1
|
Nishizato Y, Okumura T, Matsumoto K, Ueda M. Recent advances in the chemistry and biology of plant oxylipin hormones. Nat Prod Rep 2025. [PMID: 40275837 DOI: 10.1039/d5np00006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Jasmonates, including jasmonic acid (JA) and its derivatives, are lipid-based signaling molecules critical for plant growth, development, and defense. Among these, jasmonoyl-L-isoleucine (JA-Ile) has been identified as a bioactive plant hormone that mediates various physiological responses. JA-Ile functions in planta as a 'molecular glue' in protein-protein associations to induce the defense-related gene expression for plant-pathogen and plant-insect communications, and it affects many aspects of plant development and stress responses. This review explores the historical journey of jasmonate research, emphasizing the discovery of JA-Ile, its biosynthesis, function as a molecular glue, and the ligand-receptor co-evolutional aspect. The elucidation of the SCFCOI1-JAZ receptor complex and the crystallization of this co-receptor system marked significant advancements in understanding the chemical background of jasmonate biology. This review focuses on the advances in the chemistry and biology of jasmonate bioscience in the past two decades.
Collapse
Affiliation(s)
- Yuho Nishizato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Taichi Okumura
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Kotaro Matsumoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Zhang R, Li C, Guo R, Li Z, Zhang B. Harnessing Jasmonate Pathways: PgJAR1's Impact on Ginsenoside Accumulation in Ginseng. PLANTS (BASEL, SWITZERLAND) 2025; 14:847. [PMID: 40265796 PMCID: PMC11945057 DOI: 10.3390/plants14060847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
Ginsenosides, the most active components in Panax ginseng, exhibit pharmacological and therapeutic properties but are limited by their low abundance. Jasmonates (JAs), a class of stress-induced phytohormones, are integral in modulating plant defense responses and the biosynthesis of secondary metabolites, including ginsenosides. Jasmonoyl-isoleucine (JA-Ile), the primary bioactive JA compound, is biosynthesized by JA-Ile synthase 1 (JAR1). In this study, we cloned the 1555 bp PgJAR1 gene from ginseng roots and analyzed its structure, enzyme activity, and expression pattern. The PgJAR1 protein encompasses all the hallmark elements characteristic of the GH3 family. It exhibits N/C-terminal domains analogous to ANL, three ATP/AMP-binding motifs, and distinct secondary structures: an N-terminal beta-barrel with beta-sheets and alpha-helices, and a C-terminal beta-sheet surrounded by alpha-helices, similarly to AtGH3.11/AtJAR1. The recombinant PgJAR1 enzyme expressed in Escherichia coli BL21 specifically catalyzed jasmonic acid (JA) to JA-Ile. PgJAR1 is predominantly expressed in leaves and is upregulated by MeJA treatment. Moderate transient overexpression of PgJAR1 promoted the biosynthesis of both JA-Ile and ginsenosides, highlighting the crucial role of PgJAR1 in JA-Ile biosynthesis and its positive impact on ginsenoside accumulation. Nevertheless, elevated JA-Ile levels can impede cellular growth, reducing ginsenoside production. Consequently, balancing JA-Ile biosynthesis through PgJAR1 expression is essential for optimizing ginseng cultivation and enhancing its medicinal properties. Modulating endogenous JA-Ile levels offers a strategy for increasing ginsenoside production in ginseng plants.
Collapse
Affiliation(s)
- Ru Zhang
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China; (C.L.); (R.G.); (Z.L.); (B.Z.)
- Innovation Institute of Advanced Functional Materials, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Chao Li
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China; (C.L.); (R.G.); (Z.L.); (B.Z.)
- Innovation Institute of Advanced Functional Materials, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Rui Guo
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China; (C.L.); (R.G.); (Z.L.); (B.Z.)
- Innovation Institute of Advanced Functional Materials, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Zhaoying Li
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China; (C.L.); (R.G.); (Z.L.); (B.Z.)
- Innovation Institute of Advanced Functional Materials, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Bianling Zhang
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China; (C.L.); (R.G.); (Z.L.); (B.Z.)
- Innovation Institute of Advanced Functional Materials, Hunan Institute of Engineering, Xiangtan 411104, China
| |
Collapse
|
3
|
Guo D, Li J, Liu P, Wang Y, Cao N, Fang X, Wang T, Dong J. The jasmonate pathway promotes nodule symbiosis and suppresses host plant defense in Medicago truncatula. MOLECULAR PLANT 2024; 17:1183-1203. [PMID: 38859588 DOI: 10.1016/j.molp.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Root nodule symbiosis (RNS) between legumes and rhizobia is a major source of nitrogen in agricultural systems. Effective symbiosis requires precise regulation of plant defense responses. The role of the defense hormone jasmonic acid (JA) in the immune response has been extensively studied. Current research shows that JA can play either a positive or negative regulatory role in RNS depending on its concentration, but the molecular mechanisms remain to be elucidated. In this study, we found that inoculation with the rhizobia Sm1021 induces the JA pathway in Medicago truncatula, and blocking the JA pathway significantly reduces the number of infection threads. Mutations in the MtMYC2 gene, which encodes a JA signaling master transcription factor, significantly inhibited rhizobia infection, terminal differentiation, and symbiotic cell formation. Combining RNA sequencing and chromatin immunoprecipitation sequencing, we discovered that MtMYC2 regulates the expression of nodule-specific MtDNF2, MtNAD1, and MtSymCRK to suppress host defense, while it activates MtDNF1 expression to regulate the maturation of MtNCRs, which in turn promotes bacteroid formation. More importantly, MtMYC2 participates in symbiotic signal transduction by promoting the expression of MtIPD3. Notably, the MtMYC2-MtIPD3 transcriptional regulatory module is specifically present in legumes, and the Mtmyc2 mutants are susceptible to the infection by the pathogen Rhizoctonia solani. Collectively, these findings reveal the molecular mechanisms of how the JA pathway regulates RNS, broadening our understanding of the roles of JA in plant-microbe interactions.
Collapse
Affiliation(s)
- Da Guo
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuzhan Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Na Cao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangling Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Holland CK, Jez JM. Fidelity in plant hormone modifications catalyzed by Arabidopsis GH3 acyl acid amido synthetases. J Biol Chem 2024; 300:107421. [PMID: 38815865 PMCID: PMC11253546 DOI: 10.1016/j.jbc.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases conjugate amino acids to acyl acid hormones to either activate or inactivate the hormone molecule. The largest subgroup of GH3 proteins modify the growth-promoting hormone auxin (indole-3-acetic acid; IAA) with the second largest class activating the defense hormone jasmonic acid (JA). The two-step reaction mechanism of GH3 proteins provides a potential proofreading mechanism to ensure fidelity of hormone modification. Examining pyrophosphate release in the first-half reaction of Arabidopsis GH3 proteins that modify IAA (AtGH3.2/YDK2, AtGH3.5/WES1, AtGH3.17/VAS2), JA (AtGH3.11/JAR1), and other acyl acids (AtGH3.7, AtGH3.12/PBS3) indicates that acyl acid-AMP intermediates are hydrolyzed into acyl acid and AMP in the absence of the amino acid, a typical feature of pre-transfer editing mechanisms. Single-turnover kinetic analysis of AtGH3.2/YDK2 and AtGH3.5/WES1 shows that non-cognate acyl acid-adenylate intermediates are more rapidly hydrolyzed than the cognate IAA-adenylate. In contrast, AtGH3.11/JAR1 only adenylates JA, not IAA. While some of the auxin-conjugating GH3 proteins in Arabidopsis (i.e., AtGH3.5/WES1) accept multiple acyl acid substrates, others, like AtGH3.2/YDK2, are specific for IAA; however, both these proteins share similar active site residues. Biochemical analysis of chimeric variants of AtGH3.2/YDK2 and AtGH3.5/WES1 indicates that the C-terminal domain contributes to selection of cognate acyl acid substrates. These findings suggest that the hydrolysis of non-cognate acyl acid-adenylate intermediates, or proofreading, proceeds via a slowed structural switch that provides a checkpoint for fidelity before the full reaction proceeds.
Collapse
Affiliation(s)
- Cynthia K Holland
- Department of Biology, Williams College, Williamstown, Massachusetts; Department of Biology, Washington University in St Louis, St Louis, Missouri
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri.
| |
Collapse
|
5
|
Wang X, Jia C, An L, Zeng J, Ren A, Han X, Wang Y, Wu S. Genome-wide identification and expression characterization of the GH3 gene family of tea plant (Camellia sinensis). BMC Genomics 2024; 25:120. [PMID: 38280985 PMCID: PMC10822178 DOI: 10.1186/s12864-024-10004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024] Open
Abstract
To comprehensively understand the characteristics of the GH3 gene family in tea plants (Camellia sinensis), we identified 17 CsGH3 genes and analyzed their physicochemical properties, phylogenetic relationships, gene structures, promoters, and expression patterns in different tissues. The study showed that the 17 CsGH3 genes are distributed on 9 chromosomes, and based on evolutionary analysis, the CsGH3 members were divided into three subgroups. Gene duplication analysis revealed that segmental duplications have a significant impact on the amplification of CsGH3 genes. In addition, we identified and classified cis-elements in the CsGH3 gene promoters and detected elements related to plant hormone responses and non-biotic stress responses. Through expression pattern analysis, we observed tissue-specific expression of CsGH3.3 and CsGH3.10 in flower buds and roots. Moreover, based on predictive analysis of upstream regulatory transcription factors of CsGH3, we identified the potential transcriptional regulatory role of gibberellin response factor CsDELLA in CsGH3.14 and CsGH3.15. In this study, we found that CsGH3 genes are involved in a wide range of activities, such as growth and development, stress response, and transcription. This is the first report on CsGH3 genes and their potential roles in tea plants. In conclusion, these results provide a theoretical basis for elucidating the role of GH3 genes in the development of perennial woody plants and offer new insights into the synergistic effects of multiple hormones on plant growth and development in tea plants.
