1
|
Outla Z, Prechova M, Korelova K, Gemperle J, Gregor M. Mechanics of cell sheets: plectin as an integrator of cytoskeletal networks. Open Biol 2025; 15:240208. [PMID: 39875099 PMCID: PMC11774597 DOI: 10.1098/rsob.240208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks. Such hardwiring is facilitated by plakins, a family of giant modular proteins which serve as 'molecular bridges' between different cytoskeletal filaments and multiprotein adhesion complexes. Dysfunction of cytoskeletal crosslinking compromises epithelial biomechanics and structural integrity. Subsequent loss of barrier function leads to disturbed tissue homeostasis and pathological consequences such as skin blistering or intestinal inflammation. In this article, we highlight the importance of the cytolinker protein plectin for the functional organization of epithelial cytoskeletal networks. In particular, we focus on the ability of plectin to act as an integrator of the epithelial cytoarchitecture that defines the biomechanics of the whole tissue. Finally, we also discuss the role of cytoskeletal crosslinking in emerging aspects of epithelial mechanobiology that are critical for the maintenance of epithelial homeostasis.
Collapse
Affiliation(s)
- Zuzana Outla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Magdalena Prechova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Katerina Korelova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Gemperle
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Chodari L, Fatehfar S, Ahmadi M, Ghorbanzadeh V. The impact of diabetes on tight junctions in cardiomyopathy dysfunction. J Diabetes Metab Disord 2024; 23:1645-1651. [PMID: 39610492 PMCID: PMC11599488 DOI: 10.1007/s40200-024-01469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/07/2024] [Indexed: 11/30/2024]
Abstract
Diabetic cardiomyopathy is a condition characterized by ventricular dysfunction in diabetic patients that is not caused by other cardiac ailments. It is associated with factors such as left ventricular hypertrophy, metabolic disturbances, and oxidative stress. Tight junctions, which form a barrier between cells, play a role in the vascular complications of diabetes. Proteins such as claudins and occludens are important for the structure and function of tight junctions. Zona occludens (ZO) proteins are also involved in tight junctions and their expression may be affected by diabetes. The review discusses the impact of diabetes on the tight junctions and the role of ZO proteins in diabetic cardiovascular dysfunction.
Collapse
Affiliation(s)
- Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Fatehfar
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahan Ahmadi
- Medical Campus of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
3
|
Cho Y, Koyama-Honda I, Tanimura A, Matsuzawa K, Ikenouchi J. A sustained calcium response mediated by IP3 receptor anchoring to the desmosome is essential for apoptotic cell elimination. Curr Biol 2024; 34:4835-4844.e4. [PMID: 39317193 DOI: 10.1016/j.cub.2024.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Efficient elimination of apoptotic cells within epithelial cell sheets is crucial for preserving epithelial barrier integrity.1 It is well established that immediate neighbors of an apoptotic cell actively participate in its removal by enclosing it within a wall of actomyosin, pushing it out in a purse-string manner in a process called apical extrusion.2,3,4,5,6,7 Here, we found that sustained elevation of calcium ions in neighboring epithelial cells is necessary to generate the contractility required for apoptotic cell elimination. This phenomenon, which we call calcium response in effectors of apical extrusion (CaRE), highlights the disparate calcium dynamics within the epithelial sheet. Furthermore, we elucidate the essential role of desmosomes in CaRE. Specifically, we identify a subset of IP3 receptors within the endoplasmic reticulum that is recruited to the desmosome by K-Ras-induced actin-binding protein as the core component of this process. The interplay between these cellular structures heightens actomyosin contractility to drive apoptotic cell removal. Our findings underscore the physiological significance of integrating desmosomes with the endoplasmic reticulum in epithelial sheet homeostasis, shedding new light on cell-cell communication and tissue maintenance.
Collapse
Affiliation(s)
- Yuma Cho
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Tanimura
- Division of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari, Tobetsu 061-0293, Hokkaido, Japan
| | - Kenji Matsuzawa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan; Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| |
Collapse
|
4
|
Canadas-Ortega M, Mühlbacher I, Posselt G, Diechler S, Ferner CD, Boccellato F, Koch OO, Neureiter D, Weitzendorfer M, Emmanuel K, Wessler S. HtrA-Dependent E-Cadherin Shedding Impairs the Epithelial Barrier Function in Primary Gastric Epithelial Cells and Gastric Organoids. Int J Mol Sci 2024; 25:7083. [PMID: 39000189 PMCID: PMC11241449 DOI: 10.3390/ijms25137083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Impaired E-cadherin (Cdh1) functions are closely associated with cellular dedifferentiation, infiltrative tumor growth and metastasis, particularly in gastric cancer. The class-I carcinogen Helicobacter pylori (H. pylori) colonizes gastric epithelial cells and induces Cdh1 shedding, which is primarily mediated by the secreted bacterial protease high temperature requirement A (HtrA). In this study, we used human primary epithelial cell lines derived from gastroids and mucosoids from different healthy donors to investigate HtrA-mediated Cdh1 cleavage and the subsequent impact on bacterial pathogenesis in a non-neoplastic context. We found a severe impairment of Cdh1 functions by HtrA-induced ectodomain cleavage in 2D primary cells and mucosoids. Since mucosoids exhibit an intact apico-basal polarity, we investigated bacterial transmigration across the monolayer, which was partially depolarized by HtrA, as indicated by microscopy, the analyses of the transepithelial electrical resistance (TEER) and colony forming unit (cfu) assays. Finally, we investigated CagA injection and observed efficient CagA translocation and tyrosine phosphorylation in 2D primary cells and, to a lesser extent, similar effects in mucosoids. In summary, HtrA is a crucially important factor promoting the multistep pathogenesis of H. pylori in non-transformed primary gastric epithelial cells and organoid-based epithelial models.
Collapse
Affiliation(s)
- Marina Canadas-Ortega
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.C.-O.); (G.P.); (S.D.); (C.D.F.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Iris Mühlbacher
- Department of Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (I.M.); (O.O.K.); (M.W.); (K.E.)
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.C.-O.); (G.P.); (S.D.); (C.D.F.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Center for Tumor Biology and Immunology (CTBI), Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Sebastian Diechler
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.C.-O.); (G.P.); (S.D.); (C.D.F.)
- Center for Tumor Biology and Immunology (CTBI), Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christian Daniel Ferner
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.C.-O.); (G.P.); (S.D.); (C.D.F.)
- Center for Tumor Biology and Immunology (CTBI), Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Francesco Boccellato
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford OX37DQ, UK;
| | - Oliver Owen Koch
- Department of Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (I.M.); (O.O.K.); (M.W.); (K.E.)
| | - Daniel Neureiter
- Institute of Pathology, Cancer Cluster Salzburg, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria;
| | - Michael Weitzendorfer
- Department of Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (I.M.); (O.O.K.); (M.W.); (K.E.)
| | - Klaus Emmanuel
- Department of Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (I.M.); (O.O.K.); (M.W.); (K.E.)
| | - Silja Wessler
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (M.C.-O.); (G.P.); (S.D.); (C.D.F.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Center for Tumor Biology and Immunology (CTBI), Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Fülle JB, de Almeida RA, Lawless C, Stockdale L, Yanes B, Lane EB, Garrod DR, Ballestrem C. Proximity Mapping of Desmosomes Reveals a Striking Shift in Their Molecular Neighborhood Associated With Maturation. Mol Cell Proteomics 2024; 23:100735. [PMID: 38342409 PMCID: PMC10943070 DOI: 10.1016/j.mcpro.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.
Collapse
Affiliation(s)
- Judith B Fülle
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | | | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Liam Stockdale
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Bian Yanes
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - E Birgitte Lane
- Skin Research Institute of Singapore, Agency of Science Technology and Research (A∗STAR), Singapore, Singapore
| | - David R Garrod
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Verkerk AJMH, Andrei D, Vermeer MCSC, Kramer D, Schouten M, Arp P, Verlouw JAM, Pas HH, Meijer HJ, van der Molen M, Oberdorf-Maass S, Nijenhuis M, Romero-Herrera PH, Hoes MF, Bremer J, Slotman JA, van den Akker PC, Diercks GFH, Giepmans BNG, Stoop H, Saris JJ, van den Ouweland AMW, Willemsen R, Hublin JJ, Dean MC, Hoogeboom AJM, Silljé HHW, Uitterlinden AG, van der Meer P, Bolling MC. Disruption of TUFT1, a Desmosome-Associated Protein, Causes Skin Fragility, Woolly Hair, and Palmoplantar Keratoderma. J Invest Dermatol 2024; 144:284-295.e16. [PMID: 37716648 DOI: 10.1016/j.jid.2023.02.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/24/2023] [Indexed: 09/18/2023]
Abstract
Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss-of-function variants in desmosomal genes leads to a variety of skin- and heart-related phenotypes. In this study, we report TUFT1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair, and mild palmoplantar keratoderma but without a cardiac phenotype, we identified a homozygous splice-site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of TUFT1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that TUFT1 is positioned within the desmosome and that its location is dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1-knockout mouse model mimicked the patients' phenotypes. Altogether, this study reveals TUFT1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair, and palmoplantar keratoderma.
