Collapse
|
33
|
Castro-Mondragon JA, Aure M, Lingjærde O, Langerød A, Martens JWM, Børresen-Dale AL, Kristensen V, Mathelier A. Cis-regulatory mutations associate with transcriptional and post-transcriptional deregulation of gene regulatory programs in cancers. Nucleic Acids Res 2022; 50:12131-12148. [PMID: 36477895 PMCID: PMC9757053 DOI: 10.1093/nar/gkac1143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Most cancer alterations occur in the noncoding portion of the human genome, where regulatory regions control gene expression. The discovery of noncoding mutations altering the cells' regulatory programs has been limited to few examples with high recurrence or high functional impact. Here, we show that transcription factor binding sites (TFBSs) have similar mutation loads to those in protein-coding exons. By combining cancer somatic mutations in TFBSs and expression data for protein-coding and miRNA genes, we evaluate the combined effects of transcriptional and post-transcriptional alterations on the regulatory programs in cancers. The analysis of seven TCGA cohorts culminates with the identification of protein-coding and miRNA genes linked to mutations at TFBSs that are associated with a cascading trans-effect deregulation on the cells' regulatory programs. Our analyses of cis-regulatory mutations associated with miRNAs recurrently predict 12 mature miRNAs (derived from 7 precursors) associated with the deregulation of their target gene networks. The predictions are enriched for cancer-associated protein-coding and miRNA genes and highlight cis-regulatory mutations associated with the dysregulation of key pathways associated with carcinogenesis. By combining transcriptional and post-transcriptional regulation of gene expression, our method predicts cis-regulatory mutations related to the dysregulation of key gene regulatory networks in cancer patients.
Collapse
Affiliation(s)
- Jaime A Castro-Mondragon
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Gaustadalléen 23 B, N-0373 Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Ullernchausseen 70, N-0372 Oslo, Norway
| | - Anita Langerød
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - John W M Martens
- Erasmus MC Cancer Institute and Cancer Genomics Netherlands, University Medical Center Rotterdam, Department of Medical Oncology, 3015GD Rotterdam, The Netherlands
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Sherman MA, Yaari AU, Priebe O, Dietlein F, Loh PR, Berger B. Genome-wide mapping of somatic mutation rates uncovers drivers of cancer. Nat Biotechnol 2022; 40:1634-1643. [PMID: 35726091 PMCID: PMC9646522 DOI: 10.1038/s41587-022-01353-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/10/2022] [Indexed: 01/12/2023]
Abstract
Identification of cancer driver mutations that confer a proliferative advantage is central to understanding cancer; however, searches have often been limited to protein-coding sequences and specific non-coding elements (for example, promoters) because of the challenge of modeling the highly variable somatic mutation rates observed across tumor genomes. Here we present Dig, a method to search for driver elements and mutations anywhere in the genome. We use deep neural networks to map cancer-specific mutation rates genome-wide at kilobase-scale resolution. These estimates are then refined to search for evidence of driver mutations under positive selection throughout the genome by comparing observed to expected mutation counts. We mapped mutation rates for 37 cancer types and applied these maps to identify putative drivers within intronic cryptic splice regions, 5' untranslated regions and infrequently mutated genes. Our high-resolution mutation rate maps, available for web-based exploration, are a resource to enable driver discovery genome-wide.
