1
|
Leclair NK, Brugiolo M, Park S, Devoucoux M, Urbanski L, Angarola BL, Yurieva M, Anczuków O. Antisense oligonucleotide-mediated TRA2β poison exon inclusion induces the expression of a lncRNA with anti-tumor effects. Nat Commun 2025; 16:1670. [PMID: 39955311 PMCID: PMC11829967 DOI: 10.1038/s41467-025-56913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Upregulated expression of the oncogenic splicing factor TRA2β occurs in human tumors partly through decreased inclusion of its autoregulatory non-coding poison exon (PE). Here, we reveal that low TRA2β-PE inclusion negatively impacts patient survival across several tumor types. We demonstrate the ability of splice-switching antisense oligonucleotides (ASOs) to promote TRA2β-PE inclusion and lower TRA2β protein levels in pre-clinical cancer models. TRA2β-PE-targeting ASOs induce anti-cancer phenotypes and widespread transcriptomic alterations with functional impact on RNA processing, mTOR, and p53 signaling pathways. Surprisingly, the effect of TRA2β-PE-targeting ASOs on cell viability are not phenocopied by TRA2β knockdown. Mechanistically, we find that the ASO functions by both decreasing TRA2β protein and inducing the expression of TRA2β-PE-containing transcripts that act as long non-coding RNAs to sequester nuclear proteins. Finally, TRA2β-PE-targeting ASOs are toxic to preclinical 3D organoid and in vivo patient-derived xenograft models. Together, we demonstrate that TRA2β-PE acts both as a regulator of protein expression and a long-noncoding RNA to control cancer cell growth. Drugging oncogenic splicing factors using PE-targeting ASOs is a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nathan K Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Maeva Devoucoux
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | | | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
2
|
Choi H, Kim HD, Choi YW, Lim H, Kim KW, Kim KS, Lee YC, Kim CH. T7 phage display reveals NOLC1 as a GM3 binding partner in human breast cancer MCF-7 cells. Arch Biochem Biophys 2023; 750:109810. [PMID: 37939867 DOI: 10.1016/j.abb.2023.109810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Ganglioside GM3 is a simple monosialoganglioside (NeuAc-Gal-Glc-ceramide) that modulates cell adhesion, proliferation, and differentiation. Previously, we reported isolation of GM3-binding vascular endothelial growth factor receptor and transforming growth factor-β receptor by the T7 phage display method (Chung et al., 2009; Kim et al., 2013). To further identify novel proteins interacting with GM3, we extended the T7 phage display method in this study. After T7 phage display biopanning combined with immobilized biotin-labeled 3'-sialyllactose prepared on a streptavidin-coated microplate, we isolated 100 candidate sequences from the human lung cDNA library. The most frequently detected clones from the blast analysis were the human nucleolar and coiled-body phosphoprotein 1 (NOLC1) sequences. We initially identified NOLC1 as a molecule that possibly binds to GM3 and confirmed this binding ability using the glutathione S-transferase fusion protein. Herein, we report another GM3-interacting protein, NOLC1, that can be isolated by the T7 phage display method. These results are expected to be helpful for elucidating the functional roles of ganglioside GM3 with NOLC1. When human breast cancer MCF-7 cells were examined for subcellular localization of NOLC1, immunofluorescence of NOLC1 was observed in the intracellular region. In addition, NOLC1 expression was increased in the nucleolus after treatment with the anticancer drug doxorubicin. GM3 and NOLC1 levels in the doxorubicin-treated MCF-7 cells were correlated, indicating possible associations between GM3 and NOLC1. Therefore, direct interactions between carbohydrates and cellular proteins can pave the path for new signaling phenomena in biology.
Collapse
Affiliation(s)
- Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Yeon-Woo Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Hakseong Lim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Kyung-Woon Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Saha-Gu, Busan, 604-714, South Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Saha-Gu, Busan, 604-714, South Korea.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| |
Collapse
|
3
|
Su Y, Zhang Y, Zhou M, Zhang R, Chen S, Zhang L, Wang H, Zhang D, Zhang T, Li X, Zhang C, Wang B, Yuan S, Zhang M, Zhou Y, Cao L, Zhang M, Luo J. Genetic alterations in juvenile cervical clear cell adenocarcinoma unrelated to human papillomavirus. Front Med (Lausanne) 2023; 10:1211888. [PMID: 37654657 PMCID: PMC10466801 DOI: 10.3389/fmed.2023.1211888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Clear cell adenocarcinoma of the cervix (CCAC) is a special type of HPV-independent cervical cancer. It has a low incidence rate, can be difficult to diagnose early, has a poor prognosis. Its peak incidence is in adolescence, which poses a great threat to women's health. Therefore, it is very important to explore the pathogenesis of cervical clear cell adenocarcinoma to guide subsequent treatment and prevention. This study analyzed 3 juvenile patients with CCAC diagnosed at the First Affiliated Hospital of Zhengzhou University. Using next-generation sequencing methods, we analyzed the pathogenesis of the patients and their close relatives by analyzing the genetic alterations of patients. CMTM5 was identified as the only shared mutated gene. Using published literature and comparative analyses of related disease-causing genes, 6 of the 19 genes (ALKBH7, MYCBP, MZF1, RNF207, RRS1, and TUSC2) were screened as genes with mutations in patients and had higher mutation rates in reproductive cancers. Pathway analysis showed that downregulated genes in non-HPV cervical cancer were mainly related to the immune system response, suggesting that non-HPV cervical cancer differs from HPV-infected cervical cancer in that the immune response is weaker, which is consistent with the weak correlation with viral infection.
Collapse
Affiliation(s)
- Yuehui Su
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mengjiao Zhou
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruijin Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Siang Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongdong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ting Zhang
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinqiang Li
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyan Zhang
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingjie Wang
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuyu Yuan
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhuo Zhang
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Zhou
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Cao
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhen Zhang
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Challakkara MF, Chhabra R. snoRNAs in hematopoiesis and blood malignancies: A comprehensive review. J Cell Physiol 2023; 238:1207-1225. [PMID: 37183323 DOI: 10.1002/jcp.31032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are noncoding RNA molecules of highly variable size, usually ranging from 60 to 150 nucleotides. They are classified into H/ACA box snoRNAs, C/D box snoRNAs, and scaRNAs. Their functional profile includes biogenesis of ribosomes, processing of rRNAs, 2'-O-methylation and pseudouridylation of RNAs, alternative splicing and processing of mRNAs and the generation of small RNA molecules like miRNA. The snoRNAs have been observed to have an important role in hematopoiesis and malignant hematopoietic conditions including leukemia, lymphoma, and multiple myeloma. Blood malignancies arise in immune system cells or the bone marrow due to chromosome abnormalities. It has been estimated that annually over 1.25 million cases of blood cancer occur worldwide. The snoRNAs often show a differential expression profile in blood malignancies. Recent reports associate the abnormal expression of snoRNAs with the inhibition of apoptosis, uncontrolled cell proliferation, angiogenesis, and metastasis. This implies that targeting snoRNAs could be a potential way to treat hematologic malignancies. In this review, we describe the various functions of snoRNAs, their role in hematopoiesis, and the consequences of their dysregulation in blood malignancies. We also evaluate the potential of the dysregulated snoRNAs as biomarkers and therapeutic targets for blood malignancies.
Collapse
Affiliation(s)
- Mohamed Fahad Challakkara
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
5
|
Buryska S, Arji S, Wuertz B, Ondrey F. Using Bland-Altman Analysis to Identify Appropriate Clonogenic Assay Colony Counting Techniques. Technol Cancer Res Treat 2023; 22:15330338231214250. [PMID: 37997353 PMCID: PMC10668582 DOI: 10.1177/15330338231214250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE Determine the interchangeability of various methods utilized for counting colonies in clonogenic assays. METHODS Clonogenic assays of 2 head and neck cancer cell lines were counted through 4 different counting modalities: Manual counting pen, via microscope, 1 publicly available automated algorithm, and a semiautomated algorithm presented by the authors. Each method counted individual wells (N = 24). Pen and microscopic counts were performed by 2 observers. Parameters included both low-growth (<150 colonies/well) and high-growth (>150 colonies/well) cell lines. Correlational and Bland-Altman analyses were performed using SPSS software. RESULTS Interobserver manual pen count correlation R2 value in both growth conditions was 0.902; controlling for only low-growth conditions decreased R2 to 0.660. Correlation of microscopic versus pen counts R2 values for observers 1 and 2 were 0.955 and 0.775, respectively. Comparing techniques, Bland-Altman revealed potential bias with respect to the magnitude of measurement (P < .001) for both observers. Correlation of microscopic counts for both interobserver (R2 = 0.902) and intraobserver (R2 = 0.916) were analyzed. Bland-Altman revealed no bias (P = .489). Automated versus microscopic counts revealed no bias between methodologies (P = .787) and a lower correlation coefficient (R2 = 0.384). Semiautomated versus microscopic counts revealed no bias with respect to magnitude of measurement for either observer (P = .327, .229); Pearson correlation was 0.985 (R2 = 0.970) and 0.965 (R2 = 0.931) for observer 1 and 2. Semiautomated versus manual pen colony counts revealed a significant bias with respect to magnitude of measurement (P < .001). CONCLUSION Counting with a manual pen demonstrated significant bias when compared to microscopic and semiautomated colony counts; 2 methods were deemed to be interchangeable. Thus, training algorithms based on manual counts may introduce this bias as well. Algorithms trained to select colonies based on size (pixels2) and shape (circularity) should be prioritized. Solely relying on Bland-Altman or correlational analyses when determining method interchangeability should be avoided; they rather should be used in conjunction.