Collapse
Affiliation(s)
- Xinge Wang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Chunyu Jia
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Lishuang An
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Jiangyan Zeng
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Aixia Ren
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Xin Han
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Yiqing Wang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Shuang Wu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
6
|
Zeng M, Krajinski F, van Dam NM, Hause B. Jarin-1, an inhibitor of JA-Ile biosynthesis in Arabidopsis thaliana, acts differently in other plant species. PLANT SIGNALING & BEHAVIOR 2023; 18:2273515. [PMID: 37902262 PMCID: PMC10761063 DOI: 10.1080/15592324.2023.2273515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Jasmonates (JAs), including jasmonic acid (JA) and its biologically active derivative JA-Ile, are lipid-derived plant signaling molecules. They govern plant responses to stresses, such as wounding and insect herbivory. Wounding elicits a rapid increase of JA and JA-Ile levels as well as the expression of JAR1, coding for the enzyme involved in JA-Ile biosynthesis. Endogenous increase and application of JAs, such as MeJA, a JA methylester, result in increased defense levels, often accompanied by diminished growth. A JA-Ile biosynthesis inhibitor, jarin-1, was shown to exclusively inhibit the JA-conjugating enzyme JAR1 in Arabidopsis thaliana. To investigate whether jarin-1 does function similarly in other plants, we tested this in Medicago truncatula, Solanum lycopersicum, and Brassica nigra seedlings in a root growth inhibition assay. Application of jarin-1 alleviated the inhibition of root growth after MeJA application in M. truncatula seedlings, proving that jarin-1 is biologically active in M. truncatula. Jarin-1 did not show, however, a similar effect in S. lycopersicum and B. nigra seedlings treated with MeJA. Even JA-Ile levels were not affected by application of jarin-1 in wounded leaf disks from S. lycopersicum. Based on these results, we conclude that the effect of jarin-1 is highly species-specific. Researchers intending to use jarin-1 for studying the function of JAR1 or JA-Ile in their model plants, must test its functionality before use.
Collapse
Affiliation(s)
- Ming Zeng
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Franziska Krajinski
- General and Applied Botany, Institute of Biology, Universität Leipzig, Leipzig, Germany
| | - Nicole M. van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Plant Biotic interactions, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Halle, Germany
| |
Collapse
|
7
|
Munawar A, Xu Y, Abou El-Ela AS, Zhang Y, Zhong J, Mao Z, Chen X, Guo H, Zhang C, Sun Y, Zhu Z, Baldwin IT, Zhou W. Tissue-specific regulation of volatile emissions moves predators from flowers to attacked leaves. Curr Biol 2023:S0960-9822(23)00556-0. [PMID: 37224808 DOI: 10.1016/j.cub.2023.04.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
Plant-predator mutualisms have been widely described in nature.1,2 How plants fine-tune their mutualistic interactions with the predators they recruit remains poorly understood. In the wild potato (Solanum kurtzianum), predatory mites, Neoseiulus californicus, are recruited to flowers of undamaged plants but rapidly move downward when the herbivorous mites, Tetranychus urticae, damage leaves. This "up-down" movement within the plant corresponds to the shift of N. californicus from palynivory to carnivory, as they change from feeding on pollen to herbivores when moving between different plant organs. This up-down movement of N. californicus is mediated by the organ-specific emissions of volatile organic compounds (VOCs) in flowers and herbivory-elicited leaves. Experiments with exogenous applications, biosynthetic inhibitors, and transient RNAi revealed that salicylic acid and jasmonic acid signaling in flowers and leaves mediates both the changes in VOC emissions and the up-down movement of N. californicus. This alternating communication between flowers and leaves mediated by organ-specific VOC emissions was also found in a cultivated variety of potato, suggesting the agronomic potential of using flowers as reservoirs of natural enemies in the control of potato pests.
Collapse
Affiliation(s)
- Asim Munawar
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Amr S Abou El-Ela
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Yadong Zhang
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jian Zhong
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiyao Mao
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xuan Chen
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Han Guo
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chao Zhang
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yiqiao Sun
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 6, 8006 Zurich, Switzerland
| | - Zengrong Zhu
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Wenwu Zhou
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Ninck S, Halder V, Krahn JH, Beisser D, Resch S, Dodds I, Scholtysik R, Bormann J, Sewald L, Gupta MD, Heilmann G, Bhandari DD, Morimoto K, Buscaill P, Hause B, van der Hoorn RAL, Kaschani F, Kaiser M. Chemoproteomics Reveals the Pan-HER Kinase Inhibitor Neratinib To Target an Arabidopsis Epoxide Hydrolase Related to Phytohormone Signaling. ACS Chem Biol 2023; 18:1076-1088. [PMID: 37115018 DOI: 10.1021/acschembio.2c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Plant phytohormone pathways are regulated by an intricate network of signaling components and modulators, many of which still remain unknown. Here, we report a forward chemical genetics approach for the identification of functional SA agonists in Arabidopsis thaliana that revealed Neratinib (Ner), a covalent pan-HER kinase inhibitor drug in humans, as a modulator of SA signaling. Instead of a protein kinase, chemoproteomics unveiled that Ner covalently modifies a surface-exposed cysteine residue of Arabidopsis epoxide hydrolase isoform 7 (AtEH7), thereby triggering its allosteric inhibition. Physiologically, the Ner application induces jasmonate metabolism in an AtEH7-dependent manner as an early response. In addition, it modulates PATHOGENESIS RELATED 1 (PR1) expression as a hallmark of SA signaling activation as a later effect. AtEH7, however, is not the exclusive target for this physiological readout induced by Ner. Although the underlying molecular mechanisms of AtEH7-dependent modulation of jasmonate signaling and Ner-induced PR1-dependent activation of SA signaling and thus defense response regulation remain unknown, our present work illustrates the powerful combination of forward chemical genetics and chemical proteomics for identifying novel phytohormone signaling modulatory factors. It also suggests that marginally explored metabolic enzymes such as epoxide hydrolases may have further physiological roles in modulating signaling.
Collapse
Affiliation(s)
- Sabrina Ninck
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Vivek Halder
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
- Chemical Biology Laboratory, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jan H Krahn
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Daniela Beisser
- Department of Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45117 Essen, Germany
| | - Sarah Resch
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Isobel Dodds
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - René Scholtysik
- Genomics and Transcriptomics Facility, Institute for Cell Biology (Tumour Research), University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Leonard Sewald
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Mainak D Gupta
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Geronimo Heilmann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Bettina Hause
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Farnusch Kaschani
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| |
Collapse
|
9
|
Welling MT, Deseo MA, O’Brien M, Clifton J, Bacic A, Doblin MS. Metabolomic analysis of methyl jasmonate treatment on phytocannabinoid production in Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2023; 14:1110144. [PMID: 37025140 PMCID: PMC10070988 DOI: 10.3389/fpls.2023.1110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Cannabis sativa is a multi-use and chemically complex plant which is utilized for food, fiber, and medicine. Plants produce a class of psychoactive and medicinally important specialized metabolites referred to as phytocannabinoids (PCs). The phytohormone methyl jasmonate (MeJA) is a naturally occurring methyl ester of jasmonic acid and a product of oxylipin biosynthesis which initiates and regulates the biosynthesis of a broad range of specialized metabolites across a number of diverse plant lineages. While the effects of exogenous MeJA application on PC production has been reported, treatments have been constrained to a narrow molar range and to the targeted analysis of a small number of compounds. Using high-resolution mass spectrometry with data-dependent acquisition, we examined the global metabolomic effects of MeJA in C. sativa to explore oxylipin-mediated regulation of PC biosynthesis and accumulation. A dose-response relationship was observed, with an almost two-fold increase in PC content found in inflorescences of female clones treated with 15 mM MeJA compared to the control group. Comparison of the inflorescence metabolome across MeJA treatments coupled with targeted transcript analysis was used to elucidate key regulatory components contributing to PC production and metabolism more broadly. Revealing these biological signatures improves our understanding of the role of the oxylipin pathway in C. sativa and provides putative molecular targets for the metabolic engineering and optimization of chemical phenotype for medicinal and industrial end-uses.
Collapse
|
10
|
Ercoli MF, Ramos PZ, Jain R, Pilotte J, Dong OX, Thompson T, Wells CI, Elkins JM, Edwards AM, Couñago RM, Drewry DH, Ronald PC. An open source plant kinase chemogenomics set. PLANT DIRECT 2022; 6:e460. [PMID: 36447653 PMCID: PMC9694430 DOI: 10.1002/pld3.460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
One hundred twenty-nine protein kinases, selected to represent the diversity of the rice (Oryza sativa) kinome, were cloned and tested for expression in Escherichia coli. Forty of these rice kinases were purified and screened using differential scanning fluorimetry (DSF) against 627 diverse kinase inhibitors, with a range of structures and activities targeting diverse human kinases. Thirty-seven active compounds were then tested for their ability to modify primary root development in Arabidopsis. Of these, 14 compounds caused a significant reduction of primary root length compared with control plants. Two of these inhibitory compounds bind to the predicted orthologue of Arabidopsis PSKR1, one of two receptors for PSK, a small sulfated peptide that positively controls root development. The reduced root length phenotype could not be rescued by the exogenous addition of the PSK peptide, suggesting that chemical treatment may inhibit both PSKR1 and its closely related receptor PSKR2. Six of the compounds acting as root growth inhibitors in Arabidopsis conferred the same effect in rice. Compound RAF265 (CHIR-265), previously shown to bind the human kinase BRAF (B-Raf proto-oncogene, serine/threonine kinase), also binds to nine highly conserved rice kinases tested. The binding of human and rice kinases to the same compound suggests that human kinase inhibitor sets will be useful for dissecting the function of plant kinases.
Collapse
Affiliation(s)
| | - Priscila Zonzini Ramos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Rashmi Jain
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Joseph Pilotte
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Oliver Xiaoou Dong
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Ty Thompson
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Carrow I. Wells
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Jonathan M. Elkins
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Centre for Medicines DiscoveryUniversity of OxfordOxfordUK
| | - Aled M. Edwards
- Structural Genomics ConsortiumUniversity of TorontoTorontoCanada
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - David H. Drewry
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
11
|
Chemical inhibition of the auxin inactivation pathway uncovers the roles of metabolic turnover in auxin homeostasis. Proc Natl Acad Sci U S A 2022; 119:e2206869119. [PMID: 35914172 PMCID: PMC9371723 DOI: 10.1073/pnas.2206869119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The phytohormone auxin, indole-3-acetic acid (IAA), plays a prominent role in plant development. Auxin homeostasis is coordinately regulated by auxin synthesis, transport, and inactivation; however, the physiological contribution of auxin inactivation to auxin homeostasis has not been determined. The GH3 IAA-amino acid conjugating enzymes play a central role in auxin inactivation. Chemical inhibition of GH3 proteins in planta is challenging because the inhibition of these enzymes leads to IAA overaccumulation that rapidly induces GH3 expression. Here, we report the characterization of a potent GH3 inhibitor, kakeimide, that selectively targets IAA-conjugating GH3 proteins. Chemical knockdown of the auxin inactivation pathway demonstrates that auxin turnover is very rapid (about 10 min) and indicates that both auxin biosynthesis and inactivation dynamically regulate auxin homeostasis.