Collapse
Affiliation(s)
- Maxwell A Sherman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam U Yaari
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Center for Brains, Minds and Machines of MIT and Harvard, Cambridge, MA, USA
| | - Oliver Priebe
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Dietlein
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
35
|
Nardone A, Qiu X, Spisak S, Nagy Z, Feiglin A, Feit A, Cohen Feit G, Xie Y, Font-Tello A, Guarducci C, Hermida-Prado F, Syamala S, Lim K, Munoz Gomez M, Pun M, Cornwell M, Liu W, Ors A, Mohammed H, Cejas P, Brock JB, Freedman ML, Winer EP, Fu X, Schiff R, Long HW, Metzger Filho O, Jeselsohn R. A Distinct Chromatin State Drives Therapeutic Resistance in Invasive Lobular Breast Cancer. Cancer Res 2022; 82:3673-3686. [PMID: 35950920 PMCID: PMC9588703 DOI: 10.1158/0008-5472.can-21-3186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
Most invasive lobular breast cancers (ILC) are of the luminal A subtype and are strongly hormone receptor-positive. Yet, ILC is relatively resistant to tamoxifen and associated with inferior long-term outcomes compared with invasive ductal cancers (IDC). In this study, we sought to gain mechanistic insights into these clinical findings that are not explained by the genetic landscape of ILC and to identify strategies to improve patient outcomes. A comprehensive analysis of the epigenome of ILC in preclinical models and clinical samples showed that, compared with IDC, ILC harbored a distinct chromatin state linked to gained recruitment of FOXA1, a lineage-defining pioneer transcription factor. This resulted in an ILC-unique FOXA1-estrogen receptor (ER) axis that promoted the transcription of genes associated with tumor progression and poor outcomes. The ILC-unique FOXA1-ER axis led to retained ER chromatin binding after tamoxifen treatment, which facilitated tamoxifen resistance while remaining strongly dependent on ER signaling. Mechanistically, gained FOXA1 binding was associated with the autoinduction of FOXA1 in ILC through an ILC-unique FOXA1 binding site. Targeted silencing of this regulatory site resulted in the disruption of the feed-forward loop and growth inhibition in ILC. In summary, ILC is characterized by a unique chromatin state and FOXA1-ER axis that is associated with tumor progression, offering a novel mechanism of tamoxifen resistance. These results underscore the importance of conducting clinical trials dedicated to patients with ILC in order to optimize treatments in this breast cancer subtype. SIGNIFICANCE A unique FOXA1-ER axis in invasive lobular breast cancer promotes disease progression and tamoxifen resistance, highlighting a potential therapeutic avenue for clinical investigations dedicated to this disease. See related commentary by Blawski and Toska, p. 3668.
Collapse
Affiliation(s)
- Agostina Nardone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsuzsanna Nagy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Avery Feit
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gabriela Cohen Feit
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alba Font-Tello
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Francisco Hermida-Prado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sudeepa Syamala
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Klothilda Lim
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Miguel Munoz Gomez
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew Pun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - MacIntosh Cornwell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Weihan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aysegul Ors
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon
| | - Hisham Mohammed
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jane B Brock
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eric P Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Otto Metzger Filho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Lüchtenborg AM, Metzger P, Cosenza Contreras M, Oria V, Biniossek ML, Lindner F, Fröhlich K, Malyi A, Erbes T, Gensch N, Maurer J, Thomsen A, Boerries M, Schilling O, Werner M, Bronsert P. Krüppel-like factor 7 influences translation and pathways involved in ribosomal biogenesis in breast cancer. BREAST CANCER RESEARCH : BCR 2022; 24:65. [PMID: 36192788 PMCID: PMC9531505 DOI: 10.1186/s13058-022-01562-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
Background Ribosomal biogenesis and ribosomal proteins have attracted attention in the context of tumor biology in recent years. Instead of being mere translational machineries, ribosomes might play an active role in tumor initiation and progression. Despite its importance, regulation of ribosomal biogenesis is still not completely understood.
Methods Using Gene Set Enrichment Analysis of RNA sequencing and proteomical mass spectrometry data in breast cancer cells expressing Krüppel-like factor 7 (KLF7), we identified processes altered by this transcription factor. In silico analyses of a cohort of breast cancer patients in The Cancer Genome Atlas confirmed our finding. We further verified the role of KLF7 the identified ribosomal processes in in vitro assays of mammary carcinoma cell lines and analyses of breast cancer patients’ tissue slices.
Results We identified the transcription factor Krüppel-like factor 7 (KLF7) as a regulator of ribosomal biogenesis and translation in breast cancer cells and tissue. Highly significant overlapping processes related to ribosomal biogenesis were identified in proteomics and transcriptomics data and confirmed in patients’ breast cancer RNA Seq data. Further, nucleoli, the sites of ribosomal biogenesis, were morphologically altered and quantitatively increased in KLF7-expressing cells. Pre-rRNA processing was identified as one potential process affected by KLF7. In addition, an increase in global translation independent from proliferation and transcription was observed upon exogenous KLF7 expression in vitro. Importantly, in a cohort of breast cancer patients, KLF7-expression levels correlated with aggressiveness of the intrinsic breast cancer subtype and tumor grading. Moreover, KLF7 correlated with nucleolar characteristics in human breast tumor tissue, indicating a role for KLF7 in ribosomal biogenesis. Conclusion In mammary carcinoma, KLF7 is involved in ribosomal biogenesis. Alterations of ribosomal biogenesis has far reaching quantitative and qualitative implications for the proteome of the cancer cells. This might influence the aggressiveness of cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01562-8.