Collapse
Affiliation(s)
- Seth Buryska
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Sanjana Arji
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Beverly Wuertz
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Frank Ondrey
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Zhang W, Liu B. iSnoDi-LSGT: identifying snoRNA-disease associations based on local similarity constraints and global topological constraints. RNA (NEW YORK, N.Y.) 2022; 28:1558-1567. [PMID: 36192132 PMCID: PMC9670808 DOI: 10.1261/rna.079325.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Growing evidence proves that small nucleolar RNAs (snoRNAs) have important functions in various biological processes, the malfunction of which leads to the emergence and development of complex diseases. However, identifying snoRNA-disease associations is an ongoing challenging task due to the considerable time- and money-consuming biological experiments. Therefore, it is urgent to design efficient and economical methods for the identification of snoRNA-disease associations. In this regard, we propose a computational method named iSnoDi-LSGT, which utilizes snoRNA sequence similarity and disease similarity as local similarity constraints. The iSnoDi-LSGT predictor further employs network embedding technology to extract topological features of snoRNAs and diseases, based on which snoRNA topological similarity and disease topological similarity are calculated as global topological constraints. To the best of our knowledge, the iSnoDi-LSGT is the first computational method for snoRNA-disease association identification. The experimental results indicate that the iSnoDi-LSGT predictor can effectively predict unknown snoRNA-disease associations. The web server of the iSnoDi-LSGT predictor is freely available at http://bliulab.net/iSnoDi-LSGT.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Kumar S, Song M. Overcoming biases in causal inference of molecular interactions. Bioinformatics 2022; 38:2818-2825. [PMID: 35561208 DOI: 10.1093/bioinformatics/btac206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/03/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Computer inference of biological mechanisms is increasingly approachable due to dynamically rich data sources such as single-cell genomics. Inferred molecular interactions can prioritize hypotheses for wet-lab experiments to expedite biological discovery. However, complex data often come with unwanted biological or technical variations, exposing biases over marginal distribution and sample size in current methods to favor spurious causal relationships. RESULTS Considering function direction and strength as evidence for causality, we present an adapted functional chi-squared test (AdpFunChisq) that rewards functional patterns over non-functional or independent patterns. On synthetic and three biology datasets, we demonstrate the advantages of AdpFunChisq over 10 methods on overcoming biases that give rise to wide fluctuations in the performance of alternative approaches. On single-cell multiomics data of multiple phenotype acute leukemia, we found that the T-cell surface glycoprotein CD3 delta chain may causally mediate specific genes in the viral carcinogenesis pathway. Using the causality-by-functionality principle, AdpFunChisq offers a viable option for robust causal inference in dynamical systems. AVAILABILITY AND IMPLEMENTATION The AdpFunChisq test is implemented in the R package 'FunChisq' (2.5.2 or above) at https://cran.r-project.org/package=FunChisq. All other source code along with pre-processed data is available at Code Ocean https://doi.org/10.24433/CO.2907738.v1. SUPPLEMENTARY INFORMATION Supplementary materials are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sajal Kumar
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
- Molecular Biology and Interdisciplinary Life Sciences Graduate Program, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
9
|
Bernhard SV, Seget-Trzensiok K, Kuffer C, Krastev DB, Stautmeister LM, Theis M, Keuper K, Boekenkamp JE, Kschischo M, Buchholz F, Storchova Z. Loss of USP28 and SPINT2 expression promotes cancer cell survival after whole genome doubling. Cell Oncol (Dordr) 2021; 45:103-119. [PMID: 34962618 PMCID: PMC8881269 DOI: 10.1007/s13402-021-00654-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background Whole genome doubling is a frequent event during cancer evolution and shapes the cancer genome due to the occurrence of chromosomal instability. Yet, erroneously arising human tetraploid cells usually do not proliferate due to p53 activation that leads to CDKN1A expression, cell cycle arrest, senescence and/or apoptosis. Methods To uncover the barriers that block the proliferation of tetraploids, we performed a RNAi mediated genome-wide screen in a human colorectal cancer cell line (HCT116). Results We identified 140 genes whose depletion improved the survival of tetraploid cells and characterized in depth two of them: SPINT2 and USP28. We found that SPINT2 is a general regulator of CDKN1A transcription via histone acetylation. Using mass spectrometry and immunoprecipitation, we found that USP28 interacts with NuMA1 and affects centrosome clustering. Tetraploid cells accumulate DNA damage and loss of USP28 reduces checkpoint activation, thus facilitating their proliferation. Conclusions Our results indicate three aspects that contribute to the survival of tetraploid cells: (i) increased mitogenic signaling and reduced expression of cell cycle inhibitors, (ii) the ability to establish functional bipolar spindles and (iii) reduced DNA damage signaling. Supplementary Information The online version contains supplementary material available at 10.1007/s13402-021-00654-5.
Collapse
Affiliation(s)
- Sara Vanessa Bernhard
- Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich-Strasse 24, 67663, Kaiserslautern, Germany
| | | | - Christian Kuffer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Dragomir B Krastev
- National Center for Tumor Diseases (NCT): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Fetscherstraße 74/PF 64, 01307, Dresden, Germany
| | - Lisa-Marie Stautmeister
- Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich-Strasse 24, 67663, Kaiserslautern, Germany
| | - Mirko Theis
- National Center for Tumor Diseases (NCT): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Fetscherstraße 74/PF 64, 01307, Dresden, Germany
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Kristina Keuper
- Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich-Strasse 24, 67663, Kaiserslautern, Germany
| | - Jan-Eric Boekenkamp
- Koblenz University of Applied Sciences, Joseph-Rovan-Allee 2, Remagen, Germany
| | - Maik Kschischo
- Koblenz University of Applied Sciences, Joseph-Rovan-Allee 2, Remagen, Germany
| | - Frank Buchholz
- National Center for Tumor Diseases (NCT): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Fetscherstraße 74/PF 64, 01307, Dresden, Germany
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - Zuzana Storchova
- Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich-Strasse 24, 67663, Kaiserslautern, Germany.
| |
Collapse
|
10
|
Calvo Sánchez J, Köhn M. Small but Mighty-The Emerging Role of snoRNAs in Hematological Malignancies. Noncoding RNA 2021; 7:68. [PMID: 34842767 PMCID: PMC8629011 DOI: 10.3390/ncrna7040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Over recent years, the long known class of small nucleolar RNAs (snoRNAs) have gained interest among the scientific community, especially in the clinical context. The main molecular role of this interesting family of non-coding RNAs is to serve as scaffolding RNAs to mediate site-specific RNA modification of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). With the development of new sequencing techniques and sophisticated analysis pipelines, new members of the snoRNA family were identified and global expression patterns in disease backgrounds could be determined. We will herein shed light on the current research progress in snoRNA biology and their clinical role by influencing disease outcome in hematological diseases. Astonishingly, in recent studies snoRNAs emerged as potent biomarkers in a variety of these clinical setups, which is also highlighted by the frequent deregulation of snoRNA levels in the hema-oncological context. However, research is only starting to reveal how snoRNAs might influence cellular functions and the connected disease hallmarks in hematological malignancies.
Collapse
Affiliation(s)
| | - Marcel Köhn
- Junior Research Group ‘RBPs and ncRNAs in Human Diseases’, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Saale, Germany;
| |
Collapse
|
11
|
Maurizy C, Abeza C, Lemmers B, Gabola M, Longobardi C, Pinet V, Ferrand M, Paul C, Bremond J, Langa F, Gerbe F, Jay P, Verheggen C, Tinari N, Helmlinger D, Lattanzio R, Bertrand E, Hahne M, Pradet-Balade B. The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nat Commun 2021; 12:4810. [PMID: 34376666 PMCID: PMC8355188 DOI: 10.1038/s41467-021-24792-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation.
Collapse
Affiliation(s)
- Chloé Maurizy
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | - Claire Abeza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | | | | | | | | | | | | | | | - Francina Langa
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris, France
| | - François Gerbe
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Jay
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Céline Verheggen
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | | | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Edouard Bertrand
- IGMM, Univ Montpellier, CNRS, Montpellier, France.