Collapse
|
12
|
Qin T, Sun C, Kazim A, Cui S, Wang Y, Richard D, Yao P, Bi Z, Liu Y, Bai J. Comparative Transcriptome Analysis of Deep-Rooting and Shallow-Rooting Potato ( Solanum tuberosum L.) Genotypes under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2024. [PMID: 35956505 PMCID: PMC9370241 DOI: 10.3390/plants11152024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The selection and breeding of deep rooting and drought-tolerant varieties has become a promising approach for improving the yield and adaptability of potato (Solanum tuberosum L.) in arid and semiarid areas. Therefore, the discovery of root-development-related genes and drought tolerance signaling pathways in potato is important. In this study, we used deep-rooting (C119) and shallow-rooting (C16) potato genotypes, with different levels of drought tolerance, to achieve this objective. Both genotypes were treated with 150 mM mannitol for 0 h (T0), 2 h (T2), 6 h (T6), 12 h (T12), and 24 h (T24), and their root tissues were subjected to comparative transcriptome analysis. A total of 531, 1571, 1247, and 3540 differentially expressed genes (DEGs) in C16 and 1531, 1108, 674, and 4850 DEGs in C119 were identified in T2 vs. T0, T6 vs. T2, T12 vs. T6, and T24 vs. T12 comparisons, respectively. Gene expression analysis indicated that a delay in the onset of drought-induced transcriptional changes in C16 compared with C119. Functional enrichment analysis revealed genotype-specific biological processes involved in drought stress tolerance. The metabolic pathways of plant hormone transduction and MAPK signaling were heavily involved in the resistance of C16 and C119 to drought, while abscisic acid (ABA), ethylene, and salicylic acid signal transduction pathways likely played more important roles in C119 stress responses. Furthermore, genes involved in root cell elongation and division showed differential expression between the two genotypes under drought stress. Overall, this study provides important information for the marker-assisted selection and breeding of drought-tolerant potato genotypes.
Collapse
Affiliation(s)
- Tianyuan Qin
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Chao Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Ali Kazim
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan;
| | - Song Cui
- School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Yihao Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Dormatey Richard
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| |
Collapse
|
13
|
Delfin JC, Kanno Y, Seo M, Kitaoka N, Matsuura H, Tohge T, Shimizu T. AtGH3.10 is another jasmonic acid-amido synthetase in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1082-1096. [PMID: 35247019 DOI: 10.1111/tpj.15724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Jasmonoyl-isoleucine (JA-Ile) is a key signaling molecule that activates jasmonate-regulated flower development and the wound stress response. For years, JASMONATE RESISTANT1 (JAR1) has been the sole jasmonoyl-amino acid synthetase known to conjugate jasmonic acid (JA) to isoleucine, and the source of persisting JA-Ile in jar1 knockout mutants has remained elusive until now. Here we demonstrate through recombinant enzyme assays and loss-of-function mutant analyses that AtGH3.10 functions as a JA-amido synthetase. Recombinant AtGH3.10 could conjugate JA to isoleucine, alanine, leucine, methionine, and valine. The JA-Ile accumulation in the gh3.10-2 jar1-11 double mutant was nearly eliminated in the leaves and flower buds while its catabolism derivative 12OH-JA-Ile was undetected in the flower buds and unwounded leaves. Residual levels of JA-Ile, JA-Ala, and JA-Val were nonetheless detected in gh3.10-2 jar1-11, suggesting the activities of similar promiscuous enzymes. Upon wounding, the accumulation of JA-Ile and 12OH-JA-Ile and the expression of JA-responsive genes OXOPHYTODIENOIC ACID REDUCTASE3 and JASMONATE ZIM-DOMAIN1 observed in WT, gh3.10-1, and jar1-11 leaves were effectively abolished in gh3.10-2 jar1-11. Additionally, an increased proportion of undeveloped siliques associated with retarded stamen development was observed in gh3.10-2 jar1-11. These findings conclusively show that AtGH3.10 contributes to JA-amino acid biosynthesis and functions partially redundantly with AtJAR1 in sustaining flower development and the wound stress response in Arabidopsis.
Collapse
Affiliation(s)
- Jay C Delfin
- Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan, 630-0192
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan, 230-0045
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan, 230-0045
| | - Naoki Kitaoka
- Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan, 060-8589
| | - Hideyuki Matsuura
- Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan, 060-8589
| | - Takayuki Tohge
- Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan, 630-0192
| | - Takafumi Shimizu
- Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan, 630-0192
| |
Collapse
|
14
|
Jez JM. Connecting primary and specialized metabolism: Amino acid conjugation of phytohormones by GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102194. [PMID: 35219141 DOI: 10.1016/j.pbi.2022.102194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases catalyze the ATP-dependent conjugation of phytohormones with amino acids. Traditionally, GH3 proteins are associated with synthesis of the bioactive jasmonate hormone (+)-7- iso -jasmonoyl-l-isoleucine (JA-Ile) and conjugation of indole-3-acetic acid (IAA) with amino acids that tag the hormone for degradation and/or storage. Modifications of JA and IAA by GH3 acyl acid amido synthetases help maintain phytohormones homeostasis. Recent studies broaden the roles of GH3 proteins to include the regulation of JA biosynthesis; the modification of other auxins (i.e., phenylacetic acid and indole-3-butyric acid); the conjugation of auxinic herbicides, such as 4-dichlorophenoxyacetic acid, 4-(2,4-dichlorophenoxy)butyric acid, and dicamba; and the missing step in the isochorismate pathway for the biosynthesis of salicylic acid. The GH3 protein family joins the growing number of versatile enzyme families that blur the line between primary and specialized metabolism for an increasing range of biology functions.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130 USA.
| |
Collapse
|
15
|
Jiang X, Gong J, Zhang J, Zhang Z, Shi Y, Li J, Liu A, Gong W, Ge Q, Deng X, Fan S, Chen H, Kuang Z, Pan J, Che J, Zhang S, Jia T, Wei R, Chen Q, Wei S, Shang H, Yuan Y. Quantitative Trait Loci and Transcriptome Analysis Reveal Genetic Basis of Fiber Quality Traits in CCRI70 RIL Population of Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:753755. [PMID: 34975939 PMCID: PMC8716697 DOI: 10.3389/fpls.2021.753755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Upland cotton (Gossypium hirsutum) is widely planted around the world for its natural fiber, and producing high-quality fiber is essential for the textile industry. CCRI70 is a hybrid cotton plant harboring superior yield and fiber quality, whose recombinant inbred line (RIL) population was developed from two upland cotton varieties (sGK156 and 901-001) and were used here to investigate the source of high-quality related alleles. Based on the material of the whole population, a high-density genetic map was constructed using specific locus-amplified fragment sequencing (SLAF-seq). It contained 24,425 single nucleotide polymorphism (SNP) markers, spanning a distance of 4,850.47 centimorgans (cM) over 26 chromosomes with an average marker interval of 0.20 cM. In evaluating three fiber quality traits in nine environments to detect multiple environments stable quantitative trait loci (QTLs), we found 289 QTLs, of which 36 of them were stable QTLs and 18 were novel. Based on the transcriptome analysis for two parents and two RILs, 24,941 unique differentially expressed genes (DEGs) were identified, 473 of which were promising genes. For the fiber strength (FS) QTLs, 320 DEGs were identified, suggesting that pectin synthesis, phenylpropanoid biosynthesis, and plant hormone signaling pathways could influence FS, and several transcription factors may regulate fiber development, such as GAE6, C4H, OMT1, AFR18, EIN3, bZIP44, and GAI. Notably, the marker D13_56413025 in qFS-chr18-4 provides a potential basis for enhancing fiber quality of upland cotton via marker-assisted breeding and gene cloning of important fiber quality traits.
Collapse
Affiliation(s)
- Xiao Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- College of Agriculture, Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
| | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Haodong Chen
- Cotton Sciences Research Institute of Hunan, National Hybrid Cotton Research Promotion Center, Changde, China
| | - Zhengcheng Kuang
- Cotton Sciences Research Institute of Hunan, National Hybrid Cotton Research Promotion Center, Changde, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jincan Che
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuya Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Renhui Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- College of Agriculture, Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
| | - Shoujun Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- College of Agriculture, Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Chini A, Monte I, Fernández-Barbero G, Boter M, Hicks G, Raikhel N, Solano R. A small molecule antagonizes jasmonic acid perception and auxin responses in vascular and nonvascular plants. PLANT PHYSIOLOGY 2021; 187:1399-1413. [PMID: 34618088 PMCID: PMC8566257 DOI: 10.1093/plphys/kiab369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 05/12/2023]
Abstract
The phytohormone jasmonoyl-L-isoleucine (JA-Ile) regulates many stress responses and developmental processes in plants. A co-receptor complex formed by the F-box protein Coronatine Insensitive 1 (COI1) and a Jasmonate (JA) ZIM-domain (JAZ) repressor perceives the hormone. JA-Ile antagonists are invaluable tools for exploring the role of JA-Ile in specific tissues and developmental stages, and for identifying regulatory processes of the signaling pathway. Using two complementary chemical screens, we identified three compounds that exhibit a robust inhibitory effect on both the hormone-mediated COI-JAZ interaction and degradation of JAZ1 and JAZ9 in vivo. One molecule, J4, also restrains specific JA-induced physiological responses in different angiosperm plants, including JA-mediated gene expression, growth inhibition, chlorophyll degradation, and anthocyanin accumulation. Interaction experiments with purified proteins indicate that J4 directly interferes with the formation of the Arabidopsis (Arabidopsis thaliana) COI1-JAZ complex otherwise induced by JA. The antagonistic effect of J4 on COI1-JAZ also occurs in the liverwort Marchantia polymorpha, suggesting the mode of action is conserved in land plants. Besides JA signaling, J4 works as an antagonist of the closely related auxin signaling pathway, preventing Transport Inhibitor Response1/Aux-indole-3-acetic acid interaction and auxin responses in planta, including hormone-mediated degradation of an auxin repressor, gene expression, and gravitropic response. However, J4 does not affect other hormonal pathways. Altogether, our results show that this dual antagonist competes with JA-Ile and auxin, preventing the formation of phylogenetically related receptor complexes. J4 may be a useful tool to dissect both the JA-Ile and auxin pathways in particular tissues and developmental stages since it reversibly inhibits these pathways. One-sentence summary: A chemical screen identified a molecule that antagonizes jasmonate perception by directly interfering with receptor complex formation in phylogenetically distant vascular and nonvascular plants.