Collapse
Affiliation(s)
- Anne-Marie Lüchtenborg
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Metzger
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Miguel Cosenza Contreras
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Victor Oria
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Lindner
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klemens Fröhlich
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ambrus Malyi
- 2Nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Nicole Gensch
- Core Facility Signaling Factory, BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), Aachen, Germany
| | - Andreas Thomsen
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and Cancer Research Center (DKFZ), Heidelberg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,Core Facility for Histopathology and Digital Pathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) Partner Site Freiburg and Cancer Research Center (DKFZ), Heidelberg, Germany. .,Core Facility for Histopathology and Digital Pathology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
37
|
Bahl S, Carroll JS, Lupien M. Chromatin Variants Reveal the Genetic Determinants of Oncogenesis in Breast Cancer. Cold Spring Harb Perspect Med 2022; 12:a041322. [PMID: 36041880 PMCID: PMC9524388 DOI: 10.1101/cshperspect.a041322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Breast cancer presents as multiple distinct disease entities. Each tumor harbors diverse cell populations defining a phenotypic heterogeneity that impinges on our ability to treat patients. To date, efforts mainly focused on genetic variants to find drivers of inter- and intratumor phenotypic heterogeneity. However, these efforts have failed to fully capture the genetic basis of breast cancer. Through recent technological and analytical approaches, the genetic basis of phenotypes can now be decoded by characterizing chromatin variants. These variants correspond to polymorphisms in chromatin states at DNA sequences that serve a distinct role across cell populations. Here, we review the function and causes of chromatin variants as they relate to breast cancer inter- and intratumor heterogeneity and how they can guide the development of treatment alternatives to fulfill the goal of precision cancer medicine.
Collapse
Affiliation(s)
- Shalini Bahl
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| |
Collapse
|
38
|
Martinez-Fundichely A, Dixon A, Khurana E. Modeling tissue-specific breakpoint proximity of structural variations from whole-genomes to identify cancer drivers. Nat Commun 2022; 13:5640. [PMID: 36163358 PMCID: PMC9512825 DOI: 10.1038/s41467-022-32945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 08/24/2022] [Indexed: 11/11/2022] Open
Abstract
Structural variations (SVs) in cancer cells often impact large genomic regions with functional consequences. However, identification of SVs under positive selection is a challenging task because little is known about the genomic features related to the background breakpoint distribution in different cancers. We report a method that uses a generalized additive model to investigate the breakpoint proximity curves from 2,382 whole-genomes of 32 cancer types. We find that a multivariate model, which includes linear and nonlinear partial contributions of various tissue-specific features and their interaction terms, can explain up to 57% of the observed deviance of breakpoint proximity. In particular, three-dimensional genomic features such as topologically associating domains (TADs), TAD-boundaries and their interaction with other features show significant contributions. The model is validated by identification of known cancer genes and revealed putative drivers in cancers different than those with previous evidence of positive selection.
Collapse
Affiliation(s)
- Alexander Martinez-Fundichely
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Austin Dixon
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Children's National Hospital, Washington, DC, 20010, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
39
|
The Long and the Short of It: NEAT1 and Cancer Cell Metabolism. Cancers (Basel) 2022; 14:cancers14184388. [PMID: 36139550 PMCID: PMC9497099 DOI: 10.3390/cancers14184388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Altered metabolism is a hallmark of most cancers. The way that cancer cells regulate their energy production to fuel constant proliferation has been of interest with the hope that it may be exploited therapeutically. The long noncoding RNA, NEAT1, is often dysregulated in tumours. NEAT1 RNA can be transcribed as two isoforms with different lengths, with each variant responsible for different functions. This review explores how the isoforms contribute to cancer metabolism. Abstract The long noncoding RNA NEAT1 is known to be heavily dysregulated in many cancers. A single exon gene produces two isoforms, NEAT1_1 and NEAT1_2, through alternative 3′-end processing. As the longer isoform, NEAT1_2 is an essential scaffold for nuclear paraspeckle formation. It was previously thought that the short NEAT1_1 isoform only exists to keep the NEAT1 locus active for rapid paraspeckle formation. However, a recent glycolysis-enhancing function for NEAT1_1, contributing to cancer cell proliferation and the Warburg effect, has been demonstrated. Previous studies have mainly focused on quantifying total NEAT1 and NEAT1_2 expression levels. However, in light of the NEAT1_1 role in cancer cell metabolism, the contribution from specific NEAT1 isoforms is no longer clear. Here, the roles of NEAT1_1 and NEAT1_2 in metabolism and cancer progression are discussed.