Collapse
Affiliation(s)
- Annemieke J M H Verkerk
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Daniela Andrei
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Mathilde C S C Vermeer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Duco Kramer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Marloes Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pascal Arp
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost A M Verlouw
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hendri H Pas
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Hillegonda J Meijer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Marije van der Molen
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Silke Oberdorf-Maass
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Miranda Nijenhuis
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Pedro H Romero-Herrera
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Bremer
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Johan A Slotman
- Optical Imaging Centre, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter C van den Akker
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands
| | - Gilles F H Diercks
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans Stoop
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jasper J Saris
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Chaire de Paléoanthropologie, CIRB (UMR 7241 - U1050), Collège de France, Paris, France
| | - M Christopher Dean
- Centre for Human Origins Research, Natural History Museum, London, United Kingdom; Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - A Jeannette M Hoogeboom
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maria C Bolling
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Center of Expertise for Blistering Diseases, Groningen, The Netherlands.
| |
Collapse
|
8
|
Wang T, Song Y, Yang L, Liu W, He Z, Shi Y, Song B, Yu Z. Photobiomodulation Facilitates Rat Cutaneous Wound Healing by Promoting Epidermal Stem Cells and Hair Follicle Stem Cells Proliferation. Tissue Eng Regen Med 2024; 21:65-79. [PMID: 37882982 PMCID: PMC10764690 DOI: 10.1007/s13770-023-00601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Cutaneous wound healing represents a common fundamental phenomenon requiring the participation of cells of distinct types and a major concern for the public. Evidence has confirmed that photobiomodulation (PBM) using near-infrared (NIR) can promote wound healing, but the cells involved and the precise molecular mechanisms remain elusive. METHODS Full-thickness skin defects with a diameter of 1.0 cm were made on the back of rats and randomly divided into the control group, 10 J, 15 J, and 30 J groups. The wound healing rate at days 4, 8, and 12 postoperatively was measured. HE and Masson staining was conducted to reveal the histological characteristics. Immunofluorescence staining was performed to label the epidermal stem cells (ESCs) and hair follicle stem cells (HFSCs). Western blot was performed to detect the expressions of proteins associated with ESCs and HFSCs. Cutaneous wound tissues were collected for RNA sequencing. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes analysis was performed, and the hub genes were identified using CytoHubba and validated by qRT-PCR. RESULTS PBM can promote reepithelialization, extracellular matrix deposition, and wound healing, increase the number of KRT14+/PCNA+ ESCs and KRT15+/PCNA+ HFSCs, and upregulate the protein expression of P63, Krt14, and PCNA. Three hundred and sixty-six differentially expressed genes (DEGs) and 7 hub genes including Sox9, Krt5, Epcam, Cdh1, Cdh3, Dsp, and Pkp3 were identified. These DEGs are enriched in skin development, cell junction, and cadherin binding involved in cell-cell adhesion etc., while these hub genes are related to skin derived stem cells and cell adhesion. CONCLUSION PBM accelerates wound healing by enhancing reepithelialization through promoting ESCs and HFSCs proliferation and elevating the expression of genes associated with stem cells and cell adhesion. This may provide a valuable alternative strategy to promote wound healing and reepithelialization by modulating the proliferation of skin derived stem cells and regulating genes related to cell adhesion.
Collapse
Affiliation(s)
- Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Liu Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhen'an He
- Shaanxi Institute of Medical Device Quality Inspection, Xi'an, 712046, China
| | - Yi Shi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
9
|
Perl AL, Koetsier JL, Green KJ. PP2A-B55alpha controls keratinocyte adhesion through dephosphorylation of the Desmoplakin C-terminus. Sci Rep 2023; 13:12720. [PMID: 37543698 PMCID: PMC10404246 DOI: 10.1038/s41598-023-37874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/28/2023] [Indexed: 08/07/2023] Open
Abstract
Critical for the maintenance of epidermal integrity and function are attachments between intermediate filaments (IF) and intercellular junctions called desmosomes. The desmosomal cytoplasmic plaque protein desmoplakin (DP) is essential for anchoring IF to the junction. DP-IF interactions are regulated by a phospho-regulatory motif within the DP C-terminus controlling keratinocyte intercellular adhesion. Here we identify the protein phosphatase 2A (PP2A)-B55α holoenzyme as the major serine/threonine phosphatase regulating DP's C-terminus and consequent intercellular adhesion. Using a combination of chemical and genetic approaches, we show that the PP2A-B55α holoenzyme interacts with DP at intercellular membranes in 2D- and 3D- epidermal models and human skin samples. Our experiments demonstrate that PP2A-B55α regulates the phosphorylation status of junctional DP and is required for maintaining strong desmosome-mediated intercellular adhesion. These data identify PP2A-B55α as part of a regulatory module capable of tuning intercellular adhesion strength and a candidate disease target in desmosome-related disorders of the skin and heart.
Collapse
Affiliation(s)
- Abbey L Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave., Chicago, IL, 60611, USA
| | - Jennifer L Koetsier
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave., Chicago, IL, 60611, USA
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave., Chicago, IL, 60611, USA.
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Rübsam M, Püllen R, Tellkamp F, Bianco A, Peskoller M, Bloch W, Green KJ, Merkel R, Hoffmann B, Wickström SA, Niessen CM. Polarity signaling balances epithelial contractility and mechanical resistance. Sci Rep 2023; 13:7743. [PMID: 37173371 PMCID: PMC10182030 DOI: 10.1038/s41598-023-33485-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelia maintain a functional barrier during tissue turnover while facing varying mechanical stress. This maintenance requires both dynamic cell rearrangements driven by actomyosin-linked intercellular adherens junctions and ability to adapt to and resist extrinsic mechanical forces enabled by keratin filament-linked desmosomes. How these two systems crosstalk to coordinate cellular movement and mechanical resilience is not known. Here we show that in stratifying epithelia the polarity protein aPKCλ controls the reorganization from stress fibers to cortical actomyosin during differentiation and upward movement of cells. Without aPKC, stress fibers are retained resulting in increased contractile prestress. This aberrant stress is counterbalanced by reorganization and bundling of keratins, thereby increasing mechanical resilience. Inhibiting contractility in aPKCλ-/- cells restores normal cortical keratin networks but also normalizes resilience. Consistently, increasing contractile stress is sufficient to induce keratin bundling and enhance resilience, mimicking aPKC loss. In conclusion, our data indicate that keratins sense the contractile stress state of stratified epithelia and balance increased contractility by mounting a protective response to maintain tissue integrity.
Collapse
Affiliation(s)
- Matthias Rübsam
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany.
| | - Robin Püllen
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Frederik Tellkamp
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Alessandra Bianco
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marc Peskoller
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University of Cologne, Cologne, Germany
| | - Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Sara A Wickström
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Carien M Niessen
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Nanavati BN, Noordstra I, Verma S, Duszyc K, Green KJ, Yap AS. Desmosome-anchored intermediate filaments facilitate tension-sensitive RhoA signaling for epithelial homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529786. [PMID: 36865131 PMCID: PMC9980054 DOI: 10.1101/2023.02.23.529786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Epithelia are subject to diverse forms of mechanical stress during development and post-embryonic life. They possess multiple mechanisms to preserve tissue integrity against tensile forces, which characteristically involve specialized cell-cell adhesion junctions coupled to the cytoskeleton. Desmosomes connect to intermediate filaments (IF) via desmoplakin (DP)1,2, while the E-cadherin complex links to the actomyosin cytoskeleton in adherens junctions (AJ)3. These distinct adhesion-cytoskeleton systems support different strategies to preserve epithelial integrity, especially against tensile stress. IFs coupled to desmosomes can passively respond to tension by strain-stiffening4-10, whereas for AJs a variety of mechanotransduction mechanisms associated with the E-cadherin apparatus itself11,12, or proximate to the junctions13, can modulate the activity of its associated actomyosin cytoskeleton by cell signaling. We now report a pathway where these systems collaborate for active tension-sensing and epithelial homeostasis. We found that DP was necessary for epithelia to activate RhoA at AJ on tensile stimulation, an effect that required its capacity to couple IF to desmosomes. DP exerted this effect by facilitating the association of Myosin VI with E-cadherin, the mechanosensor for the tension-sensitive RhoA pathway at AJ12. This connection between the DP-IF system and AJ-based tension-sensing promoted epithelial resilience when contractile tension was increased. It further facilitated epithelial homeostasis by allowing apoptotic cells to be eliminated by apical extrusion. Thus, active responses to tensile stress in epithelial monolayers reflect an integrated response of the IF- and actomyosin-based cell-cell adhesion systems.
Collapse
Affiliation(s)
- Bageshri Naimish Nanavati
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Suzie Verma
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Kinga Duszyc
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Kathleen J. Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago IL 06011 USA
| | - Alpha S. Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| |
Collapse
|
12
|
Buschur KL, Riley C, Saferali A, Castaldi P, Zhang G, Aguet F, Ardlie KG, Durda P, Craig Johnson W, Kasela S, Liu Y, Manichaikul A, Rich SS, Rotter JI, Smith J, Taylor KD, Tracy RP, Lappalainen T, Graham Barr R, Sciurba F, Hersh CP, Benos PV. Distinct COPD subtypes in former smokers revealed by gene network perturbation analysis. Respir Res 2023; 24:30. [PMID: 36698131 PMCID: PMC9875487 DOI: 10.1186/s12931-023-02316-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) varies significantly in symptomatic and physiologic presentation. Identifying disease subtypes from molecular data, collected from easily accessible blood samples, can help stratify patients and guide disease management and treatment. METHODS Blood gene expression measured by RNA-sequencing in the COPDGene Study was analyzed using a network perturbation analysis method. Each COPD sample was compared against a learned reference gene network to determine the part that is deregulated. Gene deregulation values were used to cluster the disease samples. RESULTS The discovery set included 617 former smokers from COPDGene. Four distinct gene network subtypes are identified with significant differences in symptoms, exercise capacity and mortality. These clusters do not necessarily correspond with the levels of lung function impairment and are independently validated in two external cohorts: 769 former smokers from COPDGene and 431 former smokers in the Multi-Ethnic Study of Atherosclerosis (MESA). Additionally, we identify several genes that are significantly deregulated across these subtypes, including DSP and GSTM1, which have been previously associated with COPD through genome-wide association study (GWAS). CONCLUSIONS The identified subtypes differ in mortality and in their clinical and functional characteristics, underlining the need for multi-dimensional assessment potentially supplemented by selected markers of gene expression. The subtypes were consistent across cohorts and could be used for new patient stratification and disease prognosis.
Collapse
Affiliation(s)
- Kristina L Buschur
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
- Division of General Medicine, Columbia University Medical Center, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Craig Riley
- Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Grace Zhang
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francois Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Josh Smith
- Northwest Genome Center, University of Washington, Seattle, WA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - R Graham Barr
- Division of General Medicine, Columbia University Medical Center, New York, NY, USA
| | - Frank Sciurba
- Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA.