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- IGH, Univ Montpellier, CNRS, Montpellier, France.
| | | | - Bérengère Pradet-Balade
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- CRBM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
12
|
Cao P, Yang A, Li P, Xia X, Han Y, Zhou G, Wang R, Yang F, Li Y, Zhang Y, Cui Y, Ji H, Lu L, He F, Zhou G. Genomic gain of RRS1 promotes hepatocellular carcinoma through reducing the RPL11-MDM2-p53 signaling. SCIENCE ADVANCES 2021; 7:7/35/eabf4304. [PMID: 34433556 PMCID: PMC8386927 DOI: 10.1126/sciadv.abf4304] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/02/2021] [Indexed: 05/20/2023]
Abstract
Hepatocellular carcinomas (HCCs) are characterized by frequent somatic genomic copy number alterations (CNAs), with most of them biologically unexplored. Here, we performed integrative analyses combining CNAs with the transcriptomic data to reveal the cis- and trans-effects of CNAs in HCC. We identified recurrent genomic gains of chromosome 8q, which exhibit strong trans-effects and are broadly associated with ribosome biogenesis activity. Furthermore, 8q gain-driven overexpression of ribosome biogenesis regulator (RRS1) promotes growth of HCC cells in vitro and in vivo. Mechanistically, RRS1 attenuates ribosomal stress through retaining RPL11 in the nucleolus, which, in turn, potentiates MDM2-mediated ubiquitination and degradation of p53. Clinically, higher RRS1 expression levels predict poor clinical outcomes for patients with HCC, especially in those with intact p53 Our findings established that the chromosome 8q oncogene RRS1 promotes HCC development through attenuating the RPL11-MDM2-p53 pathway and provided new potential targets for treatment of this malignancy.
Collapse
Affiliation(s)
- Pengbo Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Aiqing Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Peiyao Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xia Xia
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuqing Han
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guangming Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Rui Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fei Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning City, China
| | - Hongzan Ji
- Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing University, Nanjing City, China
| | - Lei Lu
- Department of Surgical Oncology, Jingdu Hospital, Nanjing City, China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Lifeomics, Beijing, China.
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China.
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China
- Anhui Medical University, Hefei City, China
- Hebei University, Shijiazhuang City, China
| |
Collapse
|
13
|
Deep Learning and Transfer Learning for Automatic Cell Counting in Microscope Images of Human Cancer Cell Lines. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In biology and medicine, cell counting is one of the most important elements of cytometry, with applications to research and clinical practice. For instance, the complete cell count could help to determine conditions for which cancer cells could grow or not. However, cell counting is a laborious and time-consuming process, and its automatization is highly demanded. Here, we propose use of a Convolutional Neural Network-based regressor, a regression model trained end-to-end, to provide the cell count. First, unlike most of the related work, we formulate the problem of cell counting as the regression task rather than the classification task. This allows not only to reduce the required annotation information (i.e., the number of cells instead of pixel-level annotations) but also to reduce the burden of segmenting potential cells and then classifying them. Second, we propose use of xResNet, a successful convolutional architecture with residual connection, together with transfer learning (using a pretrained model) to achieve human-level performance. We demonstrate the performance of our approach to real-life data of two cell lines, human osteosarcoma and human leukemia, collected at the University of Amsterdam (133 training images, and 32 test images). We show that the proposed method (deep learning and transfer learning) outperforms currently used machine learning methods. It achieves the test mean absolute error equal 12 (±15) against 32 (±33) obtained by the deep learning without transfer learning, and 41 (±37) of the best-performing machine learning pipeline (Random Forest Regression with the Histogram of Gradients features).
Collapse
|
14
|
Knockdown of NOLC1 Inhibits PI3K-AKT Pathway to Improve the Poor Prognosis of Esophageal Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:9944132. [PMID: 34046062 PMCID: PMC8128555 DOI: 10.1155/2021/9944132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
Objective Esophageal carcinoma (ESCA) is a common malignant gastrointestinal tumor. The abnormal expression of NOLC1 is involved in the tumorigenesis of various human tumors, whereas the function and mechanism of NOLC1 in ESCA remain unclear. In this study, we explored the relationship between NOLC1 and poor prognosis of ESCA, and its role and mechanism in the occurrence of ESCA. Methods The NOLC1 expression in ESCA tissues and cell lines was determined by qRT-PCR, immunohistochemistry, or western blot. The Kaplan–Meier method was conducted to estimate the overall survival. Cox regression analysis was carried out to examine the association between patient characteristics and prognosis. A recombined lentiviral vector containing NOLC1 was applied for transfecting ESCA cells (Eca109 and TE-13) and established a stable cell line with low NOLC1 expression or high NOLC1 expression, in the absence or presence of PI3K inhibitor (LY294002) treatment. Cell proliferation, apoptosis rate, invasion ability, migration ability, and PI3K/AKT pathway were detected by CCK8 assay, flow cytometry, Transwell assay, wound-healing assay, and western blot. Results NOLC1 overexpression was observed in ESCA tissues and ESCA cell lines (EC9706, Eca109, TE-13, Kyse170, T.TN) compared with adjacent normal tissues and normal esophageal cell line HEEC. NOLC1 overexpression was markedly associated with bigger tumor size, lymph node metastasis, and advanced TNM stage. Patients with NOLC1 overexpression have shorter overall survival than that of those with low NOLC1 expression. NOLC1 overexpression was considered to be an independent poor prognostic factor affecting overall survival. NOLC1 knockdown inhibited proliferation, migration, invasion, and cyclin B1 expression and promoted the apoptosis and cleaved-caspase-3 expression of Eca109 and TE-13 cells. NOLC1 overexpression accelerated proliferation, migration, invasion, and cyclin B1 expression and inhibited the apoptosis and cleaved-caspase-3 expression of ESCA cells via activating PI3K/AKT pathway. Rescue experiments showed that PI3K inhibitor (LY294002) could reverse the phenomenon caused by NOLC1 overexpression. Conclusion NOLC1 may be a marker for poor prognosis. It can participate in the occurrence and development of ESCA via the PI3K/AKT pathway.
Collapse
|
15
|
A Zic2/Runx2/NOLC1 signaling axis mediates tumor growth and metastasis in clear cell renal cell carcinoma. Cell Death Dis 2021; 12:319. [PMID: 33767130 PMCID: PMC7994417 DOI: 10.1038/s41419-021-03617-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies with rapid growth and high metastasis, but lacks effective therapeutic targets. Here, using public sequencing data analyses, quantitative real-time PCR assay, western blotting, and IHC staining, we characterized that runt-related transcription factor 2 (Runx2) was significantly upregulated in ccRCC tissues than that in normal renal tissues, which was associated with the worse survival of ccRCC patients. Overexpression of Runx2 promoted malignant proliferation and migration of ccRCC cells, and inversely, interfering Runx2 with siRNA attenuates its oncogenic ability. RNA sequencing and functional studies revealed that Runx2 enhanced ccRCC cell growth and metastasis via downregulation of tumor suppressor nucleolar and coiled-body phosphoprotein 1 (NOLC1). Moreover, increased Zic family member 2 (Zic2) was responsible for the upregulation of Runx2 and its oncogenic functions in ccRCC. Kaplan-Meier survival analyses indicated that ccRCC patients with high Zic2/Runx2 and low NOLC1 had the worst outcome. Therefore, our study demonstrates that Zic2/Runx2/NOLC1 signaling axis promotes ccRCC progression, providing a set of potential targets and prognostic indicators for patients with ccRCC.
Collapse
|
16
|
Zhang X, Herger AG, Ren Z, Li X, Cui Z. Resistance effect of flavonols and toxicology analysis of hexabromocyclododecane based on soil-microbe-plant system. CHEMOSPHERE 2020; 257:127248. [PMID: 32526471 DOI: 10.1016/j.chemosphere.2020.127248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The toxicity characteristics of HBCD and resistance mechanism of flavonols are investigated based on physiological and metagenomic analysis. Toxicology research of HBCD on Arabidopsis thaliana (Col and fls1-3) not only shows the toxic effect of HBCD on plants, but also indicates that flavonols could improve plant resistance to HBCD, including root length, shoot biomass and chlorophyll content. Analysis of eggNOG and GO enrichment demonstrates that HBCD has toxic effect on both gene expression and protein function, which concentrates on energy production - conversion and amino acid transport - metabolism. Differential expressed genes in flavonols-treated groups indicates that flavonols regulate the metabolism of amino acids, cofactors and vitamins, which is involved in plant defense system against oxidative damage caused by HBCD stress. HBCD is believed to affect the synthesis of proteins via genes expression of ribosome biogenesis process. Flavonols could strengthen the plant resistance and alleviate toxic effect under HBCD stress.
Collapse
Affiliation(s)
- Xu Zhang
- School of Architecture and Urban Planning, Shandong Jianzhu University, Ji'nan, 250101, China.
| | - Aline Galatea Herger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, 8008, Switzerland
| | - Zhen Ren
- School of Architecture and Urban Planning, Shandong Jianzhu University, Ji'nan, 250101, China
| | - Xinxin Li
- College of Agriculture and Life Sciences, Cornell University, New York, 14850, USA
| | - Zhaojie Cui
- Department of Plant and Microbial Biology, University of Zurich, Zurich, 8008, Switzerland
| |
Collapse
|
17
|
Hu S, Chen X, Xu X, Zheng C, Huang W, Zhou Y, Akuetteh PDP, Yang H, Shi K, Chen B, Zhang Q. STRAP as a New Therapeutic Target for Poor Prognosis of Pancreatic Ductal Adenocarcinoma Patients Mainly Caused by TP53 Mutation. Front Oncol 2020; 10:594224. [PMID: 33134183 PMCID: PMC7550692 DOI: 10.3389/fonc.2020.594224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate and poor prognosis. KRAS, TP53, CDKN2A, and SMAD4 are driver genes of PDAC and 30-75% patients have mutations in at least two of these four genes. Herein, we analyzed the relationship between these genes and prognosis of 762 patients in the absence of coexisting mutations, using data from three independent public datasets. Interestingly, we found that compared with mutations in other driver genes, TP53 mutation plays a significant role in leading to poor prognosis of PDAC. Additionally, we found that snoRNA-mediated rRNA maturation was responsible for the progression of cancer in PDAC patients with TP53 mutations. Inhibition of STRAP, which regulates the localization of SMN complexes and further affects the assembly of snoRNP, can effectively reduce maturation of rRNA and significantly suppress progression of TP53-mutant or low p53 expression pancreatic cancer cells in vitro and in vivo. Our study highlighted the actual contribution rate of driver genes to patient prognosis, enriching traditional understanding of the relationship between these genes and PDAC. We also provided a possible mechanism and a new target to combat progression of TP53-mutant PDAC patients.