Collapse
Affiliation(s)
- Andrea Chini
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, Madrid, 28049, Spain
- Author for correspondence:
| | - Isabel Monte
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, Madrid, 28049, Spain
- Present address: Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, 8008, Switzerland
| | - Gemma Fernández-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, Madrid, 28049, Spain
| | - Marta Boter
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, Madrid, 28049, Spain
- Present address: Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid –Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Glenn Hicks
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, 92521, USA
| | - Natasha Raikhel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, 92521, USA
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, Madrid, 28049, Spain
| |
Collapse
|
17
|
Courbier S, Snoek BL, Kajala K, Li L, van Wees SCM, Pierik R. Mechanisms of far-red light-mediated dampening of defense against Botrytis cinerea in tomato leaves. PLANT PHYSIOLOGY 2021; 187:1250-1266. [PMID: 34618050 PMCID: PMC8566310 DOI: 10.1093/plphys/kiab354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Plants detect neighboring competitors through a decrease in the ratio between red and far-red light (R:FR). This decreased R:FR is perceived by phytochrome photoreceptors and triggers shade avoidance responses such as shoot elongation and upward leaf movement (hyponasty). In addition to promoting elongation growth, low R:FR perception enhances plant susceptibility to pathogens: the growth-defense tradeoff. Although increased susceptibility in low R:FR has been studied for over a decade, the associated timing of molecular events is still unknown. Here, we studied the chronology of FR-induced susceptibility events in tomato (Solanum lycopersicum) plants pre-exposed to either white light (WL) or WL supplemented with FR light (WL+FR) prior to inoculation with the necrotrophic fungus Botrytis cinerea (B.c.). We monitored the leaf transcriptional changes over a 30-h time course upon infection and followed up with functional studies to identify mechanisms. We found that FR-induced susceptibility in tomato is linked to a general dampening of B.c.-responsive gene expression, and a delay in both pathogen recognition and jasmonic acid-mediated defense gene expression. In addition, we found that the supplemental FR-induced ethylene emissions affected plant immune responses under the WL+FR condition. This study improves our understanding of the growth-immunity tradeoff, while simultaneously providing leads to improve tomato resistance against pathogens in dense cropping systems.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, The Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Linge Li
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Saskia C M van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| |
Collapse
|
18
|
Shuvalov VY, Samsonenko AL, Rozhkova YS, Morozov VV, Shklyaev YV, Fisyuk AS. Synthesis of 3‐Aminopyrido[2,1‐
a
]isoquinolin‐4‐one Derivatives
via
Condensation of Azlactones with 1‐Alkyl‐3,4‐dihydroisoquinolines. ChemistrySelect 2021. [DOI: 10.1002/slct.202103028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vladislav Yu. Shuvalov
- Laboratory of New Organic Materials Omsk State Technical University 11 Mira Ave. 644050 Omsk Russian Federation
| | - Anna L. Samsonenko
- Department Department of Organic Chemistry Omsk F. M. Dostoevsky State University 55a Mira Ave. 644077 Omsk Russian Federation
| | - Yuliya S. Rozhkova
- Institute of Technical Chemistry UB RAS 3 Akademika Korolyeva St. 614013 Perm Russian Federation
| | - Vyacheslav V. Morozov
- Institute of Technical Chemistry UB RAS 3 Akademika Korolyeva St. 614013 Perm Russian Federation
| | - Yurii V. Shklyaev
- Institute of Technical Chemistry UB RAS 3 Akademika Korolyeva St. 614013 Perm Russian Federation
| | - Alexander S. Fisyuk
- Department Department of Organic Chemistry Omsk F. M. Dostoevsky State University 55a Mira Ave. 644077 Omsk Russian Federation
| |
Collapse
|
19
|
Shuvalov VY, Chernenko SА, Shatsauskas AL, Samsonenko AL, Dmitriev MV, Fisyuk AS. Novel Approach to the Synthesis of 3-amino-4-arylpyridin-2(1 H)-one Derivatives. Chem Heterocycl Compd (N Y) 2021; 57:764-771. [PMID: 34511628 PMCID: PMC8421715 DOI: 10.1007/s10593-021-02980-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 12/02/2022]
Abstract
The reaction of 4-arylidene-2-phenyloxazol-5(4H)-ones with enamines of ethyl acetoacetate gave 4-aryl-2-methyl-6-oxo-5-[(phenylcarbonyl)amino]-1,4,5,6-tetrahydropyridine-3-carboxylic acid esters, which, when heated with phosphorus oxychloride, were converted into esters of 7-aryl-5-methyl-2-phenyloxazolo[5,4-b]pyridine-6-carboxylic acids. Alkaline hydrolysis of these compounds gave 4-aryl-2-methyl-6-oxo-5-[(phenylcarbonyl)amino]-1,6-dihydropyridine-3-carboxylic acid esters. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10593-021-02980-w.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander S. Fisyuk
- Omsk State Technical University, 11 Mira Ave, Omsk, 644050 Russia
- Dostoevsky Omsk State University, 55a Mira Ave, Omsk, 644077 Russia
| |
Collapse
|
20
|
Bloch I, Haviv H, Rapoport I, Cohen E, Shushan RSB, Dotan N, Sher I, Hacham Y, Amir R, Gal M. Discovery and characterization of small molecule inhibitors of cystathionine gamma-synthase with in planta activity. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1785-1797. [PMID: 33773037 PMCID: PMC8428831 DOI: 10.1111/pbi.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
The synthesis of essential amino acids in plants is pivotal for their viability and growth, and these cellular pathways are therefore targeted for the discovery of new molecules for weed control. Herein, we describe the discovery and design of small molecule inhibitors of cystathionine gamma-synthase, a key enzyme in the biosynthesis of methionine. Based on in silico screening and filtering of a large molecular database followed by the in vitro selection of molecules, we identified small molecules capable of binding the target enzyme. Molecular modelling of the interaction and direct biophysical binding enabled us to explore a focussed chemical expansion set of molecules characterized by an active phenyl-benzamide chemical group. These molecules are bio-active and efficiently inhibit the viability of BY-2 tobacco cells and seedlings growth of Arabidopsis thaliana on agar plates.
Collapse
Affiliation(s)
- Itai Bloch
- Migal – Galilee Technology CenterKiryat ShmonaIsrael
| | - Hadar Haviv
- Migal – Galilee Technology CenterKiryat ShmonaIsrael
| | | | - Elad Cohen
- Migal – Galilee Technology CenterKiryat ShmonaIsrael
| | | | - Nesly Dotan
- Migal – Galilee Technology CenterKiryat ShmonaIsrael
| | - Inbal Sher
- Department of Oral BiologyThe Goldschleger School of Dental MedicineSackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Yael Hacham
- Migal – Galilee Technology CenterKiryat ShmonaIsrael
- Tel‐Hai CollegeUpper GalileeIsrael
| | - Rachel Amir
- Migal – Galilee Technology CenterKiryat ShmonaIsrael
- Tel‐Hai CollegeUpper GalileeIsrael
| | - Maayan Gal
- Department of Oral BiologyThe Goldschleger School of Dental MedicineSackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
21
|
Suzuki K, Takaoka Y, Ueda M. Rational design of a stapled JAZ9 peptide inhibiting protein-protein interaction of a plant transcription factor. RSC Chem Biol 2021; 2:499-502. [PMID: 34458795 PMCID: PMC8341433 DOI: 10.1039/d0cb00204f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/26/2021] [Accepted: 12/14/2020] [Indexed: 01/06/2023] Open
Abstract
We herein describe the development of a stapled peptide inhibitor for a jasmonate-related transcription factor. The designed peptide selectively inhibited MYCs, master-regulators of jasmonate signaling, and selectively suppressed MYC-mediated gene expression in Arabidopsis thaliana. It is proposed as a novel chemical tool for the analysis of MYC related jasmoante signaling. A rationally designed stapled JAZ peptide selectively inhibited MYCs, master-regulators of the jasmonate signaling in Arabidopsis thaliana. It is proposed as a novel chemical tool for the analysis of MYC related jasmonate signaling.![]()
Collapse
Affiliation(s)
- Kaho Suzuki
- Graduate School of Science, Tohoku University 6-3, Aramaki-Aza-Aoba Aoba-ku Sendai 980-8578 Japan
| | - Yousuke Takaoka
- Graduate School of Science, Tohoku University 6-3, Aramaki-Aza-Aoba Aoba-ku Sendai 980-8578 Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University 6-3, Aramaki-Aza-Aoba Aoba-ku Sendai 980-8578 Japan .,Graduate School of Life Science, Tohoku University 6-3, Aramaki-Aza-Aoba Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
22
|
Interrogating Plant-Microbe Interactions with Chemical Tools: Click Chemistry Reagents for Metabolic Labeling and Activity-Based Probes. Molecules 2021; 26:molecules26010243. [PMID: 33466477 PMCID: PMC7796436 DOI: 10.3390/molecules26010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 01/01/2021] [Indexed: 01/22/2023] Open
Abstract
Continued expansion of the chemical biology toolbox presents many new and diverse opportunities to interrogate the fundamental molecular mechanisms driving complex plant-microbe interactions. This review will examine metabolic labeling with click chemistry reagents and activity-based probes for investigating the impacts of plant-associated microbes on plant growth, metabolism, and immune responses. While the majority of the studies reviewed here used chemical biology approaches to examine the effects of pathogens on plants, chemical biology will also be invaluable in future efforts to investigate mutualistic associations between beneficial microbes and their plant hosts.
Collapse
|
23
|
Dallery JF, Zimmer M, Halder V, Suliman M, Pigné S, Le Goff G, Gianniou DD, Trougakos IP, Ouazzani J, Gasperini D, O’Connell RJ. Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2910-2921. [PMID: 32006004 PMCID: PMC7260715 DOI: 10.1093/jxb/eraa061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/29/2020] [Indexed: 05/22/2023]
Abstract
Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterized by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters, whose expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in the repression of some biosynthetic gene clusters through H3K4 trimethylation, allowed overproduction of three families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate, an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited methyl jasmonate-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive jasmonoyl isoleucine (JA-Ile) synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally related molecules, suppressed JA-Ile signalling by preventing the degradation of JAZ proteins, the repressors of jasmonate responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced auxin-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.