- Department of Epidemiology, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32603, USA.
| |
Collapse
|
13
|
Corzo Leon DE, Scheynius A, MacCallum DM, Munro CA. Malassezia sympodialis Mala s 1 allergen is a potential KELCH protein that cross reacts with human skin. FEMS Yeast Res 2023; 23:foad028. [PMID: 37188635 PMCID: PMC10281499 DOI: 10.1093/femsyr/foad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023] Open
Abstract
Malassezia are the dominant commensal yeast species of the human skin microbiota and are associated with inflammatory skin diseases, such as atopic eczema (AE). The Mala s 1 allergen of Malassezia sympodialis is a β-propeller protein, inducing both IgE and T-cell reactivity in AE patients. We demonstrate by immuno-electron microscopy that Mala s 1 is mainly located in the M. sympodialis yeast cell wall. An anti-Mala s 1 antibody did not inhibit M. sympodialis growth suggesting Mala s 1 may not be an antifungal target. In silico analysis of the predicted Mala s 1 protein sequence identified a motif indicative of a KELCH protein, a subgroup of β-propeller proteins. To test the hypothesis that antibodies against Mala s 1 cross-react with human skin (KELCH) proteins we examined the binding of the anti-Mala s 1 antibody to human skin explants and visualized binding in the epidermal skin layer. Putative human targets recognized by the anti-Mala s 1 antibody were identified by immunoblotting and proteomics. We propose that Mala s 1 is a KELCH-like β-propeller protein with similarity to human skin proteins. Mala s 1 recognition may trigger cross-reactive responses that contribute to skin diseases associated with M. sympodialis.
Collapse
Affiliation(s)
- Dora E Corzo Leon
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| | - Donna M MacCallum
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Carol A Munro
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
14
|
Genetic lineage tracing identifies cardiac mesenchymal-to-adipose transition in an arrhythmogenic cardiomyopathy model. SCIENCE CHINA. LIFE SCIENCES 2023; 66:51-66. [PMID: 36322324 DOI: 10.1007/s11427-022-2176-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is one of the most common inherited cardiomyopathies, characterized by progressive fibrofatty replacement in the myocardium. However, the cellular origin of cardiac adipocytes in ACM remains largely unknown. Unraveling the cellular source of cardiac adipocytes in ACM would elucidate the underlying pathological process and provide a potential target for therapy. Herein, we generated an ACM mouse model by inactivating desmosomal gene desmoplakin in cardiomyocytes; and examined the adipogenic fates of several cell types in the disease model. The results showed that SOX9+, PDGFRa+, and PDGFRb+ mesenchymal cells, but not cardiomyocytes or smooth muscle cells, contribute to the intramyocardial adipocytes in the ACM model. Mechanistically, Bmp4 was highly expressed in the ACM mouse heart and functionally promoted cardiac mesenchymal-to-adipose transition in vitro.
Collapse
|
15
|
Ha J, Kim BS, Min B, Nam J, Lee JG, Lee M, Yoon BH, Choi YH, Im I, Park JS, Choi H, Baek A, Cho SM, Lee MO, Nam KH, Mun JY, Kim M, Kim SY, Son MY, Kang YK, Lee JS, Kim JK, Kim J. Intermediate cells of in vitro cellular reprogramming and in vivo tissue regeneration require desmoplakin. SCIENCE ADVANCES 2022; 8:eabk1239. [PMID: 36306352 PMCID: PMC9616504 DOI: 10.1126/sciadv.abk1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Amphibians and fish show considerable regeneration potential via dedifferentiation of somatic cells into blastemal cells. In terms of dedifferentiation, in vitro cellular reprogramming has been proposed to share common processes with in vivo tissue regeneration, although the details are elusive. Here, we identified the cytoskeletal linker protein desmoplakin (Dsp) as a common factor mediating both reprogramming and regeneration. Our analysis revealed that Dsp expression is elevated in distinct intermediate cells during in vitro reprogramming. Knockdown of Dsp impedes in vitro reprogramming into induced pluripotent stem cells and induced neural stem/progenitor cells as well as in vivo regeneration of zebrafish fins. Notably, reduced Dsp expression impairs formation of the intermediate cells during cellular reprogramming and tissue regeneration. These findings suggest that there is a Dsp-mediated evolutionary link between cellular reprogramming in mammals and tissue regeneration in lower vertebrates and that the intermediate cells may provide alternative approaches for mammalian regenerative therapy.
Collapse
Affiliation(s)
- Jeongmin Ha
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Bum Suk Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Byungkuk Min
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Juhyeon Nam
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jae-Geun Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Microbiome Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Minhyung Lee
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Byoung-Ha Yoon
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Yoon Ha Choi
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ilkyun Im
- Bio-IT lab, NetTargets Inc., Daejeon 34141, Republic of Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Hyosun Choi
- Nanobioimaging Center, National Instrumentation Center for Environmental Management (NICEM), Seoul National University, Seoul, Republic of Korea
| | - Areum Baek
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sang Mi Cho
- Laboratory Animal Resource Center, KRIBB, Cheongju 28116, Republic of Korea
| | - Mi-Ok Lee
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, KRIBB, Cheongju 28116, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Mirang Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Seon-Young Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Republic of Korea
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Mi Young Son
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yong-Kook Kang
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Development and Differentiation Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Microbiome Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jong Kyoung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Janghwan Kim
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- R&D Center, Regeners Inc., Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Werder RB, Liu T, Abo KM, Lindstrom-Vautrin J, Villacorta-Martin C, Huang J, Hinds A, Boyer N, Bullitt E, Liesa M, Silverman EK, Kotton DN, Cho MH, Zhou X, Wilson AA. CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. SCIENCE ADVANCES 2022; 8:eabo6566. [PMID: 35857525 PMCID: PMC9278866 DOI: 10.1126/sciadv.abo6566] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Genome-wide association studies (GWAS) have identified dozens of loci associated with chronic obstructive pulmonary disease (COPD) susceptibility; however, the function of associated genes in the cell type(s) affected in disease remains poorly understood, partly due to a lack of cell models that recapitulate human alveolar biology. Here, we apply CRISPR interference to interrogate the function of nine genes implicated in COPD by GWAS in induced pluripotent stem cell-derived type 2 alveolar epithelial cells (iAT2s). We find that multiple genes implicated by GWAS affect iAT2 function, including differentiation potential, maturation, and/or proliferation. Detailed characterization of the GWAS gene DSP demonstrates that it regulates iAT2 cell-cell junctions, proliferation, mitochondrial function, and response to cigarette smoke-induced injury. Our approach thus elucidates the biological function, as well as disease-relevant consequences of dysfunction, of genes implicated in COPD by GWAS in type 2 alveolar epithelial cells.
Collapse
Affiliation(s)
- Rhiannon B. Werder
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Tao Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristine M. Abo
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anne Hinds
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nathan Boyer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
- Institut de Biologia Molecular De Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew A. Wilson
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
17
|
Wang X, Wang R, Bu D, Wang L, Zhang Y, Chang Y, Zhang C, Chen X, Zhu X, Liu Z, Wang M. Paraneoplastic Pemphigus Autoantibodies Against C-terminus of Desmoplakin Induced Acantholysis In Vitro and In Vivo. Front Immunol 2022; 13:886226. [PMID: 35911677 PMCID: PMC9332891 DOI: 10.3389/fimmu.2022.886226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Paraneoplastic pemphigus (PNP) is an autoimmune bullous disease associated with underlying neoplasms and characterized by antibodies against desmoglein 3 (Dsg 3) and plakins. Autoantibodies against desmoglein 3 in sera of patients with PNP have been proven to cause acantholysis in vivo in neonatal mice. As a member of the plakin family, autoantibodies against desmoplakin were detected frequently by immunoprecipitation in the sera of PNP. The recombinant C-terminus of desmoplakin was expressed and purified to adsorb the specific autoantibodies against the C-terminus of desmoplakin. In vitro dispase-dependent keratinocyte dissociation assay and in vivo IgG passive transfer into neonatal mice assay were performed, followed by the electronic microscopy examination and TUNEL assay. We found that anti-C terminus of desmoplakin autoantibodies caused blisters and acantholysis in mice skin at a dose-dependent manner. Moreover, dissociated fragments were observed after incubation with the purified IgG against desmoplakin, compared with normal human IgG (P-value =0.0207). The electronic microscopy examination showed the disconnection of keratin intermediate filaments from desmosomes. Lastly, apoptosis of keratinocytes in the TUNEL assay was all detected in the skins of neonatal mice after injection of the anti-C terminus of desmoplakin autoantibodies. Taken together, the study suggests that autoantibodies against the C-terminus of desmoplakin might be pathogenic in PNP.
Collapse
Affiliation(s)
- Xue Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rui Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Dingfang Bu
- Central Laboratory, Peking University First Hospital, Beijing, China
| | - Leyi Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yuexin Zhang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yuan Chang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Chenyang Zhang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- Department of Dermatology, Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Xixue Chen
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xuejun Zhu
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Zhi Liu
- Department of Dermatology, University of North Carolina, Chapel Hill, NC, United States
| | - Mingyue Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- *Correspondence: Mingyue Wang,
| |
Collapse
|
18
|
Abstract
Cardiovascular complications of pregnancy have risen substantially over the past decades, and now account for the majority of pregnancy-induced maternal deaths, as well as having substantial long-term consequences on maternal cardiovascular health. The causes and pathophysiology of these complications remain poorly understood, and therapeutic options are limited. Preclinical models represent a crucial tool for understanding human disease. We review here advances made in preclinical models of cardiovascular complications of pregnancy, including preeclampsia and peripartum cardiomyopathy, with a focus on pathological mechanisms elicited by the models and on relevance to human disease.
Collapse
Affiliation(s)
- Zolt Arany
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (Z.A.)
| | - Denise Hilfiker-Kleiner
- Institute of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Philipps University Marburg, Germany (D.H.-K.)
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| |
Collapse
|
19
|
Büchau F, Vielmuth F, Waschke J, Magin TM. Bidirectional regulation of desmosome hyperadhesion by keratin isotypes and desmosomal components. Cell Mol Life Sci 2022; 79:223. [PMID: 35380280 PMCID: PMC8983532 DOI: 10.1007/s00018-022-04244-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
Abstract
Desmosomes are intercellular junctions which mediate cohesion and communication in tissues exposed to mechanical strain by tethering the intermediate filament cytoskeleton to the plasma membrane. While mature desmosomes are characterized by a hyperadhesive, Ca2+-independent state, they transiently loose this state during wound healing, pathogenesis and tissue regeneration. The mechanisms controlling the hyperadhesive state remain incompletely understood. Here, we show that upon Ca2+-induced keratinocyte differentiation, expression of keratin 17 (K17) prevents the formation of stable and hyperadhesive desmosomes, accompanied by a significant reduction of desmoplakin (DP), plakophilin-1 (PKP1), desmoglein-1 (Dsg1) and -3 (Dsg3) at intercellular cell borders. Atomic force microscopy revealed that both increased binding strength of desmoglein-3 molecules and amount of desmoglein-3 oligomers, known hallmarks of hyperadhesion, were reduced in K17- compared to K14-expressing cells. Importantly, overexpression of Dsg3 or DPII enhanced their localization at intercellular cell borders and increased the formation of Dsg3 oligomers, resulting in stable, hyperadhesive desmosomes despite the presence of K17. Notably, PKP1 was enriched in these desmosomes. Quantitative image analysis revealed that DPII overexpression contributed to desmosome hyperadhesion by increasing the abundance of K5/K17-positive keratin filaments in the proximity of desmosomes enriched in desmoglein-3. Thus, our data show that hyperadhesion can result from recruitment of keratin isotypes K5/K17 to desmosomes or from enhanced expression of DP and Dsg3 irrespective of keratin composition. The notion that hyperadhesive desmosomes failed to form in the absence of keratins underscores the essential role of keratins and suggest bidirectional control mechanisms at several levels.