Collapse
Affiliation(s)
- Shanshan Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangxiang Xu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenlei Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Percy David Papa Akuetteh
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongbao Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keqing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyu Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Santos SM, Hartman JL. A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin. Cancer Metab 2019; 7:9. [PMID: 31660150 PMCID: PMC6806529 DOI: 10.1186/s40170-019-0201-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. METHODS Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. RESULTS Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. We analyzed human homologs of yeast genes exhibiting gene-doxorubicin interaction in cancer pharmacogenomics data to predict causality for differential gene expression associated with doxorubicin cytotoxicity in cancer cells. This analysis suggested conserved cellular responses to doxorubicin due to influences of homologous recombination, sphingolipid homeostasis, telomere tethering at nuclear periphery, actin cortical patch localization, and other gene functions. CONCLUSIONS Warburg status alters the genetic network required for yeast to buffer doxorubicin toxicity. Integration of yeast phenomic and cancer pharmacogenomics data suggests evolutionary conservation of gene-drug interaction networks and provides a new experimental approach to model their influence on chemotherapy response. Thus, yeast phenomic models could aid the development of precision oncology algorithms to predict efficacious cytotoxic drugs for cancer, based on genetic and metabolic profiles of individual tumors.
Collapse
Affiliation(s)
- Sean M. Santos
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| | - John L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
19
|
Huang H, Li T, Chen M, Liu F, Wu H, Wang J, Chen J, Li X. Identification and validation of NOLC1 as a potential target for enhancing sensitivity in multidrug resistant non-small cell lung cancer cells. Cell Mol Biol Lett 2018; 23:54. [PMID: 30505321 PMCID: PMC6258490 DOI: 10.1186/s11658-018-0119-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
Adjuvant chemotherapy has become the frequently adopted standard therapeutic approach for non-small cell lung cancer (NSCLC). However, the development of multidrug resistance (MDR) is a major obstacle contributing to the failure of chemotherapy. This study aimed to identify genes associated with MDR development that predict tumor response to chemotherapy in NSCLC. In the present study, a multidrug-resistant NSCLC cell sub-line, A549/MDR, was established from the A549/DDP cell line and characterized. The resistance index (RI) of this subline was calculated according to the IC50 of A549/MDR relative to the parental A549/DDP cells. The gene expression profiles of A549/DDP and A549/MDR were obtained using an oligonucleotide microarray (Agilent SureHyb microarray chip). The microarray results were validated by qRT-PCR and selected genes were analyzed by in vitro loss-of-function experiments. Gene expression profiling identified 921 differentially expressed genes (DEGs) according to the selection criteria, in which 541 genes were upregulated and 380 genes were downregulated in A549/MDR compared with A549/DDP cells. We found that these DEGs are involved in diverse biological processes, including ribonucleoprotein complex, drug metabolism, the Hippo signaling pathway and transcriptional misregulation. NOLC1, as one of the identified DEGs, was confirmed to be overexpressed in A549/MDR cells and its knockdown significantly enhanced the drug sensitivity of A549/MDR cells in response to multidrug treatment. Furthermore, knockdown of NOLC1 downregulated the expression levels of drug resistance-associated molecules (LRP and MDR1) in A549/MDR cells. These findings provide a new and comprehensive expression profile of MDR in NSCLC cells. Identification and validation of NOLC1 might be a promising therapeutic strategy for the management of MDR of NSCLC patients.
Collapse
Affiliation(s)
- Huaping Huang
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Tangying Li
- 2Healthcare Department, Hainan General Hospital, Haikou, 570311 Hainan China
| | - Mingjing Chen
- 3Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Feng Liu
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Haifeng Wu
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Jie Wang
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Jialiang Chen
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Xi Li
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| |
Collapse
|
20
|
Shen JP, Ideker T. Synthetic Lethal Networks for Precision Oncology: Promises and Pitfalls. J Mol Biol 2018; 430:2900-2912. [PMID: 29932943 PMCID: PMC6097899 DOI: 10.1016/j.jmb.2018.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022]
Abstract
Synthetic lethal interactions, in which the simultaneous loss of function of two genes produces a lethal phenotype, are being explored as a means to therapeutically exploit cancer-specific vulnerabilities and expand the scope of precision oncology. Currently, three Food and Drug Administration-approved drugs work by targeting the synthetic lethal interaction between BRCA1/2 and PARP. This review examines additional efforts to discover networks of synthetic lethal interactions and discusses both challenges and opportunities regarding the translation of new synthetic lethal interactions into the clinic.
Collapse
Affiliation(s)
- John Paul Shen
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Cancer Cell Map Initiative, USA.
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Cancer Cell Map Initiative, USA
| |
Collapse
|
21
|
Zhan H, Xie H, Zhou Q, Liu Y, Huang W. Synthesizing a Genetic Sensor Based on CRISPR-Cas9 for Specifically Killing p53-Deficient Cancer Cells. ACS Synth Biol 2018; 7:1798-1807. [PMID: 29957992 DOI: 10.1021/acssynbio.8b00202] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the greatest medical challenges in the world. The p53 protein plays an important role in the process of cancer formation. In addition, p53 is found as the most common mutant gene in cancers. Because of the central role of p53 in oncology, it is necessary to construct effective sensors to detect this protein. However, there are few methods to detect wild type p53 protein (WTP53) or to distinguish the wild type and mutant p53 proteins. In our study, we designed and constructed a p53 genetic sensor that detected the expression of WTP53 in cells. Moreover, we combined the p53 sensor with diphtheria toxin using the CRISPR-Cas9 system to construct a p53 genetic sensor that specifically killed p53-deficient cells such as tumor cells. Our study therefore developed a new way to treat cancers by using an available genetic sensor based on p53 protein.
Collapse
Affiliation(s)
- Hengji Zhan
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518039, China
| | - Haibiao Xie
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518039, China
| | - Qun Zhou
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518039, China
| | - Yuchen Liu
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518039, China
| | - Weiren Huang
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518039, China
| |
Collapse
|
22
|
Turning Uridines around: Role of rRNA Pseudouridylation in Ribosome Biogenesis and Ribosomal Function. Biomolecules 2018; 8:biom8020038. [PMID: 29874862 PMCID: PMC6023024 DOI: 10.3390/biom8020038] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 01/09/2023] Open
Abstract
Ribosomal RNA (rRNA) is extensively edited through base methylation and acetylation, 2'-O-ribose methylation and uridine isomerization. In human rRNA, 95 uridines are predicted to by modified to pseudouridine by ribonucleoprotein complexes sharing four core proteins and differing for a RNA sequence guiding the complex to specific residues to be modified. Most pseudouridylation sites are placed within functionally important ribosomal domains and can influence ribosomal functional features. Information obtained so far only partially explained the degree of regulation and the consequences of pseudouridylation on ribosomal structure and function in different physiological and pathological conditions. This short review focuses on the available evidence in this topic, highlighting open questions in the field and perspectives that the development of emerging techniques is offering.
Collapse
|
23
|
Marcel V, Nguyen Van Long F, Diaz JJ. 40 Years of Research Put p53 in Translation. Cancers (Basel) 2018; 10:E152. [PMID: 29883412 PMCID: PMC5977125 DOI: 10.3390/cancers10050152] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome.