Collapse
|
40
|
Song H, Liu Y, Tan Y, Zhang Y, Jin W, Chen L, Wu S, Yan J, Li J, Chen Z, Chen S, Wang K. Recurrent noncoding somatic and germline WT1 variants converge to disrupt MYB binding in acute promyelocytic leukemia. Blood 2022; 140:1132-1144. [PMID: 35653587 PMCID: PMC9461475 DOI: 10.1182/blood.2021014945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Genetic alternations can occur at noncoding regions, but how they contribute to cancer pathogenesis is poorly understood. Here, we established a mutational landscape of cis-regulatory regions (CREs) in acute promyelocytic leukemia (APL) based on whole-genome sequencing analysis of paired tumor and germline samples from 24 patients and epigenetic profiling of 16 patients. Mutations occurring in CREs occur preferentially in active enhancers bound by the complex of master transcription factors in APL. Among significantly enriched mutated CREs, we found a recurrently mutated region located within the third intron of WT1, an essential regulator of normal and malignant hematopoiesis. Focusing on noncoding mutations within this WT1 intron, an analysis on 169 APL patients revealed that somatic mutations were clustered into a focal hotspot region, including one site identified as a germline polymorphism contributing to APL risk. Significantly decreased WT1 expression was observed in APL patients bearing somatic and/or germline noncoding WT1 variants. Furthermore, biallelic WT1 inactivation was recurrently found in APL patients with noncoding WT1 variants, which resulted in the complete loss of WT1. The high incidence of biallelic inactivation suggested the tumor suppressor activity of WT1 in APL. Mechanistically, noncoding WT1 variants disrupted MYB binding on chromatin and suppressed the enhancer activity and WT1 expression through destroying the chromatin looping formation. Our study highlights the important role of noncoding variants in the leukemogenesis of APL.
Collapse
Affiliation(s)
- Huan Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yabin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Li Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsong Yan
- Department of Hematology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| |
Collapse
|
41
|
Roostaee A, Soleimani M, Younesi L, Poornia SM, Lima ZS. Determining the relative frequency of ultrasound findings in women under 30 years of age with a breast mass. J Family Med Prim Care 2022; 11:5442-5446. [PMID: 36505614 PMCID: PMC9730956 DOI: 10.4103/jfmpc.jfmpc_2171_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/05/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Mammography and ultrasound are the most reliable and common imaging techniques for early detection of breast mass. The aim of this study was to determine the relative frequency of ultrasound findings in women under 30 years of age by a feeling of mass in the breast. Methods This cross-sectional study was performed on women under 30 years of age with a feeling of mass in the breast. The result evaluated in this study was the final opinion of the radiologist on the ultrasound report, which was expressed in the form of Breast imaging-reporting and data system (BIRADS) based on one to five scores. Ultrasound status of patients was reported to be normal, fibrocystic changes, and tumors (solid-cystic-mixed). The obtained data were analyzed using SPSS statistical software version 23. Significance level was considered to be < 0.05. Results The most common reason for referral was palpable mass in the left breast (56.2%). The shape of the mass was oval in most cases (91.2%). The highest frequency in terms of mass margin was related to Macrolobulated (82.4%), Hypoechoic (85%), and Solid (87.6%). Most of masses belonged to 12 o'clock (21.2%). According to the standard sonography report based on BIRADS, the highest frequency belonged to B4a (57.5%). Pathology report showed that the highest frequency was related to fibroadenoma (71.4%). Conclusion Considering that most of the cases in this research with a feeling of mass in the breast in women under 30 years of age were BIRADS 4, and among the cases that underwent biopsy, 14.5% were diagnosed with cancer pathology. Therefore, ultrasound examination is very important in these cases, even at a young age.