Collapse
Affiliation(s)
- Fanny Büchau
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany.
| | - Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| |
Collapse
|
20
|
Smith ED, Helms A. Episodic Myocarditis in Arrhythmogenic Cardiomyopathy: A Novel Treatment Target? JACC Case Rep 2022; 4:63-65. [PMID: 35036947 PMCID: PMC8743865 DOI: 10.1016/j.jaccas.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Eric D. Smith
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam Helms
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Mohammed F, Odintsova E, Chidgey M. Missense Mutations in Desmoplakin Plakin Repeat Domains Have Dramatic Effects on Domain Structure and Function. Int J Mol Sci 2022; 23:ijms23010529. [PMID: 35008956 PMCID: PMC8745463 DOI: 10.3390/ijms23010529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Plakin repeat domains (PRDs) are globular modules that mediate the interaction of plakin proteins with the intermediate filament (IF) cytoskeleton. These associations are vital for maintaining tissue integrity in cardiac muscle and epithelial tissues. PRDs are subject to mutations that give rise to cardiomyopathies such as arrhythmogenic right ventricular cardiomyopathy, characterised by ventricular arrhythmias and associated with an increased risk of sudden heart failure, and skin blistering diseases. Herein, we have examined the functional and structural effects of 12 disease-linked missense mutations, identified from the human gene mutation database, on the PRDs of the desmosomal protein desmoplakin. Five mutations (G2056R and E2193K in PRD-A, G2338R and G2375R in PRD-B and G2647D in PRD-C) rendered their respective PRD proteins either fully or partially insoluble following expression in bacterial cells. Each of the residues affected are conserved across plakin family members, inferring a crucial role in maintaining the structural integrity of the PRD. In transfected HeLa cells, the mutation G2375R adversely affected the targeting of a desmoplakin C-terminal construct containing all three PRDs to vimentin IFs. The deletion of PRD-B and PRD-C from the construct compromised its targeting to vimentin. Bioinformatic and structural modelling approaches provided multiple mechanisms by which the disease-causing mutations could potentially destabilise PRD structure and compromise cytoskeletal linkages. Overall, our data highlight potential molecular mechanisms underlying pathogenic missense mutations and could pave the way for informing novel curative interventions targeting cardiomyopathies and skin blistering disorders.
Collapse
Affiliation(s)
- Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
| | - Elena Odintsova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Martyn Chidgey
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK;
- Correspondence:
| |
Collapse
|
22
|
Gross A, Zhou B, Bewersdorf L, Schwarz N, Schacht GM, Boor P, Hoeft K, Hoffmann B, Fuchs E, Kramann R, Merkel R, Leube RE, Strnad P. Desmoplakin Maintains Transcellular Keratin Scaffolding and Protects From Intestinal Injury. Cell Mol Gastroenterol Hepatol 2021; 13:1181-1200. [PMID: 34929421 PMCID: PMC8873596 DOI: 10.1016/j.jcmgh.2021.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Desmosomes are intercellular junctions connecting keratin intermediate filaments of neighboring cells. The cadherins desmoglein 2 (Dsg2) and desmocollin 2 mediate cell-cell adhesion, whereas desmoplakin (Dsp) provides the attachment of desmosomes to keratins. Although the importance of the desmosome-keratin network is well established in mechanically challenged tissues, we aimed to assess the currently understudied function of desmosomal proteins in intestinal epithelia. METHODS We analyzed the intestine-specific villin-Cre DSP (DSPΔIEC) and the combined intestine-specific DSG2/DSPΔIEC (ΔDsg2/Dsp) knockout mice. Cross-breeding with keratin 8-yellow fluorescent protein knock-in mice and generation of organoids was performed to visualize the keratin network. A Dsp-deficient colorectal carcinoma HT29-derived cell line was generated and the role of Dsp in adhesion and mechanical stress was studied in dispase assays, after exposure to uniaxial cell stretching and during scratch assay. RESULTS The intestine of DSPΔIEC mice was histopathologically inconspicuous. Intestinal epithelial cells, however, showed an accelerated migration along the crypt and an enhanced shedding into the lumen. Increased intestinal permeability and altered levels of desmosomal proteins were detected. An inconspicuous phenotype also was seen in ΔDsg2/Dsp mice. After dextran sodium sulfate treatment, DSPΔIEC mice developed more pronounced colitis. A retracted keratin network was seen in the intestinal epithelium of DSPΔIEC/keratin 8-yellow fluorescent protein mice and organoids derived from these mice presented a collapsed keratin network. The level, phosphorylation status, and solubility of keratins were not affected. Dsp-deficient HT29 cells had an impaired cell adhesion and suffered from increased cellular damage after stretch. CONCLUSIONS Our results show that Dsp is required for proper keratin network architecture in intestinal epithelia, mechanical resilience, and adhesion, thereby protecting from injury.
Collapse
Affiliation(s)
- Annika Gross
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Biaohuan Zhou
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Lisa Bewersdorf
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Gabriel M. Schacht
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, Department of Nephrology, University Hospital Aachen, Aachen, Germany
| | - Konrad Hoeft
- Department of Medicine II, University Hospital Aachen, Aachen, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing 2, Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, New York
| | - Rafael Kramann
- Department of Medicine II, University Hospital Aachen, Aachen, Germany,Institute of Experimental Medicine and Systems Biology, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2, Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany,Correspondence Address correspondence to: Pavel Strnad, MD, Department of Internal Medicine III, University Hospital Aachen, Pauwelsstraße 30, D-52074, Aachen, Germany
| |
Collapse
|
23
|
Tilwani S, Gandhi K, Narayan S, Ainavarapu SRK, Dalal SN. Disruption of desmosome function leads to increased centrosome clustering in 14-3-3γ-knockout cells with supernumerary centrosomes. FEBS Lett 2021; 595:2675-2690. [PMID: 34626438 DOI: 10.1002/1873-3468.14204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
14-3-3 proteins are conserved, dimeric, acidic proteins that regulate multiple cellular pathways. Loss of either 14-3-3ε or 14-3-3γ leads to centrosome amplification. However, we find that while the knockout of 14-3-3ε leads to multipolar mitoses, the knockout of 14-3-3γ results in centrosome clustering and pseudo-bipolar mitoses. 14-3-3γ knockouts demonstrate compromised desmosome function and a decrease in keratin levels, leading to decreased cell stiffness and an increase in centrosome clustering. Restoration of desmosome function increased multipolar mitoses, whereas knockdown of either plakoglobin or keratin 5 led to decreased cell stiffness and increased pseudo-bipolar mitoses. These results suggest that the ability of the desmosome to anchor keratin filaments maintains cell stiffness, thus inhibiting centrosome clustering, and that phenotypes observed upon 14-3-3 loss reflect the dysregulation of multiple pathways.
Collapse
Affiliation(s)
- Sarika Tilwani
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Karan Gandhi
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Satya Narayan
- Department of Chemical Sciences, TIFR, Mumbai, India
| | | | - Sorab Nariman Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
24
|
Generation and characterization of a Myh6-driven Cre knockin mouse line. Transgenic Res 2021; 30:821-835. [PMID: 34542814 PMCID: PMC8580938 DOI: 10.1007/s11248-021-00285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/10/2021] [Indexed: 10/25/2022]
Abstract
Gene deletion by the Cre-Loxp system has facilitated functional studies of many critical genes in mice, offering important insights and allowing deeper understanding on the mechanisms underlying organ development and diseases, such as heart development and diseases. In this study, we generated a Myh6-Cre knockin mouse model by inserting the IRES-Cre-wpre-polyA cassette between the translational stop codon and the 3' untranslated region of the endogenous Myh6 gene. By crossing knockin mice with the Rosa26 reporter lines, we found that Myh6-Cre targeted cardiomyocytes at the embryonic and postnatal stages. In addition, we were able to inactivate the desmosome gene Desmoplakin (Dsp) by breeding Myh6-Cre mice with a conditional Dspflox knockout mouse line, which resulted in embryonic lethality during the mid-term pregnancy. These results suggest that the new Myh6-Cre mouse line can serve as a robust tool to dissect the distinct roles of genes involved in heart development and function.