Collapse
Affiliation(s)
- Virginie Marcel
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| | - Flora Nguyen Van Long
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| | - Jean-Jacques Diaz
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| |
Collapse
|
24
|
Li Z, Rouse R. Co-sequencing and novel delayed anti-correlation identify function for pancreatic enriched microRNA biomarkers in a rat model of acute pancreatic injury. BMC Genomics 2018; 19:297. [PMID: 29699496 PMCID: PMC5922017 DOI: 10.1186/s12864-018-4657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
Background Co-sequencing of messenger ribonucleic acid (mRNA) and micro ribonucleic acid (miRNA) across a time series (1, 3, 6, 24, and 48 h post injury) was used to identify potential miRNA-gene interactions during pancreatic injury, associate serum and tissue levels of candidate miRNA biomarkers of pancreatic injury, and functionally link these candidate miRNA biomarkers to observed histopathology. RNAs were derived from pancreatic tissues obtained in experiments characterizing the serum levels of candidate miRNA biomarkers in response to acute pancreatic injury in rats. Results No correlation was discovered between tissue and serum levels of the miRNAs. A combination of differential gene expression, novel delayed anti-correlation analysis and experimental database interrogation was used to identify messenger RNAs and miRNAs that experienced significant expression change across the time series, that were negatively correlated, that were complementary in sequence, and that had experimentally supported relationships. This approach yielded a complex signaling network for future investigation and a link for the specific candidate miRNA biomarkers, miR-216a-5p and miR-217-5p, to cellular processes that were in fact the prominent histopathology observations in the same experimental samples. RNA quality bias by treatment was observed in the study samples and a statistical correction was applied. The relevance and impact of that correction on significant results is discussed. Conclusion The described approach allowed extraction of miRNA function from genomic data and defined a mechanistic anchor for these miRNAs as biomarkers. Functional and mechanistic conclusions are supported by histopathology findings. Electronic supplementary material The online version of this article (10.1186/s12864-018-4657-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhihua Li
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Rodney Rouse
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
25
|
Klusmann I, Rodewald S, Müller L, Friedrich M, Wienken M, Li Y, Schulz-Heddergott R, Dobbelstein M. p53 Activity Results in DNA Replication Fork Processivity. Cell Rep 2017; 17:1845-1857. [PMID: 27829155 DOI: 10.1016/j.celrep.2016.10.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/03/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
p53 induces cell death upon DNA damage, but this may not confer all of its tumor suppressor activity. We report that p53 activation enhances the processivity of DNA replication, as monitored by multi-label fiber assays, whereas removal of p53 reduces fork progression. This is observed in tumor-derived U2OS cells but also in murine embryonic fibroblasts with heterozygous or homozygous p53 deletion and in freshly isolated thymocytes from mice with differential p53 status. Mdm2, a p53-inducible gene product, similarly supports DNA replication even in p53-deficient cells, suggesting that sustained Mdm2-expression is at least one of the mechanisms allowing p53 to prevent replicative stress. Thus, p53 helps to protect the genome during S phase, by preventing the occurrence of stalled or collapsed replication forks. These results expand p53's tumor-suppressive functions, adding to the ex-post model (elimination of damaged cells) an ex-ante activity; i.e., the prevention of DNA damage during replication.
Collapse
Affiliation(s)
- Ina Klusmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Sabrina Rodewald
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Leonie Müller
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Mascha Friedrich
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Magdalena Wienken
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Yizhu Li
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Ramona Schulz-Heddergott
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
26
|
Mircetic J, Dietrich A, Paszkowski-Rogacz M, Krause M, Buchholz F. Development of a genetic sensor that eliminates p53 deficient cells. Nat Commun 2017; 8:1463. [PMID: 29133879 PMCID: PMC5684360 DOI: 10.1038/s41467-017-01688-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/09/2017] [Indexed: 01/22/2023] Open
Abstract
The TP53 gene fulfills a central role in protecting cells from genetic insult. Given this crucial role it might be surprising that p53 itself is not essential for cell survival. Indeed, TP53 is the single most mutated gene across different cancer types. Thus, both a theoretical and a question of significant practical applicability arise: can cells be programmed to make TP53 an essential gene? Here we present a genetic p53 sensor, in which the loss of p53 is coupled to the rise of HSV-TK expression. We show that the sensor can distinguish both p53 knockout and cells expressing a common TP53 cancer mutation from otherwise isogenic TP53 wild-type cells. Importantly, the system is sensitive enough to specifically target TP53 loss-of-function cells with the HSV-TK pro-drug Ganciclovir both in vitro and in vivo. Our work opens new ways to programming cell intrinsic transformation protection systems that rely on endogenous components. TP53 is mutated in many cancers, a system to detect and selectively eliminate p53 mutant cells is an attractive therapeutic strategy. Here, the authors present a genetic sensor that can detect p53 activity and is coupled to the thymidine kinase gene, which can activate the drug Ganciclovir, resulting in cell death.
Collapse
Affiliation(s)
- Jovan Mircetic
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307, Dresden, Germany
| | - Antje Dietrich
- German Cancer Consortium (DKTK), OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307, Dresden, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, 01328, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site Dresden, 01307, Dresden, Germany.,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Frank Buchholz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307, Dresden, Germany. .,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site Dresden, 01307, Dresden, Germany. .,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany. .,Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
| |
Collapse
|
27
|
Massenet S, Bertrand E, Verheggen C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol 2017; 14:680-692. [PMID: 27715451 PMCID: PMC5519232 DOI: 10.1080/15476286.2016.1243646] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
Box C/D and box H/ACA snoRNAs are abundant non-coding RNAs that localize in the nucleolus and mostly function as guides for nucleotide modifications. While a large pool of snoRNAs modifies rRNAs, an increasing number of snoRNAs could also potentially target mRNAs. ScaRNAs belong to a family of specific RNAs that localize in Cajal bodies and that are structurally similar to snoRNAs. Most scaRNAs are involved in snRNA modification, while telomerase RNA, which contains H/ACA motifs, functions in telomeric DNA synthesis. In this review, we describe how box C/D and H/ACA snoRNAs are processed and assembled with core proteins to form functional RNP particles. Their biogenesis involve several transport factors that first direct pre-snoRNPs to Cajal bodies, where some processing steps are believed to take place, and then to nucleoli. Assembly of core proteins involves the HSP90/R2TP chaperone-cochaperone system for both box C/D and H/ACA RNAs, but also several factors specific for each family. These assembly factors chaperone unassembled core proteins, regulate the formation and disassembly of pre-snoRNP intermediates, and control the activity of immature particles. The AAA+ ATPase RUVBL1 and RUVBL2 belong to the R2TP co-chaperones and play essential roles in snoRNP biogenesis, as well as in the formation of other macro-molecular complexes. Despite intensive research, their mechanisms of action are still incompletely understood.
Collapse
Affiliation(s)
- Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS, 9 Avenue de la forêt de Haye, 54505 Vandoeuvre-les-Nancy Cedex, France, Université de Lorraine, Campus Biologie –Santé, CS 50184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
28
|
Siebring-van Olst E, Blijlevens M, de Menezes RX, van der Meulen-Muileman IH, Smit EF, van Beusechem VW. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small cell lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment. Mol Oncol 2017; 11:534-551. [PMID: 28296343 PMCID: PMC5527466 DOI: 10.1002/1878-0261.12052] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 11/11/2022] Open
Abstract
Reinstating wild-type tumor suppressor p53 activity could be a valuable option for the treatment of cancer. To contribute to development of new treatment options for non-small cell lung cancer (NSCLC), we performed genome-wide siRNA screens for determinants of p53 activity in NSCLC cells. We identified many genes not previously known to be involved in regulating p53 activity. Silencing p53 pathway inhibitor genes was associated with loss of cell viability. The largest functional gene cluster influencing p53 activity was mRNA splicing. Prominent p53 activation was observed upon silencing of specific spliceosome components, rather than by general inhibition of the spliceosome. Ten genes were validated as inhibitors of p53 activity in multiple NSCLC cell lines: genes encoding the Ras pathway activator SOS1, the zinc finger protein TSHZ3, the mitochondrial membrane protein COX16, and the spliceosome components SNRPD3, SF3A3, SF3B1, SF3B6, XAB2, CWC22, and HNRNPL. Silencing these genes generally increased p53 levels, with distinct effects on CDKN1A expression, induction of cell cycle arrest and cell death. Silencing spliceosome components was associated with alternative splicing of MDM4 mRNA, which could contribute to activation of p53. In addition, silencing splice factors was particularly effective in killing NSCLC cells, albeit in a p53-independent manner. Interestingly, silencing SNRPD3 and SF3A3 exerted much stronger cytotoxicity to NSCLC cells than to lung fibroblasts, suggesting that these genes could represent useful therapeutic targets.
Collapse
Affiliation(s)
| | - Maxime Blijlevens
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Renee X de Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Egbert F Smit
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands.,Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Victor W van Beusechem
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DLJ, Bohnsack MT. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 2016; 14:1138-1152. [PMID: 27911188 PMCID: PMC5699541 DOI: 10.1080/15476286.2016.1259781] [Citation(s) in RCA: 472] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
rRNAs are extensively modified during their transcription and subsequent maturation in the nucleolus, nucleus and cytoplasm. RNA modifications, which are installed either by snoRNA-guided or by stand-alone enzymes, generally stabilize the structure of the ribosome. However, they also cluster at functionally important sites of the ribosome, such as the peptidyltransferase center and the decoding site, where they facilitate efficient and accurate protein synthesis. The recent identification of sites of substoichiometric 2'-O-methylation and pseudouridylation has overturned the notion that all rRNA modifications are constitutively present on ribosomes, highlighting nucleotide modifications as an important source of ribosomal heterogeneity. While the mechanisms regulating partial modification and the functions of specialized ribosomes are largely unknown, changes in the rRNA modification pattern have been observed in response to environmental changes, during development, and in disease. This suggests that rRNA modifications may contribute to the translational control of gene expression.