Collapse
Affiliation(s)
- Ayda Roostaee
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran
| | - Mahseta Soleimani
- Department of Radiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ladan Younesi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran
| | - Sepideh Mirani Poornia
- Department of Radiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Zeinab Safarpour Lima
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran,Address for correspondence: Dr. Zeinab Safarpour Lima, Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran. E-mail:
| |
Collapse
|
42
|
Goenka A, Tiek DM, Song X, Iglesia RP, Lu M, Hu B, Cheng SY. The Role of Non-Coding RNAs in Glioma. Biomedicines 2022; 10:2031. [PMID: 36009578 PMCID: PMC9405925 DOI: 10.3390/biomedicines10082031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
For decades, research in cancer biology has been focused on the protein-coding fraction of the human genome. However, with the discovery of non-coding RNAs (ncRNAs), it has become known that these entities not only function in numerous fundamental life processes such as growth, differentiation, and development, but also play critical roles in a wide spectrum of human diseases, including cancer. Dysregulated ncRNA expression is found to affect cancer initiation, progression, and therapy resistance, through transcriptional, post-transcriptional, or epigenetic processes in the cell. In this review, we focus on the recent development and advances in ncRNA biology that are pertinent to their role in glioma tumorigenesis and therapy response. Gliomas are common, and are the most aggressive type of primary tumors, which account for ~30% of central nervous system (CNS) tumors. Of these, glioblastoma (GBM), which are grade IV tumors, are the most lethal brain tumors. Only 5% of GBM patients survive beyond five years upon diagnosis. Hence, a deeper understanding of the cellular non-coding transcriptome might help identify biomarkers and therapeutic agents for a better treatment of glioma. Here, we delve into the functional roles of microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) in glioma tumorigenesis, discuss the function of their extracellular counterparts, and highlight their potential as biomarkers and therapeutic agents in glioma.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deanna Marie Tiek
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rebeca Piatniczka Iglesia
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Master of Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
43
|
Bartl J, Zanini M, Bernardi F, Forget A, Blümel L, Talbot J, Picard D, Qin N, Cancila G, Gao Q, Nath S, Koumba IM, Wolter M, Kuonen F, Langini M, Beez T, Munoz C, Pauck D, Marquardt V, Yu H, Souphron J, Korsch M, Mölders C, Berger D, Göbbels S, Meyer FD, Scheffler B, Rotblat B, Diederichs S, Ramaswamy V, Suzuki H, Oro A, Stühler K, Stefanski A, Fischer U, Leprivier G, Willbold D, Steger G, Buell A, Kool M, Lichter P, Pfister SM, Northcott PA, Taylor MD, Borkhardt A, Reifenberger G, Ayrault O, Remke M. The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nat Commun 2022; 13:4061. [PMID: 35831316 PMCID: PMC9279496 DOI: 10.1038/s41467-022-31574-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Most lncRNAs display species-specific expression patterns suggesting that animal models of cancer may only incompletely recapitulate the regulatory crosstalk between lncRNAs and oncogenic pathways in humans. Among these pathways, Sonic Hedgehog (SHH) signaling is aberrantly activated in several human cancer entities. We unravel that aberrant expression of the primate-specific lncRNA HedgeHog Interacting Protein-AntiSense 1 (HHIP-AS1) is a hallmark of SHH-driven tumors including medulloblastoma and atypical teratoid/rhabdoid tumors. HHIP-AS1 is actively transcribed from a bidirectional promoter shared with SHH regulator HHIP. Knockdown of HHIP-AS1 induces mitotic spindle deregulation impairing tumorigenicity in vitro and in vivo. Mechanistically, HHIP-AS1 binds directly to the mRNA of cytoplasmic dynein 1 intermediate chain 2 (DYNC1I2) and attenuates its degradation by hsa-miR-425-5p. We uncover that neither HHIP-AS1 nor the corresponding regulatory element in DYNC1I2 are evolutionary conserved in mice. Taken together, we discover an lncRNA-mediated mechanism that enables the pro-mitotic effects of SHH pathway activation in human tumors. Long non-coding RNAs (lncRNAs) can contribute to cancers that are driven by Sonic hedgehog (SHH) signaling. Here the authors report that lncRNA HHIP-AS1 stabilises the mRNA of dynein complex 1, thereby, promoting the pro-mitotic effects of SHH-driven tumors.
Collapse
Affiliation(s)
- Jasmin Bartl
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Group for Interdisciplinary Neurobiology and Immunology-INI-research, Institute of Zoology University of Hamburg, Hamburg, Germany.
| | - Marco Zanini
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Flavia Bernardi
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Antoine Forget
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Lena Blümel
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Julie Talbot
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Daniel Picard
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Nan Qin
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gabriele Cancila
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Qingsong Gao
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Soumav Nath
- Institut für Physikalische Biologie and Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany.,IBI- (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, Jülich, Germany
| | - Idriss Mahoungou Koumba
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - François Kuonen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, CH- Lausanne, Lausanne, Switzerland
| | - Maike Langini
- Institute for Molecular Medicine, Proteome Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Beez
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christopher Munoz
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - David Pauck
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Viktoria Marquardt
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Hua Yu
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Judith Souphron
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Mascha Korsch
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Christina Mölders
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Daniel Berger
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Sarah Göbbels
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Frauke-Dorothee Meyer
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Björn Scheffler
- DKFZ Division of Translational Neurooncology at the West German Cancer Center (WTZ), DKTK, partner site University Hospital Essen, Düsseldorf, Germany
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, DKTK, partner site Freiburg, Freiburg i.Br, Germany.,Division of RNA Biology & Cancer, DKFZ, Heidelberg, Germany
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hiromishi Suzuki
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anthony Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Dermatology, Stanford University, Stanford, CA, USA
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie and Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany.,IBI- (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, Jülich, Germany
| | - Gerhard Steger
- Institut für Physikalische Biologie and Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marcel Kool
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France.