Collapse
|
25
|
Kim YB, Hlavaty D, Maycock J, Lechler T. Roles for Ndel1 in keratin organization and desmosome function. Mol Biol Cell 2021; 32:ar2. [PMID: 34319758 PMCID: PMC8684757 DOI: 10.1091/mbc.e21-02-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Keratin intermediate filaments form dynamic polymer networks that organize in specific ways dependent on the cell type, the stage of the cell cycle, and the state of the cell. In differentiated cells of the epidermis, they are organized by desmosomes, cell–cell adhesion complexes that provide essential mechanical integrity to this tissue. Despite this, we know little about how keratin organization is controlled and whether desmosomes locally regulate keratin dynamics in addition to binding preassembled filaments. Ndel1 is a desmosome-associated protein in the differentiated epidermis, though its function at these structures has not been examined. Here, we show that Ndel1 binds directly to keratin subunits through a motif conserved in all intermediate filament proteins. Further, Ndel1 was necessary for robust desmosome–keratin association and sufficient to reorganize keratins at distinct cellular sites. Lis1, a Ndel1 binding protein, was required for desmosomal localization of Ndel1, but not for its effects on keratin filaments. Finally, we use mouse genetics to demonstrate that loss of Ndel1 results in desmosome defects in the epidermis. Our data thus identify Ndel1 as a desmosome-associated protein that promotes local assembly/reorganization of keratin filaments and is essential for robust desmosome formation.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Present Address - Institute of Immuno-Metabolic Disorders, ReCerise Therapeutics Inc., Seoul 07573, Republic of Korea
| | - Daniel Hlavaty
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Dept. of Dermatology, Duke University Medical Center, Durham, NC 27710; USA
| | - Jeff Maycock
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA
| | - Terry Lechler
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Dept. of Dermatology, Duke University Medical Center, Durham, NC 27710; USA
| |
Collapse
|
26
|
Indra I, Troyanovsky RB, Green KJ, Troyanovsky SM. Plakophilin 3 and Par3 facilitate desmosomes' association with the apical junctional complex. Mol Biol Cell 2021; 32:1824-1837. [PMID: 34260281 PMCID: PMC8684708 DOI: 10.1091/mbc.e21-01-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Desmosomes (DSMs), together with adherens junctions (AJs) and tight junctions (TJs), constitute the apical cell junctional complex (AJC). While the importance of the apical and basolateral polarity machinery in the organization of AJs and TJs is well established, how DSMs are positioned within the AJC is not understood. Here we use highly polarized DLD1 cells as a model to address how DSMs integrate into the AJC. We found that knockout (KO) of the desmosomal ARM protein Pkp3, but not other major DSM proteins, uncouples DSMs from the AJC without blocking DSM assembly. DLD1 cells also exhibit a prominent extraDSM pool of Pkp3, concentrated in tricellular (tC) contacts. Probing distinct apicobasal polarity pathways revealed that neither the DSM’s association with AJC nor the extraDSM pool of Pkp3 are abolished in cells with defects in Scrib module proteins responsible for basolateral membrane development. However, a loss of the apical polarity protein, Par3, completely eliminates the extraDSM pool of Pkp3 and disrupts AJC localization of desmosomes, dispersing these junctions along the entire length of cell–cell contacts. Our data are consistent with a model whereby Par3 facilitates DSM assembly within the AJC, controlling the availability of an assembly competent pool of Pkp3 stored in tC contacts.
Collapse
Affiliation(s)
| | | | - Kathleen J Green
- Departments of Pathology and Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | | |
Collapse
|
27
|
Broussard JA, Koetsier JL, Hegazy M, Green KJ. Desmosomes polarize and integrate chemical and mechanical signaling to govern epidermal tissue form and function. Curr Biol 2021; 31:3275-3291.e5. [PMID: 34107301 DOI: 10.1016/j.cub.2021.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023]
Abstract
The epidermis is a stratified epithelium in which structural and functional features are polarized across multiple cell layers. This type of polarity is essential for establishing the epidermal barrier, but how it is created and sustained is poorly understood. Previous work identified a role for the classic cadherin/filamentous-actin network in establishment of epidermal polarity. However, little is known about potential roles of the most prominent epidermal intercellular junction, the desmosome, in establishing epidermal polarity, in spite of the fact that desmosome constituents are patterned across the apical to basal cell layers. Here, we show that desmosomes and their associated intermediate filaments (IFs) are key regulators of mechanical polarization in epidermis, whereby basal and suprabasal cells experience different forces that drive layer-specific functions. Uncoupling desmosomes and IF or specific targeting of apical desmosomes through depletion of the superficial desmosomal cadherin, desmoglein 1, impedes basal stratification in an in vitro competition assay and suprabasal tight junction barrier functions in 3D reconstructed epidermis. Surprisingly, disengaging desmosomes from IF also accelerated the expression of differentiation markers, through precocious activation of the mechanosensitive transcriptional regulator serum response factor (SRF) and downstream activation of epidermal growth factor receptor family member ErbB2 by Src family kinase (SFK)-mediated phosphorylation. This Dsg1-SFK-ErbB2 axis also helps maintain tight junctions and barrier function later in differentiation. Together, these data demonstrate that the desmosome-IF network is a critical contributor to the cytoskeletal-adhesive machinery that supports the polarized function of the epidermis.
Collapse
Affiliation(s)
- Joshua A Broussard
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | | | - Marihan Hegazy
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| | - Kathleen J Green
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Ozols M, Eckersley A, Mellody KT, Mallikarjun V, Warwood S, O'Cualain R, Knight D, Watson REB, Griffiths CEM, Swift J, Sherratt MJ. Peptide location fingerprinting reveals modification-associated biomarker candidates of ageing in human tissue proteomes. Aging Cell 2021; 20:e13355. [PMID: 33830638 PMCID: PMC8135079 DOI: 10.1111/acel.13355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age-related diseases, the untargeted identification of structurally modified proteins remains challenging. Peptide location fingerprinting is a proteomic analysis technique capable of identifying structural modification-associated differences in mass spectrometry (MS) data sets of complex biological samples. A new webtool (Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin proteomes, can relatively quantify peptides and map statistically significant differences to regions within protein structures. New photoageing biomarker candidates were identified in multiple pathways including extracellular matrix organisation (collagens and proteoglycans), protein synthesis and folding (ribosomal proteins and TRiC complex subunits), cornification (keratins) and hemidesmosome assembly (plectin and integrin α6β4). Crucially, peptide location fingerprinting uniquely identified 120 protein biomarker candidates in the dermis and 71 in the epidermis which were modified as a consequence of photoageing but did not differ significantly in relative abundance (measured by MS1 ion intensity). By applying peptide location fingerprinting to published MS data sets, (identifying biomarker candidates including collagen V and versican in ageing tendon) we demonstrate the potential of the MPLF webtool for biomarker discovery.
Collapse
Affiliation(s)
- Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| | - Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| | - Kieran T. Mellody
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
| | - Venkatesh Mallikarjun
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Wellcome Centre for Cell‐Matrix Research The University of Manchester Manchester UK
| | - Stacey Warwood
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Ronan O'Cualain
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - David Knight
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Rachel E. B. Watson
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research CentreCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science Centre Manchester UK
| | - Christopher E. M. Griffiths
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research CentreCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science Centre Manchester UK
| | - Joe Swift
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Wellcome Centre for Cell‐Matrix Research The University of Manchester Manchester UK
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| |
Collapse
|
29
|
Wanuske M, Brantschen D, Schinner C, Stüdle C, Walter E, Hiermaier M, Vielmuth F, Waschke J, Spindler V. Clustering of desmosomal cadherins by desmoplakin is essential for cell-cell adhesion. Acta Physiol (Oxf) 2021; 231:e13609. [PMID: 33354837 DOI: 10.1111/apha.13609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/14/2022]
Abstract
AIM Desmoplakin (Dp) is a crucial component of the desmosome, a supramolecular cell junction complex anchoring intermediate filaments. The mechanisms how Dp modulates cell-cell adhesion are only partially understood. Here, we studied the impact of Dp on the function of desmosomal adhesion molecules, desmosome turnover and intercellular adhesion. METHODS CRISPR/Cas9 was used for gene editing of human keratinocytes which were characterized by Western blot and immunostaining. Desmosomal ultrastructure and function were assessed by electron microscopy and cell adhesion assays. Single molecule binding properties and localization of desmosomal cadherins were studied by atomic force microscopy and super-resolution imaging. RESULTS Knockout (ko) of Dp impaired cell cohesion to drastically higher extents as ko of another desmosomal protein, plakoglobin (Pg). In contrast to Pg ko, desmosomes were completely absent in Dp ko. Binding properties of the desmosomal adhesion molecules desmocollin (Dsc) 3 and desmoglein (Dsg) 3 remained unaltered under loss of Dp. Dp was required for assembling desmosomal cadherins into large clusters, as Dsg2 and Dsc3, adhesion molecules primarily localized within desmosomes, were redistributed into small puncta in the cell membrane of Dp ko cells. Additional silencing of desmosomal cadherins in Dp ko did not further increase loss of intercellular adhesion. CONCLUSION Our data demonstrate that Dp is essential for desmosome formation but does not influence intercellular adhesion on the level of individual cadherin binding properties. Rather, macro-clustering of desmosomal adhesion molecules through Dp is crucial. These results may help to better understand severe diseases which are caused by Dp dysfunction.
Collapse
Affiliation(s)
- Marie‐Therès Wanuske
- Department of Biomedicine University of Basel Basel Switzerland
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | | | - Camilla Schinner
- Department of Biomedicine University of Basel Basel Switzerland
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | - Chiara Stüdle
- Department of Biomedicine University of Basel Basel Switzerland
| | - Elias Walter
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | - Matthias Hiermaier
- Department of Biomedicine University of Basel Basel Switzerland
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | - Franziska Vielmuth
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | - Jens Waschke
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| | - Volker Spindler
- Department of Biomedicine University of Basel Basel Switzerland
- Faculty of Medicine Ludwig‐Maximilians‐Universität Munich Munich Germany
| |
Collapse
|
30
|
Gong W, Guo P, Liu L, Guan Q, Yuan Z. Integrative Analysis of Transcriptome-Wide Association Study and mRNA Expression Profiles Identifies Candidate Genes Associated With Idiopathic Pulmonary Fibrosis. Front Genet 2020; 11:604324. [PMID: 33362862 PMCID: PMC7758323 DOI: 10.3389/fgene.2020.604324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of scarring lung disease characterized by a chronic, progressive, and irreversible decline in lung function. The genetic basis of IPF remains elusive. A transcriptome-wide association study (TWAS) of IPF was performed by FUSION using gene expression weights of three tissues combined with a large-scale genome-wide association study (GWAS) dataset, totally involving 2,668 IPF cases and 8,591 controls. Significant genes identified by TWAS were then subjected to gene ontology (GO) and pathway enrichment analysis. The overlapped GO terms and pathways between enrichment analysis of TWAS significant genes and differentially expressed genes (DEGs) from the genome-wide mRNA expression profiling of IPF were also identified. For TWAS significant genes, protein–protein interaction (PPI) network and clustering modules analyses were further conducted using STRING and Cytoscape. Overall, TWAS identified a group of candidate genes for IPF under the Bonferroni corrected P value threshold (0.05/14929 = 3.35 × 10–6), such as DSP (PTWAS = 1.35 × 10–29 for lung tissue), MUC5B (PTWAS = 1.09 × 10–28 for lung tissue), and TOLLIP (PTWAS = 1.41 × 10–15 for whole blood). Pathway enrichment analysis identified multiple candidate pathways, such as herpes simplex infection (P value = 7.93 × 10–5) and antigen processing and presentation (P value = 6.55 × 10–5). 38 common GO terms and 8 KEGG pathways shared by enrichment analysis of TWAS significant genes and DEGs were identified. In the PPI network, 14 genes (DYNLL1, DYNC1LI1, DYNLL2, HLA-DRB5, HLA-DPB1, HLA-DQB2, HLA-DQA2, HLA-DQB1, HLA-DRB1, POLR2L, CENPP, CENPK, NUP133, and NUP107) were simultaneously detected by hub gene and module analysis. In conclusion, through integrative analysis of TWAS and mRNA expression profiles, we identified multiple novel candidate genes, GO terms and pathways for IPF, which contributes to the understanding of the genetic mechanism of IPF.