Collapse
Affiliation(s)
- Katherine E Sloan
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Ahmed S Warda
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Sunny Sharma
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Karl-Dieter Entian
- c Institute for Molecular Biosciences, Goethe University , Frankfurt am Main , Germany
| | - Denis L J Lafontaine
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Markus T Bohnsack
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany.,d Göttingen Centre for Molecular Biosciences, Georg-August-University , Göttingen , Germany
| |
Collapse
|
30
|
The importance of being (slightly) modified: The role of rRNA editing on gene expression control and its connections with cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:330-338. [PMID: 27815156 DOI: 10.1016/j.bbcan.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/12/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022]
Abstract
In human ribosomal RNAs, over 200 residues are modified by specific, RNA-driven enzymatic complexes or stand-alone, RNA-independent enzymes. In most cases, modification sites are placed in specific positions within important functional areas of the ribosome. Some evidence indicates that the altered control in ribosomal RNA modifications may affect ribosomal function during mRNA translation. Here we provide an overview of the connections linking ribosomal RNA modifications to ribosome function, and suggest how aberrant modifications may affect the control of the expression of key cancer genes, thus contributing to tumor development. In addition, the future perspectives in this field are discussed.
Collapse
|
31
|
Choudhry P. High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection. PLoS One 2016; 11:e0148469. [PMID: 26848849 PMCID: PMC4746068 DOI: 10.1371/journal.pone.0148469] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/17/2016] [Indexed: 11/25/2022] Open
Abstract
Counting cells and colonies is an integral part of high-throughput screens and quantitative cellular assays. Due to its subjective and time-intensive nature, manual counting has hindered the adoption of cellular assays such as tumor spheroid formation in high-throughput screens. The objective of this study was to develop an automated method for quick and reliable counting of cells and colonies from digital images. For this purpose, I developed an ImageJ macro Cell Colony Edge and a CellProfiler Pipeline Cell Colony Counting, and compared them to other open-source digital methods and manual counts. The ImageJ macro Cell Colony Edge is valuable in counting cells and colonies, and measuring their area, volume, morphology, and intensity. In this study, I demonstrate that Cell Colony Edge is superior to other open-source methods, in speed, accuracy and applicability to diverse cellular assays. It can fulfill the need to automate colony/cell counting in high-throughput screens, colony forming assays, and cellular assays.
Collapse
Affiliation(s)
- Priya Choudhry
- Department of Chemistry, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Wang X, Zhang Y, Han ZG, He KY. Malignancy of Cancers and Synthetic Lethal Interactions Associated With Mutations of Cancer Driver Genes. Medicine (Baltimore) 2016; 95:e2697. [PMID: 26937901 PMCID: PMC4778998 DOI: 10.1097/md.0000000000002697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mutation status of cancer driver genes may correlate with different degrees of malignancy of cancers. The doubling time and multidrug resistance are 2 phenotypes that reflect the degree of malignancy of cancer cells. Because most of cancer driver genes are hard to target, identification of their synthetic lethal partners might be a viable approach to treatment of the cancers with the relevant mutations.The genome-wide screening for synthetic lethal partners is costly and labor intensive. Thus, a computational approach facilitating identification of candidate genes for a focus synthetic lethal RNAi screening will accelerate novel anticancer drug discovery.We used several publicly available cancer cell lines and tumor tissue genomic data in this study.We compared the doubling time and multidrug resistance between the NCI-60 cell lines with mutations in some cancer driver genes and those without the mutations. We identified some candidate synthetic lethal genes to the cancer driver genes APC, KRAS, BRAF, PIK3CA, and TP53 by comparison of their gene phenotype values in cancer cell lines with the relevant mutations and wild-type background. Further, we experimentally validated some of the synthetic lethal relationships we predicted.We reported that mutations in some cancer driver genes mutations in some cancer driver genes such as APC, KRAS, or PIK3CA might correlate with cancer proliferation or drug resistance. We identified 40, 21, 5, 43, and 18 potential synthetic lethal genes to APC, KRAS, BRAF, PIK3CA, and TP53, respectively. We found that some of the potential synthetic lethal genes show significantly higher expression in the cancers with mutations of their synthetic lethal partners and the wild-type counterparts. Further, our experiments confirmed several synthetic lethal relationships that are novel findings by our methods.We experimentally validated a part of the synthetic lethal relationships we predicted. We plan to perform further experiments to validate the other synthetic lethal relationships predicted by this study.Our computational methods achieve to identify candidate synthetic lethal partners to cancer driver genes for further experimental screening with multiple lines of evidences, and therefore contribute to development of anticancer drugs.
Collapse
Affiliation(s)
- Xiaosheng Wang
- From the School of Basic Medicine and Clinic Pharmacy (XW), China Pharmaceutical University, Nanjing; The First Clinical College of Harbin Medical University (YZ), Harbin, China; Division of Genetics and Development (YZ), The Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; and Key Laboratory of Systems Biomedicine (Ministry of Education) (Z-GH, K-YH), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | |
Collapse
|
33
|
Zhan T, Boutros M. Towards a compendium of essential genes - From model organisms to synthetic lethality in cancer cells. Crit Rev Biochem Mol Biol 2015; 51:74-85. [PMID: 26627871 PMCID: PMC4819810 DOI: 10.3109/10409238.2015.1117053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Essential genes are defined by their requirement to sustain life in cells or whole organisms. The systematic identification of essential gene sets not only allows insights into the fundamental building blocks of life, but may also provide novel therapeutic targets in oncology. The discovery of essential genes has been tightly linked to the development and deployment of various screening technologies. Here, we describe how gene essentiality was addressed in different eukaryotic model organisms, covering a range of organisms from yeast to mouse. We describe how increasing knowledge of evolutionarily divergent genomes facilitate identification of gene essentiality across species. Finally, the impact of gene essentiality and synthetic lethality on cancer research and the clinical translation of screening results are highlighted.
Collapse
Affiliation(s)
- Tianzuo Zhan
- a Department of Cell and Molecular Biology , Division of Signaling and Functional Genomics, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University , Heidelberg , Germany and.,b Department of Medicine II , Medical Faculty Mannheim, University Hospital Mannheim, Heidelberg University , Mannheim , Germany
| | - Michael Boutros
- a Department of Cell and Molecular Biology , Division of Signaling and Functional Genomics, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University , Heidelberg , Germany and
| |
Collapse
|
34
|
Muller FL, Aquilanti EA, DePinho RA. Collateral Lethality: A new therapeutic strategy in oncology. Trends Cancer 2015; 1:161-173. [PMID: 26870836 PMCID: PMC4746004 DOI: 10.1016/j.trecan.2015.10.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genomic deletion of tumor suppressor genes (TSG) is a rite of passage for virtually all human cancers. The synthetic lethal paradigm has provided a framework for the development of molecular targeted therapeutics that are functionally linked to the loss of specific TSG functions. In the course of genomic events that delete TSGs, a large number of genes with no apparent direct role in tumor promotion also sustain deletion as a result of chromosomal proximity to the target TSG. In this perspective, we review the novel concept of "collateral lethality", which has served to identify cancer-specific therapeutic vulnerabilities resulting from co-deletion of passenger genes neighboring TSG. The large number of collaterally deleted genes, playing diverse functions in cell homeostasis, offers a rich repertoire of pharmacologically targetable vulnerabilities presenting novel opportunities for the development of personalized anti-neoplastic therapies.
Collapse
Affiliation(s)
- Florian L Muller
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisa A Aquilanti
- Brigham and Women's Hospital, Department of Medicine, 75 Francis Street, Boston MA 02115 USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Gurpinar E, Vousden KH. Hitting cancers' weak spots: vulnerabilities imposed by p53 mutation. Trends Cell Biol 2015; 25:486-95. [PMID: 25960041 DOI: 10.1016/j.tcb.2015.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/23/2022]
Abstract
The tumor suppressor protein p53 plays a critical role in limiting malignant development and progression. Almost all cancers show loss of p53 function, through either mutation in the p53 gene itself or defects in the mechanisms that activate p53. While reactivation of p53 can effectively limit tumor growth, this is a difficult therapeutic goal to achieve in the many cancers that do not retain wild type p53. An alternative approach focuses on identifying vulnerabilities imposed on cancers by virtue of the loss of or alterations in p53, to identify additional pathways that can be targeted to specifically kill or inhibit the growth of p53 mutated cells. These indirect ways of exploiting mutations in p53 - which occur in more than half of all human cancers - provide numerous exciting therapeutic possibilities.
Collapse
|
36
|
de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J, LLeonart ME. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev 2015; 33:115-41. [PMID: 24375388 DOI: 10.1007/s10555-013-9460-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ribosome biogenesis is the most demanding energetic and metabolic expenditure of the cell. The nucleolus, a nuclear compartment, coordinates rRNA transcription, maturation, and assembly into ribosome subunits. The transcription process is highly coordinated with ribosome biogenesis. In this context, ribosomal proteins (RPs) play a crucial role. In the last decade, an increasing number of studies have associated RPs with extraribosomal functions related to proliferation. Importantly, the expression of RPs appears to be deregulated in several human disorders due, at least in part, to genetic mutations. Although the deregulation of RPs in human malignancies is commonly observed, a more complex mechanism is believed to be involved, favoring the tumorigenic process, its progression and metastasis. This review explores the roles of the most frequently mutated oncogenes and tumor suppressor genes in human cancer that modulate ribosome biogenesis, including their interaction with RPs. In this regard, we propose a new focus for novel therapies.