Collapse
Affiliation(s)
- Jean-Félix Dallery
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, Gif-sur-Yvette, France
| | - Marlene Zimmer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Vivek Halder
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Current address: Rijk Zwaan, De Lier, 2678 ZG, Netherlands
| | - Mohamed Suliman
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Current address: Desert Research Center, Cairo, Egypt
| | - Sandrine Pigné
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
| | - Géraldine Le Goff
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, Gif-sur-Yvette, France
| | - Despoina D Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Jamal Ouazzani
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, Gif-sur-Yvette, France
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Correspondence: or
| | - Richard J O’Connell
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
- Correspondence: or
| |
Collapse
|
24
|
Recent Advances in Plant Chemical Biology of Jasmonates. Int J Mol Sci 2020; 21:ijms21031124. [PMID: 32046227 PMCID: PMC7036767 DOI: 10.3390/ijms21031124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
Lipid-derived plant hormone jasmonates are implicated in plant growth, reproductive performance, senescence, secondary metabolite productions, and defense against both necrotrophic pathogens and feeding insects. A major jasmonate is (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), which is perceived by the unique COI1-JAZ coreceptor system. Recent advances in plant chemical biology have greatly informed the bioscience of jasmonate, including the development of chemical tools such as the antagonist COR-MO; the agonist NOPh; and newly developed jasmonates, including JA-Ile-macrolactone and 12-OH-JA-Ile. This review article summarizes the current status of plant chemical biology as it pertains to jasmonates, and offers some perspectives for the future.
Collapse
|
25
|
Wang J, Wang H, Deng T, Liu Z, Wang X. Time-coursed transcriptome analysis identifies key expressional regulation in growth cessation and dormancy induced by short days in Paulownia. Sci Rep 2019; 9:16602. [PMID: 31719639 PMCID: PMC6851391 DOI: 10.1038/s41598-019-53283-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Maintaining the viability of the apical shoot is critical for continued vertical growth in plants. Terminal shoot of tree species Paulownia cannot regrow in subsequent years. The short day (SD) treatment leads to apical growth cessation and dormancy. To understand the molecular basis of this, we further conducted global RNA-Seq based transcriptomic analysis in apical shoots to check regulation of gene expression. We obtained ~219 million paired-end 125-bp Illumina reads from five time-courses and de novo assembled them to yield 49,054 unigenes. Compared with the untreated control, we identified 1540 differentially expressed genes (DEGs) which were found to involve in 116 metabolic pathways. Expression of 87% of DEGs exhibited switch-on or switch-off pattern, indicating key roles in growth cessation. Most DEGs were enriched in the biological process of gene ontology categories and at later treatment stages. The pathways of auxin and circadian network were most affected and the expression of associated DEGs was characterised. During SD induction, auxin genes IAA, ARF and SAURs were down-regulated and circadian genes including PIF3 and PRR5 were up-regulated. PEPC in photosynthesis was constitutively upregulated, suggesting a still high CO2 concentrating activity; however, the converting CO2 to G3P in the Calvin cycle is low, supported by reduced expression of GAPDH encoding the catalysing enzyme for this step. This indicates a de-coupling point in the carbon fixation. The results help elucidate the molecular mechanisms for SD inducing dormancy and cessation in apical shoots.
Collapse
Affiliation(s)
- Jiayuan Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Hongyan Wang
- School of life science, Liaoning University, Shenyang, 110000, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhen Liu
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| | - Xuewen Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. .,Department of Genetics, University of Georgia, Athens, 30602, USA.
| |
Collapse
|
26
|
|
27
|
Pavlovič A, Mithöfer A. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3379-3389. [PMID: 31120525 DOI: 10.1093/jxb/erz188] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
The lipid-derived jasmonate phytohormones (JAs) regulate a wide spectrum of physiological processes in plants such as growth, development, tolerance to abiotic stresses, and defence against pathogen infection and insect attack. Recently, a new role for JAs has been revealed in carnivorous plants. In these specialized plants, JAs can induce the formation of digestive cavities and regulate enzyme production in response to different stimuli from caught prey. Appearing to be a new function for JAs in plants, a closer look reveals that the signalling pathways involved resemble known signalling pathways from plant defence mechanisms. Moreover, the digestion-related secretome of carnivorous plants is composed of many pathogenesis-related (PR) proteins and low molecular weight compounds, indicating that the plant carnivory syndrome is related to and has evolved from plant defence mechanisms. This review describes the similarities between defence and carnivory. It further describes how, after recognition of caught insects, JAs enable the carnivorous plants to digest and benefit from the prey. In addition, a causal connection between electrical and jasmonate signalling is discussed.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, CZ, Olomouc, Czech Republic
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße, Jena, Germany
| |
Collapse
|
28
|
Liu R, Finlayson SA. Sorghum tiller bud growth is repressed by contact with the overlying leaf. PLANT, CELL & ENVIRONMENT 2019; 42:2120-2132. [PMID: 30875440 DOI: 10.1111/pce.13548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/14/2019] [Accepted: 02/23/2019] [Indexed: 05/06/2023]
Abstract
Basal branching in grasses, or tillering, is an important trait determining both form and function of crops. Although similarities exist between eudicot and grass branching programs, one notable difference is that the tiller buds of grasses are covered by the subtending leaf, whereas eudicot buds are typically unconstrained. The current study shows that contact with the leaf sheath represses sorghum bud growth by providing a mechanical signal that cues the bud to refrain from rapid growth. Leaf removal resulted in massive reprogramming of the bud transcriptome that included signatures of epigenetic modifications and also implicated several hormones in the response. Bud abscisic acid transiently increased, then decreased following leaf removal relative to controls, and abscisic acid was necessary to repress bud growth in the presence of the leaf. Jasmonic acid (JA) levels and signalling increased in buds following leaf removal. Remarkably, application of JA to buds in situ promoted growth. The repression of bud growth by leaf contact shares characteristics of thigmomorphogenic responses in other systems, including the involvement of JA, though the JA effect is opposite. The repression of bud growth by leaf contact may represent a mechanism to time tillering to an appropriate developmental stage of the plant.
Collapse
Affiliation(s)
- Ruixian Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
- Key Laboratory of Cotton and Rape in Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - Scott A Finlayson
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Texas A&M University, College Station, Texas, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
29
|
Soria-Garcï A ÏN, Rubio MAC, Lagunas B, Lï Pez-Gomollï N S, Lujï N MADLÏN, Dï Az-Guerra RL, Picorel R, Alfonso M. Tissue Distribution and Specific Contribution of Arabidopsis FAD7 and FAD8 Plastid Desaturases to the JA- and ABA-Mediated Cold Stress or Defense Responses. PLANT & CELL PHYSIOLOGY 2019; 60:1025-1040. [PMID: 30690505 DOI: 10.1093/pcp/pcz017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/18/2019] [Indexed: 05/27/2023]
Abstract
To overcome the difficulties to analyze membrane desaturases at the protein level, transgenic Arabidopsis plants expressing the plastidial AtFAD7 and AtFAD8 ω-3 desaturases fused to green fluorescent protein, under the control of their endogenous promoters, were generated and their tissue relative abundance was studied. Gene expression, glucuronidase promoter activity, immunoblot and confocal microscopy analyses indicated that AtFAD7 is the major ω-3 desaturase in leaves when compared to AtFAD8. This higher abundance of AtFAD7 was consistent with its higher promoter activity and could be related with its specificity for the abundant leaf galactolipids. AtFAD7 was also present in roots but at much lower level than leaves. AtFAD8 expression and protein abundance in leaves was consistent with its lower promoter activity, suggesting that transcriptional control modulates the abundance of both desaturases in leaves. AtFAD7 protein levels increased in response to wounding but not to jasmonate (JA), and decreased upon abscisic acid (ABA) treatment. Conversely, AtFAD8 protein levels increased upon cold or JA exposure and decreased at high temperatures, but did not respond to ABA or wounding. These results indicated specific and non-redundant roles for the plastidial ω-3 desaturases in defense, temperature stress or phytohormone mediated responses and a tight coordination of their activities between biotic and abiotic stress signaling pathways. Our data suggested that transcriptional regulation was crucial for this coordination. Finally, bimolecular fluorescence complementation analysis showed that both AtFAD7 and AtFAD8 interact with the AtFAD6 ω-6 desaturase in vivo, suggesting that quaternary complexes are involved in trienoic fatty acid production within the plastid membranes.
Collapse
Affiliation(s)
- Ï Ngel Soria-Garcï A
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| | - Marï A C Rubio
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| | - Beatriz Lagunas
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Sara Lï Pez-Gomollï N
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
| | - Marï A de Los Ï Ngeles Lujï N
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| | - Raï L Dï Az-Guerra
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| | - Rafael Picorel
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| | - Miguel Alfonso
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| |
Collapse
|
30
|
Li W, Li H, Xu P, Xie Z, Ye Y, Li L, Li D, Zhang Y, Li L, Zhao Y. Identification of Auxin Activity Like 1, a chemical with weak functions in auxin signaling pathway. PLANT MOLECULAR BIOLOGY 2018; 98:275-287. [PMID: 30311174 DOI: 10.1007/s11103-018-0779-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/17/2018] [Indexed: 05/05/2023]
Abstract
A new synthetic auxin AAL1 with new structure was identified. Different from known auxins, it has weak effects. By AAL1, we found specific amino acids could restore the effects of auxin with similar structure. Auxin, one of the most important phytohormones, plays crucial roles in plant growth, development and environmental response. Although many critical regulators have been identified in auxin signaling pathway, some factors, especially those with weak fine-tuning roles, are still yet to be discovered. Through chemical genetic screenings, we identified a small molecule, Auxin Activity Like 1 (AAL1), which can effectively inhibit dark-grown Arabidopsis thaliana seedlings. Genetic screening identified AAL1 resistant mutants are also hyposensitive to indole-3-acetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D). AAL1 resistant mutants such as shy2-3c and ecr1-2 are well characterized as mutants in auxin signaling pathway. Genetic studies showed that AAL1 functions through auxin receptor Transport Inhibitor Response1 (TIR1) and its functions depend on auxin influx and efflux carriers. Compared with known auxins, AAL1 exhibits relatively weak effects on plant growth, with 20 µM and 50 µM IC50 (half growth inhibition chemical concentration) in root and hypocotyl growth respectively. Interestingly, we found the inhibitory effects of AAL1 and IAA could be partially restored by tyrosine and tryptophan respectively, suggesting some amino acids can also affect auxin signaling pathway in a moderate manner. Taken together, our results demonstrate that AAL1 acts through auxin signaling pathway, and AAL1, as a weak auxin activity analog, provides us a tool to study weak genetic interactions in auxin pathway.