Collapse
Affiliation(s)
- Weiming Gong
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Guo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China.,Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
31
|
Karsch S, Büchau F, Magin TM, Janshoff A. An intact keratin network is crucial for mechanical integrity and barrier function in keratinocyte cell sheets. Cell Mol Life Sci 2020; 77:4397-4411. [PMID: 31912195 PMCID: PMC11104923 DOI: 10.1007/s00018-019-03424-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
The isotype-specific composition of the keratin cytoskeleton is important for strong adhesion, force resilience, and barrier function of the epidermis. However, the mechanisms by which keratins regulate these functions are still incompletely understood. In this study, the role and significance of the keratin network for mechanical integrity, force transmission, and barrier formation were analyzed in murine keratinocytes. Following the time-course of single-cell wound closure, wild-type (WT) cells slowly closed the gap in a collective fashion involving tightly connected neighboring cells. In contrast, the mechanical response of neighboring cells was compromised in keratin-deficient cells, causing an increased wound area initially and an inefficient overall wound closure. Furthermore, the loss of the keratin network led to impaired, fragmented cell-cell junctions, and triggered a profound change in the overall cellular actomyosin architecture. Electric cell-substrate impedance sensing of cell junctions revealed a dysfunctional barrier in knockout (Kty-/-) cells compared to WT cells. These findings demonstrate that Kty-/- cells display a novel phenotype characterized by loss of mechanocoupling and failure to form a functional barrier. Re-expression of K5/K14 rescued the barrier defect to a significant extent and reestablished the mechanocoupling with remaining discrepancies likely due to the low abundance of keratins in that setting. Our study reveals the major role of the keratin network for mechanical homeostasis and barrier functionality in keratinocyte layers.
Collapse
Affiliation(s)
- Susanne Karsch
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany
| | - Fanny Büchau
- Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Thomas M Magin
- Institute of Biology, University of Leipzig, Leipzig, Germany.
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
32
|
Keratin intermediate filaments: intermediaries of epithelial cell migration. Essays Biochem 2020; 63:521-533. [PMID: 31652439 DOI: 10.1042/ebc20190017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Migration of epithelial cells is fundamental to multiple developmental processes, epithelial tissue morphogenesis and maintenance, wound healing and metastasis. While migrating epithelial cells utilize the basic acto-myosin based machinery as do other non-epithelial cells, they are distinguished by their copious keratin intermediate filament (KF) cytoskeleton, which comprises differentially expressed members of two large multigene families and presents highly complex patterns of post-translational modification. We will discuss how the unique mechanophysical and biochemical properties conferred by the different keratin isotypes and their modifications serve as finely tunable modulators of epithelial cell migration. We will furthermore argue that KFs together with their associated desmosomal cell-cell junctions and hemidesmosomal cell-extracellular matrix (ECM) adhesions serve as important counterbalances to the contractile acto-myosin apparatus either allowing and optimizing directed cell migration or preventing it. The differential keratin expression in leaders and followers of collectively migrating epithelial cell sheets provides a compelling example of isotype-specific keratin functions. Taken together, we conclude that the expression levels and specific combination of keratins impinge on cell migration by conferring biomechanical properties on any given epithelial cell affecting cytoplasmic viscoelasticity and adhesion to neighboring cells and the ECM.
Collapse
|
33
|
Zimmer SE, Kowalczyk AP. The desmosome as a model for lipid raft driven membrane domain organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183329. [PMID: 32376221 DOI: 10.1016/j.bbamem.2020.183329] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023]
Abstract
Desmosomes are cadherin-based adhesion structures that mechanically couple the intermediate filament cytoskeleton of adjacent cells to confer mechanical stress resistance to tissues. We have recently described desmosomes as mesoscale lipid raft membrane domains that depend on raft dynamics for assembly, function, and disassembly. Lipid raft microdomains are regions of the plasma membrane enriched in sphingolipids and cholesterol. These domains participate in membrane domain heterogeneity, signaling and membrane trafficking. Cellular structures known to be dependent on raft dynamics include the post-synaptic density in neurons, the immunological synapse, and intercellular junctions, including desmosomes. In this review, we discuss the current state of the desmosome field and put forward new hypotheses for the role of lipid rafts in desmosome adhesion, signaling and epidermal homeostasis. Furthermore, we propose that differential lipid raft affinity of intercellular junction proteins is a central driving force in the organization of the epithelial apical junctional complex.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Dermatology, Emory University, Atlanta, GA 30322, United States of America.
| |
Collapse
|
34
|
Angulo-Urarte A, van der Wal T, Huveneers S. Cell-cell junctions as sensors and transducers of mechanical forces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183316. [PMID: 32360073 DOI: 10.1016/j.bbamem.2020.183316] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Epithelial and endothelial monolayers are multicellular sheets that form barriers between the 'outside' and 'inside' of tissues. Cell-cell junctions, made by adherens junctions, tight junctions and desmosomes, hold together these monolayers. They form intercellular contacts by binding their receptor counterparts on neighboring cells and anchoring these structures intracellularly to the cytoskeleton. During tissue development, maintenance and pathogenesis, monolayers encounter a range of mechanical forces from the cells themselves and from external systemic forces, such as blood pressure or tissue stiffness. The molecular landscape of cell-cell junctions is diverse, containing transmembrane proteins that form intercellular bonds and a variety of cytoplasmic proteins that remodel the junctional connection to the cytoskeleton. Many junction-associated proteins participate in mechanotransduction cascades to confer mechanical cues into cellular responses that allow monolayers to maintain their structural integrity. We will discuss force-dependent junctional molecular events and their role in cell-cell contact organization and remodeling.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Tanne van der Wal
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
35
|
Badu-Nkansah KA, Lechler T. Proteomic analysis of desmosomes reveals novel components required for epidermal integrity. Mol Biol Cell 2020; 31:1140-1153. [PMID: 32238101 PMCID: PMC7353166 DOI: 10.1091/mbc.e19-09-0542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Desmosomes are cell–cell adhesions necessary for the maintenance of tissue integrity in the skin and heart. While the core components of desmosomes have been identified, peripheral components that modulate canonical or noncanonical desmosome functions still remain largely unexplored. Here we used targeted proximity labeling approaches to further elaborate the desmosome proteome in epidermal keratinocytes. Quantitative mass spectrometry analysis identified all core desmosomal proteins while uncovering a diverse array of new constituents with broad molecular functions. By individually targeting the inner and outer dense plaques, we defined proteins enriched within these subcompartments. We validated a number of these novel desmosome-associated proteins and find that many are membrane proximal proteins that show a dependence on functional desmosomes for their cortical localization. We further explored the mechanism of localization and function of two novel desmosome-associated adaptor proteins enriched in the desmosome proteome, Crk and Crk-like (CrkL). These proteins interacted with Dsg1 and rely on Dsg1 and desmoplakin for robust cortical localization. Epidermal deletion of both Crk and CrkL resulted in perinatal lethality with defects in desmosome morphology and keratin organization, thus demonstrating the utility of this dataset in identifying novel proteins required for desmosome-dependent epidermal integrity.
Collapse
Affiliation(s)
- Kwabena A Badu-Nkansah
- Department of Dermatology and Department of Cell Biology, Duke University, Durham, NC 27710
| | - Terry Lechler
- Department of Dermatology and Department of Cell Biology, Duke University, Durham, NC 27710
| |
Collapse
|
36
|
Broussard JA, Jaiganesh A, Zarkoob H, Conway DE, Dunn AR, Espinosa HD, Janmey PA, Green KJ. Scaling up single-cell mechanics to multicellular tissues - the role of the intermediate filament-desmosome network. J Cell Sci 2020; 133:jcs228031. [PMID: 32179593 PMCID: PMC7097224 DOI: 10.1242/jcs.228031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells and tissues sense, respond to and translate mechanical forces into biochemical signals through mechanotransduction, which governs individual cell responses that drive gene expression, metabolic pathways and cell motility, and determines how cells work together in tissues. Mechanotransduction often depends on cytoskeletal networks and their attachment sites that physically couple cells to each other and to the extracellular matrix. One way that cells associate with each other is through Ca2+-dependent adhesion molecules called cadherins, which mediate cell-cell interactions through adherens junctions, thereby anchoring and organizing the cortical actin cytoskeleton. This actin-based network confers dynamic properties to cell sheets and developing organisms. However, these contractile networks do not work alone but in concert with other cytoarchitectural elements, including a diverse network of intermediate filaments. This Review takes a close look at the intermediate filament network and its associated intercellular junctions, desmosomes. We provide evidence that this system not only ensures tissue integrity, but also cooperates with other networks to create more complex tissues with emerging properties in sensing and responding to increasingly stressful environments. We will also draw attention to how defects in intermediate filament and desmosome networks result in both chronic and acquired diseases.