| | - Marc Remke
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
44
|
Mohammed Alwan A, Tavakol Afshari J, Afzaljavan F. Significance of the Estrogen Hormone and Single Nucleotide Polymorphisms in the Progression of Breast Cancer among Female. ARCHIVES OF RAZI INSTITUTE 2022; 77:943-958. [PMID: 36618302 PMCID: PMC9759246 DOI: 10.22092/ari.2022.357629.2077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/16/2022] [Indexed: 01/10/2023]
Abstract
Breast cancer is one of the most frequent types of malignancies among women and is internationally recognized as the main reason for cancer-caused mortality. Most breast tumors are heterogeneous and genetically complicated due to the involvement of several genes. Therefore, it is clinically important to study genetic variants that increase the risk of breast cancer. It is identified that the presence of polymorphisms in genes encoding regulatory hormones is linked to a higher risk of breast cancer. Additionally, circulating estrogen levels are connected to aromatase (CYP19A1) genes, which is a recognized risk factor for breast cancer progression. In this paper, the authors present a review study on the effect of estrogen and its Single Nucleotide Polymorphisms (SNPs) in the occurrence of breast cancer. This review mainly aimed to find out the connection between CYP19A1 gene variations and the risk of breast cancer, as well as its clinical characteristics and prognosis. Due to the highly special activity of the CYP19A1 enzyme in steroid production, suppression of the targeted CYP19A1 is a focused medication for breast cancer patients, which has only minor adverse effects. Numerous clinical trials over the last decade have shown that Aromatase inhibitors (AIs) not only outperform tamoxifen in terms of effectiveness but also have a lower adverse effect profile. The AI is now widely accepted as a routine therapy option for postmenopausal females with Estrogen receptor-positive (ER+) breast cancer. Furthermore, not only dysregulation of gene expression in different genes related to distinguished pathways, such as estrogen metabolism, is essential in the progression of breast cancer but also particular SNPs can play an essential role in particular genes, such as CYP19A1. Different studies have demonstrated that these SNPs can be located in different sites of these genes, which are collected in this review. In a nutshell, more specific clinical trials are required to demonstrate the precise meditative role of anti-estrogen drugs in the treatment of ER+ breast cancer patients. Furthermore, more genotype analyses are needed to confirm the role of SNPs in the progression of breast cancer.
Collapse
Affiliation(s)
- A Mohammed Alwan
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,
Department of Pathological Analysis Techniques, Advanced Research Center, Al-Kut University College, Kut, Iraq
| | - J Tavakol Afshari
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - F Afzaljavan
- Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
45
|
Hussein NH, Eissa RA, de Bruyn M, El Tayebi HM. NEAT1: Culprit lncRNA linking PIG-C, MSLN, and CD80 in triple-negative breast cancer. Life Sci 2022; 299:120523. [PMID: 35378140 DOI: 10.1016/j.lfs.2022.120523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women. Despite the effectiveness of conventional therapies, they cause detrimental side effects. Glycosyl-Phosphatidyl-Inositol (GPI) pathway is a conserved pathway that culminates in the generation of GPI anchored proteins (GPI-AP). Phosphatidyl-Inositol-Glycan Biosynthesis Class C (PIG-C) is the first step in GPI pathway and upon its overexpression, Mesothelin (MSLN); an oncogenic GPI-AP, expression is induced. Therefore, blocking GPI pathway is a potential therapy through which multiple pathways can be rectified. Recombinant GPI-CD80 proved to be a potent immunostimulatory protein and currently being evaluated as tumor vaccine. In fact, CD80 is a unique immunomodulator that binds to CD28, CTLA-4 and PD-L1. Furthermore, research advancement showed that non-coding RNAs (ncRNAs) are key epigenetic modulators. Therefore, epigenetic tuning of GPI-APs remains an unexplored area. This study aims at investigating the potential role of ncRNAs in regulating MSLN, PIG-C and CD80 in BC. METHODS Potential ncRNAs were filtered by bioinformatics algorithms. MDA-MB-231 cells were transfected with RNA oligonucleotides. Surface CD80 and MSLN were assessed by FACS and immunofluorescence. Gene expression was tested by q-PCR. RESULTS PIG-C gene was overexpressed in TNBC and its manipulation altered MSLN surface level. Aligning with bioinformatics analysis, miR-2355 manipulated PIG-C and MSLN expression, while miR-455 manipulated CD80 expression. NEAT1 sponged both miRNAs. Paradoxically, NEAT1 lowered PIG-C gene expression while increased MSLN gene expression. CONCLUSION This study unravels novel immunotherapeutic targets for TNBC. NEAT1 is potential immunomodulator by sponging several miRNAs. Finally, this study highlights GPI pathway applications, therefore integrating epigenetics, post-translational modifications and immunomodulation.