Collapse
Affiliation(s)
- Wenbo Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Haimin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yajin Ye
- University of Chinese Academy of Sciences, Shanghai, 200032, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lingting Li
- University of Chinese Academy of Sciences, Shanghai, 200032, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Deqiang Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yang Zhao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 68 Wenchang Road, Yunnan, 650000, China.
| |
Collapse
|
31
|
Takaoka Y, Iwahashi M, Chini A, Saito H, Ishimaru Y, Egoshi S, Kato N, Tanaka M, Bashir K, Seki M, Solano R, Ueda M. A rationally designed JAZ subtype-selective agonist of jasmonate perception. Nat Commun 2018; 9:3654. [PMID: 30194307 PMCID: PMC6128907 DOI: 10.1038/s41467-018-06135-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/05/2018] [Indexed: 12/21/2022] Open
Abstract
The phytohormone 7-iso-(+)-jasmonoyl-L-isoleucine (JA-Ile) mediates plant defense responses against herbivore and pathogen attack, and thus increases plant resistance against foreign invaders. However, JA-Ile also causes growth inhibition; and therefore JA-Ile is not a practical chemical regulator of plant defense responses. Here, we describe the rational design and synthesis of a small molecule agonist that can upregulate defense-related gene expression and promote pathogen resistance at concentrations that do not cause growth inhibition in Arabidopsis. By stabilizing interactions between COI1 and JAZ9 and JAZ10 but no other JAZ isoforms, the agonist leads to formation of JA-Ile co-receptors that selectively activate the JAZ9-EIN3/EIL1-ORA59 signaling pathway. The design of a JA-Ile agonist with high selectivity for specific protein subtypes may help promote the development of chemical regulators that do not cause a tradeoff between growth and defense.
Collapse
Grants
- JPMJPR16Q4 Japan Science and Technology Agency (JST)
- JPMJCR13B4 JST | Core Research for Evolutional Science and Technology (CREST)
- 23102012 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 26282207 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 17H06407 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 17H00885 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
Collapse
Affiliation(s)
- Yousuke Takaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
- Precursory Research for Embryonic Science and Technology (PREST), Japan Science and Technology Agency, Tokyo, 102-0076, Japan
| | - Mana Iwahashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Andrea Chini
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049, Madrid, Spain
| | - Hiroaki Saito
- Center for Biosystems Dynamics Research, RIKEN, Suita, 565-0874, Japan
| | - Yasuhiro Ishimaru
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Syusuke Egoshi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Nobuki Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Roberto Solano
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049, Madrid, Spain
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
32
|
Wasternack C, Strnad M. Jasmonates: News on Occurrence, Biosynthesis, Metabolism and Action of an Ancient Group of Signaling Compounds. Int J Mol Sci 2018; 19:E2539. [PMID: 30150593 PMCID: PMC6164985 DOI: 10.3390/ijms19092539] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
: Jasmonic acid (JA) and its related derivatives are ubiquitously occurring compounds of land plants acting in numerous stress responses and development. Recent studies on evolution of JA and other oxylipins indicated conserved biosynthesis. JA formation is initiated by oxygenation of α-linolenic acid (α-LeA, 18:3) or 16:3 fatty acid of chloroplast membranes leading to 12-oxo-phytodienoic acid (OPDA) as intermediate compound, but in Marchantiapolymorpha and Physcomitrellapatens, OPDA and some of its derivatives are final products active in a conserved signaling pathway. JA formation and its metabolic conversion take place in chloroplasts, peroxisomes and cytosol, respectively. Metabolites of JA are formed in 12 different pathways leading to active, inactive and partially active compounds. The isoleucine conjugate of JA (JA-Ile) is the ligand of the receptor component COI1 in vascular plants, whereas in the bryophyte M. polymorpha COI1 perceives an OPDA derivative indicating its functionally conserved activity. JA-induced gene expressions in the numerous biotic and abiotic stress responses and development are initiated in a well-studied complex regulation by homeostasis of transcription factors functioning as repressors and activators.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
| |
Collapse
|
33
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Fukui K, Hayashi KI. Manipulation and Sensing of Auxin Metabolism, Transport and Signaling. PLANT & CELL PHYSIOLOGY 2018; 59:1500-1510. [PMID: 29668988 DOI: 10.1093/pcp/pcy076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/09/2018] [Indexed: 05/26/2023]
Abstract
The plant hormone auxin is involved in virtually every aspect of plant growth and development. A chemical genetic approach has greatly contributed to the identification of important genes in auxin biosynthesis, transport and signaling. Molecular genetic technologies and structural information for auxin regulatory components have accelerated the identification and characterization of many novel small molecule modulators in auxin biology. These modulators have been widely utilized to dissect auxin responses. Here we provide an overview of the structure, primary target, in planta activity and application of small molecule modulators in auxin biology.
Collapse
Affiliation(s)
- Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama City, Japan
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama City, Japan
| |
Collapse
|
35
|
Joglekar S, Suliman M, Bartsch M, Halder V, Maintz J, Bautor J, Zeier J, Parker JE, Kombrink E. Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:1592-1607. [PMID: 29931201 DOI: 10.1093/pcp/pcy106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Indexed: 05/20/2023]
Abstract
In a chemical screen we identified thaxtomin A (TXA), a phytotoxin from plant pathogenic Streptomyces scabies, as a selective and potent activator of FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) expression in Arabidopsis (Arabidopsis thaliana). TXA induction of FMO1 was unrelated to the production of reactive oxygen species (ROS), plant cell death or its known inhibition of cellulose synthesis. TXA-stimulated FMO1 expression was strictly dependent on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) but independent of salicylic acid (SA) synthesis via ISOCHORISMATE SYNTHASE1 (ICS1). TXA induced the expression of several EDS1/PAD4-regulated genes, including EDS1, PAD4, SENESCENCE ASSOCIATED GENE101 (SAG101), ICS1, AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and PATHOGENESIS-RELATED PROTEIN1 (PR1), and accumulation of SA. Notably, enhanced ALD1 expression did not result in accumulation of the product pipecolic acid (PIP), which promotes FMO1 expression during biologically induced systemic acquired resistance. TXA treatment preferentially stimulated expression of PAD4 compared with EDS1, which was mirrored by PAD4 protein accumulation, suggesting that TXA leads to increased PAD4 availability to form EDS1-PAD4 signaling complexes. Also, TXA treatment of Arabidopsis plants led to enhanced disease resistance to bacterial and oomycete infection, which was dependent on EDS1 and PAD4, as well as on FMO1 and ICS1. Collectively, the data identify TXA as a potentially useful chemical tool to conditionally activate and interrogate EDS1- and PAD4-controlled pathways in plant immunity.
Collapse
Affiliation(s)
- Shachi Joglekar
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Mohamed Suliman
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Michael Bartsch
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Vivek Halder
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jens Maintz
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jürgen Zeier
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
36
|
Delgado LD, Zúñiga PE, Figueroa NE, Pastene E, Escobar-Sepúlveda HF, Figueroa PM, Garrido-Bigotes A, Figueroa CR. Application of a JA-Ile Biosynthesis Inhibitor to Methyl Jasmonate-Treated Strawberry Fruit Induces Upregulation of Specific MBW Complex-Related Genes and Accumulation of Proanthocyanidins. Molecules 2018; 23:molecules23061433. [PMID: 29899259 PMCID: PMC6100305 DOI: 10.3390/molecules23061433] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022] Open
Abstract
Fleshy fruits are an important source of anthocyanins and proanthocyanidins (PAs), which protect plants against stress, and their consumption provides beneficial effects for human health. In strawberry fruit, the application of exogenous methyl jasmonate (MeJA) upregulates anthocyanin accumulation, although the relationship between the jasmonate pathway and anthocyanin and PA biosynthesis in fruits remains to be understood. Anthocyanin and PA accumulation is mainly regulated at the transcriptional level through R2R3-MYB and bHLH transcription factors in different plant species and organs. Here, the effect of jarin-1, a specific inhibitor of bioactive JA (jasmonoyl-isoleucine, JA-Ile) biosynthesis, on anthocyanin and PA accumulation was evaluated during strawberry (Fragaria × ananassa) fruit development using an in vitro ripening system for 48 h. Also, we observed the effects of MeJA and the application of jarin-1 to MeJA-treated fruits (MeJA + jarin-1 treatment). We assessed changes of expression levels for the JA-Ile and MeJA biosynthetic (FaJAR1.2 and FaJMT), JA signaling-related (FaMYC2 and FaJAZ1), MYB-bHLH-WD40 (MBW) complex-related (FabHLH3/33, FaMYB9/10/11, and repressor FaMYB1), and anthocyanin and PA biosynthetic (FaANS, FaUFGT, FaANR, and FaLAR) genes. In addition, the promoter region of MBW complex-related MYB genes was isolated and sequenced. We found a higher redness of strawberry fruit skin and anthocyanin content in MeJA-treated fruits with respect to jarin-1-treated ones concomitant with an upregulation of FaANS and FaUFGT genes. Inversely, the PA content was higher in jarin-1- and MeJA + jarin-1-treated than in MeJA-treated fruits. MeJA + jarin-1 treatment resulted in an upregulation of FaANR and associated transcription factors such as FabHLH33 and FaMYB9/11 along with FaJMT and FaJAR1.2. Finally, we found JA-responsive elements in the promoter regions of FaMYB1/9/10/11 genes. It is proposed that PA biosynthesis-related genes can be upregulated by the application of jarin-1 to MeJA-treated fruit, thus increasing PA accumulation in strawberry.