Collapse
Affiliation(s)
- Joshua A Broussard
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Avinash Jaiganesh
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hoda Zarkoob
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Horacio D Espinosa
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen J Green
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
37
|
Liu M, Zhang J, Wang Y, Xin C, Ma J, Xu S, Wang X, Gao J, Zhang X, Yang S. Non‑invasive proteome‑wide quantification of skin barrier‑related proteins using label‑free LC‑MS/MS analysis. Mol Med Rep 2020; 21:2227-2235. [PMID: 32186761 PMCID: PMC7115193 DOI: 10.3892/mmr.2020.11020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
A number of epidermal proteins are closely related to skin barrier function, the abnormalities of which can lead to specific skin diseases. These proteins must be quantified to further investigate the changes in the skin barrier between healthy and disease states. However, the non-invasive and proteome-wide quantification of skin proteins without any labelling steps remains a challenge. In this study, 3M medical adhesive tapes were used to obtain skin samples from volunteers. Proteins were extracted from fresh skin samples and digested with trypsin. Each tryptic peptide was analysed in three replicates using liquid chromatography with tandem mass spectrometry analysis and label-free quantification. The data were searched against the Human Universal Protein Resource (UniProt) to match with known proteins. Using this method, 1,157 skin proteins recorded in the UniProt were quantified. A total of 50 identical proteins were identified in the three replicate analyses of all samples with no significant differences in abundance. The results provided an objective metric for further study of skin ageing and various skin diseases. Specifically, the non-invasive proteome-wide method used in this study can be applied to future studies of skin diseases related to barrier destruction by monitoring the changes in the levels of epidermal proteins.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jing Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yaochi Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Cong Xin
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Ma
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shuangjun Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaomeng Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xuejun Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sen Yang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
38
|
Moch M, Schwarz N, Windoffer R, Leube RE. The keratin-desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis. Cell Mol Life Sci 2020; 77:543-558. [PMID: 31243490 PMCID: PMC7010626 DOI: 10.1007/s00018-019-03198-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 11/29/2022]
Abstract
Desmosome-anchored keratin intermediate filaments (KFs) are essential for epithelial coherence. Yet, desmosomal KF attachment and network organization are still unexplored in vivo. We, therefore, monitored KF network morphogenesis in fluorescent keratin 8 knock-in murine embryos revealing keratin enrichment at newly formed desmosomes followed by KF formation, KF elongation and KF fusion. To examine details of this process and its coupling to desmosome formation, we studied fluorescent keratin and desmosomal protein reporter dynamics in the periphery of expanding HaCaT keratinocyte colonies. Less than 3 min after the start of desmosomal proteins clustering non-filamentous keratin enriched at these sites followed by KF formation and elongation. Subsequently, desmosome-anchored KFs merged into stable bundles generating a rim-and-spokes system consisting of subcortical KFs connecting desmosomes to each other and radial KFs connecting desmosomes to the cytoplasmic KF network. We conclude that desmosomes are organizing centers for the KF cytoskeleton with a hitherto unknown nucleation capacity.
Collapse
Affiliation(s)
- Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
39
|
Thomas M, Ladoux B, Toyama Y. Desmosomal Junctions Govern Tissue Integrity and Actomyosin Contractility in Apoptotic Cell Extrusion. Curr Biol 2020; 30:682-690.e5. [DOI: 10.1016/j.cub.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/22/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
|
40
|
Kim W, Cho MH, Sakornsakolpat P, Lynch DA, Coxson HO, Tal-Singer R, Silverman EK, Beaty TH. DSP variants may be associated with longitudinal change in quantitative emphysema. Respir Res 2019; 20:160. [PMID: 31324189 PMCID: PMC6642569 DOI: 10.1186/s12931-019-1097-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Emphysema, characterized by lung destruction, is a key component of Chronic Obstructive Pulmonary Disease (COPD) and is associated with increased morbidity and mortality. Genome-wide association studies (GWAS) have identified multiple genetic factors associated with cross-sectional measures of quantitative emphysema, but the genetic determinants of longitudinal change in quantitative measures of emphysema remain largely unknown. Our study aims to identify genetic variants associated with longitudinal change in quantitative emphysema measured by computed tomography (CT) imaging. Methods We included current and ex-smokers from two longitudinal cohorts: COPDGene, a study of Non-Hispanic Whites (NHW) and African Americans (AA), and the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE). We calculated annual change in two quantitative measures of emphysema based on chest CT imaging: percent low attenuation area (≤ − 950HU) (%LAA-950) and adjusted lung density (ALD). We conducted GWAS, separately in 3030 NHW and 1158 AA from COPDGene and 1397 Whites from ECLIPSE. We further explored effects of 360 previously reported variants and a lung function based polygenic risk score on annual change in quantitative emphysema. Results In the genome-wide association analysis, no variants achieved genome-wide significance (P < 5e-08). However, in the candidate region analysis, rs2076295 in the DSP gene, previously associated with COPD, lung function and idiopathic pulmonary fibrosis, was associated with change in %LAA-950 (β (SE) = 0.09 (0.02), P = 3.79e-05) and in ALD (β (SE) = − 0.06 (0.02), P = 2.88e-03). A lung function based polygenic risk score was associated with annual change in %LAA-950 (P = 4.03e-02) and with baseline measures of quantitative emphysema (P < 1e-03) and showed a trend toward association with annual change in ALD (P = 7.31e-02). Conclusions DSP variants may be associated with longitudinal change in quantitative emphysema. Additional investigation of the DSP gene are likely to provide further insights into the disease progression in emphysema and COPD. Trial registration Clinicaltrials.gov Identifier: NCT00608764, NCT00292552. Electronic supplementary material The online version of this article (10.1186/s12931-019-1097-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Woori Kim
- Department of Epidemiology, Johns Hopkins School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.,Channing Division of Network Medicine Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Phuwanat Sakornsakolpat
- Channing Division of Network Medicine Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO, USA
| | - Harvey O Coxson
- Department of Radiology, University of British Columbia, British Columbia, Canada
| | | | - Edwin K Silverman
- Channing Division of Network Medicine Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
41
|
Zhang M, Wang X, Guo F, Jia Q, Liu N, Chen Y, Yan Y, Huang M, Tang H, Deng Y, Huang S, Zhou Z, Zhang L, Zhang L. Cdc42 Deficiency Leads To Epidermal Barrier Dysfunction by Regulating Intercellular Junctions and Keratinization of Epidermal Cells during Mouse Skin Development. Am J Cancer Res 2019; 9:5065-5084. [PMID: 31410202 PMCID: PMC6691388 DOI: 10.7150/thno.34014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/08/2019] [Indexed: 01/19/2023] Open
Abstract
Rationale: Cdc42 is a Rho GTPase that regulates diverse cellular functions. Here, we used genetic techniques to investigate the role of Cdc42 in epidermal development and epidermal barrier formation. Methods: Keratinocyte-restricted Cdc42 knockout mice were generated with the Cre-LoxP system under the keratin 14 (K14) promoter. The skin and other tissues were collected from mutant and wild-type mice, and their cellular, molecular, morphological, and physiological features were analyzed. Results: Loss of Cdc42 in the epidermis in vivo resulted in neonatal lethality and impairment of epidermal barrier formation. Cdc42 deficiency led to the loss of epidermal stem cells. The absence of Cdc42 led to increased thickening of the epidermis, which was associated with increased proliferation and reduced apoptosis of keratinocytes. In addition, Cdc42 deficiency damaged tight junctions, adherens junctions and desmosomes. RNA sequencing results showed that the most significantly altered genes were enriched by the terms of “keratinization” and “cornified envelope” (CE). Among the differentially expressed genes in the CE term, several members of the small proline-rich protein (SPRR) family were upregulated. Further study revealed that there may be a Cdc42-SPRR pathway, which may correlate with epidermal barrier function. Conclusions: Our study indicates that Cdc42 is essential for epidermal development and epidermal barrier formation. Defects in Cdc42-SPRR signaling may be associated with skin barrier dysfunction and a variety of skin diseases.
Collapse
|
42
|
Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc Natl Acad Sci U S A 2019; 116:14630-14638. [PMID: 31253707 DOI: 10.1073/pnas.1715272116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mammalian epidermal stem cells maintain homeostasis of the skin epidermis and contribute to its regeneration throughout adult life. While 2D mouse epidermal stem cell cultures have been established decades ago, a long-term, feeder cell- and serum-free culture system recapitulating murine epidermal architecture has not been available. Here we describe an epidermal organoid culture system that allows long-term, genetically stable expansion of adult epidermal stem cells. Our epidermal expansion media combines atypically high calcium concentrations, activation of cAMP, FGF, and R-spondin signaling with inhibition of bone morphogenetic protein (BMP) signaling. Organoids are established robustly from adult mouse skin and expand over at least 6 mo, while maintaining the basal-apical organization of the mouse interfollicular epidermis. The system represents a powerful tool to study epidermal homeostasis and disease in vitro.
Collapse
|
43
|
Bharathan NK, Dickinson AJG. Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo. Dev Biol 2019; 450:115-131. [PMID: 30935896 PMCID: PMC6659752 DOI: 10.1016/j.ydbio.2019.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Desmoplakin (Dsp) is a unique and critical desmosomal protein, that is integral to epidermal development. However, it is unclear whether this protein is required specifically for epidermal morphogenesis. Using morpholinos or Crispr/Cas9 mutagenesis we decreased the function of Dsp in frog embryos to better understand its role during epidermal development. Dsp morphant and mutant embryos had developmental defects such as epidermal fragility that mimicked what has been reported in mammals. Most importantly, we also uncovered a novel function for Dsp in the morphogenesis of the epidermis in X. laevis. In particular, Dsp is required during the process of radial intercalation where basally located cells move into the outer epidermal layer. Once inserted these newly intercalated cells expand their apical surface and then they differentiate into specific epidermal cell types. Decreased levels of Dsp resulted in the failure of the radially intercalating cells to expand their apical surface, thereby reducing the number of differentiated multiciliated and secretory cells. Such defects correlate with changes in E-cadherin levels and actin and microtubule localization which could explain the defects in apical expansion. A mutated form of Dsp that maintains cell-cell adhesion but eliminates the connections to the cytoskeleton results in the same epidermal morphogenesis defect. These results suggest a specific role for Dsp in the apical expansion of cells during radial intercalation. We have developed a novel system, in the frog, to demonstrate for the first time that desmosomes not only protect against mechanical stress but are also critical for epidermal morphogenesis.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall St., Richmond, VA 23219, United States; Department of Cell Biology, Emory University School of Medicine, 615 Michael Street Atlanta, GA 30322, United States
| | - Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, 1000 West Cary St., Richmond, VA 23284, United States.
| |
Collapse
|
44
|
Mechanical loading of desmosomes depends on the magnitude and orientation of external stress. Nat Commun 2018; 9:5284. [PMID: 30538252 PMCID: PMC6290003 DOI: 10.1038/s41467-018-07523-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/08/2018] [Indexed: 01/19/2023] Open
Abstract
Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells, and are essential for the mechanical integrity of mammalian tissues. Mutations in desmosomal proteins cause severe human pathologies including epithelial blistering and heart muscle dysfunction. However, direct evidence for their load-bearing nature is lacking. Here we develop Förster resonance energy transfer (FRET)-based tension sensors to measure the forces experienced by desmoplakin, an obligate desmosomal protein that links the desmosomal plaque to intermediate filaments. Our experiments reveal that desmoplakin does not experience significant tension under most conditions, but instead becomes mechanically loaded when cells are exposed to external mechanical stresses. Stress-induced loading of desmoplakin is transient and sensitive to the magnitude and orientation of the applied tissue deformation, consistent with a stress absorbing function for desmosomes that is distinct from previously analyzed cell adhesion complexes. Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells but direct evidence for their load-bearing nature is lacking. Here the authors develop FRET-based tension sensors to measure the forces experienced by desmoplakin and infer that desmosomes become mechanically loaded when cells are exposed to external mechanical stresses.