Collapse
Affiliation(s)
- Nada H Hussein
- Molecular Pharmacology Research Group, German University in Cairo, Egypt
| | - Reda A Eissa
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - M de Bruyn
- Obstrectics and Gynecology, University Hospital Groningen (UMCG), Groningen, Netherlands
| | - Hend M El Tayebi
- Molecular Pharmacology Research Group, German University in Cairo, Egypt.
| |
Collapse
|
46
|
Arruabarrena-Aristorena A, Toska E. Epigenetic Mechanisms Influencing Therapeutic Response in Breast Cancer. Front Oncol 2022; 12:924808. [PMID: 35774123 PMCID: PMC9239340 DOI: 10.3389/fonc.2022.924808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
The majority of breast cancers are estrogen receptor (ER)+ and agents targeting the ER signaling pathway have markedly increased survival for women with breast cancer for decades. However, therapeutic resistance eventually emerges, especially in the metastatic setting. In the past decade disrupted epigenetic regulatory processes have emerged as major contributors to carcinogenesis in many cancer types. Aberrations in chromatin modifiers and transcription factors have also been recognized as mediators of breast cancer development and therapeutic outcome, and new epigenetic-based therapies in combination with targeted therapies have been proposed. Here we will discuss recent progress in our understanding of the chromatin-based mechanisms of breast tumorigenesis, how these mechanisms affect therapeutic response to standard of care treatment, and discuss new strategies towards therapeutic intervention to overcome resistance.
Collapse
Affiliation(s)
- Amaia Arruabarrena-Aristorena
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Derio, Spain
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, United States
| |
Collapse
|
47
|
NEAT1 can be a diagnostic biomarker in the breast cancer and gastric cancer patients by targeting XIST, hsa-miR-612, and MTRNR2L8: integrated RNA targetome interaction and experimental expression analysis. Genes Environ 2022; 44:16. [PMID: 35581633 PMCID: PMC9112444 DOI: 10.1186/s41021-022-00244-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Background The most frequent malignancy in women is breast cancer (BC). Gastric cancer (GC) is also the leading cause of cancer-related mortality. Long non-coding RNAs (lncRNAs) are thought to be important neurotic regulators in malignant tumors. In this study, we aimed to evaluate the expression level of NEAT1 and the interaction of this non-coding RNA with correlated microRNAs, lncRNAs, and mRNAs or protein coding genes, experimentally and bioinformatically. Methods For the bioinformatics analyses, we performed RNA-RNA and protein–protein interaction analyses, using ENCORI and STRING. The expression analyses were performed by five tools: Microarray data analysis, TCGA data analysis (RNA-seq, R Studio), GEPIA2, ENCORI, and real-time PCR experiment. qRT-PCR experiment was performed on 50 GC samples and 50 BC samples, compared to adjacent control tissue. Results Based on bioinformatics and experimental analyses, lncRNA NEAT1 have a significant down-regulation in the breast cancer samples with tumor size lower than 2 cm. Also, it has a significant high expression in the gastric cancer patients. Furthermore, NEAT1 have a significant interaction with XIST, hsa-miR-612 and MTRNR2L8. High expression of NEAT1 have a correlation with the lower survival rate of breast cancer samples and higher survival rate of gastric cancer patients. Conclusion This integrated computational and experimental investigation revealed some new aspects of the lncRNA NEAT1 as a potential prognostic biomarker for the breast cancer and gastric cancer samples. Further investigations about NEA1 and correlated mRNAs, lncRNAs, and microRNAs – specially the mentioned RNAs in this study – can lead the researchers to more clear information about the role of NEAT1 in the breast cancer and gastric cancer.