Collapse
Affiliation(s)
- A de Las Heras-Rubio
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|
37
|
Lafontaine DLJ. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol 2015; 22:11-9. [PMID: 25565028 DOI: 10.1038/nsmb.2939] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022]
Abstract
The ribosome, central to protein synthesis in all cells, is a complex multicomponent assembly with rRNA at its functional core. During the process of ribosome biogenesis, diverse noncoding RNAs participate in controlling the quantity and quality of this rRNA. In this Review, I discuss the multiple roles assumed by noncoding RNAs during the different steps of ribosome biogenesis and how they contribute to the generation of ribosome heterogeneity, which affects normal and pathophysiological processes.
Collapse
Affiliation(s)
- Denis L J Lafontaine
- RNA Molecular Biology, Fonds National de la Recherche Scientifique, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
38
|
Marcel V, Catez F, Diaz JJ. p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene 2015; 34:5513-23. [DOI: 10.1038/onc.2015.25] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022]
|
39
|
Xu D, Wei G, Lu P, Luo J, Chen X, Skogerbø G, Chen R. Analysis of the p53/CEP-1 regulated non-coding transcriptome in C. elegans by an NSR-seq strategy. Protein Cell 2014; 5:770-82. [PMID: 24844773 PMCID: PMC4180458 DOI: 10.1007/s13238-014-0071-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/09/2014] [Indexed: 11/28/2022] Open
Abstract
In recent years, large numbers of non-coding RNAs (ncRNAs) have been identified in C. elegans but their functions are still not well studied. In C. elegans, CEP-1 is the sole homolog of the p53 family of genes. In order to obtain transcription profiles of ncRNAs regulated by CEP-1 under normal and UV stressed conditions, we applied the 'not-so-random' hexamers priming strategy to RNA sequencing in C. elegans, This NSR-seq strategy efficiently depleted rRNA transcripts from the samples and showed high technical replicability. We identified more than 1,000 ncRNAs whose apparent expression was repressed by CEP-1, while around 200 were activated. Around 40% of the CEP-1 activated ncRNAs promoters contain a putative CEP-1-binding site. CEP-1 regulated ncRNAs were frequently clustered and concentrated on the X chromosome. These results indicate that numerous ncRNAs are involved in CEP-1 transcriptional network and that these are especially enriched on the X chromosome in C. elegans.
Collapse
Affiliation(s)
- Derong Xu
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Guifeng Wei
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Ping Lu
- Key Laboratory of Forest Protection, State Forestry
Administration/Research Institute of Forest Ecology, Environment and
Protection, Chinese Academy of Forestry, Beijing, 100091 China
| | - Jianjun Luo
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaomin Chen
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Geir Skogerbø
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Runsheng Chen
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
40
|
Villegas E, Kabotyanski EB, Shore AN, Creighton CJ, Westbrook TF, Rosen JM. Plk2 regulates mitotic spindle orientation and mammary gland development. Development 2014; 141:1562-71. [PMID: 24598160 DOI: 10.1242/dev.108258] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Disruptions in polarity and mitotic spindle orientation contribute to the progression and evolution of tumorigenesis. However, little is known about the molecular mechanisms regulating these processes in vivo. Here, we demonstrate that Polo-like kinase 2 (Plk2) regulates mitotic spindle orientation in the mammary gland and that this might account for its suggested role as a tumor suppressor. Plk2 is highly expressed in the mammary gland and is required for proper mammary gland development. Loss of Plk2 leads to increased mammary epithelial cell proliferation and ductal hyperbranching. Additionally, a novel role for Plk2 in regulating the orientation of the mitotic spindle and maintaining proper cell polarity in the ductal epithelium was discovered. In support of a tumor suppressor function for Plk2, loss of Plk2 increased the formation of lesions in multiparous glands. Collectively, these results demonstrate a novel role for Plk2 in regulating mammary gland development.
Collapse
Affiliation(s)
- Elizabeth Villegas
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
41
|
Goto-Silva L, Maliga Z, Slabicki M, Murillo JR, Junqueira M. Application of shotgun proteomics for discovery-driven protein-protein interaction. Methods Mol Biol 2014; 1156:265-278. [PMID: 24791995 DOI: 10.1007/978-1-4939-0685-7_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Affinity purification of protein complexes and identification of co-purified proteins by mass spectrometry is a powerful method to discover novel protein-protein interactions. Application of this method to the study of biological systems often requires the ability to process a large number of samples. Hence, there is great need to generate proteomic workflows compatible with large-scale studies. The major goal of this protocol is to present a fast, reliable, and scalable method to characterize protein complexes by mass spectrometry to overcome the limitations of conventional geLC-MS/MS or MudPIT protocols. This method was successfully employed for the discovery and characterization of novel protein complexes in cultured yeast, mammalian cells, and mice.
Collapse
Affiliation(s)
- Livia Goto-Silva
- Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-909, Brazil
| | | | | | | | | |
Collapse
|
42
|
Schmeits PCJ, Katika MR, Peijnenburg AACM, van Loveren H, Hendriksen PJM. DON shares a similar mode of action as the ribotoxic stress inducer anisomycin while TBTO shares ER stress patterns with the ER stress inducer thapsigargin based on comparative gene expression profiling in Jurkat T cells. Toxicol Lett 2013; 224:395-406. [PMID: 24247028 DOI: 10.1016/j.toxlet.2013.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 11/17/2022]
Abstract
Previously, we studied the effects of deoxynivalenol (DON) and tributyltin oxide (TBTO) on whole genome mRNA expression profiles of human T lymphocyte Jurkat cells. These studies indicated that DON induces ribotoxic stress and both DON and TBTO induced ER stress which resulted into T-cell activation and apoptosis. The first goal of the present study was to provide final proof for these mode of actions by comparing the effects of 6 h exposure to DON and TBTO on mRNA expression to those of positive controls of ribotoxic stress (anisomycin), ER stress (thapsigargin) and T cell activation (ionomycin). Genes affected by anisomycin and the majority of genes affected by thapsigargin were affected in the same direction by DON and TBTO, respectively, confirming the expected modes of action. Pathway analysis further sustained that DON induces ribotoxic stress and both DON and TBTO induce unfolded protein response (UPR), ER stress, T cell activation and apoptosis. The second goal was to assess whether DON and/or TBTO affect other pathways above those detected before. TBTO induced groups of genes that are involved in DNA packaging and heat shock response that were not affected by thapsigargin. DON did not affect other genes than anisomycin indicating the effect of DON to be restricted to ribotoxic stress. This study also demonstrates that comparative gene expression analysis is a very promising tool for the identification of modes of action of immunotoxic compounds.
Collapse
Affiliation(s)
- Peter C J Schmeits
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, The Netherlands; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Madhumohan R Katika
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, The Netherlands; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Ad A C M Peijnenburg
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, The Netherlands.
| | - Henk van Loveren
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Peter J M Hendriksen
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, The Netherlands.
| |
Collapse
|
43
|
Abstract
Proteins are not monolithic entities; rather, they can contain multiple domains that mediate distinct interactions, and their functionality can be regulated through post-translational modifications at multiple distinct sites. Traditionally, network biology has ignored such properties of proteins and has instead examined either the physical interactions of whole proteins or the consequences of removing entire genes. In this Review, we discuss experimental and computational methods to increase the resolution of protein-protein, genetic and drug-gene interaction studies to the domain and residue levels. Such work will be crucial for using interaction networks to connect sequence and structural information, and to understand the biological consequences of disease-associated mutations, which will hopefully lead to more effective therapeutic strategies.
Collapse
|
44
|
A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Mol Syst Biol 2013; 9:696. [PMID: 24104479 PMCID: PMC3817404 DOI: 10.1038/msb.2013.54] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022] Open
Abstract
This study defines a network of synthetic sick/lethal interactions with a set of query genes in a series of isogenic cancer cell lines. Analysis of differential essentiality reveals general properties in genetic interaction networks derived from studies on model organisms. ![]()
This study defined about 200 negative genetic interactions in the isogenic cancer cell line background. Mapping of negative genetic interactions in a systematic fashion in isogenic cancer cell lines has revealed novel functions for several uncharacterized genes. This study demonstrates that differential essentiality profiles derived from isogenic cancer cell lines can be used to classify genetic dependencies in non-isogenic cancer cell lines.
Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN−/− DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model.