Collapse
|
45
|
Wang F, Chen S, Liu HB, Parent CA, Coulombe PA. Keratin 6 regulates collective keratinocyte migration by altering cell-cell and cell-matrix adhesion. J Cell Biol 2018; 217:4314-4330. [PMID: 30389720 PMCID: PMC6279382 DOI: 10.1083/jcb.201712130] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 01/21/2023] Open
Abstract
Keratin 6 (K6) isoforms are induced in wound-proximal keratinocytes after injury to skin. Paradoxically, absence of K6 isoforms leads to faster directional cell migration. Wang et al. report that K6 promotes collective keratinocyte migration by interacting with desmoplakin and myosin IIA and stabilizing cell adhesion. The a and b isoforms of keratin 6 (K6), a type II intermediate filament (IF) protein, are robustly induced upon injury to interfollicular epidermis. We previously showed that complete loss of K6a/K6b stimulates keratinocyte migration, correlating with enhanced Src activity. In this study, we demonstrate that this property is cell autonomous, depends on the ECM, and results from elevated speed, enhanced directionality, and an increased rate of focal adhesion disassembly. We show that myosin IIA interacts with K6a/K6b, that its levels are markedly reduced in Krt6a/Krt6b-null keratinocytes, and that inhibiting myosin ATPase activity normalizes the enhanced migration potential of Krt6a/Krt6b-null cells. Desmoplakin, which mediates attachment of IFs to desmosomes, is also expressed at reduced levels and is mislocalized to the nucleus in Krt6a/Krt6b-null cells, correlating with defects in cell adhesion. These findings reveal that K6a/K6b modulate keratinocyte migration by regulating cell–matrix and cell–cell adhesion and highlight a role for keratins in collective cell migration.
Collapse
Affiliation(s)
- Fengrong Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Hans B Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Carole A Parent
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI .,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
46
|
Rübsam M, Broussard JA, Wickström SA, Nekrasova O, Green KJ, Niessen CM. Adherens Junctions and Desmosomes Coordinate Mechanics and Signaling to Orchestrate Tissue Morphogenesis and Function: An Evolutionary Perspective. Cold Spring Harb Perspect Biol 2018; 10:a029207. [PMID: 28893859 PMCID: PMC6211388 DOI: 10.1101/cshperspect.a029207] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cadherin-based adherens junctions (AJs) and desmosomes are crucial to couple intercellular adhesion to the actin or intermediate filament cytoskeletons, respectively. As such, these intercellular junctions are essential to provide not only integrity to epithelia and other tissues but also the mechanical machinery necessary to execute complex morphogenetic and homeostatic intercellular rearrangements. Moreover, these spatially defined junctions serve as signaling hubs that integrate mechanical and chemical pathways to coordinate tissue architecture with behavior. This review takes an evolutionary perspective on how the emergence of these two essential intercellular junctions at key points during the evolution of multicellular animals afforded metazoans with new opportunities to integrate adhesion, cytoskeletal dynamics, and signaling. We discuss known literature on cross-talk between the two junctions and, using the skin epidermis as an example, provide a model for how these two junctions function in concert to orchestrate tissue organization and function.
Collapse
Affiliation(s)
- Matthias Rübsam
- University of Cologne, Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) at the CECAD Research Center, 50931 Cologne, Germany
| | - Joshua A Broussard
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Sara A Wickström
- Paul Gerson Unna Group, Skin Homeostasis and Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Oxana Nekrasova
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Carien M Niessen
- University of Cologne, Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) at the CECAD Research Center, 50931 Cologne, Germany
| |
Collapse
|
47
|
Abstract
Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur Paris, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Paris Cedex 15, France;
| |
Collapse
|
48
|
Kam CY, Dubash AD, Magistrati E, Polo S, Satchell KJF, Sheikh F, Lampe PD, Green KJ. Desmoplakin maintains gap junctions by inhibiting Ras/MAPK and lysosomal degradation of connexin-43. J Cell Biol 2018; 217:3219-3235. [PMID: 29959233 PMCID: PMC6123000 DOI: 10.1083/jcb.201710161] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/26/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Desmosomal mutations result in potentially deadly cardiocutaneous disease caused by electrical conduction defects and disruption of gap junctions. Kam et al. demonstrate a mechanism whereby loss of the intermediate filament anchoring protein desmoplakin stimulates Cx43 turnover by increasing K-Ras expression, marking Cx43 for lysosomal degradation through ERK1/2 phosphorylation. Desmoplakin (DP) is an obligate component of desmosomes, intercellular adhesive junctions that maintain the integrity of the epidermis and myocardium. Mutations in DP can cause cardiac and cutaneous disease, including arrhythmogenic cardiomyopathy (ACM), an inherited disorder that frequently results in deadly arrhythmias. Conduction defects in ACM are linked to the remodeling and functional interference with Cx43-based gap junctions that electrically and chemically couple cells. How DP loss impairs gap junctions is poorly understood. We show that DP prevents lysosomal-mediated degradation of Cx43. DP loss triggered robust activation of ERK1/2–MAPK and increased phosphorylation of S279/282 of Cx43, which signals clathrin-mediated internalization and subsequent lysosomal degradation of Cx43. RNA sequencing revealed Ras-GTPases as candidates for the aberrant activation of ERK1/2 upon loss of DP. Using a novel Ras inhibitor, Ras/Rap1-specific peptidase (RRSP), or K-Ras knockdown, we demonstrate restoration of Cx43 in DP-deficient cardiomyocytes. Collectively, our results reveal a novel mechanism for the regulation of the Cx43 life cycle by DP in cardiocutaneous models.
Collapse
Affiliation(s)
- Chen Yuan Kam
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Adi D Dubash
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Simona Polo
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy.,Dipartimento di Oncologia ed Emato-oncologia, Universita' degli Studi di Milano, Milan, Italy
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Farah Sheikh
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Paul D Lampe
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Research Center, Seattle, WA
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL .,Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| |
Collapse
|
49
|
Quinlan RA, Schwarz N, Windoffer R, Richardson C, Hawkins T, Broussard JA, Green KJ, Leube RE. A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. J Cell Sci 2018; 130:3437-3445. [PMID: 29032358 DOI: 10.1242/jcs.202168] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Textbook images of keratin intermediate filament (IF) networks in epithelial cells and the functional compromization of the epidermis by keratin mutations promulgate a mechanical role for this important cytoskeletal component. In stratified epithelia, keratin filaments form prominent radial spokes that are focused onto cell-cell contact sites, i.e. the desmosomes. In this Hypothesis, we draw attention to a subset of keratin filaments that are apposed to the plasma membrane. They form a rim of filaments interconnecting the desmosomes in a circumferential network. We hypothesize that they are part of a rim-and-spoke arrangement of IFs in epithelia. From our review of the literature, we extend this functional role for the subplasmalemmal rim of IFs to any cell, in which plasma membrane support is required, provided these filaments connect directly or indirectly to the plasma membrane. Furthermore, cytoplasmic IF networks physically link the outer nuclear and plasma membranes, but their participation in mechanotransduction processes remain largely unconsidered. Therefore, we also discuss the potential biomechanical and mechanosensory role(s) of the cytoplasmic IF network in terms of such a rim (i.e. subplasmalemmal)-and-spoke arrangement for cytoplasmic IF networks.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK .,Biophysical Sciences Institute, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Nicole Schwarz
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Reinhard Windoffer
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Christine Richardson
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Tim Hawkins
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Joshua A Broussard
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Kathleen J Green
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Rudolf E Leube
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
50
|
Hsu CY, Lecland N, Pendaries V, Viodé C, Redoulès D, Paul C, Merdes A, Simon M, Bierkamp C. Stabilization of microtubules restores barrier function after cytokine-induced defects in reconstructed human epidermis. J Dermatol Sci 2018; 91:87-96. [PMID: 29691121 DOI: 10.1016/j.jdermsci.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND A variety of human skin disorders is characterized by defects in the epidermal barrier, leading to dehydration, itchiness, and rashes. Previously published literature suggests that microtubule stabilization at the cortex of differentiating keratinocytes is necessary for the formation of the epidermal barrier. OBJECTIVES We tested whether stabilization of microtubules with paclitaxel or epothilone B can repair barrier defects that were experimentally induced in three-dimensional culture models of epidermis. METHODS We established two models of defective epidermis in vitro, using three-dimensional cultures of primary human keratinocytes on filter supports: immature reconstructed human epidermis (RHE), and RHE that was compromised by treatment with inflammatory cytokines, the latter mimicking defects seen in atopic dermatitis. RESULTS Both paclitaxel and epothilone B promoted keratinocyte differentiation, accumulation of junctional proteins at the cell cortex, and the early appearance of lamellar bodies in immature RHE, whereas destabilization of microtubules by nocodazole had the reverse effect. Moreover, stabilization of microtubules rescued the barrier after cytokine treatment. The rescued barrier function correlated with the restoration of filaggrin and loricrin protein levels, the cortical accumulation of junctional proteins (E-cadherin, β-catenin, and claudin-1), and with the secretion of lamellar bodies. CONCLUSIONS Our data suggest that the microtubule network is important for the formation of the epidermis, and that stabilization of microtubules promotes barrier formation. Microtubule stabilization may support regeneration of damaged skin, by restoring or improving the barrier.
Collapse
Affiliation(s)
- Chiung-Yueh Hsu
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062, Toulouse, France
| | - Nicolas Lecland
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062, Toulouse, France
| | - Valérie Pendaries
- INSERM-Université Paul Sabatier U1056, UDEAR, CHU Purpan, 31059, Toulouse, France
| | - Cécile Viodé
- Pierre Fabre Dermo-Cosmétique, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | - Daniel Redoulès
- Pierre Fabre Dermo-Cosmétique, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | - Carle Paul
- INSERM-Université Paul Sabatier U1056, UDEAR, CHU Purpan, 31059, Toulouse, France; Dermatologie, Hôpital Larrey, Centre Hospitalier Universitaire de Toulouse, 31059, Toulouse, France
| | - Andreas Merdes
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062, Toulouse, France.
| | - Michel Simon
- INSERM-Université Paul Sabatier U1056, UDEAR, CHU Purpan, 31059, Toulouse, France.
| | - Christiane Bierkamp
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062, Toulouse, France.
| |
Collapse
|