Collapse
|
48
|
Malcolm JR, Leese NK, Lamond-Warner PI, Brackenbury WJ, White RJ. Widespread association of ERα with RMRP and tRNA genes in MCF-7 cells and breast cancers. Gene X 2022; 821:146280. [PMID: 35143945 PMCID: PMC8942118 DOI: 10.1016/j.gene.2022.146280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Estrogen receptor (ER) interacts with hundreds of tRNA genes (tDNAs) in MCF-7 cells. Hundreds of tDNAs are also targeted in primary breast tumours and metastases. Canonical estrogen response element is not found near top tDNA targets of ER. ER also targets non-coding breast cancer driver gene RMRP. ER also targets RN7SL1 gene that promotes breast cancer progression.
tRNA gene transcription by RNA polymerase III (Pol III) is a tightly regulated process, but dysregulated Pol III transcription is widely observed in cancers. Approximately 75% of all breast cancers are positive for expression of Estrogen Receptor alpha (ERα), which acts as a key driver of disease. MCF-7 cells rapidly upregulate tRNA gene transcription in response to estrogen and ChIP-PCR demonstrated ERα enrichment at tRNALeu and 5S rRNA genes in this breast cancer cell line. While these data implicate the ERα as a Pol III transcriptional regulator, how widespread this regulation is across the 631 tRNA genes has yet to be revealed. Through analyses of ERα ChIP-seq datasets, we show that ERα interacts with hundreds of tRNA genes, not only in MCF-7 cells, but also in primary human breast tumours and distant metastases. The extent of ERα association with tRNA genes varies between breast cancer cell lines and does not correlate with levels of ERα binding to its canonical target gene GREB1. Amongst other Pol III-transcribed genes, ERα is consistently enriched at the long non-coding RNA gene RMRP, a positive regulator of cell cycle progression that is subject to focal amplification in tumours. Another Pol III template targeted by ERα is the RN7SL1 gene, which is strongly implicated in breast cancer pathology by inducing inflammatory responses in tumours. Our data indicate that Pol III-transcribed non-coding genes should be added to the list of ERα targets in breast cancer.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | - Natasha K Leese
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | | | - William J Brackenbury
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | - Robert J White
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom.
| |
Collapse
|
49
|
Transcription Factor-Centric Approach to Identify Non-Recurring Putative Regulatory Drivers in Cancer. RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY : ... ANNUAL INTERNATIONAL CONFERENCE, RECOMB ... : PROCEEDINGS. RECOMB (CONFERENCE : 2005- ) 2022; 13278:36-51. [PMID: 36507923 PMCID: PMC9740185 DOI: 10.1007/978-3-031-04749-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent efforts to sequence the genomes of thousands of matched normal-tumor samples have led to the identification of millions of somatic mutations, the majority of which are non-coding. Most of these mutations are believed to be passengers, but a small number of non-coding mutations could contribute to tumor initiation or progression, e.g. by leading to dysregulation of gene expression. Efforts to identify putative regulatory drivers rely primarily on information about the recurrence of mutations across tumor samples. However, in regulatory regions of the genome, individual mutations are rarely seen in more than one donor. Instead of using recurrence information, here we present a method to identify putative regulatory driver mutations based on the magnitude of their effects on transcription factor-DNA binding. For each gene, we integrate the effects of mutations across all its regulatory regions, and we ask whether these effects are larger than expected by chance, given the mutation spectra observed in regulatory DNA in the cohort of interest. We applied our approach to analyze mutations in a liver cancer data set with ample somatic mutation and gene expression data available. By combining the effects of mutations across all regulatory regions of each gene, we identified dozens of genes whose regulation in tumor cells is likely to be significantly perturbed by non-coding mutations. Overall, our results show that focusing on the functional effects of non-coding mutations, rather than their recurrence, has the potential to identify putative regulatory drivers and the genes they dysregulate in tumor cells.
Collapse
|
50
|
Roy RK, Yadav R, Sharma U, Kaushal Wasson M, Sharma A, Tanwar P, Jain A, Prakash H. Impact of non-coding RNAs on cancer directed immune therapies: Now then and forever. Int J Cancer 2022; 151:981-992. [PMID: 35489027 DOI: 10.1002/ijc.34060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence demonstrates that the host genome's epigenetic modifications are essential for living organisms to adapt to extreme conditions. DNA methylation, covalent modifications of histone, and inter-association of non-coding RNAs facilitate the cellular manifestation of epigenetic changes in the genome. Out of various factors involved in the epigenetic programming of the host, non-coding RNAs (ncRNAs) such as microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA, snoRNA and piRNA are new generation non-coding molecules that influence a variety of cellular processes like immunity, cellular differentiation, and tumor development. During tumor development, temporal changes in miRNA/LncRNA rheostat influence sterile inflammatory responses accompanied by the changes in the carcinogenic signaling in the host. At the cellular level, this is manifested by the up-regulation of Inflammasome and inflammatory pathways, which promotes cancer-related inflammation. Given this, we discuss the potential of lncRNAs, miRNAs, circular RNA, snoRNA and piRNA in regulating inflammation and tumor development in the host. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University, India
| | - Rakhi Yadav
- Amity Institute of Virology and Immunology, Amity University, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | |
Collapse
|