Collapse
Affiliation(s)
- Laura D Delgado
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| | - Paz E Zúñiga
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| | - Nicolás E Figueroa
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| | - Edgar Pastene
- Laboratorio de Farmacognosia, Faculty of Pharmacy, Universidad de Concepción, Concepción 4070386, Chile.
| | - Hugo F Escobar-Sepúlveda
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| | - Pablo M Figueroa
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| | - Adrián Garrido-Bigotes
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
- Faculty of Forest Sciences, Universidad de Concepción, Concepción 4070386, Chile.
| | - Carlos R Figueroa
- Phytohormone Research Laboratory, Institute of Biological Sciences, Universidad de Talca, Talca 3465548, Chile.
| |
Collapse
|
37
|
Pati TK, Debnath S, Kundu M, Khamrai U, Maiti DK. 3-Amino-1-methyl-1H-pyridin-2-one-Directed PdII Catalysis: C(sp3)–H Activated Diverse Arylation Reaction. Org Lett 2018; 20:4062-4066. [DOI: 10.1021/acs.orglett.8b01618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tanmay K. Pati
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700009, India
- TCG Lifesciences Private Limited, Sector V, Salt Lake City, Kolkata 700091, India
| | - Sudipto Debnath
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Mrinalkanti Kundu
- TCG Lifesciences Private Limited, Sector V, Salt Lake City, Kolkata 700091, India
| | - Uttam Khamrai
- TCG Lifesciences Private Limited, Sector V, Salt Lake City, Kolkata 700091, India
| | - Dilip K. Maiti
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700009, India
| |
Collapse
|
38
|
Abstract
Plant oxylipins form a constantly growing group of signaling molecules that comprise oxygenated fatty acids and metabolites derived therefrom. In the last decade, the understanding of biosynthesis, metabolism, and action of oxylipins, especially jasmonates, has dramatically improved. Additional mechanistic insights into the action of enzymes and insights into signaling pathways have been deepened for jasmonates. For other oxylipins, such as the hydroxy fatty acids, individual signaling properties and cross talk between different oxylipins or even with additional phytohormones have recently been described. This review summarizes recent understanding of the biosynthesis, regulation, and function of oxylipins.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators and Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, CZ 78371 Olomouc, Czech Republic
- On leave from Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany;
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077 Goettingen, Germany;
| |
Collapse
|
39
|
Nguyen L, Drozdzecki A, Goossens V, De Rybel B, Beeckman T, Audenaert D. Multi-Parametric Screening in Arabidopsis thaliana Seedlings. Methods Mol Biol 2018; 1795:1-7. [PMID: 29846914 DOI: 10.1007/978-1-4939-7874-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phenotypic screening and subsequent target identification approaches are very valuable to identify chemical probes that can be used to explore the connection between phenotypes and biological pathways. However, assessing a phenotypic effect in plants in a high-throughput fashion is a challenging task and often requires expensive readout devices. In this chapter, we describe a cost-effective multi-parametric screening procedure that is compatible with liquid-handling systems and that enables the assessment of phenotypes in Arabidopsis thaliana seedlings in an automated way.
Collapse
Affiliation(s)
| | | | - Vera Goossens
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium.
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium.
| |
Collapse
|
40
|
High-Throughput Screening of Chemical Compound Libraries for Modulators of Salicylic Acid Signaling by In Situ Monitoring of Glucuronidase-Based Reporter Gene Expression. Methods Mol Biol 2018; 1795:49-63. [PMID: 29846918 DOI: 10.1007/978-1-4939-7874-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Salicylic acid (SA) is a vital phytohormone that is intimately involved in coordination of the complex plant defense response to pathogen attack. Many aspects of SA signaling have been unraveled by classical genetic and biochemical methods using the model plant Arabidopsis thaliana, but many details remain unknown, owing to the inherent limitations of these methods. In recent years, chemical genetics has emerged as an alternative scientific strategy to complement classical genetics by virtue of identifying bioactive chemicals or probes that act selectively on their protein targets causing either activation or inhibition. Such selective tools have the potential to create conditional and reversible chemical mutant phenotypes that may be combined with genetic mutants. Here, we describe a facile chemical screening methodology for intact Arabidopsis seedlings harboring the β-glucuronidase (GUS) reporter by directly quantifying GUS activity in situ with 4-methylumbelliferyl-β-D-glucuronide (4-MUG) as substrate. The quantitative nature of this screening assay has an obvious advantage over the also convenient histochemical GUS staining method, as it allows application of statistical procedures and unbiased hit selection based on threshold values as well as distinction between compounds with strong or weak bioactivity. We show pilot screens for chemical activators or inhibitors of salicylic acid-mediated defense signaling using the Arabidopsis line expressing the SA-inducible PR1p::GUS reporter gene. Importantly, the screening methodology provided here can be adopted for any inducible GUS reporter line.
Collapse
|
41
|
Wurms KV, Hardaker AJ, Ah Chee A, Bowen J, Phipps J, Taylor J, Jensen D, Cooney J, Wohlers M, Reglinski T. Phytohormone and Putative Defense Gene Expression Differentiates the Response of 'Hayward' Kiwifruit to Psa and Pfm Infections. FRONTIERS IN PLANT SCIENCE 2017; 8:1366. [PMID: 28824694 PMCID: PMC5543098 DOI: 10.3389/fpls.2017.01366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/21/2017] [Indexed: 05/20/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) and Pseudomonas syringae pv. actinidifoliorum (Pfm) are closely related pathovars infecting kiwifruit, but Psa is considered one of the most important global pathogens, whereas Pfm is not. In this study of Actinidia deliciosa 'Hayward' responses to the two pathovars, the objective was to test whether differences in plant defense responses mounted against the two pathovars correlated with the contrasting severity of the symptoms caused by them. Results showed that Psa infections were always more severe than Pfm infections, and were associated with highly localized, differential expression of phytohormones and putative defense gene transcripts in stem tissue closest to the inoculation site. Phytohormone concentrations of jasmonic acid (JA), jasmonate isoleucine (JA-Ile), salicylic acid (SA) and abscisic acid were always greater in stem tissue than in leaves, and leaf phytohormones were not affected by pathogen inoculation. Pfm inoculation induced a threefold increase in SA in stems relative to Psa inoculation, and a smaller 1.6-fold induction of JA. Transcript expression showed no effect of inoculation in leaves, but Pfm inoculation resulted in the greatest elevation of the SA marker genes, PR1 and glucan endo-1,3-beta-glucosidase (β-1,3-glucosidase) (32- and 25-fold increases, respectively) in stem tissue surrounding the inoculation site. Pfm inoculation also produced a stronger response than Psa inoculation in localized stem tissue for the SA marker gene PR6, jasmonoyl-isoleucine-12-hydrolase (JIH1), which acts as a negative marker of the JA pathway, and APETALA2/Ethylene response factor 2 transcription factor (AP2 ERF2), which is involved in JA/SA crosstalk. WRKY40 transcription factor (a SA marker) was induced equally in stems by wounding (mock inoculation) and pathovar inoculation. Taken together, these results suggest that the host appears to mount a stronger, localized, SA-based defense response to Pfm than Psa.
Collapse
Affiliation(s)
- Kirstin V. Wurms
- The New Zealand Institute for Plant & Food Research LimitedHamilton, New Zealand
| | - Allan J. Hardaker
- The New Zealand Institute for Plant & Food Research LimitedHamilton, New Zealand
| | - Annette Ah Chee
- The New Zealand Institute for Plant & Food Research LimitedHamilton, New Zealand
| | - Judith Bowen
- The New Zealand Institute for Plant & Food Research LimitedAuckland, New Zealand
| | - Janet Phipps
- The New Zealand Institute for Plant & Food Research LimitedHamilton, New Zealand
| | - Joseph Taylor
- The New Zealand Institute for Plant & Food Research LimitedHamilton, New Zealand
| | - Dwayne Jensen
- The New Zealand Institute for Plant & Food Research LimitedHamilton, New Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant & Food Research LimitedHamilton, New Zealand
| | - Mark Wohlers
- The New Zealand Institute for Plant & Food Research LimitedAuckland, New Zealand
| | - Tony Reglinski
- The New Zealand Institute for Plant & Food Research LimitedHamilton, New Zealand
| |
Collapse
|
42
|
Tzin V, Hojo Y, Strickler SR, Bartsch LJ, Archer CM, Ahern KR, Zhou S, Christensen SA, Galis I, Mueller LA, Jander G. Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4709-4723. [PMID: 28981781 PMCID: PMC5853842 DOI: 10.1093/jxb/erx274] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/13/2017] [Indexed: 05/20/2023]
Abstract
Insects such as the beet armyworm (Spodoptera exigua) cause extensive damage to maize (Zea mays). Maize plants respond by triggering defense signaling, changes in gene expression, and biosynthesis of specialized metabolites. Leaves of maize inbred line B73, which has an available genome sequence, were infested with S. exigua for 1 to 24 h, followed by comparisons of the transcript and metabolite profiles with those of uninfested controls. The most extensive gene expression responses occurred rapidly, within 4-6 h after caterpillar infestation. However, both gene expression and metabolite profiles were altered within 1 h and continued to change during the entire 24 h experiment. The defensive functions of three caterpillar-induced genes were examined using available Dissociation transposon insertions in maize inbred line W22. Whereas mutations in the benzoxazinoid biosynthesis pathway (Bx1 and Bx2) significantly improved caterpillar growth, the knockout of a 13-lipoxygenase (Lox8) involved in jasmonic acid biosynthesis did not. Interestingly, 9-lipoxygenases, which lead to the production of maize death acids, were more strongly induced by caterpillar feeding than 13-lipoxygenases, suggesting an as yet unknown function in maize defense against herbivory. Together, these results provide a comprehensive view of the dynamic transcriptomic and metabolomic responses of maize leaves to caterpillar feeding.
Collapse
Affiliation(s)
- Vered Tzin
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
- Correspondence:
| | - Yuko Hojo
- Okayama University, Institute of Plant Science and Resources, Kurashiki, Okayama, Japan
| | - Susan R Strickler
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Lee J Bartsch
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Cairo M Archer
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Kevin R Ahern
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Shaoqun Zhou
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Shawn A Christensen
- USDA-ARS Chemistry Unit, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Ivan Galis
- Okayama University, Institute of Plant Science and Resources, Kurashiki, Okayama, Japan
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| |
Collapse
|
43
|
de Montaigu A, Oeljeklaus J, Krahn JH, Suliman MN, Halder V, de Ansorena E, Nickel S, Schlicht M, Plíhal O, Kubiasová K, Radová L, Kracher B, Tóth R, Kaschani F, Coupland G, Kombrink E, Kaiser M. The Root Growth-Regulating Brevicompanine Natural Products Modulate the Plant Circadian Clock. ACS Chem Biol 2017; 12:1466-1471. [PMID: 28379676 PMCID: PMC5477000 DOI: 10.1021/acschembio.6b00978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Plant
growth regulating properties of brevicompanines (Brvs), natural
products of the fungus Penicillium brevicompactum, have been known for several years, but further investigations into
the molecular mechanism of their bioactivity have not been performed.
Following chemical synthesis of brevicompanine derivatives, we studied
their activity in the model plant Arabidopsis by
a combination of plant growth assays, transcriptional profiling, and
numerous additional bioassays. These studies demonstrated that brevicompanines
cause transcriptional misregulation of core components of the circadian
clock, whereas other biological read-outs were not affected. Brevicompanines
thus represent promising chemical tools for investigating the regulation
of the plant circadian clock. In addition, our study also illustrates
the potential of an unbiased -omics-based characterization of bioactive
compounds for identifying the often cryptic modes of action of small
molecules.