Collapse
|
45
|
Wang X, Simon R. Identification of potential synthetic lethal genes to p53 using a computational biology approach. BMC Med Genomics 2013; 6:30. [PMID: 24025726 PMCID: PMC3847148 DOI: 10.1186/1755-8794-6-30] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Identification of genes that are synthetic lethal to p53 is an important strategy for anticancer therapy as p53 mutations have been reported to occur in more than half of all human cancer cases. Although genome-wide RNAi screening is an effective approach to finding synthetic lethal genes, it is costly and labor-intensive. METHODS To illustrate this approach, we identified potentially druggable genes synthetically lethal for p53 using three microarray datasets for gene expression profiles of the NCI-60 cancer cell lines, one next-generation sequencing (RNA-Seq) dataset from the Cancer Genome Atlas (TCGA) project, and one gene expression data from the Cancer Cell Line Encyclopedia (CCLE) project. We selected the genes which encoded kinases and had significantly higher expression in the tumors with functional p53 mutations (somatic mutations) than in the tumors without functional p53 mutations as the candidates of druggable synthetic lethal genes for p53. We identified important regulatory networks and functional categories pertinent to these genes, and performed an extensive survey of literature to find experimental evidence that support the synthetic lethality relationships between the genes identified and p53. We also examined the drug sensitivity difference between NCI-60 cell lines with functional p53 mutations and NCI-60 cell lines without functional p53 mutations for the compounds that target the kinases encoded by the genes identified. RESULTS Our results indicated that some of the candidate genes we identified had been experimentally verified to be synthetic lethal for p53 and promising targets for anticancer therapy while some other genes were putative targets for development of cancer therapeutic agents. CONCLUSIONS Our study indicated that pre-screening of potential synthetic lethal genes using gene expression profiles is a promising approach for improving the efficiency of synthetic lethal RNAi screening.
Collapse
Affiliation(s)
- Xiaosheng Wang
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| | | |
Collapse
|
46
|
Marcel V, Ghayad S, Belin S, Therizols G, Morel AP, Solano-Gonzàlez E, Vendrell J, Hacot S, Mertani H, Albaret M, Bourdon JC, Jordan L, Thompson A, Tafer Y, Cong R, Bouvet P, Saurin JC, Catez F, Prats AC, Puisieux A, Diaz JJ. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 2013; 24:318-30. [PMID: 24029231 PMCID: PMC7106277 DOI: 10.1016/j.ccr.2013.08.013] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/08/2013] [Accepted: 08/12/2013] [Indexed: 01/01/2023]
Abstract
Ribosomes are specialized entities that participate in regulation of gene expression through their rRNAs carrying ribozyme activity. Ribosome biogenesis is overactivated in p53-inactivated cancer cells, although involvement of p53 on ribosome quality is unknown. Here, we show that p53 represses expression of the rRNA methyl-transferase fibrillarin (FBL) by binding directly to FBL. High levels of FBL are accompanied by modifications of the rRNA methylation pattern, impairment of translational fidelity, and an increase of internal ribosome entry site (IRES)-dependent translation initiation of key cancer genes. FBL overexpression contributes to tumorigenesis and is associated with poor survival in patients with breast cancer. Thus, p53 acts as a safeguard of protein synthesis by regulating FBL and the subsequent quality and intrinsic activity of ribosomes.
Collapse
Affiliation(s)
- Virginie Marcel
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Sandra E. Ghayad
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Stéphane Belin
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Gabriel Therizols
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Anne-Pierre Morel
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Eduardo Solano-Gonzàlez
- Université de Toulouse, UPS, TRADGENE, EA4554, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès, BP 84225, F-31432 Toulouse, France
| | - Julie A. Vendrell
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
- Dundee Cancer Centre, Clinical Research Centre, University of Dundee, Dundee DD1 9SY, UK
| | - Sabine Hacot
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Hichem C. Mertani
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Marie Alexandra Albaret
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | | | - Lee Jordan
- Department of Pathology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Alastair Thompson
- Dundee Cancer Centre, Clinical Research Centre, University of Dundee, Dundee DD1 9SY, UK
| | - Yasmine Tafer
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Rong Cong
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS USR 3010, SFR BioSciences UMS3444, Lyon 69364, France
| | - Philippe Bouvet
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS USR 3010, SFR BioSciences UMS3444, Lyon 69364, France
| | - Jean-Christophe Saurin
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
- Gastroenterology Unit, Édouard Herriot Hospital, Hospices Civils de Lyon, 69002 Lyon, France
| | - Frédéric Catez
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Anne-Catherine Prats
- Université de Toulouse, UPS, TRADGENE, EA4554, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès, BP 84225, F-31432 Toulouse, France
| | - Alain Puisieux
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
- Corresponding author
| |
Collapse
|
47
|
Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells. Chromosoma 2013; 122:305-18. [DOI: 10.1007/s00412-013-0414-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
|
48
|
Su H, Xu T, Ganapathy S, Shadfan M, Long M, Huang THM, Thompson I, Yuan ZM. Elevated snoRNA biogenesis is essential in breast cancer. Oncogene 2013; 33:1348-58. [PMID: 23542174 DOI: 10.1038/onc.2013.89] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/10/2012] [Accepted: 01/21/2013] [Indexed: 12/14/2022]
Abstract
Hyperactive ribosomal biogenesis is widely observed in cancer, which has been partly attributed to the increased rDNA transcription by Pol I in cancer. However, whether small nucleolar RNAs (snoRNAs), a class of non-coding RNAs crucial in ribosomal RNA (rRNA) maturation and functionality, are involved in cancer remains elusive. We report that snoRNAs and fibrillarin (FBL, an enzymatic small nucleolar ribonucleoprotein, snoRNP) are frequently overexpressed in both murine and human breast cancer as well as in prostate cancers, and significantly, that this overexpression is essential for tumorigenicity in vitro and in vivo. We demonstrate that when the elevated snoRNA pathway is suppressed, the tumor suppressor p53 can act as a sentinel of snoRNP perturbation, the activation of which mediates the growth inhibitory effect. On the other hand, high level of FBL interferes with the activation of p53 by stress. We further show that p53 activation by FBL knockdown is not only regulated by the ribosomal protein-MDM2-mediated protein stabilization pathway, but also by enhanced PTB-dependent, cap-independent translation. Together, our data uncover an essential role of deregulated snoRNA biogenesis in tumors and a new mechanism of nucleolar modulation of p53.
Collapse
Affiliation(s)
- H Su
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX, USA
| | - T Xu
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX, USA
| | - S Ganapathy
- 1] Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX, USA [2] Department of Genetics and Complex Diseases, Harvard University, Boston, MA, USA
| | - M Shadfan
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX, USA
| | - M Long
- 1] Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX, USA [2] Department of Genetics and Complex Diseases, Harvard University, Boston, MA, USA
| | - T H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | - I Thompson
- Department of Urology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Z-M Yuan
- 1] Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX, USA [2] Department of Genetics and Complex Diseases, Harvard University, Boston, MA, USA
| |
Collapse
|
49
|
Thomas SE, Malzer E, Ordóñez A, Dalton LE, van T Wout EFA, Liniker E, Crowther DC, Lomas DA, Marciniak SJ. p53 and translation attenuation regulate distinct cell cycle checkpoints during endoplasmic reticulum (ER) stress. J Biol Chem 2013; 288:7606-7617. [PMID: 23341460 PMCID: PMC3597802 DOI: 10.1074/jbc.m112.424655] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/04/2013] [Indexed: 01/25/2023] Open
Abstract
Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G(1) phase, although recent studies have identified a novel ER stress G(2) checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G(2) delay involving CHK1 and a later induction of G(1) arrest associated both with the induction of p53 target genes and loss of cyclin D(1). We show that substitution of p53/47 for p53 impairs the ER stress G(1) checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G(2) progression prior to ultimate G(1) arrest.
Collapse
Affiliation(s)
- Sally E Thomas
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Elke Malzer
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom; Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, United Kingdom
| | - Adriana Ordóñez
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Lucy E Dalton
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Emily F A van T Wout
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Elizabeth Liniker
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Damian C Crowther
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, United Kingdom
| | - David A Lomas
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Stefan J Marciniak
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
50
|
Surendranath V, Theis M, Habermann BH, Buchholz F. Designing efficient and specific endoribonuclease-prepared siRNAs. Methods Mol Biol 2013; 942:193-204. [PMID: 23027053 DOI: 10.1007/978-1-62703-119-6_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA interference (RNAi) has grown to be one of the main techniques for loss-of-function studies, leading to the elucidation of biological function of genes in various cellular systems and model organisms. While for many invertebrates such as Drosophila melanogaster (D. melanogaster) and Caenorhabditis elegans (C. elegans) long double-stranded RNA (dsRNA) can directly be used to induce a RNAi response, chemically synthesized small interfering RNAs (siRNAs) are typically employed in mammalian cells to avoid an interferon-like response triggered by long dsRNA (Reynolds et al., RNA 12:988-993, 2006). However, siRNAs are expensive and beset with unintentional gene targeting effects (off-targets) confounding the analysis of results from such studies. We, and others, have developed an alternative technology for RNAi in mammalian cells, termed endoribonuclease-prepared siRNA (esiRNA), which is based on the enzymatic generation of siRNA pools by digestion of long dsRNAs with recombinant RNase III in vitro (Yang et al., Proc Natl Acad Sci USA 99: 9942-9947, 2002; Myers et al., Nat Biotechnol 21:324-328; 2003). This technology has proven to be cost-efficient and reliable. Furthermore, several studies have demonstrated that complex pools of siRNAs, as inherent in esiRNAs, which target one transcript reduce off-target effects (Myers et al., J RNAi Gene Silencing 2:181, 2006; Kittler et al., Nat Methods 4:337-344, 2007). Within this chapter we describe design criteria for the generation of target-optimized esiRNAs.
Collapse
|