Collapse
Affiliation(s)
- Amaury de Montaigu
- Department
of Developmental Biology, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Julian Oeljeklaus
- Department
of Chemical Biology, Universität Duisburg-Essen, ZMB, Faculty of Biology, Universitätsstr. 2, 45117 Essen, Germany
| | - Jan H. Krahn
- Department
of Chemical Biology, Universität Duisburg-Essen, ZMB, Faculty of Biology, Universitätsstr. 2, 45117 Essen, Germany
| | - Mohamed N.S. Suliman
- Chemical
Biology Laboratory, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linnè-Weg 10, 50829 Köln, Germany
| | - Vivek Halder
- Department
of Chemical Biology, Universität Duisburg-Essen, ZMB, Faculty of Biology, Universitätsstr. 2, 45117 Essen, Germany
- Chemical
Biology Laboratory, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linnè-Weg 10, 50829 Köln, Germany
| | - Elisa de Ansorena
- Department
of Developmental Biology, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Sabrina Nickel
- Department
of Chemical Biology, Universität Duisburg-Essen, ZMB, Faculty of Biology, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Schlicht
- Chemical
Biology Laboratory, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linnè-Weg 10, 50829 Köln, Germany
| | - Ondřej Plíhal
- Department
of Molecular Biology, Centre of the Region Haná for Biotechnological
and Agricultural Research, Palacký University, Šlechtitelů
241/27, 78371 Olomouc, Czech Republic
| | - Karolina Kubiasová
- Department
of Molecular Biology, Centre of the Region Haná for Biotechnological
and Agricultural Research, Palacký University, Šlechtitelů
241/27, 78371 Olomouc, Czech Republic
| | - Lenka Radová
- Center
of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Barbara Kracher
- Bioinformatics,
Department of Plant Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linnè-Weg 10, 50829 Köln, Germany
| | - Réka Tóth
- Department
of Developmental Biology, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Farnusch Kaschani
- Department
of Chemical Biology, Universität Duisburg-Essen, ZMB, Faculty of Biology, Universitätsstr. 2, 45117 Essen, Germany
| | - George Coupland
- Department
of Developmental Biology, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Erich Kombrink
- Chemical
Biology Laboratory, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linnè-Weg 10, 50829 Köln, Germany
| | - Markus Kaiser
- Department
of Chemical Biology, Universität Duisburg-Essen, ZMB, Faculty of Biology, Universitätsstr. 2, 45117 Essen, Germany
| |
Collapse
|
44
|
Sun X, Li Y, He W, Ji C, Xia P, Wang Y, Du S, Li H, Raikhel N, Xiao J, Guo H. Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase. Nat Commun 2017; 8:15758. [PMID: 28604689 PMCID: PMC5472784 DOI: 10.1038/ncomms15758] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/25/2017] [Indexed: 12/30/2022] Open
Abstract
Ethylene is an important phytohormone that promotes the ripening of fruits and senescence of flowers thereby reducing their shelf lives. Specific ethylene biosynthesis inhibitors would help to decrease postharvest loss. Here, we identify pyrazinamide (PZA), a clinical drug used to treat tuberculosis, as an inhibitor of ethylene biosynthesis in Arabidopsis thaliana, using a chemical genetics approach. PZA is converted to pyrazinecarboxylic acid (POA) in plant cells, suppressing the activity of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), the enzyme catalysing the final step of ethylene formation. The crystal structures of Arabidopsis ACO2 in complex with POA or 2-Picolinic Acid (2-PA), a POA-related compound, reveal that POA/2-PA bind at the active site of ACO, preventing the enzyme from interacting with its natural substrates. Our work suggests that PZA and its derivatives may be promising regulators of plant metabolism, in particular ethylene biosynthesis.
Collapse
Affiliation(s)
- Xiangzhong Sun
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yaxin Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenrong He
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Chenggong Ji
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixue Xia
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Yichuan Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shuo Du
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongjiang Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Natasha Raikhel
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Hongwei Guo
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
45
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
46
|
Ong WD, Okubo-Kurihara E, Kurihara Y, Shimada S, Makita Y, Kawashima M, Honda K, Kondoh Y, Watanabe N, Osada H, Cutler SR, Sudesh K, Matsui M. Chemical-Induced Inhibition of Blue Light-Mediated Seedling Development Caused by Disruption of Upstream Signal Transduction Involving Cryptochromes in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2017; 58:95-105. [PMID: 28011868 DOI: 10.1093/pcp/pcw181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Plants have a remarkable ability to perceive and respond to various wavelengths of light and initiate regulation of different cascades of light signaling and molecular components. While the perception of red light and the mechanisms of its signaling involving phytochromes are largely known, knowledge of the mechanisms of blue light signaling is still limited. Chemical genetics involves the use of diverse small active or synthetic molecules to evaluate biological processes. By combining chemicals and analyzing the effects they have on plant morphology, we identified a chemical, 3-bromo-7-nitroindazole (3B7N), that promotes hypocotyl elongation of wild-type Arabidopsis only under continuous blue light. Further evaluation with loss-of-function mutants confirmed that 3B7N inhibits photomorphogenesis through cryptochrome-mediated light signaling. Microarray analysis demonstrated that the effect of 3B7N treatment on gene expression in cry1cry2 is considerably smaller than that in the wild type, indicating that 3B7N specifically interrupts cryptochrome function in the control of seedling development in a light-dependent manner. We demonstrated that 3B7N directly binds to CRY1 protein using an in vitro binding assay. These results suggest that 3B7N is a novel chemical that directly inhibits plant cryptochrome function by physical binding. The application of 3B7N can be used on other plants to study further the blue light mechanism and the genetic control of cryptochromes in the growth and development of plant species.
Collapse
Affiliation(s)
- Wen-Dee Ong
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Emiko Okubo-Kurihara
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Yukio Kurihara
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Setsuko Shimada
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Mika Kawashima
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kaori Honda
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Sean R Cutler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Minami Matsui
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
47
|
Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proc Natl Acad Sci U S A 2016; 113:13917-13922. [PMID: 27849615 DOI: 10.1073/pnas.1612635113] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A thaliana This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants.
Collapse
|
48
|
Chini A, Gimenez-Ibanez S, Goossens A, Solano R. Redundancy and specificity in jasmonate signalling. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:147-156. [PMID: 27490895 DOI: 10.1016/j.pbi.2016.07.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 05/21/2023]
Abstract
Jasmonates (JAs) are essential phytohormones regulating plant development and environmental adaptation. Many components of the JA-signalling pathway have been identified. However, our insight into the mechanisms by which a single bioactive JA hormone can regulate a myriad of physiological processes and provide specificity in the response remains limited. Recent findings on molecular components suggest that, despite apparent redundancy, specificity is achieved by (1) distinct protein-protein interactions forming unique JAZ/transcription factor complexes, (2) discrete spatiotemporal expression of specific components, (3) variable hormone thresholds for the formation of multiple JA receptor complexes and (4) integration of several signals by JA-pathway components. The molecular modularity that is thereby created enables a single bioactive hormone to specifically modulate multiple JA-outputs in response to different environmental and developmental cues.
Collapse
Affiliation(s)
- Andrea Chini
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Selena Gimenez-Ibanez
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Roberto Solano
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
49
|
Chuprov–Netochin R, Neskorodov Y, Marusich E, Mishutkina Y, Volynchuk P, Leonov S, Skryabin K, Ivashenko A, Palme K, Touraev A. Novel small molecule modulators of plant growth and development identified by high-content screening with plant pollen. BMC PLANT BIOLOGY 2016; 16:192. [PMID: 27596094 PMCID: PMC5011872 DOI: 10.1186/s12870-016-0875-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/16/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Small synthetic molecules provide valuable tools to agricultural biotechnology to circumvent the need for genetic engineering and provide unique benefits to modulate plant growth and development. RESULTS We developed a method to explore molecular mechanisms of plant growth by high-throughput phenotypic screening of haploid populations of pollen cells. These cells rapidly germinate to develop pollen tubes. Compounds acting as growth inhibitors or stimulators of pollen tube growth are identified in a screen lasting not longer than 8 h high-lighting the potential broad applicability of this assay to prioritize chemicals for future mechanism focused investigations in plants. We identified 65 chemical compounds that influenced pollen development. We demonstrated the usefulness of the identified compounds as promotors or inhibitors of tobacco and Arabidopsis thaliana seed growth. When 7 days old seedlings were grown in the presence of these chemicals twenty two of these compounds caused a reduction in Arabidopsis root length in the range from 4.76 to 49.20 % when compared to controls grown in the absence of the chemicals. Two of the chemicals sharing structural homology with thiazolidines stimulated root growth and increased root length by 129.23 and 119.09 %, respectively. The pollen tube growth stimulating compound (S-02) belongs to benzazepin-type chemicals and increased Arabidopsis root length by 126.24 %. CONCLUSIONS In this study we demonstrate the usefulness of plant pollen tube based assay for screening small chemical compound libraries for new biologically active compounds. The pollen tubes represent an ultra-rapid screening tool with which even large compound libraries can be analyzed in very short time intervals. The broadly applicable high-throughput protocol is suitable for automated phenotypic screening of germinating pollen resulting in combination with seed germination assays in identification of plant growth inhibitors and stimulators.
Collapse
Affiliation(s)
- Roman Chuprov–Netochin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
| | - Yaroslav Neskorodov
- Research Centerof Biotechnology of the Russian Academy of Science, 117312 Moscow, Russian Federation
| | - Elena Marusich
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
| | - Yana Mishutkina
- Research Centerof Biotechnology of the Russian Academy of Science, 117312 Moscow, Russian Federation
| | - Polina Volynchuk
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
| | - Sergey Leonov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
| | - Konstantin Skryabin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
- Research Centerof Biotechnology of the Russian Academy of Science, 117312 Moscow, Russian Federation
- Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Andrey Ivashenko
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
| | - Klaus Palme
- Faculty of Biology; BIOSS Centre for Biological Signaling Studies; ZBSA Centre for Biological Systems Analysis, University of Freiburg, Schänzlestr.1, 79104 Freiburg, Germany
| | - Alisher Touraev
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region Russian Federation
- Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| |
Collapse
|
50
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 68:1333-1347. [PMID: 27927998 DOI: 10.1093/jxb/erw440] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|